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We examine the quasinormal modes of Ellis-Bronnikov wormholes embedded in a warped five-
dimensional braneworld background and compare with its four-dimensional counterpart. These scalar
quasinormal frequencies are obtained using the WKB formula, Prony method, and the direct integration
method. The signature of the warped extra dimension shows up as two distinct quasinormal ringing eras,
characterized by two distinct dominant quasinormal modes. Features of the latter region are similar to that
observed earlier for massive scalar fields in the black hole background, particularly the existence of
arbitrarily long-lived quasinormal modes. We also discuss the how steepness of the neck of the wormhole
effects the quasinormal frequencies.
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I. INTRODUCTION

Wormholes are known to be solutions of Einstein field
equations, like the Schwarzschild black hole in vacuum,
that essentially connects two distinct spacetime points
within our Universe (intra-universe) or two “parallel uni-
verses” (inter-universe) creating a shortcut that allows
“apparently faster than light” travel. Detailed historical
accounts of theoretical discovery/construction of worm-
holes could be found, for example, in [1,2]. The original
wormhole solutions were found to be nontraversable [3–6]
or unstable under perturbation. Violation of the (averaged)
null energy condition is required to prevent the wormhole
“throat” from collapsing and making it traversable. This
could be realized by introducing exotic matter around the
throat [7,8]. It appears as if such matters may have a
quantum origin, but the standard model matter seems to be
inadequate for the generation of macroscopic wormholes [9].
Remarkably, a plethora of wormhole constructions under
the so-calledmodified theories of gravity exist in the literature
that avoid the use of exotic matter [10–26]. It has also
been suggested that violation can be restricted to arbitrarily
small regions [27].
The four-dimensional Ellis-Bronnikov (4D-EB) space-

time [28,29] that employs a phantom scalar field (a field
with negative kinetic term) is one of the most researched
wormhole geometries since its introduction in 1973.
Several studies on this class of model can be found in
the literature, including geometry of spinning 4D-EB
spacetime [30], generalized spinning of a 4D-EB wormhole
in scalar-tensor theory [31], hairy Ellis wormhole

solutions [32], Ellis wormholes in anti–de Sitter space [33],
and stability analysis of 4D-EB solution in higher-
dimensional spacetime [34]. Kar et al. presented a gener-
alized version of 4D-EB (4D-GEB) spacetime [35], where
the need for exotic matter is partially evaded by introducing
a new wormhole parameter, n ≥ 2 (n ¼ 2 corresponds to
4D-EB geometry). Quasinormal modes (QNMs), echoes,
and some other aspects of 4D-GEB wormholes are ana-
lyzed in [36].
Wormholes are yet contemplated as conjectural. How-

ever, recent developments in black hole observation [37]
have increased the possibility to distinguish a black hole
from a so-called black holemimicker such as awormhole. In
fact, we are far from identifying a black hole from what we
have observed yet [38]. In principle, one may identify
wormholes through lensing effects, shadows, Einstein
rings, and other phenomena [39–45], which may in turn
favor modified gravity theories over general relativity.
QNMs [46–53] are one such signature that characterizes,
e.g., the late time response (“ringing”) of a black hole (or
wormhole) under perturbation. Dominant quasinormal
frequencies (QNFs) can be seen in the gravitational wave
signals from black holes (or similar compact objects) at late
times. They have been observed recently by LIGO/VIRGO
Collaborations [54–57]. Remarkably, observation of a
multimode quasinormal spectrum has been reported
in [58]. This allows one to determine the individual black
hole/wormhole parameters involved. Determination of
QNFs with high accuracy is an important challenge and
can constrain various modified gravitational theories and
also test the strong gravity regime.
One class of the modified theories of gravity involves

extra spatial dimension(s). In fundamental physics,
the emergence of an additional spatial dimension is
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ubiquitous—Kaluza and Klein [59,60] first demonstrated it
in an effort to combine gravity and electromagnetic theories
for a five-dimensional (5D) gravity model in 1921 and
1926, respectively. Be it the string theory [61] or in the
context of symmetries of particle physics (the octonionic
hypotheses) [62–67], the extra dimensions seem to appear
naturally. String theory also motivated the braneworld
scenarios—where our four-dimensional Universe (3-brane)
is embedded in a higher-dimensional bulk. The so-called
Dvali-Gabadadze-Porrati models produce infrared modifi-
cation with extra-dimensional gravity dominating at low
energy scales [68]. Perhaps the most popular of these
models are the “warped braneworld” models [69–73] that
generate ultraviolet modification to general relativity with
extra-dimensional gravity dominating at high energy scales
and address the hierarchy issue in the fundamental scales of
physics. These models feature a nonfactorizable curved 5D
spacetime, where the 4D metric is a function of the
additional dimension through a warping factor.
Attempts to build wormholemodels in higher-dimensional

spacetime have began to appear recently [74–79]. Kar [80]
has proposed a 5D warped wormhole model where the
warping chosen is largely inspired by the nonstatic Witten
bubble. Recently, in [81], an EB spacetime embedded (with a
decaying warp factor) in 5D warped bulk (5D-WEB) is
constructed that is supported by on-brane positive energy
densitymatter. Though theweak energy condition is violated,
the degree of violation could be made arbitrarily small. We
further analyzed the timelike trajectories and the geodesic
congruences in these spacetimes in detail in [82,83]. The
warping factor, we assume, is that of the well-known thick
brane model [84–87], which is a smooth function of the extra
dimension (thus there are no derivative jumps or δ functions in
the curvature and connections).
In this work, we determine the QNFs (using multiple

