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A neutron star in an inspiraling binary system is tidally deformed by its companion, and the effect leaves
a measurable imprint on the emitted gravitational waves. While the tidal interaction falls within the regime
of static tides during the early stages of inspiral, a regime of dynamical tides takes over in the later stages.
The description of dynamical tides found in the literature makes integral use of a spectral representation of
the tidal deformation, in which it is expressed as a sum over the star’s normal modes of vibration. This
description is deeply rooted in Newtonian fluid mechanics and gravitation, and we point out that
considerable obstacles manifest themselves in an extension to general relativity. To remedy this, we
propose an alternative, modeless description of dynamical tides that can be formulated in both Newtonian
and relativistic mechanics. Our description is based on a time-derivative expansion of the tidal dynamics, in
which the external, orbital timescale associated with the tidal field is taken to be long compared with the
internal, hydrodynamical timescale associated with the neutron star. The tidal deformation is characterized
by two sets of Love numbers: the familiar static Love numbers kl, which appear in the regime of static
tides, and the dynamic Love numbers k̈l, which emerge in the regime of dynamical tides. These numbers
are computed here for polytropic stellar models in both Newtonian gravity and general relativity. On the
face of it, the time-derivative expansion of the tidal dynamics seems to preclude any attempt to capture an
approach to resonance, which occurs when the frequency of the tidal field becomes equal to a normal-mode
frequency; such an approach is the main reason for which the regime of dynamical tides becomes important
in the late inspiral, and it is fully captured by the mode representation of the tidal deformation. To overcome
this limitation, we propose a pragmatic extension of the time-derivative expansion, which does capture an
approach to resonance. We demonstrate that with this extension, our formulation of dynamical tides should
be just as accurate as the f-mode truncation of the mode representation, in which the sum over modes is
truncated to a single term involving the star’s fundamental mode of vibration.
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I. INTRODUCTION AND SUMMARY

A. Tidal deformations in binary inspirals

The tidal deformation of a neutron star, as it occurs in
the late stages of a binary inspiral driven by gravitational
radiation reaction, makes an imprint on the emitted
gravitational waves. It was recognized long ago [1] that
a measurement of this effect could constrain the equation
of state of nuclear matter at high densities, which is poorly
understood [2–4]. A measurement of the tidal deform-
ability of a neutron star was attempted in the case of
GW170817 [5–7], and the resulting upper bound favors a
soft equation of state that produces a relatively small
neutron star [8]. A detailed review of these developments
was crafted by Chatziioannou [9], and prospects for future
measurements of this sort are summarized in Ref. [10].
The aspects of the tidal interaction between a neutron star

and its companion that are most readily accessible to
gravitational-wave measurements fall within the regime
of static tides (or adiabatic tides), in which time derivatives
of the tidal field can be neglected. However, it was pointed

out [11,12] that the regime of dynamical tides, in which the
time derivatives are not neglected, will soon be accessible to
measurement and will yield additional insights into the
internal constitution of neutron stars. This observation has
prompted a vigorous investigation of this regime, going
from detailed models of a dynamically deformed neutron
star [13–16] to models of gravitational waveforms [17–19]
to prospects for future detections and what can be learned
from them [20–22]. The regime of dynamical tides was also
extended to include the gravitomagnetic sector of the tidal
dynamics [23–26], and it was included in a description of
the p-g-mode instability of neutron stars [27].
All the work on dynamical tides reviewed in the

preceding paragraph relies on a spectral representation of
the tidal deformation, in which it is expressed as a sum over
the normal modes of vibration of a neutron star. Our purpose
with this paper is (i) to make the point that such a
description is deeply rooted in Newtonian fluid mechanics
and gravitation and that considerable obstacles manifest
themselves in a generalization to relativistic mechanics, and
(ii) to present an alternative, modeless description that can
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be ported to general relativity. Our approach, we argue,
provides a practical and reliable way to model dynamical
tides in general relativity. We elaborate on these points and
summarize our results in the remainder of this introductory
section.

B. Mode description: Frequency-domain Love numbers

To begin our discussion, we consider a tidally deformed
neutron star of mass M and radius R within the framework
of Newtonian fluid mechanics and gravitation; the star is
assumed to be nonrotating. The tidal deformation is
described by a Lagrangian displacement vector ξðt; xÞ,
which takes a fluid element at its original position x and
places it at the perturbed position xþ ξ. The displacement
vector is decomposed in terms of the star’s normal modes of
vibration (details can be found, for example, in Sec. 2.5.3 of
Ref. [28]), as

ξðt; xÞ ¼
X
K

qKðtÞζKðxÞ; ð1:1Þ

in which qKðtÞ is the mode amplitude, and ζKðxÞ is the
mode eigenfunction; K is a mode label, and the (formally
infinite) sum extends over all modes. The tidal acceleration
g ¼ ∇Utidal is expanded in a similar way (Utidal is the
gravitational potential created by the companion), and the
fluid equations imply that each mode behaves as a driven
harmonic oscillator, with an equation of motion

q̈K þ ω2
KqK ¼ gK; ð1:2Þ

where overdots indicate differentiation with respect to time,
and ωK is the mode frequency. The solution is readily
expressed in the frequency domain, and we have that

q̃KðωÞ ¼ω−2
K A Kg̃KðωÞ; A K ≔ ð1−ω2=ω2

KÞ−1: ð1:3Þ

This solution features the familiar response function of an
oscillator, which diverges when the frequency ω of the tidal
force becomes equal to a mode frequency ωK. The
importance of the dynamical aspects of the tidal deforma-
tion takes its origin in the amplification factor A K. In the
context of a binary inspiral, with a typical tidal frequency of
500 Hz and a typical f-mode frequency of 1000 Hz, we
have that A ≃ 1.19, giving rise to a 20% enhancement of
the tidal deformation.
The displacement vector is used to compute the multi-

pole moments of the deformed mass distribution. To
describe this, we refine our notation and let nlm stand
for the mode label K. Here, l is the multipolar order
(starting at l ¼ 2 with the quadrupole moment), m is the
azimuthal index (ranging from −l to þl), and n labels the
mode overtones for each multipolar order (starting at n ¼ 0
with the f mode, ranging over positive integers for the p
modes, and over negative integers for the g modes). For a

multipole of order l, we write the frequency-domain tidal
potential as [Eq. (2.4)]

Ũtidalðω; xÞ ¼ −
1

ðl − 1Þl Ẽ
lmðωÞrlYlmðθ;ϕÞ; ð1:4Þ

where ẼlmðωÞ are the (Fourier transform of the) tidal
multipole moments, r is the distance to the star’s center of
mass, and Ylmðθ;ϕÞ are spherical harmonics. The star’s
mass multipole moments are then given by [Eq. (3.1)]

Q̃lmðωÞ ¼ −
2ðl − 2Þ!
ð2l − 1Þ!!G

−1R2lþ1k̃lðωÞẼlmðωÞ; ð1:5Þ

where G is the gravitational constant, R is the star’s radius,
and k̃lðωÞ is a frequency-domain Love number given by
[Eq. (3.30)]

k̃lðωÞ ¼
2πl2

2lþ 1

X
n

GM=R3

ω2
nl

A nl
O2

nl

Nnl
; ð1:6Þ

where ωnl is the frequency of the nlm mode, A nl ≔
ð1 − ω2=ω2

nlÞ−1 is the amplification factor for this mode,
Onl is an overlap integral between the tidal acceleration g
and the mode eigenfunction ζnl—refer to Eq. (3.26) for a
precise definition—and Nnl is a normalization factor—see
Eq. (3.23). All quantities that appear in Eq. (1.6), including
the combination ω2

nl=ðGM=R3Þ, are dimensionless. We see
once more the impact of the amplification factor: The Love
number increases significantly when ω becomes compa-
rable to a mode frequency ωnl.

C. Key ingredients of the Newtonian mode description
and obstacles to a relativistic generalization

The mode description of a star’s tidal deformation relies
on three key ingredients. As we shall explain, these are
deeply rooted in the Newtonian framework (fluid mechan-
ics and gravitation), and they are not readily ported to
general relativity. Until these obstacles are overcome, a
mode description of tidal deformation must remain foreign
to relativistic mechanics and gravitation, and a suitable
alternative must be identified.
The first ingredient is a precise and unambiguous

identification of the tidal acceleration g, which is used to
compute the mode projections gK. In the Newtonian
framework, the identification relies on a unique partition
ofU, the complete gravitational potential, into a pieceUtidal

created entirely by the star’s companion and another piece
Ustar created by the star. Such a partition is possible because
the governing equation is linear; this is Poisson’s equation
∇2U ¼ −4πGρ, where ρ is the mass density. The tidal
potential is a solution to Laplace’s equation, ∇2U ¼ 0, in a
region of space that includes the star’s interior and a portion
of its exterior—it is cut off to exclude the companion. In
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this region, the solution is given globally by Eq. (1.4) after
performing a multipole expansion. The tidal acceleration is
then g ¼ ∇Utidal.
Such a partition is not available in general relativity

because of the nonlinear nature of the Einstein field
equations. The metric tensor gαβ cannot, in general, be
decomposed into a piece created entirely by the star and a
remaining piece created by its companion; both pieces are
intricately linked by the theory’s nonlinearities. Now, the
metric outside a tidally deformed body can still be computed
and presented as a multipole expansion (as was done, for
example, in Ref. [29]), but as Sam Gralla pointed out [30], it
cannot be partitioned uniquely into star and tidal pieces; the
partition is necessarily ambiguous. Even if a “preferred”
partition could be identified, it is not at all clear how the tidal
piece of the metric could be extended from the stellar
exterior to its interior so as to provide an analogy withUtidal.
It is not clear, in particular, that such an extension would
produce a nonsingular metric throughout the stellar interior.
Thus, a first obstacle to the formulation of a relativistic
spectral representation of the tidal deformation is the
absence of a clear path to define a purely tidal field within
the stellar interior.
A second key ingredient implicated in a mode description

of the tidal deformation is the existence of an inner product
for mode eigenfunctions. The inner product is invoked when
defining the mode projection gK of the tidal acceleration,
which is given schematically by

gK ¼
Z

ρg · ζK dV; ð1:7Þ

the precise definition is given by Eq. (3.19) below. The main
point is that in the Newtonian framework, the inner product
is defined by an integral over a bounded region of space, the
volume occupied by the star.
The situation is very different in general relativity. In this

setting, the dynamical degrees of freedom associated with
the tidal deformation include fluid variables, which are
defined entirely within the star, but also gravitational-field
variables, which are defined everywhere. The symplectic
form in the phase space of these degrees of freedom (see
Ref. [31], or Sec. 7.4 of Ref. [32]) could be exploited to
define a notion of inner product, but this will necessarily
include contributions from the field variables, given by
integrals over all space. In this context, it is not clear how an
equation such as Eq. (1.7) would generalize and whether it
would require a “tidal metric” that is defined everywhere in
spacetime. In view of this, it is not clear how a spectral
representation of tidal deformation could be formulated in
general relativity and whether it could ever be turned into a
practical method of computation. A second obstacle to a
general relativistic formulation is therefore the complicated
nature of the inner product.

A third key ingredient is the fact that in the Newtonian
theory, the normal modes of vibration form a complete set
of basis functions to represent any conceivable perturba-
tion [33]. This ensures that nothing can be missed when the
perturbation is expressed as in Eq. (1.1). The situation is
very different in general relativity: The normal modes
become quasinormal modes, and they are known to be
incomplete [34]. This implies that some perturbations
cannot be expressed as a sum over modes, and that an
expansion such as Eq. (1.1) may indeed miss something. In
practice, this limitation may not be too serious because we
are interested in a very specific type of perturbation, a tidal
deformation, and it could be that in this case, a representa-
tion in terms of modes would prove to be perfectly adequate.
It is, nevertheless, a cause for concern that the spectral
representation may not be sufficiently general and that it
may be difficult to judge in practice whether it is sufficiently
accurate in a given situation. Thus, a third obstacle toward a
mode description of tidal deformation in general relativity is
the formal absence of mode completeness.
Our conclusion is that while the spectral representation is

a conceptually powerful and practical method to describe a
tidal deformation in Newtonian mechanics, it does not
readily generalize to a relativistic setting. At the very least,
some challenging obstacles must be overcome before a
solid foundation is secured, and it could well be that any
resulting formalism will have to rely on approximations.
Given this state of affairs, it appears to us crucial to offer an
alternative description of dynamical tides, without modes.

D. Modeless description of dynamical tides:
Newtonian theory

Our alternative description of dynamical tides is based
on Eq. (1.5), in which we expand k̃lðωÞ in powers of ω2,
and which then becomes

QlmðtÞ ¼ −
2ðl − 2Þ!
ð2l − 1Þ!!G

−1R2lþ1

×

�
klElmðtÞ − k̈l

R3

GM
ËlmðtÞ þ � � �

�
; ð1:8Þ

after inverting the Fourier transform [Eq. (2.9)]. Overdots
on ElmðtÞ indicate differentiation with respect to time, the
ellipsis represents omitted higher-derivative terms, and we
have introduced [Eq. (3.32)]

kl ≔ k̃lðω ¼ 0Þ; k̈l ≔
GM
R3

dk̃l
dω2

����
ω¼0

ð1:9Þ

as static and dynamic Love numbers, respectively (the
overdots on kl do not indicate differentiation with respect
to time). Equation (1.8) corresponds to a low-frequency
approximation of Eq. (1.5); the approximation is valid
when the external frequency ω is low compared with any
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mode frequency ωnl. Alternatively, and more germane to
our modeless point of view, Eq. (1.8) is an expansion in
powers of

ϵ ≔
internal; hydrodynamical timescale

external; orbital timescale
≪ 1; ð1:10Þ

with an internal timescale comparable to ðR3=GMÞ1=2 and
an external timescale comparable to ðd3=GMtotÞ1=2, where
d is the typical distance to the companion, and Mtot is the
sum of masses (neutron star and companion); for compa-
rable masses, we have that ϵ is small whenever R=d is
small, which is realized during most of the inspiral. The
link between the time-derivative and low-frequency expan-
sions is provided by the fact that ω is of the order of
ðGMtot=d3Þ1=2, the reciprocal of the external timescale,
while ωnl is of the order of

1 ðGM=R3Þ1=2, the reciprocal of
the internal timescale; it then follows that ϵ ∼ ω=ωnl.
In our derivation of Eq. (1.8), the absence of a term

proportional to ĖlmðtÞ came as a consequence of the fact
that k̃lðωÞ is actually a function of ω2; this can be gathered
from the mode representation of Eq. (1.6). The absence of
ĖlmðtÞ, however, takes its origin in a much more funda-
mental property of the fluid dynamics, and it can be justified
independently of the mode representation: The fluid dynam-
ics is time-reversal invariant. This invariance would be
violated in the presence of a dissipation mechanism such as
viscosity, but throughout this work, we assume that no such
mechanism is at play. In our new point of view, the time-
derivative expansion of Eq. (1.8) is adopted as a funda-
mental starting point, whose validity is wholly independent
of an underlying mode description. And while kl and k̈l
could be calculated on the basis of the mode representation
of Eq. (1.6), we choose, in our modeless description of
dynamical tides, to compute them directly. The methods to
achieve this are described in Sec. II. We argue that our
modeless methods offer a practical advantage over the
traditional way: To obtain kl and k̈l, we have to integrate
a small system of ordinary differential equations, and there
is no need to solve an eigenvalue problem for (potentially) a
large number of normal modes.
We display our results for polytropic stellar models in

Table I. The static Love numbers of polytropes are of
course well known [35], and the numbers listed in Table I
merely reproduce well-established results (see, for exam-
ple, Table 2.3 of Poisson and Will [28]). To the best of our
knowledge, the dynamic Love numbers were never com-
puted before with the methods proposed here for any
equation of state.

