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The hyperbolic encounters of two massive objects are characterized by the emission of a gravitational
wave burst, with most of the energy released during the closest approach (near the periastron). The
detection of such events, different from the well-known inspiral emission, would be an interesting
discovery and provide complementary information to observations of binary mergers of black holes and
neutron stars in the observable Universe, shedding light, for instance, on the clustering properties of black
holes and providing valuable hints on their formation scenario. Here, we analyze the dynamics of such
phenomena in the simplest case where two compact objects follow unbound/hyperbolic orbits. Moreover,
we explore the effects of orbital precession on the gravitational wave emission, since the precession
encodes certain general relativistic effects between two bodies. We also provide templates for the strain of
gravitational waves and the power spectrum for the emission, and analytical expressions for the memory
effect associated with such signals.
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I. INTRODUCTION

The detection of gravitational waves (GWs) has been one
of the most remarkable scientific results of the past decade.
The first detection of GWs by the LIGO-Virgo collabora-
tion dates back to 2015 [1], and it has opened a new era in
multimessenger astronomy and a new window into the
understanding of the Universe. The interaction of GWs
with matter is extremely weak; this has made direct GW
detection extremely challenging, but current detectors have
already reached such sensitivity, and ongoing studies on
this topic are leading to further improvements. However, a
positive aspect about the weakness of the gravitational
interaction is that GWs could travel over cosmological
distances, allowing us to obtain a more precise scenario of
their sources and providing a unique way to study phe-
nomena such as black hole (BH) and neutron star (NS)
mergers.
In the last few years, the improved sensitivity of

Advanced LIGO [2] and Advanced Virgo [3] detectors
has led to an increased number of detected events, includ-
ing a number of BH mergers and the detection of two NS
inspirals (GW170817, GW190425) [4,5]. With progress in
detecting interactions of binary systems and the success of
GW astronomy [4,6], there has been a growing interest in

studying scattering events related to GWastronomy [7–10],
as this could be useful to deepen and reveal characte-
ristics of astrophysical sources and properties of galaxies
and clusters.
In the context of GW emission, a possible scenario is

the emission of gravitational radiation by massive bodies
that move on unbound orbits, emitting gravitational
Bremsstrahlung radiation [11,12]. A hyperbolic encounter
refers to a system where two objects, such as BHs or NSs,
pass by each other in a hyperbolic trajectory, meaning that
the objects approach each other from a large distance,
interact for a short time and then proceed on separate paths.
In literature, there are already studies about parabolic [10]
andhyperbolic encounters [13–15], respectively, assuming a
Keplerian orbit [16,17]. In particular, hyperbolic encounters
are expected to take place in dense BH clusters [18], where a
fraction of them is expected to be not in a bounded system
and then BHs gravitationally scatter each other, emitting
GWs. This happens if the velocity or the relative distance
between the two bodies is large to prevent a BH capture.
They can produce interesting consequences, such as spin
induction [19,20], subsequent mergers [21], the generation
of a stochastic GW background [22], the possibility of
exploring dynamical friction from dark matter [23], etc.
The gravitational waveform in the time domain results in a

burst-like signalwith a characteristic frequency peak [24,25],
which occurs due to the rapid changes in the gravitational
field as the objects approach and interact rapidly during the
close encounter. This burst is a short-duration signal: an
appropriate modeling is important for its interpretation, to be
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distinguished and properly recognized by future GW detec-
tors [9,26–28], such as Einstein Telescope [29,30] and
Cosmic Explorer [31]. However, it should be noted that
events of this type are very tiny, so they would be easily
hidden by noise in the detectors. The features of the emitted
GW peak signal depend on different parameters, such as the
total mass of the system, relative velocities, and relative
orientations of the objects involved. Therefore, by analyzing
the burst waveform, it may be possible to shed light on the
properties of objects and the dynamics of the encounter,
providing valuable information about astrophysical objects
and contributing to the understanding of the Universe and
gravitational phenomena.
In this paper, we aim to provide a comprehensive

theoretical overview of the formalism underlying GW
emission during hyperbolic encounters between two mas-
sive objects and discuss how this is affected by the
precession of the orbit. The precession could lead, for
instance, to a deviation from original trajectory or a change
in orbital velocity. Although this effect is incredibly small,
it reflects the relativistic effect between two bodies and it
might be susceptible to future observation.
In order to consider the precession of an orbit, we could