techniques/algorithms) for both the 4D-(G)EB and 5D-WEB
spacetimes and contrast them to distinguish the effects or
signatures of the wormhole parameters and the warped extra
dimension. The following is a breakdown of the content of
this article. In Sec. II, we briefly introduce the novel 5D-W
(G)EB wormhole geometry alongside its 4D counterpart. In
Sec. III, the field equation for (scalar) perturbation of the
geometry and corresponding effective potentials are derived.
In Sec. IV, we discuss various methods to solve the master
equation in order to determine the time domain profile of the
perturbation and QNFs. In Sec. V, we report the results and
compare 4D and 5D models to distinguish the signature of
the warped extra dimension and the wormhole parameters.
Remarkably, we found two distinct QNM eras with two
different dominant QNFs. Finally, in Sec. VI, we summarize
the work done and key results.

II. 4D-GEB AND 5D-W(G)EB SPACETIME

A 4D-EB wormhole is a spacetime geometry constructed
in the presence of a phantom matter field—one whose

action contains a negative kinetic energy term. This
solution is a spherically symmetric, static, and geodetically
complete, horizonless manifold that has a throat (which
becomes apparent in an embedding diagram [7]) linking
two asymptotically flat regions and is given by the
following line element:

ds2 ¼ −dt2 þ dr2

1 − b2
0

r2

þ r2dθ2 þ r2sin2θdϕ2: ð1Þ

Here b0 is the wormhole’s throat radius. The EB spacetime
metric can also be written as

ds2 ¼ −dt2 þ dl2 þ r2ðlÞdθ2 þ r2ðlÞsin2 θ dϕ2; ð2Þ

with r2ðlÞ ¼ l2 þ b20; ð3Þ

and l is called the “tortoise coordinate” or proper radial
distance. A generalization of the EB model (GEB) is
proposed in [35] (which is consistent with Morris-
Thorne conditions essential for a Lorentzian wormhole),
given by

ds2 ¼ −dt2 þ dr2

1 − bðrÞ
r

þ r2dθ2 þ r2sin2 θ dϕ2; ð4Þ

with bðrÞ ¼ r − rð3−2nÞðrn − bn0Þð2−
2
nÞ: ð5Þ

The parameter n takes only even values so that rðlÞ is
smooth over the complete range of−∞ < l < ∞. Forn ¼ 2,
we get the original EB geometry back. The GEB metric
looks much simpler in terms of the tortoise coordinate,

dl2 ¼ dr2

1 − bðrÞ
r

⇒ rðlÞ ¼ ðln þ bn0Þ
1
n: ð6Þ

Note that at the wormhole throat (l ¼ 0) the sole non-
vanishing derivative is the nth-order derivative of rðlÞ. The
effective potential (elaborated later on) also has a nonzero
nth derivative at l ¼ 0, which gives a negative value for the
EB model (n ¼ 2 case), while for all other n values it
provides a positive value.
The 5D warped Ellis-Bronnikov model, introduced

in [81] is

ds2¼ e2fðyÞ½−dt2þdl2þ r2ðlÞðdθ2þ sin2θdϕ2Þ�þdy2:

ð7Þ

In this model, y is an extra dimension (−∞ ≤ y ≤ ∞), fðyÞ
is a warp factor, and the term in square brackets is the GEB
spacetime. We assume, fðyÞ ¼ � log½coshðy=y0Þ�,1 which

1For all numerical calculations, we have chosen y0 ¼ 1.
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represents known thick brane solutions in the presence of
bulk matter fields [84]. This choice also avoids jumps or δ
functions in connections and Riemann tensors. In [81],
we showed that for this class of models two of the (on-
brane) weak energy conditions, ρ > 0 and ρþ p > 0, are
satisfied in the presence of a decaying warp factor. Further,
instead of having n > 2 in 4D-GEB, having a warped
extra dimension as in the 5D-WGEB model, removes the
negative energy density matter completely from the 3-brane
located at y ¼ 0 [82,83]. The weak energy condition
violation comes from radial pressure τ as

ρðl; yÞ þ τðl; yÞ ¼ −2e−2fðyÞ
r00ðlÞ
r

< 0 ð8Þ

and is negative everywhere. This term can be made
arbitrarily small in the b → 0 limit and one may then
assume quantum effects to justify such violation. Note that,
for a decaying warp factor, the prefactor has its minimum
value at the location of the brane only.