E. Extension of the time-derivative expansion

However, doesn’t our modeless description of dynamical
tides, based on the time-derivative expansion of Eq. (1.8),
come far short of capturing the approach to resonance that
is provided free of charge by the mode description? And
doesn’t this approach to resonance provide the very reason
to incorporate dynamical tides in a model of gravitational
waves emitted by a neutron-star inspiral? The answer to
both questions is of course in the affirmative, but what was
lost can be recovered. As we shall now argue, there is a way
to regain the upper hand by extending the realm of validity
of the time-derivative expansion.
Our key observation is that the approximation A nl ¼

ð1 − ω2=ω2
nlÞ−1 ¼ 1þ ω2=ωnl þ � � � that is lurking behind

Eq. (1.8) can be undone after the fact. Suppose, as is the
case in a quasicircular inspiral, that the tidal moment
ElmðtÞ is proportional to e−imΩt so that it oscillates with
a frequency mΩ, where Ω is the binary’s orbital frequency
[Eq. (3.40)]. Then Ëlm ¼ −ðmΩÞ2Elm and Eq. (1.8) can be
reexpressed as [Eq. (3.42)]

QlmðtÞ ¼ −
2ðl − 2Þ!
ð2l − 1Þ!! klΓ

m
l G

−1R2lþ1ElmðtÞ; ð1:11Þ

with [Eq. (3.43)]

Γm
l ≔ 1þ ðmΩÞ2

GM=R3

k̈l
kl

þ � � � : ð1:12Þ

Equation (1.11) with Γm
l ¼ 1 is the usual relationship

between mass and tidal multipole moments in the regime
of static tides. The additional factor Γm

l supplies the

TABLE I. Static and dynamic Love numbers for stellar models
with an equation of state p ¼ K ρ1þ1=n.

n l kl k̈l

1.0 2 2.599089 × 10−1 1.726055 × 10−1

3 1.064540 × 10−1 3.688452 × 10−2

4 6.024126 × 10−2 1.450994 × 10−2

5 3.929250 × 10−2 7.352852 × 10−3

1.5 2 1.432776 × 10−1 6.745865 × 10−2

3 5.284790 × 10−2 1.405281 × 10−2

4 2.739262 × 10−2 5.334982 × 10−3

5 1.656842 × 10−2 2.599620 × 10−3

2.0 2 7.393839 × 10−2 2.416719 × 10−2

3 2.439400 × 10−2 4.972947 × 10−3

4 1.150775 × 10−2 1.824720 × 10−3

5 6.419967 × 10−3 8.530139 × 10−4

2.5 2 3.485234 × 10−2 7.745541 × 10−3

3 1.019200 × 10−2 1.595238 × 10−3

4 4.341510 × 10−3 5.647037 × 10−4

5 2.220149 × 10−3 2.520272 × 10−4

1The numerical factor between ωnl and ðGM=R3Þ1=2 varies
substantially as we move along the sequence of modes, with p
modes increasing in frequency, and g modes decreasing in
frequency.
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correction that comes from the dynamical aspects of the
tidal interaction, and as it is written here, it is subjected to a
low-frequency approximation. To extend its realm of
validity we simply reexpress Γm

l as [Eq. (3.44)]

Γm
l ≃

�
1 −

ðmΩÞ2
GM=R3

k̈l
kl

�
−1
; ð1:13Þ

and allow the expression within brackets to become
substantially smaller than unity. In this way, the approach
to resonance captured by the amplification factor A nl ¼
ð1 − ω2=ω2

nlÞ−1 is successfully recreated in a modeless
description of dynamical tides.
When we insert Eq. (1.13) within Eq. (1.11) and take a

Fourier transform, we obtain Eq. (1.5) with a frequency-
domain Love number given by [Eqs. (3.46) and (3.47)]

k̃lðωÞ ¼
k̃lð0Þ

1 − ω2=ω2
�l
; ω2

�l ≔
GM
R3

kl
k̈l

; ð1:14Þ

where ω�l is an effective frequency defined in terms of the
static and dynamic Love numbers. We notice that Eq. (1.14)
is formally identical to Eq. (1.6) when the sum over modes
is truncated to a single term. Furthermore, in Sec. III E, we
show thatω�l is numerically very close to the frequencyω0l
of the star’s fundamental mode (or f mode) of vibration,
labelled by n ¼ 0. Our conclusion from these observations
is that the extension of the time-derivative expansion
formulated in Eq. (1.13) should provide a description of
dynamical tides that compares very well in accuracy with a
mode-sum representation truncated to the f mode. Because
the f mode comes with mode functions with the least
number of radial nodes, it is expected to provide by far the
largest contribution to k̃lðωÞ and therefore, an excellent
approximation to it. Our modeless description of dynamical
tides will do just as well.2

Our model of dynamical tides, based on Eq. (1.14), does
not capture all aspects of the dynamical regime; it shares
the same limitations as the f-mode truncation of the
spectral representation. For example, these models leave
out the resonant excitation of g modes, which come with
frequencies that are lower than the f-mode frequency, and

which can indeed become resonant during an inspiral. (Our
simplistic modeling of stellar structure, based on a poly-
tropic equation of state, exclude the presence of g modes,
but they are present in complete models of neutron stars.)
In this case, however, the limitation is not severe, as the
dynamical impact of resonant g modes was shown [36,37]
to be negligible in binary inspirals; the modes are resonant,
but they come with exceedingly small overlap integrals.
A more serious limitation presents itself in the case of
resonant inertial modes, which manifest themselves in
inspirals implicating rotating stars [23,24]. In such cases, a
number of dynamically significant resonances can occur,
and these are not captured by the model of Eq. (1.14), nor
by an f-mode truncation of the spectral representation.
A complete description of dynamical tides that includes
the effects of significant resonances would require addi-
tional ingredients. Our model and the f-mode truncation
are not so ambitious; they are meant to capture the
dynamical effects associated with the approach to a
resonance that is never actually reached.
In the purely Newtonian context considered thus far, the

modeless approach to dynamical tides does not comewith a
decisive advantage over the f-mode truncation, although
we did argue that it produces a saving in computational
tasks—there is no need to solve an eigenvalue problem to
find the modes. The advantage, however, comes loud and
clear in the context of general relativity, in view of the
obstacles reviewed in Sec. I C. We turn to this next.

F. Modeless description of dynamical tides:
General relativity

The time-derivative expansion of Eq. (1.8) applies also in
general relativity. The equation, however, comes with a
subtle interpretation that was fully articulated in Ref. [29].
We go briefly over these points of interpretation here and
refer the reader to the earlier work for a more complete
discussion.
The most delicate issue in establishing the validity of

Eq. (1.8) in general relativity is to provide a proper
definition for the mass multipole moments of an individual
body in a dynamical spacetime that may contain any
number of compact bodies. The solution proposed in
Ref. [29] takes as input a situation in which the mutual
gravity between the bodies is sufficiently weak to be
adequately described by a post-Newtonian expansion of
the metric, while the individual gravity of each body can be
arbitrarily strong. When viewed from close by, in a
spacetime described in full general relativity, each body
is revealed as an extended object deformed by tidal forces,
but when it is viewed from far away, from the vantage point
of the post-Newtonian spacetime, the body appears as a
skeletonized object with a specific multipole structure,
moving on some world line. A matching of these two
descriptions of the same spacetime reconciles the points of

2The quality of the approximations can be assessed by plotting
the various versions of k̃lðωÞ on the same graph. We carried out
this exercise for a n ¼ 1 polytrope and plotted k̃lðωÞ for (i) the
approximation of Eq. (1.14), (ii) the f-mode truncation of
Eq. (1.6), and (iii) an exact representation equivalent to a sum
over all modes. In a range of frequencies extending from ω ¼ 0 to
almost the f-mode frequency, over which k̃lðωÞ increases by
more than an order of magnitude, the plots look completely
identical. The one-mode approximation and f-mode truncation
are therefore extremely accurate. We chose not to include these
plots here because there is literally nothing to see.

GENERAL RELATIVISTIC DYNAMICAL TIDES IN BINARY … PHYS. REV. D 109, 064004 (2024)

064004-5



view and permits a determination of the tidal moments
ElmðtÞ and mass multipole moments QlmðtÞ. To leading
(Newtonian) order in the post-Newtonian expansion of the
mutual gravity, we obtain Eq. (1.8), with the important
proviso that kl and k̈l must now be computed in full general
relativity. It is in this sense that Eq. (1.8) applies in general
relativity. Corrections of the first post-Newtonian order were
also calculated in Ref. [29], and corrections of higher order
can be added as they become available.
A Newtonian-order approximation to a fully relativistic

result may seem somewhat crude, but it is important to recall
that in the context of a binary dynamics implicating compact
objects, the Newtonian-order Eq. (1.8) actually gives rise to
a tidal interaction at the fifth post-Newtonian order; correc-
tions of the first post-Newtonian order translate to an
interaction at the sixth post-Newtonian order. The low-order
results of Ref. [29] therefore do a good job of describing the
tidal dynamics at high post-Newtonian orders; alternative
treatments can be found in Refs. [38,39]. To see where the
boost in post-Newtonian orders is coming from, consider the
leading, quadrupole term in the tidal interaction. The tidal
moment scales as E ∼GM0=d3, in which M0 is the com-
panion’s mass and d is the orbital separation, and Eq. (1.8)
produces Q ∼M0R5=d3. The tidal contribution to the
gravitational force is then Ftide∼GM0Q=d4∼GM02R5=d7,
and when this is divided by the point-mass contribution
GMM0=d2, we obtain the ratio ðM0=MÞðR=dÞ5. For a
compact object with a radius R ∼GM=c2, the ratio becomes
ðM0=MÞðGM=c2dÞ5, and the tidal force takes the form of a
correction of the fifth post-Newtonian order.
We therefore have that Eq. (1.8) provides a meaningful

description of dynamical tides in general relativity, pro-
vided that kl and k̈l are computed in the relativistic setting.
We perform such a calculation in Sec. IV. We display a

sample of our results in Fig. 1, in which kl and k̈l are
plotted as functions of stellar compactness M=R for
polytropic stellar models. We see that for M=R → 0, the
relativistic numbers agree with the Newtonian values listed
in Table I. We see also that the Love numbers decrease with
increasing M=R, reaching a minimum when the equilib-
rium sequence comes to an end at the configuration of
maximum mass.
The bold step of going from Eqs. (1.8) to (1.11), with an

amplification factor expressed as in Eq. (1.13), can also be
taken in general relativity. This gives us a most promising
starting point for a description of dynamical tides in
relativistic mechanics. We hope to have conveyed a sense
that this description comes with a clear and sound founda-
tion and that it will produce a practical and reliable model
for neutron-star inspirals. With this our narrative ends, and
the remaining portions of the paper contain all the technical
details.

G. Organization of the paper

We begin our technical developments in Sec. II, where
the static and dynamic Love numbers are defined and
computed in Newtonian fluid mechanics and gravitation.
Our fundamental starting point is the description of
dynamical tides provided by Eq. (1.8), which relates the
mass multipole moments of a tidally deformed body to
the tidal multipole moments and their time derivatives. The
perturbation equations that describe the fluid deformation
are derived systematically through second order in the
time-derivative expansion, and the system of ordinary
differential equations is integrated for polytropic stellar
models based on the equation of state p ¼ Kρ1þ1=n.
In Sec. III, we return to the mode picture, and provide

k̃lðωÞ—and therefore kl and k̈l—with a spectral

FIG. 1. Static and dynamic Love numbers for l ¼ 2, computed for relativistic stellar models with an equation of state p ¼ Kρ1þ1=n,
where n ¼ f1.0; 1.5; 2.0; 2.5g. Left panel: static Love number kl. Right panel: dynamic Love number k̈l. Each Love number is plotted
as a function of the stellar compactness M=R. The curve ends at the configuration of maximum mass, beyond which, the equilibrium
sequence is dynamically unstable.
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representation in terms of the star’s normal modes of
vibration; this produces Eq. (1.6), above. We describe its
truncation to an f-mode approximation and introduce a
low-frequency approximation that reproduces Eq. (1.8).
We then construct the extension of Eq. (1.13) and compare
the resulting description of dynamical tides with the
f-mode approximation.
In Sec. IV, we turn to a computation of kl and k̈l in full

general relativity. The calculation is based on a careful
matching of the exterior and interior metrics of a tidally
deformed body at the surface. The exterior metric is
imported from Ref. [29], and the interior metric is
obtained by integrating the equations that govern the tidal
deformation of a relativistic perfect fluid. We again select
the polytropic equation of state p ¼ Kρ1þ1=n.
A discussion of our numerical methods is relegated to the

Appendix.

II. STATIC AND DYNAMIC LOVE NUMBERS
IN NEWTONIAN GRAVITY

Our task in this section is to define and compute, within
the framework of Newtonian fluid mechanics and gravi-
tation, the static and dynamic Love numbers of a spherical
star deformed under the action of a time-dependent tidal
field. We begin in Sec. II A with a description of a time-
changing tidal field and the associated body’s response as
measured in the exterior gravitational field. We introduce
the fluid equations in Sec. II B and derive from them a
system of perturbation equations in Sec. II C. In Sec. II D,
we specialize these equations to the specific case of
polytropic stellar models, and in Sec. II E, we obtain
the Love numbers listed in Table I. An introduction to the
tidal deformation of fluid bodies can be found in Sec. 2.4
of Poisson and Will [28].