focus on two main approaches, namely using the post-
Newtonian (PN) corrections formalism, then expanding
relevant quantities as a power series in terms of v=c (see,
e.g., [8,32]), or directly incorporating the relevant corre-
sponding PN corrections into the expression of the trajec-
tory. In the latter case, the expression of the trajectory is
directly modified accounting for the relativistic effects
responsible for precession. This approach can be more
straightforward and is what we will follow in our analysis.
However, it might involve more complex calculations, as
we will show for the determination of the power spectrum.
Our purpose is to offer a first fully analytic estimate of

consequences of orbital precession on strain and power
emitted in GWs by two nonspinning compact objects on
hyperbolic encounter. Considering precession is significant
to assess gravitational effects and properly studying the
physics of such encounters, since this might have signifi-
cant implications for the dynamics of orbits and analysis of
GWs signals. Therefore, in this paper, we also provide
considerations about the validity of our approximation,
since in the limit of very close encounter other effects
should be considered, which need a different description.
This paper is organized as follows. In Sec. II, we review

the basics of the theory without considering the effect of the
precession, deriving the main relations determining the
geometry and physics of hyperbolic encounters. We report
analytical expressions for the GW strain amplitude and
power spectrum for the emission. We also provide ana-
lytical expressions for the memory effect associated to
GWs. In Sec. III, we modify the formalism, including this
time the precession of the orbit in order to evaluate
the effects on the emission and on the memory effect.

Moreover, we explore the range of validity of the param-
eters of the system. Finally, we conclude in Sec. IV.

II. HYPERBOLIC ENCOUNTER WITHOUT
ORBITAL PRECESSION

A. Theoretical framework

Let us consider a hyperbolic encounter between two
compact objects, respectively of mass m1 and m2, where
one object is assumed to come from infinity and the other is
at rest, without loss of generality. In this framework, the
parameters required to model the interaction are the
asymptotic velocity (velocity at infinity) v0 and the impact
parameter b (see Fig. 1).
Moreover, the total mass is given by M ¼ m1 þm2,

while the reduced mass is μ ¼ m1m2=M. Knowing the
previous quantities, all other parameters to describe the
system can be derived. For instance, a first quantity that
can be defined is the eccentricity of the hyperbolic orbit,
given by

e≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

a2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2v40

G2M2

s
> 1; ð1Þ

where a is the semimajor axis of the orbit and e is the
eccentricity of the orbit, which is greater than one for
hyperbolic orbits. Decreasing the total mass of the system
or increasing the impact parameter or the velocity increases
the eccentricity. This also has an impact on GWamplitudes
and power spectra of the gravitational radiation emitted, as
we will see in what follows.
We will consider the eccentricity as a given quantity, and

we can express the other parameters of the system in terms
of e. The semimajor axis and the impact parameter turn out
to be, respectively,

FIG. 1. Precession of the orbit: representation of the change in
hyperbolic orbit of a BH of mass m2 over time, due to the
scattering on another of mass m1. This induces the emission of
gravitational waves which is maximal at the point of closest
approach, rmin.
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a ¼ rmin

e − 1
; ð2Þ

b ¼ rmin

ffiffiffiffiffiffiffiffiffiffiffi
eþ 1

e − 1

r
: ð3Þ

Equivalently, the maximum approach distance between the
two objects during the encounter, rmin, i.e., the periastron, is
given by

rmin ¼ aðe − 1Þ ¼ b

ffiffiffiffiffiffiffiffiffiffiffi
e − 1

eþ 1

r
> Rs ≡ 2GM

c2
; ð4Þ

where Rs is the Schwarzschild radius. The asymptotic
velocity v0 is given by

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe − 1ÞGM

rmin

s
; ð5Þ

and from conservation of angular momentum it results
bv0 ¼ rminvmax, where we have to impose that vmax < c. In
addition, we can define the following parameter

β≡ v0
c
<

ffiffiffiffiffiffiffiffiffiffiffi
e − 1

eþ 1

r
; ð6Þ

from which it is possible to derive a lower bound for the
impact parameter in terms of the Schwarzschild radius,

b > Rs
ðeþ 1Þ3=2
2cðe − 1Þ1=2 : ð7Þ

Notice that with the knowledge of the main physical
quantities, it is possible to find out the other parameters
by inverting the previous formulas and then it is possible to
define the orbit and obtain the quadrupole moment of the
system, which leads to the calculation of quantities such as
GW waveform.
Finally, the orbital trajectory in polar coordinates is given

by the usual Keplerian orbit via

rðφÞ ¼ aðe2 − 1Þ
1þ e cosðφÞ : ð8Þ

B. GW amplitudes

If we set up a coordinate system such that the position
vector r⃗ is

r⃗ ¼ rðφÞðcos φ; sin φ; 0Þ; ð9Þ

then the moment tensor is Mij ¼ μri rj and the reduced
quadrupole moment of the system is given by [33]