III. FIELD EQUATION AND EFFECTIVE
POTENTIAL

The perturbations or fluctuations in a black hole or
wormhole geometry may be caused by merger or gravi-
tational interactions with other astrophysical objects or
even the so-called test objects that may represent a
spaceship passing through. The scalar frequencies of
these perturbations evolve via a massless Klein-Gordon
equation, given by

∇μ∇μΨ ¼ −1ffiffiffiffiffiffi−gp ∂μ ðgμν
ffiffiffiffiffiffi
−g

p
∂νΨÞ ¼ 0; ð9Þ

where Ψ is the scalar (field) perturbation and g is the
determinant of the metric tensor involved. For massive
scalar field perturbation with mass m, the right-hand side
of Eq. (9) will carry a term m2ψ . This equation does allow
(with appropriate boundary conditions) solutions having
complex frequencies. These QNFs have a natural inter-
pretation as gravitational radiation where the black hole/
wormhole is treated as an open system. The QNFs, by
definition, are associated with specific boundary condi-
tions which says they are purely outgoing waves at spatial
infinities. The real part of a QNF denotes the oscillation,
while the imaginary part implies damping of the field over
time. The vector and tensor perturbations (wherever
applicable) also follow a similar field equation as scalar
frequencies as such. These QNFs are also key to testing
stability of a wormhole geometry under perturbation.
They certainly depend on the various wormhole param-
eters involved and thus could have distinct features in
comparison with black holes as such. Analysis of the
effective potential and determination of QNFs for the 4D-
GEB model are briefly addressed in [36]. Below we

reproduce and extend their result of the 4D scenario and
then compare them with the corresponding results derived
for 5D-WEB spacetime.

A. 4D scenario

Since the wormhole geometry is static and spherically
symmetric, one may use the following separation of
variables for the field Ψ, in the 4D-GEB scenario, as

Ψðt; r; θ;ϕÞ ¼ Yðθ;ϕÞRðrÞe
−iωt

r
; ð10Þ

where Yðθ;ϕÞ are the spherical harmonics. This leads to a
form similar to the Schrödinger equation in the tortoise
coordinate l,

ω2 þ 1

R
∂
2R
∂l2

− Veff ¼ 0: ð11Þ

The “effective potential” Veff is given by

Veff ¼
�ðn − 1Þbn0ln−2

ðln þ bn0Þ2
þ mðmþ 1Þ
ðln þ bn0Þ2=n

�
; ð12Þ

where m represents the azimuthal angular momentum. In
terms of the radial coordinate, the effective potential is
simply

Veff ¼
�
r00

r
þmðmþ 1Þ

r2

�
: ð13Þ

Before going into the solutions of the field equation and
determination of the QNFs, let us analyze the effective
potential corresponding to perturbations in 4D and 5D
models.
Figure 1 shows the variation of the effective potential

versus l for the various 4D-GEB models (varying n) for
four different angular frequencies m ¼ 1, 2, 5, 10; whereas
the plots in Fig. 2 show the variation of effective potential
versus l for n ¼ 2 (EB case) and n ¼ 4 (for various m
frequencies).2 A few prominent features observed from
these plots are as follows.

(i) Veff exhibits a single barrier for n ¼ 2, while a twin
barrier exists for all n > 2. This particular feature, in
fact, corresponds to removal of the exotic matter
from the throat region.

(ii) For higherm frequencies, the potential increases and
for n > 2, twin peaks merge to create a plateau-
shaped single barrier. In other words, the twin barrier
feature is only visible for low values of m. This
could have important implications for the stability of
the 4D-GEB model which may be addressed
elsewhere.

2The throat radius b0 is taken as unity for numerical evaluation.
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(iii) It is known that theWKBmethod to determine QNFs
is not suitable for twin barrier potentials. However,
the potential profiles suggest that the WKB formula
could be useful even for n > 2 for high m.

(iv) All potentials vanish asymptotically which implies
trivial boundary condition for QNMs.

B. 5D scenario

In the 5D-WGEB spacetime given by Eq. (7), we use the
following separation of variables:

Ψ5D ¼ Yðθ;ϕÞe−iωt RðrÞ
r

FðyÞe−fðyÞ; ð14Þ

where FðyÞ and fðyÞ are functions only depending on y.
Thus, the Klein-Gordon equation in 5D leads to

�
ω2−

�ðn−1Þbn0ln−2
ðlnþbn0Þ2

þ mðmþ1Þ
ðlnþbn0Þ2=n

�
þ 1

R
∂
2R
∂l2

�

¼−
�
1

F
∂
2F
∂y2

þ2
1

F
∂F
∂y

∂f
∂y

−
∂
2f
∂y2

−3

�
∂f
∂y

�
2
�
e2fðyÞ: ð15Þ

FIG. 1. Plot of effective potential for fixed m and varying n, (top left) m ¼ 1, (top right) m ¼ 2, (bottom left) m ¼ 5, (bottom right)
m ¼ 10.

FIG. 2. Plot of effective potential for fixed n and varying m, (left) n ¼ 2, (right) n ¼ 4.
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Now taking

−e2fðyÞ
�
1

F
∂
2F
∂y2

þ2
1

F
∂F
∂y

∂f
∂y

−
∂
2f
∂y2

−3

�
∂f
∂y

�
2
�
¼ q2; ð16Þ

Equation (15) reduces to the form of Eq. (11) with the
effective potential being

Veff ¼
�ðn − 1Þbn0ln−2

ðln þ bn0Þ2
þ mðmþ 1Þ
ðln þ bn0Þ2=n

�
þ q2: ð17Þ

To find the eigenvalues q2 by solving Eq. (16), let us first
do a coordinate transformation given by dz ¼ dye−f, i.e.,
z ¼ sinh y (for the decaying warp factor), that leads to