A. Tidal potential and body’s response

We consider a (nonrotating) body of massM and radius R
and imagine that it is made up of a perfect fluid. The body is
spherical when isolated, but a deformation is created when
remote objects exert tidal forces. We wish to characterize
this deformation in terms of Love numbers. We imagine that
the forces are sufficiently small that the deformation can be
adequately described within the framework of first-order
perturbation theory. We further imagine that the tidal field
varies slowly with time (with an external, orbital timescale
much longer than the internal, hydrodynamical timescale)
so that the tidal response can be expressed as a time-
derivative expansion.
Assuming that each remote object is at a large distance

from the reference body, we expand the external gravita-
tional potentialUext—the potential created by the objects—
in powers of r=d ≪ 1, in which r ≔ jxj is the distance from
the body’s center of mass, and d is the typical distance to an

external object. The lth order term in the Taylor expansion
of the external potential is

Ul-tideðt; xÞ ¼ −
1

ðl − 1Þl r
lELΩL; ð2:1Þ

where

ELðtÞ ≔ −
1

ðl − 2Þ! ∂LU
extjx¼0 ð2:2Þ

is the tidal multipole moment, and Ω ≔ x=r ¼ ½sin θ cosϕ;
sin θ sinϕ; cos θ� is the radial unit vector. The multi-index
L contains a number l of individual indices so that
∂LUext ≔ ∂a1∂a2 � � � ∂alUext, and we use the notation ΩL ≔
Ωa1Ωa2 � � �Ωal ; summation over repeated indices is
implied. The moment ELðtÞ is symmetric and tracefree
in all its indices. It should be noted that the normalization
of the tidal moments in Eq. (2.2) follows the conventions
of Binnington and Poisson [40] (which came from
Zhang [41]); it differs from the normalization adopted
in Poisson and Will [28].
We write

ELΩL ¼
Xl
m¼−l

ElmYlmðθ;ϕÞ; ð2:3Þ

where Ylmðθ;ϕÞ are the standard spherical harmonics. By
virtue of being symmetric and tracefree, the tensor EL
possesses a number 2lþ 1 of independent components,
and Eq. (2.3) puts them in a one-to-one correspondence
with the 2lþ 1 coefficients Elm. Equation (2.1) can be
rewritten as

Ul-tideðt; xÞ ¼ −
1

ðl − 1Þl E
lmðtÞrlYlmðθ;ϕÞ; ð2:4Þ

where we leave the summation over m implicit.
The tidal forces exerted by the remote objects deform the

body from its original spherical state. The deformation is
measured by the mass multipole moment

QLðtÞ ≔
Z

ρxhLi dV; ð2:5Þ

where ρ is the body’s mass density, and xhLi is the tracefree
projection of xL ≔ xa1xa2 � � � xal . The corresponding term
in the body’s potential is [Eqs. (1.149), (1.156), and (1.157)
of Poisson and Will]

Ul-massðt; xÞ ¼
ð−1Þl
l!

QL
∂L

1

r

¼ ð2l − 1Þ!!
l!

r−ðlþ1ÞQLΩL: ð2:6Þ
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In analogy with Eq. (2.3) we write

QLΩL ¼
Xl
m¼−l

QlmYlmðθ;ϕÞ; ð2:7Þ

and reexpress Eq. (2.6) as

Ul-massðt; xÞ ¼
ð2l − 1Þ!!

l!
QlmðtÞr−ðlþ1ÞYlmðθ;ϕÞ; ð2:8Þ

where we again omit the summation over m.
The body’s deformation, measured by the mass multi-

pole moments Qlm, is determined by the tidal field, which
is characterized by the tidal multipole moments Elm. In a
context in which the forces and deformation are small, the
relationship between the mass and tidal moments shall be
linear, and we make this approximation throughout this
work—nonlinearities were considered in Ref. [29]. In a
context in which the tidal forces vary slowly with time, we
can further express the relationship as a time-derivative
expansion. We thus write [Eq. (1.8)]

GQlmðtÞ ¼ −
2ðl − 2Þ!
ð2l − 1Þ!!R

2lþ1

×

�
klElmðtÞ − k̈l

R3

GM
ËlmðtÞ þ � � �

�
; ð2:9Þ

with overdots on Elm indicating differentiation with respect
to time. The overall numerical factor on the right-hand side
is conventional, and the factor of R2lþ1 ensures that the
static Love number kl is dimensionless. The additional
factor of R3=ðGMÞ in front of the second-derivative term
has the dimension of a time squared and therefore com-
pensates dimensionally for the time derivatives of the tidal
moment; its presence ensures that the dynamic Love
number k̈l is also dimensionless. The definition of k̈l
adopted in Eq. (2.9) differs by a minus sign from the one
introduced in Ref. [29]. In the new convention, the dynamic
Love numbers will turn out to be positive.
As we explained in Sec. I, Eq. (2.9) should be viewed as

an expansion of the mass moment in powers of the ratio

ϵ ≔
internal; hydrodynamical timescale

external; orbital timescale
≪ 1: ð2:10Þ

In principle, the time-derivative expansion could be
extended to higher powers of ϵ, but the dynamical correc-
tion to the mass moment will be dominated by the first
nonvanishing power, ϵ2. A notable fact is the absence of a
correction of order ϵ. The absence of odd terms in the
expansion is dictated by the time-reversal invariance of
the fluid equations, which will be introduced below. This
invariance could be broken by the introduction of

dissipation within the fluid, for example, in the form of
viscous heating. In the context of a perfect fluid, however,
no dissipation takes place, and the physics is time-reversal
invariant.
Combining Eqs. (2.4), (2.8), and (2.9), we find that the

l-pole contribution to the gravitational potential is given by

δU ¼ −
1

ðl − 1Þl
��

rl þ 2kl
R2lþ1

rlþ1

�
Elm

− 2k̈l
R3

GM
R2lþ1

rlþ1
Ëlm

�
Ylmðθ;ϕÞ: ð2:11Þ

Our goal in the remainder of this section is to elaborate a
method to compute kl and k̈l. To achieve this, we must
now turn to the body’s interior.

B. Governing equations

We take the body to consist of a perfect fluid. The
equations that govern the body’s structure are (i) Euler’s
equation

∂tva þ vb∇bva ¼ ∇aU − ρ−1∇ap; ð2:12Þ

where va is the velocity field, ρ the mass density, p the
pressure, and U the gravitational potential, (ii) the con-
tinuity equation

∂tρþ∇aðρvaÞ ¼ 0; ð2:13Þ

and (iii) Poisson’s equation

∇2U ¼ −4πGρ: ð2:14Þ

Wework in arbitrary coordinates xa, with a metric gab and a
compatible covariant derivative ∇a. The equations are
supplemented with an equation of state, which we take
to be of a simple barotropic form, p ¼ pðρÞ. This allows us
to define a specific enthalpy hðρÞ via dh ¼ ρ−1 dp. With
this variable, the equation of state can be written in the
parametric form ρ ¼ ρðhÞ, p ¼ pðhÞ.
When the fluid is in a state of static equilibrium, we have

that va ¼ 0, and Euler’s equation reduces to

ρ−1∇ap ¼ ∇ah ¼ ∇aU: ð2:15Þ

The continuity equation is then trivially satisfied, and
Poisson’s equation stays unchanged.
When the equilibrium is spherically symmetric, the

equations reduce to

m0 ¼ 4πr2ρ; U0 ¼−Gm=r2; h0 ¼−Gm=r2; ð2:16Þ

where mðrÞ is the mass inside a sphere of radius r; a prime
indicates differentiation with respect to r. The potential and
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specific enthalpy are related by hðrÞ ¼ UðrÞ − GM=R,
where M ≔ mðr ¼ RÞ is the body’s total mass, and
r ¼ Rmarks the stellar surface; this ensures that h properly
vanishes at the surface.

C. Perturbation equations

We now perturb the spherical equilibrium by introducing
a time-dependent tidal field produced by remote objects.
We denote by δρ, δp, δh, and δU the Eulerian perturbations
in density, pressure, specific enthalpy, and gravitational
potential, respectively. The fluid’s velocity field no longer
vanishes, and we write it as δva.
Linearization of the governing equations produces

∂tδva ¼ ∇aðδU − δhÞ; ∂tδρþ∇aðρδvaÞ ¼ 0;

∇2δU ¼ −4πGδρ: ð2:17Þ

The equation of state implies

δρ ¼ dρ
dh

δh ¼ ρ0

h0
δh ¼ −

r2ρ0

Gm
δh; ð2:18Þ

and δp ¼ ρδh.
The perturbed Euler equation reveals that δva is a

gradient field,

δva ¼ ∇aδψ ; ð2:19Þ

where δψ is some potential. The equation becomes

∂tδψ ¼ δU − δh; ð2:20Þ

and

∂tδρþ∇aρ∇aδψ þ ρ∇2δψ ¼ 0 ð2:21Þ

is the new statement of mass conservation.
Taking our cue from Eq. (2.11), we expand the pertur-

bation variables as

δρ ¼
�
ρ0lE

lm þ ρ2l
R3

GM
Ëlm

�
Ylm; ð2:22aÞ

δh ¼
�
h0lE

lm þ h2l
R3

GM
Ëlm

�
Ylm; ð2:22bÞ

δU ¼
�
U0

lE
lm þ U2

l
R3

GM
Ëlm

�
Ylm; ð2:22cÞ

δψ ¼ ψ1
l
R3

GM
ĖlmYlm; ð2:22dÞ

where the coefficients ρ0l, ρ
2
l, and so on, are functions of r.

The scaling of δψ with Ėlm is justified by the observations

that (i) the velocity perturbation δva ¼ ∇aδψ must vanish
in the static limit, (ii) time-reversal invariance dictates the
absence of even time derivatives, and (iii) the first deriva-
tive provides the leading contribution.
Making the substitutions within the governing equations,

we find that the zeroth-order radial functions satisfy

h0l ¼ U0
l; ð2:23Þ

and

r2
d2U0

l

dr2
þ 2r

dU0
l

dr
−lðlþ 1ÞU0

lþ 4πGr2ρ0l ¼ 0: ð2:24Þ

The equation of state implies that

ρ0l ¼ −
r2ρ0

Gm
h0l; ð2:25Þ

and we arrive at a self-contained set of equations for h0l
and U0

l.
At the next order, we have that the perturbed Euler

equation (2.20) produces

h2l ¼ U2
l − ψ1

l; ð2:26Þ

and the perturbed continuity equation (2.21) gives rise to

r2
d2ψ1

l

dr2
þ
�
2þ rρ0

ρ

�
r
dψ1

l

dr
− lðlþ 1Þψ1

l −
M
R3

r4ρ0

mρ
U0

l ¼ 0;

ð2:27Þ

to arrive at this result, we made use of Eqs. (2.23) and
(2.25). The perturbed Poisson equation yields

r2
d2U2

l

dr2
þ 2r

dU2
l

dr
−
�
lðlþ 1Þ þ 4πr4ρ0

m

�
U2

l

þ 4πr4ρ0

m
ψ1
l ¼ 0; ð2:28Þ

where we made use of the equation of state to express ρ2l in
terms of h2l and then Eq. (2.26) to write this in terms of U2

l
and ψ1

l. We again have a self-contained set of equations.
The occurrence of ρ0 in the perturbation equations

makes them awkward to integrate when ρ0 → −∞ at the
body’s surface, which happens for some equations of state.
An example is the polytropic form adopted below,
p ¼ Kρ1þ1=n, when n < 1. It is known that Eq. (2.24)
can be tamed by implementing the transformation
U0

l ¼ ðGm=rÞf0l, where f0l is a new dependent variable.
The equation then becomes Clairaut’s equation, displayed
as Eq. (2.230) in Poisson and Will [28]. It should be
possible to tame the remaining equations by adopting new
variables in lieu of ψ1

l andU
2
l, but we have not pursued this
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option. In our computations below, we shall simply avoid
cases where ρ0 is unbounded at the body’s surface.
It can be shown that regular solutions to the perturbation

equations behave as rl when r → 0. To account for this
behavior, it is helpful to set

U0
l ¼ rl e0l; ψ1

l ¼ rl e1l; U2
l ¼ rl e2l; ð2:29Þ

with ejl denoting the new set of perturbation variables. The
perturbation equations become

0 ¼ r2
d2e0l
dr2

þ 2ðlþ 1Þr de
0
l

dr
−
4πr4ρ0

m
e0l; ð2:30aÞ

0¼ r2
d2e1l
dr2

þ
�
2ðlþ 1Þ þ rρ0

ρ

�
de1l
dr

þ l
rρ0

ρ
e1l −

M
R3

r4ρ0

mρ
e0l;

ð2:30bÞ

0 ¼ r2
d2e2l
dr2

þ 2ðlþ 1Þr de
2
l

dr
−
4πr4ρ0

m
ðe2l − e1lÞ: ð2:30cÞ

The interior solutions for e0l and e2l are to be matched at
r ¼ R to the exterior solutions provided by Eq. (2.11). We
have that

e0ljext ¼ −
1

ðl − 1Þl ½1þ 2klðR=rÞ2lþ1�; ð2:31aÞ

e2ljext ¼
1

ðl − 1Þl ð2k̈lÞðR=rÞ
2lþ1: ð2:31bÞ

The matching determines the Love numbers kl and k̈l.