Qij ¼Mij −
1

3
δijMkk

¼ μr2ðφÞ

0
BB@

1
6
ð1þ 3 cos 2φÞ cos φ sin φ 0

cos φ sin φ 1
6
ð1− 3 cos 2φÞ 0

0 0 − 1
3

1
CCA;

ð10Þ

whereMkk ¼ TrðMÞ is the trace of the moment tensorMij.
The GW strain amplitude in the TT gauge is given by the
second time derivative of the quadrupole moment of the
source [33]

hij ¼
2G
Rc4

Q
··

ij; ð11Þ

being R the distance from the source to the observer. For
simplicity, let us consider the case where the line of sight
of the observer is perpendicular to the orbital plane, for
instance on z direction. Hence, the two polarization
amplitudes turn out to be

hþ ¼ −
Gμv20

Rc4ðe2 − 1Þ
�
4 cosð2φÞ

þ e
�
2eþ 5 cosðφÞ þ cosð3φÞ��; ð12Þ

h× ¼ −
Gμv20

Rc4ðe2 − 1Þ
�
4 sinð2φÞ

þ e
�
5 sinðφÞ þ sinð3φÞ��: ð13Þ

These amplitudes are shown in Fig. 2. As an example to
obtain a reasonable order of magnitude for GWamplitudes,

FIG. 2. Polarization states as functions of the dimensionless
combination v0t=b for compact objects on hyperbolic orbits.
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we consider a hyperbolic encounter of a black hole of mass
30M⊙ approaching, at v0 ¼ 0.001c, another black hole of
the same mass at rest, with b ≃ 1.026 AU and eccentricity
e ¼ 2. The distance of the system from the observer has
been set to R ¼ 30 kpc.
At the conclusion of this section, we define the

power emitted in GW in the quadrupole approximation,
given by [33]

P ¼ dE
dt

¼ G
5c5

hQ��� ijQ
��� iji: ð14Þ

Evaluating the third derivative of the quadrupole moment,
the power is equal to [25]

P ¼ 32Gμ2v60
45c5b2

fðφ; eÞ; ð15Þ

with

fðφ; eÞ ¼ 3ð1þ e cosðφÞÞ4
8ðe2 − 1Þ4

�
24þ 13e2

þ 48e cosðφÞ þ 11e2 cosð2φÞ�: ð16Þ

Here, fðφ; eÞ is a complicated bell-shaped function of the
angle φ [25].

C. Analysis in the frequency domain

In the following, we present the result for the power
spectrum for the GW emission. The energy released
through GWs in the case of hyperbolic encounters between

two bodies with masses m1 and m2 is given by [14,25]

ΔE ¼
Z

∞

−∞
PðtÞdt ¼ 8

15

G7=2

c5
M1=2m2

1m
2
2

r7=2min

fðeÞ; ð17Þ

where the factor fðeÞ is given by

fðeÞ ¼ 1

ð1þ eÞ7=2
�
24 arccos

�
−
1

e

	�
1þ 73

24
e2 þ 37

96
e4
	

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p �
301

6
þ 673

12
e2
	


: ð18Þ

The power spectrum can be obtained from the Fourier
transform of the energy emission in the time domain,

ΔE ¼ 1

π

Z
∞

0

PðωÞdω: ð19Þ

In order to evaluate in Fourier space the power, it is
convenient to change variables from the angle φ to ξ, as the
latter characterizes better the hyperbolic orbit and makes
the Fourier transform much easier. In this case, the
trajectory and the time coordinate are rewritten as [25]

rðξÞ ¼ aðe cosh ξ − 1Þ; ð20Þ

tðξÞ ¼ κðe sinh ξ − ξÞ; ð21Þ

with κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=GM

p
, so that the quadrupole tensor becomes

Qij ¼
1

2
a2μ

0
BB@

1
3

�ð3− e2Þ cosh 2ξ− 8e coshξ
� ffiffiffiffiffiffiffiffiffiffiffiffi

e2− 1
p

ð2e sinh ξ− sinh 2ξÞ 0ffiffiffiffiffiffiffiffiffiffiffiffi
e2− 1

p
ð2e sinh ξ− sinh 2ξÞ 1

3

�ð2e2 − 3Þ cosh 2ξþ 4e cosh ξ
�

0

0 0 1
3

�
4e cosh ξ− e2 cosh 2ξ

�
1
CCA: ð22Þ

Using the Fourier transform (see [25] for details), the
power in the frequency domain is given by