∂
2F
∂z2

þ ∂f
∂z

∂F
∂z

−
�
∂
2f
∂z2

þ 2

�
∂f
∂z

�
2
�
F ¼ −q2F: ð18Þ

Then, we use the ansatz FðzÞ ¼ GðzÞ expð−f=2Þ, leading
to the following simpler form:

−
∂
2G
∂z2

þ VeðzÞG ¼ q2G; where

VeðzÞ ¼
3

2

∂
2f
∂z2

þ 9

4

�
∂f
∂z

�
2

¼ 3ð5z2 − 2Þ
4ðz2 þ 1Þ2 : ð19Þ

The potential VeðzÞ is plotted in Fig. 3. This potential
vanishes as z → �∞, which implies that positive (or real q)
eigenvalues are a continuum. This analysis is consistent
with numerical solution found using Mathematica.
Apparently, it may seem that for negative eigenvalues a
discrete spectrum exists. This can be investigated with the
following approximation. The series expansion of the
potential about z ¼ 0 is given by

VeðzÞ ¼ −
3

2
þ 27

4
z2 − 12z4 þ 69

4
z6 −OðzÞ8; ð20Þ

since, for the negative part of the potential jzj < 1, we
choose to ignore the terms of OðzÞ4 onward. This leaves us
with a harmonic oscillator potential whose eigenvalues are
given by

Eh:o: ¼
�
nþ 1

2

� ffiffiffiffiffi
27

p
− 3=2; n ¼ 0; 1; 2…: ð21Þ

The ground state eigenvalue, for n ¼ 0, is positive in spite
of the factor −3=2. This observation remains unchanged if
we include higher-order terms and find the eigenvalue
numerically. Thus, there are no negative eigenvalues or
bound states of Eq. (19).3 Thus, the q2-term effectively
contributes as an effective mass in the Schrödinger equa-
tion. This is a well-known feature of massless 5D field
equation when projected on 4D as such. Thus, the potential
given by Eq. (17) is equivalent to the potential of the
massive scalar field with mass q in the 4D-GEB (or pure
EB) background. However, no such studies could be
found in the literature, which makes it difficult compare
our result with previous results. One can say that Eq. (17) is
unique and results in unique signature QNMs, as we
are going to see in what follows. A somewhat similar
effective potential appears in the presence of a massive
scalar field in a 4D black hole background [88,89]. There,
authors have shown that, for some values of the black hole
mass and the scalar field mass, purely real QNM frequen-
cies or the so-called quasiresonances exist.4 We shall see
similar results below. Horowitz and Hubeny [90] have
addressed a similar problem in the sense that we also have
an asymptotically nonvanishing potential (see Fig. 4). Note
that the effect of the extra dimension is encoded in the
eigenvalues q2. If q2 takes continuous values, then the
information about the functional from the warp factor
would not be imprinted on the QNFs to be deter-
mined below.
In what follows, we shall choose suitable values of q

to be put in Eqs. (11) and (17) for numerical evaluation
and graphical presentations. Note that q has a dimension
of inverse length. Therefore, its exact numerical value is
less important for our purpose. So, one can set y0 ¼ 1

without losing any generality. However, “q ¼ b−10 ” is
expected to have a physical significance as we will
see later.
Figure 4 shows the effective potential profile versus l, for

various values of q with fixed azimuthal angular momen-
tum (m ¼ 2) for n ¼ 2 (WEB) and n ¼ 4 (a WGEB)
geometries. Due to the presence of the extra dimension,
as l → ∞, the potential does not vanish and essentially
becomes equal to q2, consistent with Eq. (17). This will be

FIG. 3. Plot of potential VeðzÞ versus z.

3Negative eigenvalues would imply imaginary q values.
4Naturally, there is a debate whether these frequencies can be

called QNFs at all.
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reflected in the choice of boundary conditions to determine
the QNFs using various methods.

IV. TIME DOMAIN SPECTRUM AND
QUASINORMAL FREQUENCIES

WGEB models with a decaying warp factor satisfy the
energy conditions even for n ¼ 2 or the original EB
spacetime [81] where there is a single barrier only; which,
in turn, suggests that one may use the WKB method to find
approximate QNF values, not only for 4D-EB wormholes,
but also for 5D-WEB (n ¼ 2) wormholes as well. We
employ numerical methods to supplement the WKB
approach also for higher accuracy in cases where the
WKB approach is less efficient.

A. WKB approach

The semianalytical WKB approximation to derive QNFs
was developed by Schutz and Will [91]. The method is
based on matching of the asymptotic WKB solutions at
spatial infinities and at the neck of the wormhole (event
horizon in the case of a black hole) with the Taylor
expansion near the top of the potential barrier through
the two turning points. The QNFs found by taking the
WKB solutions up to the eikonal limit are given by the
following formula [92,93]:

w2
p ¼ V0 − i

�
pþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

q
; ð22Þ

where V0 and V 00
0 denote the values of the effective potential

and its second derivative at the maximum. p denotes the
overtone number, with p ¼ 0 being the fundamental mode.
For our model, Eq. (22) implies (for n ¼ 2 scenario)

w2
p ¼

m2þmþ1

b20
þq2−2ið2pþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þmþ2

p

b20
: ð23Þ

It is straightforward to show that, for large effective mass
q ≫ m, we get purely real wp ∼ q or the so-called quasir-
esonances, which were reported for wormholes in [94].
Numerical results will show more details. Here, we focus
only on the fundamental frequencies and compare the
WKB values with the numerical results (derived in the next
section) in the tables given below. For a recent compre-
hensive review on WKB methods, one may refer to [48].
Let us now discuss the numerical methods to compute the
QNFs for 4D and 5D geometries.