D. Implementation for a polytrope

The integration of Eq. (2.30) requires prior knowledge of
the functions ρðrÞ and mðrÞ, and this is obtained by
integrating Eq. (2.16) for the stellar structure. When the
fluid is barotropic, it is convenient to reformulate the
structure equations by letting h (or its substitute ϑ, as we
shall see presently) become the independent variable [42].
We describe such a formulation here.
We rescale the variables according to

h ¼ hc ϑ; m ¼ 4π

3
ρcr3 χ; r2 ¼ r20 ζ; ð2:32Þ

where ϑ, χ, and ζ are new dimensionless variables; hc ≔
hðr ¼ 0Þ is the central value of the specific enthalpy,
ρc ≔ ρðr ¼ 0Þ is the central value of the density, and
r20 ≔ 3hc=ð2πGρcÞ. The structure equations become

dϑ
dζ

¼ −χ;
dχ
dζ

¼ 3

2ζ
ðρ=ρc − χÞ; ð2:33Þ

and they are rewritten in the form

dζ
dϑ

¼ −
1

χ
;

dχ
dϑ

¼ −
3

2ζχ
ðρ=ρc − χÞ; ð2:34Þ

with ϑ playing the role of independent variable.
The equations are integrated from ϑ ¼ 1 with boundary
conditions ζðϑ ¼ 1Þ ¼ 0, χðϑ ¼ 1Þ ¼ 1, up to ϑ ¼ 0,
which marks the body’s surface. The surface values
ζs ≔ ζðϑ ¼ 0Þ and χs ≔ χðϑ ¼ 0Þ are obtained from the
integration, and from them, we get

M ¼ 4π

3
ρcR3 χs; R ¼ r0 ζ

1=2
s ; ð2:35Þ

respectively, the body’s total mass and radius.
The integration of the structure equations require the

specification of an equation of state. We make the simple
choice of a polytropic form,

p ¼ Kρ1þ1=n; ð2:36Þ

where K and n are constants. It is easy to show that in this
case, h ¼ ðnþ 1ÞKρ1=n so that ρ ¼ ρcϑ

n.
It is helpful to reformulate the perturbation equations as a

first-order system, by introducing the auxiliary variables

v0l ≔ r
de0l
dr

; v1l ≔ r
de1l
dr

; v2l ≔ r
de2l
dr

: ð2:37Þ

Making the substitutions in Eq. (2.30), and rewriting in
terms of the dimensionless variables introduced previously,
we find that the perturbation equations become

0 ¼ r
dv0l
dr

þ ð2lþ 1Þv0l þ 6nζϑn−1 e0l; ð2:38aÞ

0¼ r
dv1l
dr

þ
�
2lþ 1− 2n

ζχ

ϑ

�
v1l − 2nl

ζχ

ϑ
e1l þ 2nχs

ζ

ϑ
e0l;

ð2:38bÞ

0 ¼ r
dv2l
dr

þ ð2lþ 1Þv2l þ 6nζϑn−1ðe2l − e1lÞ; ð2:38cÞ

where χs ≔ χðϑ ¼ 0Þ is the surface value of the structure
function. The differential operator is now interpreted as

r
d
dr

¼ −2ζχ
d
dϑ

: ð2:39Þ

The dynamical system comes with two sets of boundary
conditions. At the center (ϑ ¼ 1), we impose

v0l ¼ 0; v1l ¼ 0; v2l ¼ 0; ð2:40Þ

these equations follow from the definition of the auxiliary
variables. At the surface (ϑ ¼ 0), we impose
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e0l ¼ 1; v1l þ le1l − e0l ¼ 0; v2l þ ð2lþ 1Þe2l ¼ 0:

ð2:41Þ

The first equation, e0lðϑ ¼ 0Þ ¼ 1, reflects a choice of
normalization for the solution; we shall call a solution that
satisfies this condition a normalized solution. The second
equation ensures that the terms proportional to ϑ−1 in
Eq. (2.38b) do not cause the solution to blow up on the
surface. The third equation follows from Eq. (2.31).

E. Love numbers

We first describe a method to compute the static Love
number kl from the normalized solution to Eq. (2.38a),
which we denote by ê0l and v̂0l. Because the equations for
e0l and v0l are linear, the true solution—the one matching
the exterior solution of Eq. (2.31)—will be e0l ¼ Nl ê0l and
v0l ¼ Nl v̂0l, for some number Nl. Let

ηl ≔
v0l
e0l

����
r¼R

¼ v̂0l
ê0l

����
r¼R

¼ v̂0lðr ¼ RÞ: ð2:42Þ

According to Eq. (2.31), this quantity must be given
by ηl ¼ −ð2lþ 1Þð2klÞ=ð1þ 2klÞ. Solving for kl, we
have that

2kl ¼ −
ηl

2lþ 1þ ηl
: ð2:43Þ

We also find that

Nl ¼ −
2lþ 1

ðl − 1Þl
1

2lþ 1þ ηl
ð2:44Þ

is the correct value for the normalization constant.
The method is easily extended to produce a value for the

dynamic Love number k̈l. Because the entire system of
perturbation equations is linear, the same numerical factor
Nl converts ê2l, the normalized solution to the system of
equations, to the true solution e2l that matches the external
form provided by Eq. (2.31). This implies that

2k̈l ¼ −
2lþ 1

2lþ 1þ ηl
ê2lðϑ ¼ 0Þ: ð2:45Þ

A numerical integration of the perturbation equations
returns the static and dynamic Love numbers of Table I. We
carried out the integrations with a collocation method based
on an expansion of all variables in Chebyshev polynomials;
the method is detailed in the Appendix.

III. LOVE NUMBERS IN TERMS
OF NORMAL MODES

In this section, we stay within the framework of
Newtonian fluid mechanics and gravitation and construct

an alternate description of the tidal deformation of a
(nonrotating) body of mass M and radius R, in terms of
the body’s normal modes of vibration. This description
allows us to define the frequency-domain Love number
k̃lðωÞ that was first encountered in Eq. (1.5) and which was
expressed as a sum over modes in Eq. (1.6). This spectral
representation of the tidal deformation also allows us to
relate the time-derivative expansion of Eq. (2.9) to a low-
frequency approximation, to explore an f-mode approxi-
mation to the tidal response (a truncation of the mode sum to
a single dominant contribution), and to identify a pragmatic
way to extend the time-derivative expansion so that it can
successfully capture an approach to resonance. The mode-
sum representation of k̃lðωÞ is not new (see, for example,
Refs. [43,44]), but we choose to derive it ab initio in order to
keep our presentation essentially self-contained. What we
do with this representation, especially with regards to the
extension of the time-derivative expansion, is new.
We begin in Sec. III A by introducing the Lagrangian

displacement vector ξðt; xÞ and expressing the mass
multipole moments QlmðtÞ in terms of it. The mode-
sum representation is introduced in Sec. III B, and in
Sec. III C, we define the mode norm and overlap integral
with the external tidal force. In Sec. III D, we compute the
frequency-domain Love number and arrive at Eq. (1.6). We
define and explore the low-frequency approximation in
Sec. III E, and in Sec. III F, we propose our pragmatic
extension. In Sec. III G, we reformulate this extension in
the form of an effective one-mode approximation for
dynamical tides, as seen in Eq. (1.14).
In the course of this discussion, we shall turn to the

frequency domain and express the relationship between
mass and tidal moments as in Eq. (1.5),

GQ̃lmðωÞ ¼ −
2ðl − 2Þ!
ð2l − 1Þ!!R

2lþ1k̃lðωÞẼlmðωÞ: ð3:1Þ

We use the convention

nðtÞ ¼
Z

∞

−∞
ñðωÞe−iωt dω; ñðωÞ ¼ 1

2π

Z
∞

−∞
nðtÞeiωt dt

ð3:2Þ

for the Fourier transform.

A. Mass moment in terms of Lagrangian displacement

The perturbation of a fluid is completely determined by
the Lagrangian displacement vector ξðt; xÞ, which takes a
fluid element at a position x in the unperturbed configu-
ration and places it at position xþ ξ in the perturbed
configuration. When the unperturbed configuration is static
and spherically symmetric, the vector components in
spherical coordinates ðr; θAÞ are given by
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ξr ¼ ξlmr ðt; rÞYlmðθ;ϕÞ; ξA ¼ ξlmðt; rÞDAYlmðθ;ϕÞ;
ð3:3Þ

where θA ≔ ðθ;ϕÞ, and DA is the covariant-derivative
operator compatible with the metric ΩAB ≔ diag½1; sin2 θ�
on the unit two-sphere. (When it acts on a scalar, as it does
here, the covariant derivative reduces to the partial deriva-
tive.) The perturbation of the mass density is given by
δρ ¼ −∇aðρξaÞ, and this is calculated as

δρ ¼ −
1

r2

�
d
dr

ðr2ρξlmr Þ − lðlþ 1Þρξlm
�
Ylm: ð3:4Þ

Here, we take the perturbation to have a specific value of l
specified by the applied tidal field; summation over m is
implied.
We wish to compute the mass momentQlmðtÞ for a fluid

configuration perturbed from a spherical equilibrium.
Equation (2.8) implies that this is given by

Qlm ¼ 4πl!
ð2lþ 1Þ!!

Z
ðρþ δρÞrlþ2ȲlmdrdΩ; ð3:5Þ

where ρþ δρ is the perturbed density, and dΩ ≔ sin θdθdϕ
is the element of solid angle; an overbar indicates complex
conjugation. Noting that the perturbed surface is described
by r ¼ Rþ δR with

δR ¼ ξlmr ðr ¼ RÞYlm; ð3:6Þ
this is calculated as

Qlm ¼ 4πl!
ð2lþ 1Þ!!

Z
dΩ

Z
RþδR

0

ðρþ δρÞrlþ2Ȳlm dr

¼ 4πl!
ð2lþ 1Þ!!

Z
dΩ

�Z
RþδR

0

ρrlþ2Ȳlm dr

þ
Z

R

0

δρ rlþ2Ȳlm dr

�

¼ 4πl!
ð2lþ 1Þ!!

Z
dΩ

�Z
RþδR

R
ρrlþ2Ȳlm dr

þ
Z

R

0

δρ rlþ2Ȳlm dr
�
; ð3:7Þ

in the last step, we used the fact that the mass moment
vanishes for the unperturbed configuration. The first
integral returns

ρðr ¼ RÞRlþ2

Z
δR Ȳlm dΩ ¼ ρðr ¼ RÞRlþ2ξlmr ðr ¼ RÞ;

ð3:8Þ

where we used the orthonormality of the spherical har-
monics to perform the angular integration. For the second
integral, we insert Eq. (3.4) and get

Z
dΩ

Z
R

0

δρ rlþ2Ȳlm dr ¼ −ρðr ¼ RÞRlþ2ξlmr ðr ¼ RÞ

þ l
Z

R

0

ρ½rlþ1ξlmr þ ðlþ 1Þrlξlm�dr; ð3:9Þ

after integrating by parts and performing the angular
integration. The surface terms cancel out, and the final
result is

Qlm ¼ 4πl!l
ð2lþ 1Þ!!

Z
R

0

ρ½rlþ1ξlmr þ ðlþ 1Þrlξlm�dr:

ð3:10Þ

The mass moment is now expressed as an integral over
components of the Lagrangian displacement vector.

B. Mode-sum representation

The Lagrangian displacement ξðt; xÞ is a solution to the
perturbation equation (see, for example, Sec. 2.5.3 of
Poisson and Will [28])

∂ttξ
a þL a

bξ
b ¼ ga; ð3:11Þ

whereL a
b is a linear integro-differential operator, and ga ≔∇aUtidal is the tidal acceleration created by the external

objects; the precise identity of L a
b is not required here. A

fluid mode ζKðxÞ is a solution to the time-independent and
homogeneous version of the perturbation equation,

−ω2
Kζ

a
K þL a

bζ
b
K ¼ 0; ð3:12Þ

where K is the mode label, and ωK is the mode frequency.
Modes with different labels are orthogonal, in the sense that

Z
ρ gabζ̄aKζ

b
K0 dV ¼ NK δKK0 ; ð3:13Þ

where NK is the mode norm. It is known that the modes
form a complete set of basis functions in the Hilbert space
defined by Eq. (3.13) [33].
We wish to represent ξðt; xÞ as a sum over modes.

We write

ξðt; xÞ ¼
X
K

qKðtÞζKðxÞ; ð3:14Þ

where qKðtÞ are mode amplitudes. We similarly write

gðt; xÞ ¼
X
K

gKðtÞζKðxÞ; ð3:15Þ

and insert the expansions within Eq. (3.11). After using
Eq. (3.12) and invoking mode completeness, we obtain the
oscillator equation
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q̈K þ ω2
KqK ¼ gK ð3:16Þ

for each mode amplitude; an overdot indicates differ-
entiation with respect to t. The solution to Eq. (3.16) is
readily expressed as a Fourier transform,

qKðtÞ ¼
Z

∞

−∞
q̃KðωÞe−iωt dω; ð3:17Þ

with

q̃KðωÞ ¼
g̃KðωÞ
ω2
K − ω2

; ð3:18Þ

where g̃KðωÞ is the Fourier transform of gKðtÞ. The mode
representation of the perturbation is then obtained by
inserting Eqs. (3.17) and (3.18) within Eq. (3.14). The
mode projection of the tidal acceleration is given by

g̃KðωÞ ¼
1

NK

Z
ρg̃aðωÞζ̄aK dV; ð3:19Þ

we used the orthogonality relation of Eq. (3.13) to
invert Eq. (3.15).
In the current context, in which the unperturbed con-

figuration is static and spherically symmetric, the complete
mode label takes the form of K ¼ nlm, where n is the
overtone label (an integer) and l,m are the usual spherical-
harmonic integers. A more explicit description of the mode
functions is provided by

ζr¼ ζnlr ðrÞYlmðθ;ϕÞ; ζA¼ ζnlðrÞDAYlmðθ;ϕÞ; ð3:20Þ

and the mode frequencies are denoted ωnl. By virtue of the
spherical symmetry of the unperturbed configuration, the
radial functions and frequencies are independent of m.

C. Mode norm and overlap integral

We proceed with calculations of Nnl and gnlm. We shall
rely on the orthonormality relations

Z
Ȳl0m0

YlmdΩ ¼ δl0lδm0m; ð3:21aÞ
Z

ΩABDAȲl0m0
DBYlm dΩ ¼ lðlþ 1Þδl0lδm0m ð3:21bÞ

for spherical harmonics.
To calculate the mode norm Nnl, we insert Eq. (3.20)

within Eq. (3.13) and make use of Eq. (3.21) to perform the
angular integrations. We arrive at

Nnl ¼ MR2Nnl; ð3:22Þ

with

Nnl ≔
1

MR2

Z
R

0

ρ½r2ðζnlr Þ2 þ lðlþ 1ÞðζnlÞ2�dr; ð3:23Þ

the reduced norm Nnl is dimensionless.
Next we compute the mode projections gnlm of the tidal

acceleration. From Eq. (2.4), we have that

gr¼−
1

l−1
Elmrl−1Ylm; gA¼−

1

ðl−1ÞlE
lmrlDAYlm:

ð3:24Þ

We substitute this within Eq. (3.19) and perform the
angular integrations. We obtain

gnlm ¼ −
1

l − 1
Rl−2 Onl

Nnl
Elm; ð3:25Þ

with3

Onl ≔
1

MRl

Z
R

0

ρ½rlþ1ζnlr þ ðlþ 1Þrlζnl�dr; ð3:26Þ

the reduced overlap integral Onl is dimensionless.