PðωÞ ¼ G
5c5

X
i;j

j c⃛Qijj2 ¼
G
5c5

ω6
X
i;j

jcQijj2; ð23Þ

where cQij is the Fourier transform of the quadrupole
momentum tensor Qij, which is given in terms of the
variable ξ in Eq. (22). Integrating over all frequencies we
find the total energy to agree with Eq. (17). In Fig. 3 the
power spectrum is shown for different values of the
eccentricity, plotted as a function of the dimensionless
variable κω. Notice that for higher values of eccentricity the
peak frequency slowly decreases. This behavior suggests
that hyperbolic encounters with lower eccentricities tend to

release more energy in the form of GWs, compared to
encounters with higher eccentricities.
It should be also noted that these spectra are represen-

tative and subject to modification based on the specific
values assigned to the parameters. Here, we fix all the
parameters to representative values and let the eccentricity
vary, for different values of the impact parameter. However,
parameters such as masses, relative velocities and impact
parameter can determine changes in the eccentricity and
therefore, the choice of such values can impact the shape of
the spectra.

D. Memory effect

Furthermore, we have investigated a peculiarity of GW
signals, that is the so-called memory effect, a property
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referring to a long timescale difference in the values
of the observed metric perturbation associated with the
GW [34,35], that is, the late-time and early-time values of
at least one of the GW polarizations differ from each other,

Δhþ;× ¼ lim
t→þ∞

hþ;× − lim
t→−∞

hþ;× ≠ 0: ð24Þ

The memory effect in GWs signals is the phenomenon
reflecting the displacement of an ideal (truly freely falling)
detector after the passing of the wave through it (hence the
term memory). Such effect is distinguished in a linear and a
nonlinear type. The linear memory is related to unbounded
sources of GWs [36], such as hyperbolic orbits [11,12],
gamma-ray bursts [37], dynamical ejection [38], while the
nonlinear memory arises from GWs that are sourced by
GWs (see, for instance, Ref. therein [39]). In particular,
since the latter effect derives directly from the radiated
GWs and not from the motion of the source, it is present in
all sources of GWs, including bound systems [35].
While interferometric detectors cannot determine the

final amplitude alone as they lack sensitivity at 0 Hz,
for a sufficiently loud source, the frequencies that
contribute to the displacement toward the final amplitude
are potentially measurable. This could be a tantalizing
possibility, especially for future detectors such as LISA
and the Einstein Telescope, offering a potential means
of extracting valuable information about matter effects
from gravitational wave signals emitted by systems of
compact objects.
For the hyperbolic case in analysis, at Newtonian order,

without considering spin of the massive bodies and without
precession of the orbit, we found that only the cross
polarization exhibits such effect. Analytically,

Δhþ ¼ 0; ð25Þ

Δh× ¼ 8Gμv20
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p

Rc4e2
: ð26Þ

According to this estimate, there is no linear memory effect
in the plus polarization, while there is a difference in the
strain of the cross polarization between initial and final
state, depending on the initial system parameter settings.

III. HYPERBOLIC ENCOUNTERS
WITH ORBITAL PRECESSION

A. Theoretical framework

In this section, we want to modify the previous results
by considering the precession of the orbit. The precession
is a change in the orientation of the orbit due to the
gravitational influence of a rotating body around another.
To study this phenomenon, we need to describe the
evolution of the radial coordinate r as a function of
the angular coordinate φ. In the absence of precession, if
an orbit is periodic, for instance in the case of an elliptical
orbit, rðφÞ would be periodic of 2π, denoting that
perihelion occurred at the same angular position each
orbit [40]. Instead, in case of precession, the semimajor
axis rotates around the central body and the orbits are
shifted with respect to each others: this shifting is called
orbital precession.
Thanks to perturbation theory, it is possible to show

how general relativity (GR) introduces a variation of the
period, thus originating the precession [40]. The deriva-
tion of the final trajectory is already present in the
literature (see, e.g., [40,41]). In the case of hyperbolic
encounters, the solution describing the orbital trajectory
which manifests precession of orbit turns out to be