B. Numerical approaches

QNFs are complex frequencies that characterize
damped oscillation of gravitational perturbations in the
metric. There are many methods developed to determine
these frequencies. Few numerical approaches are designed
to find QNFs with any desired accuracy (see [48] for a
review of methods), which are based on convergent
procedures. Each has its own advantages and disadvan-
tages. Developing efficient methods to compute QNFs is
an active area of research. The analytic methods, e.g.,
WKB method, are less accurate compared to numerical
methods, for example, in the presence of multiple barriers
(e.g., n > 2 in GEB models) [36]. The time-dependent
wave equation, integrated over the angular coordinates,
has following form:

VeffΨmðt; lÞ þ
∂
2Ψmðt; lÞ
∂t2

−
∂
2Ψmðt; lÞ
∂l2

¼ 0: ð24Þ

In the first method, we determine the time evolution of
the scalar perturbation by numerically integrating Eq. (24)
using the methodology presented in [48,95]. The essential
steps are as follows. One first adopts the light cone
coordinates, du ¼ dtþ dl and dv ¼ dt − dl, which
implies

FIG. 4. Plot of effective potential for constant m and n at different dimensions (varying q), (left) n ¼ 2, m ¼ 2; (right) n ¼ 4, m ¼ 2.
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�
4

∂
2

∂u∂v
þ Veffðu; vÞ

�
Ψmðu; vÞ ¼ 0: ð25Þ

The time evolution operator, using simple two-variable
Taylor expansion, reads as

exp

�
h
∂

∂t

�
¼exp

�
h
∂

∂u
þh

∂

∂v

�

¼−1þexp

�
h
∂

∂u

�
þexp

�
h
∂

∂v

�

þh2

2

�
exp

�
h
∂

∂u

�
þexp

�
h
∂

∂v

��
∂
2

∂u∂v
þOðh4Þ;

ð26Þ

where h is the step size. Thereafter, we numerically
integrate over du and dv, ideally in the range ½0;∞�.
We have computed the field amplitude in the region
0 ≤ u; v ≤ 200 with a step size h ¼ 0.01. The initial
condition is taken as a Gaussian distribution along

v ¼ 0, Ψðu; 0Þ ¼ e
−ðu−10Þ2

100 , and as a constant along u ¼ 0,
Ψð0; vÞ ¼ 1=e, such that they equate at Ψð0; 0Þ. This
computation is performed using both Python and MATLAB to
cross-check for accuracy. A particular case, with n ¼ 4,
m ¼ 2 in the 4D-GEB model, is shown in the (log-linear)
plots in Fig. 5. This shows that the efficiency of the two
computing platforms is comparable. The presence of
quasinormal frequencies is clearly evident from these
time domain evolution spectra.
From the log-linear plots in Fig. 5, one may identify

three distinct stages in the time domain spectrum the initial
region, approximately for tenure t ¼ 0–50 s (which
depends on the initial condition), the second stage, the
region of our interest—the exponential dampening—
roughly during t ¼ 50–110 s, followed by the third stage
of “tail” [48,95]. Note that with increase in b0 value the
duration quasinormal ringing increases, which suggests a
decrease in the value of the QNF. This feature is also
present in the 5D scenario. In fact, this can be seen by
straightforward evaluation of the WKB formula, Eq. (22).

From the damped region one can extract the QNF values by
the “Prony fitting”method (discussed below). We have also
used the “direct integration” method to determine the
QNFs. Below, we briefly discuss these methodologies
followed by the tabulated results.

C. Determination QNFs

1. Prony method

In the Prony method, the time domain profile is fitted by
the function

fðtÞ ¼
X∞
n¼0

Aneαnt cos ðβntÞ; ð27Þ

where the QNFs are given by ωQNF ¼ α� iβ. This tech-
nique is similar to the Fourier method but is also valid for
complex frequencies and was first developed by Prony in
1795 [48]. There is another variation of this technique [50],
where the function is equated with the time domain
spectrum and converted into a matrix form whose roots
(eigenvalues) are found to be the QNFs. This technique is
used in all fields having any damped oscillatory signal
processing. We used both of these approaches for reliability
(using both Python and MATLAB). An example of the Prony
fitting is depicted in Fig. 6.

FIG. 5. Time domain spectrum for n ¼ 4, m ¼ 2, using Python (left) and MATLAB (right).

FIG. 6. Time domain spectrum fit with dominant ωQNF for
n ¼ 4, m ¼ 2 using Python.
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The matrix (Prony) method returns a set of complex
frequencies which are further analyzed and sorted with
respect to a magnitude similar to the Fourier technique. In
Fig. 7, we graphically present the amplitude of each mode
obtained in the matrix method (using Python). It is evident
that only two frequencies (conjugate of each other) have the
highest magnitude and hence are the most dominating.
Thus, the QNFs in their order of dominance can be
identified. We shall not show the amplitude plots for any
other cases for brevity.