D. Frequency-domain Love number

We return to Eq. (3.10) for the mass multipole moments.
In this, we insert Eq. (3.14) in the more explicit form

ξlmr ðt; rÞ ¼
X
n

qnlmðtÞζlmr ðrÞ;

ξlmðt; rÞ ¼
X
n

qnlmðtÞζlmðrÞ; ð3:27Þ

where qnlmðtÞ are the mode amplitudes. The radial integral
in Eq. (3.10) is then recognized as Onl, and we obtain

QlmðtÞ ¼ 4πl!l
ð2lþ 1Þ!!MRl

X
n

Onl qnlmðtÞ: ð3:28Þ

In the final step, we transform to the frequency domain,
make use of Eq. (3.18), and substitute Eq. (3.25). We obtain

Q̃lmðωÞ¼−
4πl2ðl−2Þ!
ð2lþ1Þ!! MR2l−2ẼlmðωÞ

X
n

1

ω2
nl−ω2

O2
nl

Nnl

ð3:29Þ

for the frequency-domain multipole moments.
Comparison with Eq. (3.1) allows us to identify the

frequency-domain Love number. We find that [Eq. (1.6)]

3The overlap integral is sometimes defined with an additional
factor of l. See, for example, Eq. (2.11) of Ref. [36].
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k̃lðωÞ ¼
2πl2

2lþ 1

X
n

GM=R3

ω2
nl − ω2

O2
nl

Nnl
; ð3:30Þ

and have obtained the desired mode-sum representation of
the Love number.
In principle, the mode-sum representation of Eq. (3.30)

implicates an infinite number of modes. The sum, however,
can often be truncated to a finite number of modes without
a significant loss of accuracy. At the extreme, the sum is
truncated to a single term, corresponding to the n ¼ 0
mode, which is known as the fundamental mode, or f
mode. This mode is characterized by mode functions ζ0lr ðrÞ
and ζ0lðrÞ with the least number of radial nodes and comes
with the largest overlap integrals. For this reason, the f
mode is expected to produce the largest contribution to the
frequency-domain Love numbers, and the f-mode approxi-
mation is actually quite good. We shall quantify this
statement below. (For an incompressible stellar model with
ρ ¼ constant, the f mode is the only mode present in the
spectrum, and the truncation becomes exact.)

E. Low-frequency approximation

The ratio of timescales ϵ, introduced in Eq. (2.10), will
be small whenever ω ≪ ωnl for any mode nlm. The time-
derivative expansion introduced in Sec. II, therefore, can be
viewed as an implementation of a low-frequency approxi-
mation. In this regime, we have that Eq. (3.1) produces

GQlmðtÞ ¼ −
2ðl − 2Þ!
ð2l − 1Þ!!R

2lþ1

×

�
klElmðtÞ − k̈l

R3

GM
ËlmðtÞ þ � � �

�
; ð3:31Þ

with

kl ≔ k̃lðω ¼ 0Þ ¼ 2πl2

2lþ 1

X
n

GM=R3

ω2
nl

O2
nl

Nnl
; ð3:32aÞ

k̈l ≔
GM
R3

dk̃l
dω2

����
ω¼0

¼ 2πl2

2lþ 1

X
n

�
GM=R3

ω2
nl

�
2 O2

nl

Nnl
:

ð3:32bÞ

Equation (3.31) is a restatement of Eq. (2.9).
The f-mode and low-frequency approximations are

independent from one another, but if we choose to combine
them, we can simplify Eq. (3.32) to

kl ≃
2πl2

2lþ 1

GM=R3

ω2
0l

O2
0l

N0l
; ð3:33aÞ

k̈l ≃
2πl2

2lþ 1

�
GM=R3

ω2
0l

�
2O2

0l

N0l
: ð3:33bÞ

According to this, the static and dynamical Love numbers
are related by

k̈l ≃
GM=R3

ω2
0l

kl: ð3:34Þ

We can test the accuracy of the f-mode approximation by
computing the mode frequencies ω0l and forming the ratio

rl ≔
k̈l
kl

w2
l; wl ≔

ω0lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p ; ð3:35Þ

the approximation will be good when rl is sufficiently
close to unity. We present the results of this computation in
Table II for polytropic stellar models with an equation of
state p ¼ Kρ1þ1=n. We see that the f-mode approximation
is excellent when n is small, and the equation of state is
relatively stiff: For n ¼ 1 and for all sampled values of l, rl
deviates from unity by no more than 0.1%. We see also that
the approximation degrades somewhat as n increases, and
the equation of state becomes softer; for n ¼ 2.5, rl is
approximately 5% away from unity.

F. Beyond the low-frequency approximation

We now explore how we might go beyond the low-
frequency approximation of Eq. (3.31) and attempt to
capture more of the oscillator response function, propor-
tional to ðω2

nl − ω2Þ−1. To be concrete, we consider a

TABLE II. Test of the f-mode approximation for a polytropic
stellar model with equation of state p ¼ Kρ1þ1=n. The first column
lists the polytropic index n, the second the multipole order l, the
third the dimensionless f-mode frequency wl ≔ ω0lðR3=GMÞ1=2,
and the fourth the ratio rl ≔ ðk̈l=klÞw2

l, which is unity when the
f-mode approximation is exact.

n l wl rl

1.0 2 1.226952 9.997437 × 10−1

3 1.698253 9.992791 × 10−1

4 2.036549 9.989909 × 10−1

5 2.310371 9.988714 × 10−1

1.5 2 1.455807 9.978542 × 10−1

3 1.934328 9.949372 × 10−1

4 2.258851 9.937438 × 10−1

5 2.516478 9.936082 × 10−1

2.0 2 1.739606 9.891408 × 10−1

3 2.192167 9.796660 × 10−1

4 2.483835 9.782532 × 10−1

5 2.715511 9.797751 × 10−1

2.5 2 2.076292 9.580690 × 10−1

3 2.453423 9.421301 × 10−1

4 2.697823 9.466875 × 10−1

5 2.899605 9.544274 × 10−1
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situation in which the tidal field is created by a single
companion of mass M0 at position r0 ¼ r0n0 (with n0 a unit
vector) relative to the reference body. We then have Uext ¼
GM0=s with s ≔ jx − r0j, and Eq. (2.2) produces

EL ¼ −
1

ðl − 2Þ!GM
0
∂L

1

s

����
x¼0

: ð3:36Þ

We evaluate the derivatives with the help of Eq. (1.156) of
Poisson and Will [28] and then set x ¼ 0. We arrive at

EL ¼ −
ð2l − 1Þ!!
ðl − 2Þ!

GM0

r0ðlþ1Þ n
0
hLi: ð3:37Þ

The equivalent spherical-harmonic representation is

Elm ¼ −4π
ðl − 1Þl
2lþ 1

GM0

r0ðlþ1Þ Ȳ
lmðϑ0;ϕ0Þ; ð3:38Þ

where θ0 and ϕ0 are the polar angles associated with the unit
vector n0. To arrive at Eq. (3.38), we made use of the
definition of Eq. (2.3) and invoked conversion formulae
between symmetric-tracefree tensors and spherical harmon-
ics [Eqs. (1.164) and (1.167) of Poisson and Will].
To be even more concrete (and for the sake of simplic-

ity), we take the companion to move on a circular orbit in
the equatorial plane so that

r0 ¼ constant; θ0 ¼ π

2
; ϕ0 ¼ Ωt;

Ω ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þM0Þ

r03

r
: ð3:39Þ

In this case, Eq. (3.38) specializes to

Elm ¼ −4π
ðl − 1Þl
2lþ 1

Ylm

�
π

2
; 0

�
GM0

r0ðlþ1Þ e
−imΩt; ð3:40Þ

and it follows that

Ëlm ¼ −ðmΩÞ2Elm: ð3:41Þ

We insert this relation in Eq. (3.31) and obtain

GQlmðtÞ ¼ −
2ðl − 2Þ!
ð2l − 1Þ!! klΓ

m
l R

2lþ1ElmðtÞ; ð3:42Þ

with

Γm
l ≔ 1þ ðmΩÞ2

GM=R3

k̈l
kl

þ � � � : ð3:43Þ

Equation (3.42) with Γm
l ¼ 1 is the usual relationship

between the mass and tidal multipole moments in the
regime of static tides. The additional factor Γm

l supplies

the correction that comes from the dynamical aspects of the
tidal interaction.
The expression of Eq. (3.43) is subjected to the low-

frequency approximation. In a pragmatic extension of this
result, we attempt to capture the high-frequency behavior
of the oscillator response function by rewriting Γm

l as
[Eq. (1.13)]

Γm
l ≃

�
1 −

ðmΩÞ2
GM=R3

k̈l
kl

�
−1
; ð3:44Þ

and allowing the expression within brackets to become
noticeably smaller than unity. (A zero crossing would signal
a gross violation of the low-frequency approximation.) In
the context of an inspiral, during whichΩ increases steadily,
the Γm

l of Eq. (3.44) can grow substantially as the binary
approaches merger andΩ2 becomes comparable toGM=R3.
The simple relation of Eq. (3.44) can therefore capture in an
effective way the growing dynamical influence of the tidal
interaction in the course of a binary inspiral, and this can be
achieved without having to rely on a mode-sum represen-
tation of the perturbation.

G. Effective one-mode approximation

To proceed with the discussion, we insert Eq. (3.44)
within Eq. (3.42) and take a Fourier transform. We obtain
Eq. (3.1), with a frequency-domain Love number given by

k̃lðωÞ ¼ kl

�
1 −

k̈l=kl
GM=R3

ω2

�
−1
: ð3:45Þ

In this specialization to circular orbits, ẼlmðωÞ is propor-
tional to δðω −mΩÞ.
We observe that Eq. (3.45) bears a formal resemblance to

Eq. (3.30) when the mode sum is truncated to a single term.
We may therefore think of Eq. (3.45) as the embodiment of
an effective one-mode approximation. We make this mani-
fest by introducing an effective mode frequency ω�l
defined by

ω2
�l ≔

GM
R3

kl
k̈l

; ð3:46Þ

and rewriting Eq. (3.45) as

k̃lðωÞ ¼
k̃lð0Þ

1 − ω2=ω2
�l
; ð3:47Þ

which is now fully equivalent to the one-mode version of
Eq. (3.30); we recall that kl ≔ k̃lðω ¼ 0Þ. The notation
ω�l for the effective mode frequency reminds us that
conceptually, this quantity is not to be associated with
any of the star’s normal modes of vibration; it is a modeless
creature of our extended low-frequency approximation.
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The notation is meant to suggest that the assignment of
Eq. (3.44) can be formally related to a one-mode truncation
of Eq. (3.30).
We actually have more than this. Our test of the f-mode

approximation established that the effective mode frequency
ω�l is numerically very close to the star’s f-mode fre-
quency. This reveals that the effective one-mode approxi-
mation is very closely related to the f-mode approximation
and that the accuracy of Eq. (3.44) can be equated with the
accuracy of the f-mode approximation. Because the latter
was shown earlier to be quite accurate, we have compelling
evidence that Eq. (3.44) should be just as accurate.
Our conclusion is that the pragmatic extension of the

low-frequency approximation given by Eq. (3.44) provides
a description of dynamical tides that compares very well in
accuracy with a mode sum truncated to include just the f
mode. As we have seen, this level of accuracy is perfectly
adequate.

IV. STATIC AND DYNAMIC LOVE NUMBERS
IN GENERAL RELATIVITY

In this section, we compute the static and dynamic Love
numbers of a polytropic star in full general relativity. We
begin in Sec. IVAwith a review of the exterior metric of a
tidally deformed material body, as constructed in Ref. [29];
the metric provides a precise, relativistic definition for the
Love numbers. Next we introduce the interior variables
(Sec. IV B), derive the relevant perturbation equations
(Sec. IV C), and specialize them to polytropic stellar
models (Sec. IV D). In Sec. IV E, we describe how the
matching of the interior and exterior metrics at the stellar
surface produces the Love numbers.

A. Exterior metric

We consider a nonrotating, tidally deformed, material
body of massM and radius R. We describe its gravitational
field in full general relativity, in terms of a metric tensor gαβ.
The tidal environment is again characterized by tidal
moments ElmðtÞ that vary slowly with time. The non-
vanishing components of the metric are expressed as

gtt ¼ −f þ ptt gtr ¼ ptr grr ¼ f−1 þ prr

gAB ¼ r2ΩABð1þ qÞ; ð4:1Þ

where f ≔ 1 − 2M=r, θA ¼ ðθ;ϕÞ, ΩAB ¼ diag½1; sin2 θ�,
and where

ptt ¼ −
2

ðl − 1Þl f
2rlðettElm þ ëttM2ËlmÞYlm; ð4:2aÞ

ptr ¼ −
4

ðl − 1Þlðlþ 1Þ f
−1rlþ1ėtrĖ

lmYlm; ð4:2bÞ

prr ¼ −
2

ðl − 1Þl r
lðerrElm þ ërrM2ËlmÞYlm; ð4:2cÞ

q ¼ −
2

ðl − 1Þl r
lðeElm þ ëM2ËlmÞYlm ð4:2dÞ

are the components of the metric perturbation, presented in
the Regge-Wheeler gauge [45] (see also Ref. [46] for a
formulation of the theory of gravitational perturbations of a
Schwarzschild spacetime). An overdot on the tidal moment
Elm continues to indicate differentiation with respect to t,
and Ylmðθ;ϕÞ continues to denote spherical harmonics.
The radial functions associated with the static perturba-

tion are given by

ett ¼ err ¼ Al þ 2KlðM=rÞ2lþ1 Bl; ð4:3aÞ

e ¼ Cl þ 2KlðM=rÞ2lþ1Dl; ð4:3bÞ

with functions AlðrÞ, BlðrÞ, ClðrÞ, and DlðrÞ defined
by Eq. (5.8) of Ref. [29] in terms of hypergeometric
functions. Explicit expressions for l ¼ f2; 3; 4; 5g appear
in Appendix C of this reference. Each one of these
functions behaves as 1þOðM=rÞ when expanded in
powers of M=r. The quantity Kl is a rescaled Love
number, related by

Kl ¼ klðR=MÞ2lþ1 ð4:4Þ

to the scalefree Love number kl.
The radial functions associated with the dynamic per-

turbation are expressed as

ëtt ¼ ërr ¼ T̈lAl − 2K̈lðM=rÞ2lþ1 Bl þAl þ KlBl;

ð4:5aÞ

ë ¼ T̈lCl − 2K̈lðM=rÞ2lþ1Dl þ Cl þ KlDl; ð4:5bÞ

with a new set of functions AlðrÞ, BlðrÞ, ClðrÞ, and
DlðrÞ that are listed explicitly for l ¼ f2; 3; 4; 5g in
Appendix F of Ref. [29]. The quantity K̈l is a rescaled
Love number, related to the scalefree Love number k̈l by

K̈l ¼ k̈lðR=MÞ2lþ4: ð4:6Þ

The remaining function ėtr is defined in terms of hyper-
geometric functions in Eq. (5.47) of Ref. [29]; explicit
expressions for l ¼ f2; 3; 4; 5g appear in Appendix E of
this reference. We note that the dynamic Love number is
defined here with a minus sign relative to the original
definition of Ref. [29]; we introduced the same minus sign
in the Newtonian discussion of Sec. II. The current
definition ensures that the numbers turn out to be positive.