rprðφÞ ¼
aðe2 − 1Þ

1þ e cos½ð1 − αÞφ� ; ð27Þ

where

α ¼ 3G2M2

c2L2
¼ 3Rs

2ðeþ 1Þrmin
: ð28Þ

Here, the parameter α encodes the effect of the precession
of the orbit, with L representing the angular momentum
per unit mass, that is L ¼ bv0. The orbit alteration due to
the precession is graphically reported in Fig. 1.
It is worth noting that although the factor in Eq. (28) is

small, the effect could become important in some con-
ditions and the corresponding corrections for the measure-
ments might be needed. In particular, if the orbit is highly
eccentric, one object can orbit on a ring path around the
other one and then escape. Since the emitted GWs carry
away energy and angular momentum from the system, this
could cause significant deformation in the orbit and also not

FIG. 3. Power spectrum as a function of the dimensionless
variable κω for different values of the eccentricity e. The orbital
parameters are set to bem1;2 ¼ 30M⊙, v0 ¼ 0.001c, R ¼ 30 kpc,
while b varies such that we get the desired value of the eccentricity,
in particular we find be¼1.8 ¼ 0.887 AU, be¼1.9 ¼ 0.957 AU,
be¼2.0 ¼ 1.026 AU, be¼2.1 ¼ 1.094 AU, be¼2.2 ¼ 1.161 AU.
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prevent the capture. The exact outcome of such an
encounter depends on several factors, including the masses
and spins of the objects and their initial conditions.
However, in this limit a different approach is necessary
in order to take into account all these factors, such us using
higher-order PN corrections or numerical relativity [19].
It is straight-forward to show that considering a dense

BH cluster, as discussed in Ref. [18], there are cases where
the effects of the precession cannot be neglected, as the
precession parameter becomes larger than α ≥ 10−4. By
simulating such dense clusters we see that this is the case in
about ∼2.5% of the cases, thus making it imperative to
include this correction in the waveforms.
In what follows we will consider the effect of orbital

precession to GW amplitudes and the power spectrum in
the frequency domain.

B. GW amplitudes

In this section, we will present analytic expressions for
both GW amplitudes and the comparison with the theo-
retical predictions in the previous case, without orbital
precession.
The GW strain amplitude in terms of quadrupole

moment evaluated in the TT gauge is given by Eq. (11).
Retracing the calculation, the analytical expressions for the
polarizations states are given by

hþ ¼ Gμv20
Rc4ðe2 − 1Þ

�
2ð−2þ e2ð−2þ αÞαÞ cosð2φÞ

þ e
�ð−1þ ð−4þ αÞαÞ cosðð−3þ αÞφÞ

− e α cosð2ð−2þ αÞφÞ þ eð−2þ αÞ cosð2αφÞ
þ ð−5þ α2Þ cosðð1þ αÞφÞ��; ð29Þ

h× ¼ Gμv20
Rc4ðe2 − 1Þ

�
2ð−2þ e2ð−2þ αÞαÞ sinð2φÞ

þ e
�ð1 − ð−4þ αÞαÞ sinðð−3þ αÞφÞ

þ e α sinð2ð−2þ αÞφÞ þ eð−2þ αÞ sinð2αφÞ
þ ð−5þ α2Þ sinðð1þ αÞφÞ��: ð30Þ

Notice that, in the limit of α → 0, we recover the previous
case, finding that in this case the results are in agreement
with Eqs. (12) and (13).
The GW polarizations are reported in Figs. 4 and 5,

respectively for different values of α and e. Regarding the
plots in Fig. 4, it is possible to notice that the curves follow
the same trend, especially for lower values of α. However,
to better appreciate differences in the amplitudes, the
reported values of α are quite large. For instance, with
the setting of parameters to get GW polarizations in Fig. 2,
the value for α turns out to be α ≃ 10−6. When α starts
approaching larger values, the differences with respect to