2. Direct integration

In the direct integration method, the characteristic or the
master differential equation (11) is numerically integrated
using purely outgoing boundary conditions. This tech-
nique was first used by Chandrasekhar and Detweiler [96]
in 1975. We essentially follow the steps described in
[36,97]. As our potential is symmetric about the wormhole
throat (l ¼ 0) (in both 4D and 5D cases) our solution
can be of the symmetric or antisymmetric kind. For the
symmetric (antisymmetric) solution, we should use
R0ð0Þ ¼ 0 (Rð0Þ ¼ 0). Note that the asymptotic solution
near l → ∞ can be expanded as

Rþ ¼ eiΩl
X∞
k¼0

Aþ
k

lk
; Ω2 ¼ ω2 − q2; ð28Þ

which represents a purely outgoing wave. However, near
the throat or at some finite distance from the throat,
expansion should contain both ingoing and outgoing
waves, given by

RðlÞ ¼ eiΩl
X∞
k¼0

Aþ
k

lk
þ e−iΩl

X∞
k¼0

A−
k

lk
: ð29Þ

By putting RðlÞ in the field equation, one gets the
following recurrence relations (at large l20 ≫ b20):

A�
kþ1 ¼ �fkðkþ 1Þ −mðmþ 1ÞgA�

k þ ðn − 1Þbn0A�
k−n

2iΩðkþ 1Þ :

ð30Þ

This gives all the A�
k in terms of A�

0 . After we integrate
Eq. (11) from l ¼ 0 to l ¼ l0, we match the numerically
found RnumðlÞ and R0

numðlÞ with Eq. (29) and its derivative
at l0. This leads to the following matching conditions:

Rnumðl0Þ ¼ eiΩl0
X∞
k¼0

Aþ
k

lk0
þ e−iΩl0

X∞
k¼0

A−
k

lk0
; ð31Þ

R0
numðl0Þ ¼ eiΩl0

X∞
k¼0

Aþ
k

lk0

�
iΩ −

k
l0

�

þ e−iΩl0
X∞
k¼0

A−
k

lk0

�
−iΩ −

k
l0

�
: ð32Þ

Eliminating Aþ
0 from Eqs. (31) and (32), we get an

expression of A−
0 as a function of l0 and ω. Roots of the

equation A−
0 ¼ 0, in the large l0 limit, gives us the QNFs.

The stability of the solutions is checked by verifying that
varying l0 does not considerably change the QNF values.
We have only considered QNFs corresponding to the
symmetric solutions, which have low damping.

V. RESULTS

Our focus will be on n ¼ 2 or the pure EB model as we
are going to compare these results with the 5D scenario.
However, we will also address higher n geometries (4D-
GEB) briefly for completeness and to extend the results
presented in [36].

A. 4D wormhole: Varying n and m

Figure 8 shows that for the 4D-EB wormhole (n ¼ 2) the
damped oscillatory region is less prominent for lower
values of m. Therefore, QNF values extracted from these
evolutions, using Prony fitting, are sensitive to the choice of
beginning and end of QNM oscillation.
Figure 9 shows time evolution for a “steep-neck” 4D-

GEB geometry with n ¼ 10 (for m ¼ 2) and n ¼ 4 (for
m ¼ 5). Comparison with Fig. 5 shows that, with increas-
ing n, the beginning of the quasinormal ringing domain has
not changed much, but the end is delayed considerably, i.e.,
the tail appears much later for a higher value of n. Whereas
with increasing m, the QNM oscillation gets triggered

FIG. 7. Amplitudes An of fitting frequencies with dominant ωQNF having the greatest value.

ANTARIKSHA MITRA and SUMAN GHOSH PHYS. REV. D 109, 064005 (2024)

064005-8



earlier. These particular features could be a useful signature
in detecting the shape of the GEB wormholes apart from
those reported in [36].
The (dominant) quasinormal frequencies for various m

(angular momentum) and n (steep-neck parameter) values
in 4D-GEB have been plotted (real versus the absolute
value of imaginary) in Fig. 10. We clearly see that the
features of n ¼ 2 are markedly different from the n > 2
scenario. Figure 10 essentially reproduces results found
in [36] and establishes the accuracy of our numerical
computation. For a detailed discussion on Fig. 10, we urge
the reader to consult [36].

B. 5D wormhole: n= 2, varying m and q

In the context of the 5D model, as argued earlier, we
focus on the n ¼ 2 scenario. Incidentally, the effects of the

extra dimension (i.e., of varying q value or the massiveness
coming from the warped extra dimension) on the time
evolution is more striking for higher values of m. Let us
look at the time domain profile for n ¼ 2,m ¼ 8 (any other
value of m will do) with varying q values. Figure 11 shows
the remarkable changes in the time evolution profile of the
wave amplitude for four different values of q.
Even for small (but nonzero) values of q ¼ 0.5, the 4D