TRISTAN PITRE and ERIC POISSON PHYS. REV. D 109, 064004 (2024)

064004-16



The meaning of the constant T̈l is explained in Sec. V K
of Ref. [29]. It is arbitrary, and the freedom to choose its
value is associated with the freedom to redefine the tidal
moments according to

Elm → Elm þ λ̈lM2Ëlm; ð4:7Þ

where ̈λl is another arbitrary constant. It is easy to show
that the impact of this transformation is to produce the
changes

T̈l → T̈l þ ̈λl; K̈l → K̈l þ λ̈lKl; ð4:8Þ

in the constants that appear in the perturbed metric. In the
Newtonian limit M=r ≪ 1, the metric perturbation of
Eq. (4.2) should reduce to the Newtonian potential of
Eq. (2.11), and this is achieved when we make the choice
T̈l ¼ 0. The freedom to redefine the tidal moments can
therefore be exercised to set T̈l ¼ 0, and once this is done,
the dynamic Love numbers become invariant. We do not
make this choice at the outset because to keep T̈l arbitrary
in the exterior metric is helpful for the computations to be
presented below; we shall explain why in Sec. IV D.
The metric of Eq. (4.1) is a special case of the metric

constructed in Ref. [29]. The more complete version
includes additional terms that are proportional to the first
derivative of the tidal moments. These terms break the
time-reversal invariance of the metric and are required
when the physics of the tidally deformed body includes
dissipation (as in the case of a viscous fluid). In our case,
the body is modeled as a perfect fluid, the physics is time-
reversal invariant, and the additional terms are appropri-
ately excluded.

B. Interior metric and fluid variables

We write the metric inside the body as

gtt ¼ −e2ψ þ ptt gtr ¼ ptr grr ¼ f−1 þ prr

gAB ¼ r2ΩABð1þ qÞ; ð4:9Þ

where ψ ¼ ψðrÞ and f ≔ 1 − 2mðrÞ=r, withmðrÞ standing
for the mass inside a sphere of radius r. The metric
perturbation is written as

ptt ¼ −
2

ðl − 1Þl e
2ψfrlfal Elm þ e−2ψfäl r21Ë

lmgYlm;

ð4:10aÞ

ptr ¼ −
4

ðl − 1Þlðlþ 1Þ f
−1rlþ1ḃlĖ

lmYlm; ð4:10bÞ

prr ¼ −
2

ðl − 1Þl r
lfal Elm þ e−2ψfäl r21Ë

lmgYlm;

ð4:10cÞ

q ¼ −
2

ðl − 1Þl r
lf½al þ ðr=r1Þ2cl�Elm

þ e−2ψf½äl þ ðr=r1Þ2c̈l�r21ËlmgYlm; ð4:10dÞ

where the coefficients al, cl, ḃl, äl, and c̈l are functions
of r only. The metric perturbation is presented in Regge-
Wheeler gauge, as it was for the exterior metric. The form
displayed in Eq. (4.10) anticipates an outcome of imposing
the Einstein field equations that e−2ψptt must be equal to
fprr. We have peppered the expressions with numerical
factors, powers of r, and factors of e2ψ and f in order to
(i) ensure that all radial functions approach a constant when
r → 0, (ii) eliminate all factors of e2ψ in the perturbation
equations, and (iii) facilitate the matching of the interior
perturbation with the exterior perturbation at r ¼ R. The
split of q in terms of radial functions al and cl (as well as
äl and c̈l) reflects the fact that the functions that appear in
ptt and q share the same limit when r → 0 but differ at
order r2. Finally, we have inserted a length scale r1 within
the metric perturbation, to compensate dimensionally for
the time derivatives of the tidal moments; this scale is
arbitrary, and it will be chosen at a later stage.
The stellar matter is modeled as a perfect fluid, and it

possesses an energy-momentum tensor

Tαβ ¼ ðμþ δμÞuαuβ þ ðpþ δpÞðgαβ þ uαuβÞ; ð4:11Þ

where μþ δμ is the perturbed energy density, pþ δp is the
perturbed pressure, uα is the perturbed velocity vector, and
gαβ is the perturbed inverse metric. We write the compo-
nents of the velocity vector as

ut ¼ e−ψ −
1

ðl− 1Þle
−ψfrlfal Elmþ e−2ψfäl r21Ë

lmgYlm;

ð4:12aÞ

ur ¼ 2

ðl − 1Þl e
−ψrl−1 u̇l r21Ė

lmYlm; ð4:12bÞ

uA ¼ 2

ðl − 1Þl e
−ψrl−2v̇lr21Ė

lmΩAB DBYlm; ð4:12cÞ

where u̇l and v̇l are new radial functions, ΩAB ≔
diag½1; 1=sin2 θ� is the matrix inverse to ΩAB, and DA is
the covariant-derivative operator compatible with ΩAB. The
expression for ut follows from the normalization condition
gαβuαuβ ¼ −1. The factor of rl−1 in ur and the factor of
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rl−2 in uA are inherited from the Newtonian expressions
considered previously in Sec. II.
We take the fluid to satisfy a barotropic equation of

state, which we write in the form μ ¼ μðpÞ. The angular
components of the conservation equation ∇βTαβ ¼ 0 (with
a covariant derivative compatible with the perturbed metric)
reveal that the pressure perturbation can be written as

δp ¼ −
1

ðl − 1Þl ðμþ pÞfrlfal Elm þ e−2ψðfäl
þ 2f−1v̇lÞr21ËlmgYlm; ð4:13Þ

in terms of the metric and velocity perturbation. The
equation of state then delivers δμ ¼ ðdμ=dpÞδp.
The complete listing of perturbation variables consists of

fal; clg for a static perturbation, fu̇l; v̇l; ḃlg for the
perturbation constructed from the first derivative of the
tidal moments, and fäl; c̈lg for the perturbation associated
with the second derivatives. All variables are dimension-
less. We shall see below that ḃl is algebraically related to
other variables and can therefore be eliminated from the list
of independent radial functions. The remaining number is
then six.

C. Structure and perturbation equations

The Einstein field equations for an unperturbed metric
and fluid return the structure equations

dm
dr

¼ 4πr2μ; ð4:14aÞ

dψ
dr

¼ mþ 4πr3p
r2f

; ð4:14bÞ

dp
dr

¼ −ðμþ pÞ dψ
dr

: ð4:14cÞ

These can be integrated as soon as an equation of state
μ ¼ μðpÞ is supplied. We note that the equation for ψ will
be used freely in subsequent developments but that it shall
never be integrated explicitly.
Turning next to the equations governing al and cl, we

observe that an independent set of equations is provided by
the rr and rA components of the Einstein field equations;
the remaining components deliver redundant information.
We obtain

fðmþ 4πr3pÞ dal
dr

¼ ½4πr2ðμþ pÞð1þ 8πr2pÞ þ 2lm2=r2 þ 8πðl − 4Þrpm

þ ðl − 2Þðlþ 2Þm=r − 4πlr2p − 64π2r4p2�al þ
1

2
ðl − 1Þðlþ 2Þðr=r1Þ2cl; ð4:15aÞ

fðmþ 4πr3pÞ dcl
dr

¼ −2ðr1=rÞ2½8πðμþ pÞð2πr4p −m2 þ rmÞ þ 4m3=r3 þ ðl − 2Þðlþ 3Þm2=r2

− 16πrpm − 32π2r4p2�al þ ðlþ 2Þ½2m2=r2 − ðl − 8πr2pÞm=r − 4πr2p�cl: ð4:15bÞ

The differential equations are singular at r ¼ 0. A local analysis reveals that regular solutions for al and cl tend to constants
when r → 0; the constants are related to each other so that only one is independent. The equations are regular as r → R, and
there is no need to impose specific boundary conditions at the surface.
Moving on to the equations that govern u̇l and v̇l, we have that the t and r components of ∇βTαβ ¼ 0 deliver

r
du̇l
dr

¼ f−1½ðm=rþ 4πr2pÞdμ=dp − ðlþ 1Þ þ ð2lþ 3Þm=r − 4πr2μ�u̇l þ lðlþ 1Þv̇l

þ 1

2
ðr=r1Þ2½3 − 2m=rþ fdμ=dp�al þ ðr=r1Þ4cl; ð4:16aÞ

rf
dv̇l
dr

¼ u̇l − ½l − 2ðlþ 1Þm=r − 8πr2p�v̇l −
2

lþ 1
ðr=r1Þ2ḃl; ð4:16bÞ

while the tr component of the Einstein field equations produces
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ḃl ¼ r
lðmþ 4πr3pÞ

�
½4πr2ðμþ pÞð1 − 4m=rþ 4m2=r2Þ − 12m3=r3 − ð2l2 þ 2l − 13Þm2=r2 − 16πpm2

þ ðl2 þ l − 4Þm=r − 16π2r4p2�al −
1

2
ðr=r1Þ2½6m2=r2 þ 32πrpmþ 2ðl2 þ l − 3Þm=rþ 32π2r4p2

− 8πr2p − ðl − 1Þðlþ 2Þ�cl þ 8πr21ðμþ pÞðm=rþ 4πr2pÞu̇l
	
; ð4:17Þ

an algebraic equation for ḃl. The equations reveal that u̇l and v̇l both tend to a constant when r → 0 and that these are
related by u̇lðr ¼ 0Þ ¼ lv̇lðr ¼ 0Þ. The presence of dμ=dp in the differential equation for u̇l implies that the system of
equations is singular at r ¼ R; the solution will be well behaved if we impose

ðM=RÞu̇lðr ¼ RÞ ¼ −
1

2
ðR=r1Þ2ð1 − 2M=RÞ2alðr ¼ RÞ ð4:18Þ

as a boundary condition.
Finally, the equations that govern äl and c̈l come from the rr and rA components of the field equations, with the

remaining equations providing redundant information. We get

fðmþ 4πr3pÞ däl
dr

¼ ½4πr2ðμþ pÞð1þ 2m=rþ 16πr2pÞ þ 2lm2=r2 þ ðl − 2Þðlþ 2Þm=r

þ 8πðl − 4Þrpm − 64π2r4p2 − 4πlr2p�äl þ
1

2
ðl − 1Þðlþ 2Þðr=r1Þ2c̈l

−
2

ðlþ 1Þf2 ðr=r1Þ
2½1 − 3m=r − 4πr2p�ḃl þ 8πf−1r2ðμþ pÞv̇l

þ ðr=r1Þ2f−1½al þ ðr=r1Þ2cl�; ð4:19aÞ

fðmþ 4πr3pÞ dc̈l
dr

¼ ðr1=rÞ2½16πr2ðμþ pÞðm2=r2 −m=r − 2πr2pÞ − 8m3=r3 − 2ðl − 2Þðlþ 3Þm2=r2

þ 32πrpmþ 64π2r4p2�äl þ ½8πr2ðμþ pÞðm=rþ 4πr2pÞ þ ðlþ 2Þð2m2=r2

− lm=rþ 8πrpm − 4πr2pÞ�c̈l −
2

ðlþ 1Þf2 ½4m
2=r2 −m=rþ 4πr2p�ḃl

− 16πr21f
−1ðμþ pÞðm=rÞv̇l − 2f−1ðm=rÞ½al þ ðr=r1Þ2cl�: ð4:19bÞ

We have that äl and c̈l both tend to a constant as r → 0,
with only one of them independent. The equations are
regular at r ¼ R, and there is no need to impose a boundary
condition there.
The equations listed in this subsection form a complete

set for all structure and perturbation variables. Once a
solution is at hand, matching the metric perturbation at r ¼
R with the exterior solution of the preceding subsection
determines the unknown quantities associated with the
exterior metric, namely the Love numbers kl and k̈l, as
well as the additional constant T̈l.

D. Implementation for a polytrope

At this stage, we must specify an equation of state, and
once again, we adopt the simple polytropic form
p ¼ Kρ1þ1=n, where ρ is the fluid’s particle mass density
(particle number density times the average rest mass of the

constituent particle), and where K and n are constants. The
first law of thermodynamics, dðϵ=ρÞ þ pdð1=ρÞ ¼ 0,
implies that the internal energy density is given by ϵ ¼
np for this equation of state. The total energy density is
then μ ¼ ρþ ϵ.
We introduce a dimensionless substitute ϑ for the

density, by writing

ρ¼ ρcϑ
n; p¼ bρcϑnþ1; μ¼ ρcϑ

nð1þnbϑÞ; ð4:20Þ

where ρc ≔ ρðr ¼ 0Þ is the central density, and b ≔
pc=ρc ≔ pðr ¼ 0Þ=ρðr ¼ 0Þ is the ratio of central pressure
to central density. In terms of the new variable, we have that

dμ
dp

¼ n

�
1þ 1

ðnþ 1Þbϑ
�
; ð4:21Þ
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and we see that this diverges when ϑ → 0 (when the density
vanishes). We also introduce dimensionless substitutes χ
and ζ for the mass function and radial coordinate, respec-
tively, by writing

m¼ 4π

3
ρcð1þnbÞr3 χ; r2 ¼ 3

2π

ðnþ 1Þb
ð1þnbÞρc

ζ: ð4:22Þ

From Eq. (4.14), we get that the structure equations become

dϑ
dζ

¼ −
1

f
½1þ ðnþ 1Þbϑ�

�
χ þ 3b

1þ nb
ϑnþ1

�
; ð4:23aÞ

dχ
dζ

¼ −
3

2ζ

�
χ −

1þ nbϑ
1þ nb

ϑn
�
; ð4:23bÞ

where f ≔ 1 − 2m=r ¼ 1–4ðnþ 1Þbζχ. It is very conven-
ient to use ϑ as the independent variable instead of ζ [42].
In this formulation, Eq. (4.23) are integrated from the
centre at ϑ ¼ 1 with the starting values ζðϑ ¼ 1Þ ¼ 0 and
χðϑ ¼ 1Þ ¼ 1, up to the surface at ϑ ¼ 0, where we obtain
ζs ≔ ζðϑ ¼ 0Þ and χs ≔ χðϑ ¼ 0Þ. The star’s global quan-
tities M ≔ mðr ¼ RÞ and R are obtained from these, and
the star’s compactness is