behavior (which is equivalent to setting q ¼ 0) is lost. This
is expected as there is an interplay between m and q.
Interestingly, for q > b−10 (here we have taken b0 ¼ 1), the
semilog plots clearly reveal that the QNM era is divided
into two parts (almost as if two linear regions with different
slopes are joined at a kink) that are dominated by two
different QNF modes. Notably, in the latter region, the most
dominant QNM is characterized by FFFðωÞ ∼ q with a
small imaginary part as depicted in the tables given below.
As time evolves, eventually, when the early dominant
modes decay, the late QNM emerges. To further reveal
the late QNM region, we present Fig. 12. Here, in the left
plot we show a perfect fit of the early QNM region using
the dominant QNF found to be ωðEÞ ¼ 5.335þ i0.41. In
the right plot, we have fitted the wave amplitude, after
subtracting that dominant early QNM, with the dominant
late QNM given by ωðLÞ ¼ 2.0078þ i0.0043. The order of
their dominance has also been confirmed from their
amplitudes using the matrix Prony method as mentioned
earlier. The (almost) purely real frequencies, in the late
QNM era, are similar to the quasiresonances found in
[88,98]. Though the imaginary part is nonzero but very

FIG. 8. Time domain spectrum for n ¼ 2, m ¼ 4 and n ¼ 2, m ¼ 8.

FIG. 9. Time domain spectrum for n ¼ 10, m ¼ 2 and n ¼ 4, m ¼ 5.

FIG. 10. Plot of ωQNF, real versus (magnitude of) imaginary
part for different n and m values. From left to right, the m value
increases.
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small for the QNMs we report here, it is easy to see that
(from Tables I and II), for larger and larger q, the imaginary
part indeed tends to zero and we have exact quasireso-
nances. Note that it is not the existence of the quasireso-
nances, but the existence of two QNM eras, where the late
QNM region is dominated by the almost quasiresonant

QNM, that we emphasize as the signature of the warped
extra dimension in the ringing of an effective 4D-EB
wormhole.
In Tables I and II, we tabulated early and late dominant

QNFs, respectively, for n ¼ 2, various q momentum, and
angular momenta m, determined using different methods.

FIG. 11. Time domain spectrum for n ¼ 2, m ¼ 8, and q ¼ 0.5 (left), q ¼ 2 (right).

FIG. 12. Time domain spectrum and dominant QNM fit at early (left) and late (right) QNM era.

TABLE I. Early time dominant QNF–ωðEÞ values for various modes at n ¼ 2.

m q Prony Direct integration WKB

1 0 0.8 32130 − i0.226690 1.624584 − i0.219350 1.617350 − i0.250251
0.5 0.750281 − i0.188820 1.851582 − i0.188352 1.879640 − i0.242017
1 1.335939 − i0.215243 2.053928 − i0.215267 2.058170 − i0.185868
2 2.621701 − i0.123791 2.621708 − i0.123782 2.672090 − i0.124239
5 5.396131 − i0.036641 5.396137 − i0.036642 5.394870 − i0.038862

2 0 2.250079 − i0.457395 2.712579 − i0.445679 2.629721 − i0.424325
0.5 1.505729 − i0.317217 2.810257 − i0.312587 2.741552 − i0.315845
1 2.528403 − i0.279339 2.948405 − i0.279358 2.871002 − i0.282586
2 3.195762 − i0.231845 3.194526 − i0.221053 3.343490 − i0.222976
5 6.089024 − i0.304504 6.129243 − i0.315208 6.171861 − i0.303122

5 0 5.590286 − i0.527592 5.582526 − i0.512567 5.590768 − i0.505916
0.5 5.608272 − i0.515912 5.611273 − i0.518386 5.612845 − i0.503921
1 5.732418 − i0.514532 5.727413 − i0.503953 5.678741 − i0.498073
2 5.913451 − i0.477296 5.922475 − i0.476795 5.935240 − i0.476548
5 7.480281 − i0.367137 7.480376 − i0.369172 7.492832 − i0.377485

8 0 8.579942 − i0.492730 8.529875 − i0.491728 8.558772 − i0.492544
0.5 8.621930 − i0.486822 8.624282 − i0.482853 8.573310 − i0.491692
1 8.643952 − i0.481875 8.647258 − i0.484326 8.616820 − i0.489164
2 8.979098 − i0.468332 8.979096 − i0.478331 8.788610 − i0.469402
5 9.979701 − i0.312355 9.978305 − i0.327316 9.90901 − i0.324066
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For brevity, we have denoted the early dominant QNF as
ωðEÞ and the late dominant QNF as ωðLÞ. Note that the
WKB method only matches with early QNMs.
In Table I, the QNF values for q ¼ 0 do match up to three

digits after the decimal point with the 4D-GEB QNF values
reported in [36], thus proving the accuracy of our numerical
computation. The Prony method fails to provide accurate
determination of early QNFs for low m values because of
small duration. However, using larger numerical value for
b0, duration increases and the Prony method gives better
results for low m values as well. Also, as q increases,
accuracy improves. For nonzero q, the dominant QNF in
the early QNM era gets larger with increasing q. Table II
shows that, as the q value increases, the imaginary part of
the fundamental mode tends to zero asymptotically while
the real part approaches q. Apparently, from Eq. (17), this
behavior is expected if one takes the q ≫ m limit.
Figure 13 shows how the real and the imaginary part of
the QNF varies with varying q.
Note that in [88] it was found that, for massive scalar

fields in the black hole background, quasiresonance is

achieved above a certain threshold value of the mass,
whereas we are getting similar behavior in the q → ∞ limit.
Further, the short-lived early QNM era was also not
reported there. It is crucial to identify the duration of the
QNM era to determine accurate values of QNF. Note that,
for low angular momentum values m, the duration of the
early QNM era is small and thus difficult to detect.
Therefore, one might guess that, even in the case of a
massive scalar field, there exists an early QNM era.
However, we did look at the time domain profiles in detail
for massive perturbation of black holes, but did not find
such behavior. Coming back to our model, for q < b−1, the
duration of early QNM decreases indefinitely with decreas-
ing q. For such low values of q, the time span of the
dominant QNF in the early QNM era becomes smaller than
our algorithm’s precision limit in the Prony method. This
limitation does not show up for the other methods so they
generate efficient values for QNF in those cases.