M=R ¼ 2ðnþ 1Þbζsχs: ð4:24Þ

An equilibrium sequence is obtained by integrating the
structure equations for a range of central densities ρc. In
practice, it is more convenient to parametrize the sequence
with b, which is in a one-to-one relationship with ρc for
the selected equation of state. The sequence ends at the
configuration of maximum mass; beyond this point, the
equilibria are dynamically unstable to radial perturbations.
It is a straightforward matter to rewrite the perturbation

equations (4.15)–(4.17) and (4.19) in terms of the dimen-
sionless variables θ, ζ, and χ; we shall not provide these
details here. As a convenient choice of length scale r1,
we set

r21 ¼
3

2π

nþ 1

ð1þ nbÞρc
: ð4:25Þ

This differs by a factor of 1=b from the scaling factor
previously introduced in the definition of ζ. This choice is
motivated by the desire to keep the equations numerically
well behaved when b becomes small; this limit takes us to a
Newtonian body.
We observed previously that each perturbation variable

approaches a constant when r → 0 and that there are
relations among these constants. For the polytropic equa-
tion of state, we find that these are given by

clðr ¼ 0Þ ¼ −
4ðnþ 1Þ

ðlþ 2Þð1þ nbÞ flþ 1

þ ½ðlþ 1Þn − 3�bgalðr ¼ 0Þ; ð4:26aÞ

u̇lðr ¼ 0Þ ¼ lv̇lðr ¼ 0Þ; ð4:26bÞ

c̈lðr ¼ 0Þ ¼ −
4

ðlþ 1Þðlþ 2Þð1þ nbÞ f½ðlþ 1Þ2n2

þ ðl2 − l − 2Þn − 3ðlþ 1Þ�b
þ ðlþ 1Þ2ðnþ 1Þgälðr ¼ 0Þ

−
24ðnþ 1Þ½ðnþ 1Þbþ 1�
lðlþ 1Þðlþ 2Þð1þ nbÞ u̇lðr ¼ 0Þ

−
2

ðlþ 1Þðlþ 2Þ alðr ¼ 0Þ; ð4:26cÞ

and

u̇lðr ¼ RÞ ¼ −
�
4ðnþ 1Þb2ζ2sχs − 2bζs

þ 1

4ðnþ 1Þχs

�
alðr ¼ RÞ: ð4:27Þ

Equation (4.27) is a restatement of Eq. (4.18).
The integration of Eq. (4.15) for al and cl requires the

specification of a single arbitrary constant, alðr ¼ 0Þ;
clðr ¼ 0Þ is then determined by Eq. (4.26a). The selection
of alðr ¼ 0Þ provides an overall normalization to the
solution, and this choice of normalization will be propa-
gated through the remaining perturbation variables. We
set alðr ¼ 0Þ ¼ 1.
Moving on to the integration of Eq. (4.16) for u̇l and v̇l,

we recall that the system is singular at both r ¼ 0 and
r ¼ R, and we must now impose boundary conditions at
both ends. These are given by Eqs. (4.26b) and (4.27). The
boundary conditions ensure that the solution is unique;
there is no freedom of choice with these perturbation
variables.
The system of Eq. (4.19) for äl and c̈l is singular at

r ¼ 0, and we have a single boundary condition there,
given by Eq. (4.26c). In this equation, alðr ¼ 0Þ ¼ 1,
u̇lðr ¼ 0Þ is known from the preceding integrations, and
älðr ¼ 0Þ is arbitrary. The freedom to choose älðr ¼ 0Þ
corresponds to the freedom to add to äl and c̈l a solution to
the homogeneous version of Eq. (4.19), obtained by
removing all source terms proportional to al, cl, u̇l,
and v̇l. In turn, this corresponds to the freedom to redefine
the tidal moments according to Eq. (4.7). Now, we recall
that the exterior solution to the perturbation equations
involved a number T̈l that was also associated with the
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freedom to redefine the tidal moments. The choice of
älðr ¼ 0Þ, therefore, will be tied to a determination of T̈l
when the interior perturbation is matched to the exterior
perturbation. Because T̈l is entirely arbitrary, we have the
freedom to set älðr ¼ 0Þ arbitrarily, and we shall impose
älðr ¼ 0Þ ¼ 1. In the final step of the computation, we will
implement the transformation of Eqs. (4.7) and (4.8) to set
the final value of T̈l to zero and obtain a final value for K̈l
that is invariant under a redefinition of the tidal moments.
Additional details regarding the numerical integration of

the perturbation equations are given in the Appendix. We
carried out two independent integrations, one exploiting
collocation methods based on an expansion of all variables
in Chebyshev polynomials, the other using finite-difference
methods. Agreement between these results gives us con-
fidence that the computations are accurate.

E. Love numbers

Integration of the perturbation equations returns surface
values as ≔ alðr ¼ RÞ, cs ≔ clðr ¼ RÞ, and so on, for all
the perturbation variables. Matching the interior solution
with the exterior solution at r ¼ R allows us to determine
the Love numbers kl and k̈l, as well as the arbitrary
constant ̈tl ≔ ðM=RÞ3T̈l.
Writing the perturbed metric as gαβ ¼ g0αβ þ pαβ, where

g0αβ is the unperturbed metric and pαβ the perturbation, the
matching conditions are

0 ¼ ½gαβðr ¼ Rþ δRÞ� ¼ ½g0αβðr ¼ RÞ�
þ ½∂rg0αβðr ¼ RÞ�δRþ ½pαβðr ¼ RÞ�; ð4:28Þ

where ½gαβ� is the difference between the exterior and
interior metrics, and r ¼ Rþ δR marks the deformed
stellar surface. Because the unperturbed metric is continu-
ous and differentiable at r ¼ R,4 this simplifies to

½pαβðr ¼ RÞ� ¼ 0: ð4:29Þ

Stated in words, the metric perturbation must be continuous
at the unperturbed surface.
We recall that a choice of normalization was made for the

interior solution when we set alðr ¼ 0Þ ¼ 1. As a conse-
quence, the interior solution will differ from the exterior
solution by an overall multiplicative factor, which we
denote Nl. When we compare Eqs. (4.2) and (4.10) and
account for the fact that expð2ψ sÞ ¼ fs ¼ 1–2M=R, we
find that the matching conditions are

Nlas ¼ estt; ð4:30aÞ

Nl½as þ ðR=r1Þ2cs� ¼ es; ð4:30bÞ

Nläs ¼ ðM=r1Þ2ëstt; ð4:30cÞ

Nl½äs þ ðR=r1Þ2c̈s� ¼ ðM=r1Þ2ës; ð4:30dÞ

as well as Nlḃs ¼ ėstr. We use the notation as ≔
alðr ¼ RÞ, estt ≔ ettðr ¼ RÞ, and so on for the remaining
radial functions.
Making use of Eq. (4.3), we have that the first two

equations in Eq. (4.30) take the explicit form

0 ¼ 2Bl kl − alNl þ Al; ð4:31aÞ

0 ¼ 2Dl kl − ½al þ ðR=r1Þ2cl�Nl þ Cl; ð4:31bÞ

in which all radial functions are evaluated at r ¼ R. We
have two equations for the two unknowns kl and Nl. It is
useful to note that ðR=r1Þ2 ¼ bζs.
With Eq. (4.5), we have that the last two equations in

Eq. (4.30) can be expressed as

0 ¼ Al ̈tl − 2Bl k̈l − ðM=RÞfNlðr1=RÞ2äl
− ðM=RÞ2Al − klðR=MÞ2l−1Blg; ð4:32aÞ

0 ¼ Cl̈tl − 2Dlk̈l − ðM=RÞfNl½ðr1=RÞ2äl þ c̈l�
− ðM=RÞ2Cl − klðR=MÞ2l−1Dlg; ð4:32bÞ

in which the radial functions are again evaluated at r ¼ R.
Here, we have two equations for the two unknowns k̈l
and ̈tl.
The remaining matching condition, Nlḃs ¼ ėstr, brings

no new information. It is nevertheless useful because it can
be turned into a test of the numerics. We have verified that
the equation holds up to the degree of accuracy expected of
our computations.
As was explained in the paragraph following Eq. (4.8),

our ultimate goal is to construct an exterior solution with
̈tl ≔ ðM=RÞ3T̈l set to zero. To achieve this, we exercise
the freedom to redefine the tidal moments according to
Eq. (4.7), which produces the changes described by
Eq. (4.8). Selecting ̈λl so that the new ̈tl vanishes, we
find that the new dynamic Love number is given by

k̈newl ¼ k̈oldl þ kl̈toldl ; ð4:33Þ

with the right-hand side featuring the old values returned
by the computation. At this stage, the freedom to redefine
the tidal moments is exhausted, and the new and final
Love number is invariant.
The results of our computations are presented in

Figs. 1–4, as well as in Tables III and IV. We observe
4This is true when μ vanishes at r ¼ R, which is the case for

our polytropic equation of state.
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FIG. 2. Static and dynamic Love numbers for l ¼ 3, computed for a relativistic polytrope with an equation of state p ¼ Kρ1þ1=n,
where n ¼ f1.0; 1.5; 2.0; 2.5g. Left panel: static Love number kl. Right panel: dynamic Love number k̈l. Each Love number is plotted
as a function of the stellar compactness M=R. The curve ends at the configuration of maximum mass, beyond which, the equilibrium
sequence is dynamically unstable.

FIG. 3. Static and dynamic Love numbers for l ¼ 4, computed for a relativistic polytrope.

FIG. 4. Static and dynamic Love numbers for l ¼ 5, computed for a relativistic polytrope.
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TABLE III. Static Love numbers for a polytrope with an equation of state p ¼ Kρ1þ1=n. For each value of n, we provide five values
between b ¼ 10−5 and b ¼ bmax, where b ≔ pðr ¼ 0Þ=ρðr ¼ 0Þ parametrizes the equilibrium sequence, and where bmax denotes the
value at the configuration of maximum mass. The entries are equally spaced in log10 b. A comparison between two independent sets of
computations reveals agreement for all six significant digits.

n b M=R k2 k3 k4 k5

1.0 1.00000 × 10−5 1.99989 × 10−5 2.59872 × 10−1 1.06435 × 10−1 6.02278 × 10−2 3.92821 × 10−2

1.34661 × 10−4 2.69119 × 10−4 2.59419 × 10−1 1.06193 × 10−1 6.00598 × 10−2 3.91523 × 10−2

1.81337 × 10−3 3.59016 × 10−3 2.53428 × 10−1 1.03011 × 10−1 5.78571 × 10−2 3.74579 × 10−2

2.44191 × 10−2 4.28971 × 10−2 1.89453 × 10−1 7.06771 × 10−2 3.64705 × 10−2 2.17086 × 10−2

3.28830 × 10−1 2.16430 × 10−1 2.85515 × 10−2 6.99089 × 10−3 2.31968 × 10−3 8.84569 × 10−4

1.5 1.00000 × 10−5 1.85691 × 10−5 1.43257 × 10−1 5.28383 × 10−2 2.73867 × 10−2 1.65643 × 10−2

1.10349 × 10−4 2.04774 × 10−4 1.43038 × 10−1 5.27362 × 10−2 2.73229 × 10−2 1.65192 × 10−2

1.21768 × 10−3 2.24345 × 10−3 1.40650 × 10−1 5.16277 × 10−2 2.66327 × 10−2 1.60330 × 10−2

1.34370 × 10−2 2.29261 × 10−2 1.17851 × 10−1 4.13422 × 10−2 2.03934 × 10−2 1.17457 × 10−2

1.48275 × 10−1 1.33622 × 10−1 3.32914 × 10−2 9.05800 × 10−3 3.43752 × 10−3 1.52301 × 10−3

2.0 1.00000 × 10−5 1.66157 × 10−5 7.39258 × 10−2 2.43890 × 10−2 1.15050 × 10−2 6.41818 × 10−3

9.21652 × 10−5 1.53042 × 10−4 7.38227 × 10−2 2.43476 × 10−2 1.14820 × 10−2 6.40350 × 10−3

8.49442 × 10−4 1.40241 × 10−3 7.28823 × 10−2 2.39709 × 10−2 1.12735 × 10−2 6.27031 × 10−3

7.82890 × 10−3 1.22690 × 10−2 6.49915 × 10−2 2.08640 × 10−2 9.57982 × 10−3 5.20403 × 10−3

7.21552 × 10−2 7.49332 × 10−2 2.85166 × 10−2 7.95156 × 10−3 3.15909 × 10−3 1.48641 × 10−3

2.5 1.00000 × 10−5 1.42934 × 10−5 3.48455 × 10−2 1.01897 × 10−2 4.34038 × 10−3 2.21950 × 10−3

7.23073 × 10−5 1.03293 × 10−4 3.48030 × 10−2 1.01752 × 10−2 4.33332 × 10−3 2.21545 × 10−3

5.22834 × 10−4 7.43820 × 10−4 3.44980 × 10−2 1.00712 × 10−2 4.28278 × 10−3 2.18650 × 10−3

3.78047 × 10−3 5.22233 × 10−3 3.24007 × 10−2 9.36235 × 10−3 3.94083 × 10−3 1.99191 × 10−3

2.73356 × 10−2 3.08993 × 10−2 2.15146 × 10−2 5.86403 × 10−3 2.32536 × 10−3 1.10848 × 10−3

TABLE IV. Dynamic Love numbers for a polytrope with an equation of state p ¼ Kρ1þ1=n. A comparison between two independent
sets of computations reveals that k̈2 is accurate through six significant digits, that k̈3 is accurate through five significant digits, and that k̈4
and k̈5 are accurate through four digits. For n ¼ 1 and l ¼ 5, we find that k̈l appears to change sign just as M=R approaches its final
value. We do not believe that this behavior is physical, but more likely a numerical artefact. We have not, however, been able to pin point
the source of the numerical error.

n b M=R k̈2 k̈3 k̈4 k̈5

1.0 1.00000 × 10−5 1.99989 × 10−5 1.72580 × 10−1 3.68781 × 10−2 1.45070 × 10−2 7.35112 × 10−3

1.34661 × 10−4 2.69119 × 10−4 1.72266 × 10−1 3.67978 × 10−2 1.44686 × 10−2 7.32804 × 10−3

1.81337 × 10−3 3.59016 × 10−3 1.68112 × 10−1 3.57385 × 10−2 1.39644 × 10−2 7.02600 × 10−3

2.44191 × 10−2 4.28971 × 10−2 1.23566 × 10−1 2.46835 × 10−2 8.90707 × 10−3 4.12171 × 10−3

3.28830 × 10−1 2.16430 × 10−1 1.13698 × 10−2 8.97871 × 10−4 3.79990 × 10−5 −4.00445 × 10−5

1.5 1.00000 × 10−5 1.85691 × 10−5 6.74485 × 10−2 1.40504 × 10−2 5.33396 × 10−3 2.59909 × 10−3

1.10349 × 10−4 2.04774 × 10−4 6.73393 × 10−2 1.40243 × 10−2 5.32220 × 10−3 2.59239 × 10−3

1.21768 × 10−3 2.24345 × 10−3 6.61507 × 10−2 1.37406 × 10−2 5.19472 × 10−3 2.51995 × 10−3

1.34370 × 10−2 2.29261 × 10−2 5.48014 × 10−2 1.10729 × 10−2 4.02294 × 10−3 1.86992 × 10−3

1.48275 × 10−1 1.33622 × 10−1 1.22637 × 10−2 1.93090 × 10−3 5.03042 × 10−4 1.63785 × 10−4

2.0 1.00000 × 10−5 1.66157 × 10−5 2.41628 × 10−2 4.97197 × 10−3 1.82433 × 10−3 8.52832 × 10−4

9.21652 × 10−5 1.53042 × 10−4 2.41264 × 10−2 4.96380 × 10−3 1.82088 × 10−3 8.50982 × 10−4

8.49442 × 10−4 1.40241 × 10−3 2.37952 × 10−2 4.88944 × 10−3 1.78948 × 10−3 8.34185 × 10−4

7.82890 × 10−3 1.22690 × 10−2 2.10217 × 10−2 4.27203 × 10−3 1.53222 × 10−3 6.98461 × 10−4

7.21552 × 10−2 7.49332 × 10−2 8.23899 × 10−3 1.55958 × 10−3 4.88879 × 10−4 1.92052 × 10−4

2.5 1.00000 × 10−5 1.42934 × 10−5 7.74388 × 10−3 1.59489 × 10−3 5.64580 × 10−4 2.51983 × 10−4

7.23073 × 10−5 1.03293 × 10−4 7.73352 × 10−3 1.59268 × 10−3 5.63705 × 10−4 2.51546 × 10−4

5.22834 × 10−4 7.43820 × 10−4 7.65915 × 10−3 1.57679 × 10−3 5.57433 × 10−4 2.48416 × 10−4

3.78047 × 10−3 5.22233 × 10−3 7.14925 × 10−3 1.46820 × 10−3 5.14838 × 10−4 2.27297 × 10−4

2.73356 × 10−2 3.08993 × 10−2 4.53405 × 10−3 9.21156 × 10−4 3.07954 × 10−4 1.28630 × 10−4
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that the values for M=R ≪ 1 agree very well with the
Newtonian results displayed in Table I. We notice also that
the Love numbers decrease with increasingM=R, reaching
a minimum when the equilibrium sequence comes to an
end at the configuration of maximum mass.
The computation of the static and dynamic Love

numbers requires an accurate evaluation of the radial
functions that appear in Eqs. (4.31) and (4.32), from Al
through Dl. Some words of advice regarding this task are
offered in the Appendix.
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APPENDIX: NUMERICAL TECHNIQUES

We provide brief descriptions of our numerical meth-
ods in this appendix. We begin in Appendix A 1 with a
presentation of the collocation methods that were used in
the integration of the structure and perturbation equations
in Secs. II and IV. This is followed by a description
of our finite-difference methods in Appendix A 2. In
Appendix A 3, we explain our use of continued-fraction
representations of some radial functions to provide a
numerically reliable evaluation.

1. Collocation

We use a collocation method for the Newtonian compu-
tations of Sec. II and the relativistic computations of Sec. IV.
This is based on an expansion of all variables in Chebyshev
polynomials [47], with the differential equations giving rise
to a system of algebraic equations for the coefficients. Here,
as an illustration, we describe the method in the simplified
context of a static tidal perturbation in Newtonian theory.
The method extends easily to the dynamic problem, and to
the relativistic formulation.
The system of equations is provided by Eqs. (2.37)

and (2.38),

0 ¼ Ee ≔ r
de
dr

− v; ðA1aÞ

0 ¼ Ev ≔ r
dv
dr

þ ð2lþ 1Þvþ 6nζϑn−1 e; ðA1bÞ

with e ≔ e0l and v ≔ v0l, and with

r
d
dr

¼ −2ζχ
d
dϑ

: ðA2Þ

The system comes with boundary conditions vðϑ ¼ 1Þ ¼ 0
and eðϑ ¼ 0Þ ¼ 1. We assume that the structure functions
ζðϑÞ and χðϑÞ were previously computed—they must also
be obtained numerically—for a polytrope with index n. We

see that the equation Ev ¼ 0 is singular at ϑ ¼ 0 when
n < 1; we exclude such cases from our considerations.
The Chebyshev polynomials TpðxÞ ≔ cosðptÞ, with p ¼

0; 1; 2;… and x ¼ cos t, are defined in the interval
−1 ≤ x ≤ 1. We therefore rescale ϑ according to

ϑ ¼ 1

2
ðxþ 1Þ: ðA3Þ

The center at ϑ ¼ 1 is mapped to x ¼ 1 and t ¼ 0, while the
surface at ϑ ¼ 0 is mapped to x ¼ −1 and t ¼ π. The
dependent variables are expanded as

e ¼
XN−1

p¼0

ep cosðptÞ; v ¼
XN−1

p¼0

vp cosðptÞ; ðA4Þ

where ep, vp are constants, and N is the total number of
terms kept in the expansions. The derivatives with respect
to x are then

de
dx

¼ 1

sin t

XN−1

p¼0

pep sinðptÞ; dv
dx

¼ 1

sin t

XN−1

p¼0

pvp sinðptÞ;

ðA5Þ
and the radial derivative is now written as rðd=drÞ ¼
−4ζχðd=dxÞ.
To obtain the coefficients ep, vp, we turn the differential

equations and boundary conditions into a set of 2N
algebraic equations. We write

Ee
k ≔ Eeðt ¼ tkÞ ¼ 0; Ev

k ≔ Evðt ¼ tkÞ ¼ 0; ðA6Þ

where

tk ≔
ðk − 1

2
Þπ

N − 1
; k ¼ 1; 2;…; N − 1 ðA7Þ

are the collocation points, given by all the zeros of TNðxÞ—
this is the Gauss-Chebyshev grid. Because there are N − 1
collocation points, the algebraic system includes 2N − 2
equations so far. The remaining two equations are supplied
by the boundary conditions,

vðt ¼ 0Þ ¼ 0; eðt ¼ πÞ ¼ 1: ðA8Þ
We have 2N algebraic equations for the the 2N unknowns,
and the solution can be found with standard techniques
from linear algebra.
The collocation method can also be exploited to compute

the structure functions ζðϑÞ and χðϑÞ. Here, the situation is
more complicated because the structure equations are
nonlinear, while the collocation method, with its reliance
on linear algebra, works best with linear problems. An
effective approach is to linearize the equations about a
guessed approximation to the solution and to perform
iterations to improve the approximation.
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2. Finite differences

We also employ finite-difference methods to integrate
the perturbation equations in their relativistic formulation.
We provide some details of implementation here.
The integration of Eq. (4.15) for al and cl comes with

no particular challenge, and the equations can be integrated
straightforwardly from (almost) r ¼ 0 to r ¼ R. As we
explained in the main text, we actually use ϑ, a substitute
for the mass density ρ, as the independent variable, which
ranges from ϑ ¼ 1 at r ¼ 0 to ϑ ¼ 0 at r ¼ R. The point
r ¼ 0 must be excluded from the computation because the
differential equations are singular there. To account for this,
we express all variables as Taylor series about r ¼ 0 and
substitute these within the differential equations to obtain
starting values at ϑ ¼ 1 − ε, where ε is chosen to be
numerically small.
The integration of Eq. (4.16) for u̇l and v̇l is more

challenging because the system is singular at both r ¼ 0
and r ¼ R, and we require a boundary condition at both
r ¼ 0 and r ¼ R; refer to Eqs. (4.26b) and (4.27). To
handle this, we perform two integrations, the first from
(almost) r ¼ 0 up to a middle point r ¼ r♯ corresponding to
ϑ ¼ 1=2, and the second from (almost) r ¼ R down to the
middle point. In this case also, we perform Taylor expan-
sions to obtain starting values at ϑ ¼ 1 − ε and ϑ ¼ ε.5

For the inner integration, the correct value of u̇0 ≔
u̇lðr ¼ 0Þ is unknown, and to accommodate our ignorance,
we construct a general solution to the differential equations
for an arbitrary value of this quantity. Writing u ≔ ðu̇l; v̇lÞ
and exploiting the linearity of the equations, we write

uinner ¼
1

2
u̇0ðuIinner − uIIinnerÞ þ

1

2
ðuIinner þ uIIinnerÞ; ðA9Þ

where the basis of independent solutions is defined by

uIinner ≔ uðu̇0 ¼ 1Þ; uIIinner ≔ uðu̇0 ¼ −1Þ: ðA10Þ

Two inner integrations return uIinner and uIIinner, and uinner is
known up to the value of u̇0.
For the outer integration, it is the correct value of v̇s ≔

v̇lðr ¼ RÞ that is unknown, and we construct a general
solution by writing

uouter ¼
1

2
v̇sðuIouter − uIIouterÞ þ

1

2
ðuIouter þ uIIouterÞ; ðA11Þ

where

uIouter ≔ uðv̇s ¼ 1Þ; uIIouter ≔ uðv̇s ¼ −1Þ: ðA12Þ

Two outer integrations give us the basis functions, and
uouter is known up to the value of v̇s.
Continuity at r ¼ r♯,

uinnerðr ¼ r♯Þ ¼ uouterðr ¼ r♯Þ; ðA13Þ

provides us with two equations for the two unknowns u̇0
and v̇s. Solving for these gives us the correct global
solution for u̇l and v̇l.
The integration of Eq. (4.19) for äl and c̈l is straightfor-

ward in principle, because the equations are regular at
r ¼ R, and älðr ¼ 0Þ ¼ 1 is the only required boundary
condition; see Eq. (4.26c). The equations, however, must be
integrated simultaneously with Eqs. (4.15) and (4.16), and
the latter set is singular at r ¼ R. It is therefore preferable to
adopt the same practice as with Eq. (4.16) and to carry out
inner and outer integrations.
For the inner integration, the situation is simple because

(as was just stated) the choice älðr ¼ 0Þ ¼ 1 specifies a
unique solution. For the outer solution, we have the freedom
to specify both äs ≔ älðr ¼ RÞ and c̈s ≔ c̈lðr ¼ RÞ, and a
general solution to the differential equations will be linear in
both quantities. It is easy to show that the general solution
can be expressed as

aouter ¼ äsðaIIIouter − aIIouterÞ þ c̈sðaIIIouter − aIouterÞ
þ aIouter þ aIIouter − aIIIouter; ðA14Þ

where the basis of independent solutions is defined by

aIouter ≔ aðäs ¼ 1; c̈s ¼ 0Þ; aIIouter ≔ aðäs ¼ 0; c̈s ¼ 1Þ;
aIIIouter ≔ aðäs ¼ 1; c̈s ¼ 1Þ: ðA15Þ

Three outer integrations return the basis functions, and aouter
is known up to the values of äs and c̈s.
Continuity at r ¼ r♯,

ainnerðr ¼ r♯Þ ¼ aouterðr ¼ r♯Þ; ðA16Þ

gives us two equations for the two unknowns äs and c̈s, and
we arrive at the correct global solution for äl and c̈l.

3. Evaluation of radial functions

The computation of the relativistic Love numbers in
Sec. IV requires the evaluation of a large number of
functions of M=r at the stellar surface r ¼ R. We require
a computational method that allows us to probe many
orders of magnitude for M=R, going from very low values
in the Newtonian limit, to approximately M=R ¼ 0.3 for
the most compact stellar models.
The functions Al, Bl, Cl, andDl are defined in terms of

hypergeometric functions in Eq. (5.8) of Ref. [29]. The last

5Strictly speaking, an expansion in powers of ϑ near the
surface must also include fractional powers when the polytropic
index n is not an integer. When n ≥ 1, as we assume here, this
leads to complications at higher powers of ϑ than are required in
our computations, and the issue can be ignored.
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argument of these functions is 2M=R, and we observe that
the hypergeometric series converges rapidly for all sampled
values of M=R. The definition, therefore, provides an
efficient and reliable means of computation. For specific
values of l, which we take to be in the set l ¼ f2; 3; 4; 5g,
the hypergeometric functions can also be expressed in
terms of simple functions. We find that Al and Cl are
terminating polynomials, while Bl and Dl involve poly-
nomials and the function lnð1 − 2M=RÞ. If we begin with
these explicit expressions, we find that values for Al andCl
can be obtained reliably by direct evaluation. The same is
true for Bl and Dl when M=R is not too small, but when
M=R is small, we observe that the numerical accuracy
quickly degrades because of near cancellations between the
logarithmic and polynomial terms; many, and sometimes
all, significant digits are lost in the operation. In such cases,
we require an alternative method to compute Bl and Dl.
We may of course return to the representation in terms of

hypergeometric functions. An alternative method turns out
to be equally efficient and reliable and can be adopted for
the remaining radial functions. We proceed as follows.
Consider, for example, the specific case of B2. We write
down its explicit expression in terms of polynomials and
logarithm, and with a symbolic manipulation software (we
use Maple), we carry out a Taylor expansion in powers of
M=R, up through order ðM=RÞ32 (because we can). This
representation is extremely accurate for small values of
M=R, but it is entirely useless when M=R is comparable to
0.3. To repair this, we reexpress the Taylor expansion as an
equivalent continued fraction. As an illustration, we would
write

lnð1þ xÞ ¼ x−
1

2
x2 þ 1

3
x3 þOðx4Þ ¼ x

1þ x
2þ x

3þ ���

þOðx4Þ;

ðA17Þ

except that our expansions are actually much longer, with
an error term of Oðx33Þ. The representation of B2 as a
continued fraction turns out to be machine-precision
accurate (at least 15 significant digits) in the specified
range ofM=R. This is true for all the other instances of Bl,
and for Dl as well.
The same considerations apply to ėtr. This is defined in

terms of hypergeometric functions in Eq. (5.47) of Ref. [29]
and listed explicitly for l ¼ f2; 3; 4; 5g in Appendix E of
this reference. Here also one is given the choice between
hypergeometric and continued-fraction representations.
Both are accurate to machine precision in the relevant
interval of M=R.
The continued-fraction representation is the only viable

option in the case of the remaining radial functions, Al,
Bl, Cl, and Dl, which are listed explicitly for l ¼
f2; 3; 4; 5g in Appendix F of Ref. [29]. These functions
are defined in terms of polynomials, logarithms, and
polylogarithms, and they are complicated. A direct evalu-
ation from the explicit expressions reveals a severe loss of
numerical accuracy when M=R is small. We therefore
proceed as before, with an expansion through ðM=RÞ32 and
a conversion to an equivalent continued fraction. The
manipulations are complicated by the fact that the expan-
sion of each radial function contains two pieces, one a
straight polynomial in M=R, the other a polynomial in
M=Rmultiplying lnðM=RÞ. To account for this, we convert
each polynomial into a continued fraction and express the
function in the form

ðcontinued fraction inM=RÞ
þ ðcontinued fraction inM=RÞ lnðM=RÞ: ðA18Þ

With this representation, we again achieve machine pre-
cision in the interval 0 < M=R < 0.3.
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