VI. DISCUSSION

The Ellis-Bronnikov wormhole (and its generalized
versions) embedded in warped braneworld background
has been shown to be supported by positive energy density
matter in the presence of a decaying warp factor. The
violation of the weak energy condition can be minimized
arbitrarily. Earlier we have studied particle trajectories and
geodesic congruences in such spacetimes. The recent
observations suggest that one way to understand the true
nature of the ultracompact objects is through their quasi-
normal ringing. This method could potentially distinguish
among black holes and possible black hole mimickers such
as wormholes. Here we analyze the QNMs of the 5D-WEB
wormhole spacetime while looking for distinguishing
features of the warped extra dimension and the wormhole
parameter. The work done and the results found reveal the
effects of the warped extra dimension (through effective
mass q) and the wormhole (steep-neck) parameter n on the
time domain profile and the QNFs. We summarize the key
findings below in a systematic manner.

(i) The nature of the effective potential is almost similar
in both four and five dimensions, with a crucial

FIG. 13. Plot of ReðQNFÞ and ImðQNFÞ for n ¼ 2 with varying q and m.

TABLE II. Late time dominant QNF–ωðLÞ values for various
modes at n ¼ 2.

m q Prony Direct integration

1 0.5 0.507324 − i0.030946 0.507425 − i0.030862
1 1.001504 − i0.017169 1.001248 − i0.017066
2 2.008260 − i0.003081 2.008267 − i0.003019
5 5.030260 − i0.000004 5.030188 − i0.000009

2 0.5 0.513874 − i0.055556 0.512767 − i0.055676
1 1.004001 − i0.014508 1.005080 − i0.014216
2 2.009095 − i0.004750 2.008207 − i0.004302
5 5.036428 − i0.000003 5.035281 − i0.000002

5 0.5 0.525911 − i0.122378 0.525908 − i0.122350
1 1.016924 − i0.037482 1.016979 − i0.039472
2 2.006454 − i0.008466 2.006424 − i0.008492
5 5.004510 − i0.000001 5.004522 − i0.000002

8 0.5 0.504295 − i0.156266 0.504383 − i0.156142
1 1.032865 − i0.036472 1.030675 − i0.036488
2 2.001427 − i0.001418 2.001445 − i0.001433
5 5.004831 − i0.000000 5.004853 − i0.000000
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difference that, in 5D, the potential does not vanish
asymptotically.

(ii) The momentum eigenvalue along the fifth dimen-
sion q, projected on the 4D geometry, acts as an
effective mass. We solved the corresponding eigen-
value problem and found that q takes non-negative
continuous values.

(iii) Assuming suitable values of q, we then determined
the QNFs analytically using the WKB formula and
numerically using the Prony method and the direct
integration method. The results for the 4D-GEB
model match to third decimal order with earlier
reports. We have used both Python and MATLAB for
numerical computation of QNFs.

(iv) For 4D-GEB spacetimes, the time domain profile has
three prominent regions (the initial portion, the QNM
era, and an asymptotic tail. Apart from the observa-
tions made in [36], we notice that the QNM ringing
appears earlier for higher angular momentum m and
the tail appears later for higher values of n.

(v) Remarkably, the time domain profile changes con-
siderably in the 5D-WEB scenario. The QNM era is
divided into two parts with two different dominant
QNFs. The real part of the “early QNM” (for fixed
m) increases with increasing q value, whereas the
real part of the “late QNM” is close to the q value.
Also, the dampening (decided by the imaginary part
of the QNF) of the late QNM is much slower than
that of the early QNM.

(vi) With increasing q, the late QNM eventually becomes
arbitrarily long-lived. This arbitrarily long-lived

mode emerges once the dominant (early) QNM
decays away. These so-called quasiresonances were
observed earlier for massive fields in black hole
backgrounds. Further, the tail appears much later
compared to the 4D scenario.

Note that the novel feature that could be seen in the time
domain profile of the perturbation is not of quantitative or
parametric type. There are two QNM eras observed,
instead of one, whose durations naturally vary for varying
q. We believe such behavior is predicted or reported in the
literature for the first time. Hence, one may conclude that
this feature of two different dominating QNFs in the
ringing profile, if observed, could provide indirect evi-
dence of existence (though not conclusive) of wormholes,
as well as five-dimensional warped geometry. It is always
difficult to build physical intuition about the nature of the
QNMs once they are determined numerically. However,
we have seen that it is the interplay between m and q that
is responsible for the splitting of the QNM era. Further,
one might find similar splitting in other equivalent and
preferably more generic scenarios. We look forward to
report on this in future.
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