FIG. 4. Comparison of hþ and h×, respectively, for different values of α, as functions of dimensionless variable v0t=b. The orbital
parameters are set to be m1;2 ¼ 30M⊙, R ¼ 30 kpc, while the others varying accordingly. In particular, for hþ it results eα¼0 ≃ 8.102,
eα¼0.001 ≃ 1.456, eα¼0.01 ≃ 1.419, eα¼0.03 ≃ 1.416, eα¼0.05 ≃ 1.415. For h× it results eα¼0 ≫ 1, eα¼0.001 ≃ 31.382, eα¼0.01 ≃ 3.548,
eα¼0.03 ≃ 1.8076, eα¼0.05 ≃ 1.504. For values α < 10−3, the effect of precession is very small. To appreciate the shape of the strain in the
case α ¼ 0, especially in the case of the þ polarization, see Fig. 2 as an example. For α > 10−2 the amplitude of the curves starts to
increase and the shapes to be more distorted, but the trend is maintained. Finally, using the fact that the peak frequency is ωmax ¼ v0

b
eþ1
e−1,

see Ref. [25], we find that for these values of the parameters the peak frequencies are in the range ωmax ∈ ½0.006; 0.3� Hz, so roughly in
LISA ranges.
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the case without orbital precession are greater, since the
approximations we are working on are broken down and
the system is no longer correctly described (see Sec. III D
for considerations about the validity of our assumptions). A
general behavior visible in both panels is that both polar-
izations are more peaked for larger values of α.
In Fig. 5 we report GWs amplitudes for different values

of eccentricity e. As the value of e decreases, the ampli-
tudes diverge more and tend to a greater separation between
each other. This indicates that lower eccentricity values are
associated with stronger GWs bursts.
Note thatwepresent the plots fixing someof theparameters

to representative values. This allows us to study the general
trend of the amplitudes and understand their behavior. For this
purpose, we have considered reasonable values for the
eccentricity e and orbital precession α, knowing that there
exist combinations of values of physical parameters such as
massM, impact parameter b, and initial velocity v0 that can
give those specific values.However, it should benoted that for
a comprehensive study, especially for experimental analysis
and parameter estimation, it is crucial to determine values of
those physical parameters, since the observable is rescaled
depending the values of those parameters.
We conclude this subsection by reporting the analytical

expressions for the linear memory effect associated to GW
signals, as studied in the previous case. Although this
difference between asymptotic values in the amplitudes is
not visible in the plots, we found that also in this case only
the cross polarization exhibits such effect,

Δhþ ¼ 0; ð31Þ

Δh× ¼ 2Gμv20
rc4ðe2 − 1Þ

�
2ð−2þ e2ð−2þ αÞαÞ sinð2φ0Þ

þ e
�ð1 − ð−4þ αÞαÞ sinðð−3þ αÞφ0Þ

þ eα sinð2ð−2þ αÞφ0Þ þ eð−2þ αÞ sinð2αφ0Þ
þ ð−5þ α2Þ sinðð1þ αÞφ0Þ

��
; ð32Þ

where

φ0 ¼
arccosð− 1

eÞ
α − 1

: ð33Þ

C. Analysis in the frequency domain

By setting the system as in the previous case, we start
from the position vector r⃗ as in Eq. (9), where, this time, we
have to substitute the definition of rpr given by Eq. (27).
Then, the reduced quadrupole moment of the system is
formally given by the same definition of Eq. (10), but with
the substitution of rpr. Retracing the same calculations as in
the case without precession, the power emitted in GW is
again given by the expression contained in Eq. (14), but this
time the quadrupole moment turns out to be so complicated
and not linear that it cannot be treated analytically as in the
case without precession.
For this reason, we need to numerically integrate and

then get the energy variation in terms of the α parameter
and the eccentricity e (see Appendix for details). This trend
is shown in Fig. 6. We report the power spectrum as a
function of the dimensionless variable κω, comparing two

FIG. 5. Comparison of hþ and h×, respectively, for different values of eccentricity e, as functions of dimensionless variable v0t=b.
For smaller values of e, the amplitudes diverge more and are more peaked. The orbital parameters are set to be m1;2 ¼ 30M⊙,
R ¼ 30 kpc, while the others varying accordingly. In particular, for hþ it results αe¼1.6 ≃ 1.836 × 10−2, αe¼1.8 ≃ 7.310 × 10−3,
αe¼2.0 ≃ 4.178 × 10−3, αe¼2.2 ≃ 2.781 × 10−3, αe¼2.4 ≃ 2.017 × 10−3. For h× it results αe¼1.6 ≃ 4.117 × 10−2, αe¼1.8 ≃ 3.028 × 10−2,
αe¼2.0 ≃ 2.412 × 10−2, αe¼2.2 ≃ 2.015 × 10−2, αe¼2.4 ≃ 1.738 × 10−2.
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different cases, i.e., for α ¼ 0.01 and α ¼ 0.025. In each
plot, the solid line represents the case without precession,
so it is possible to note that we also numerically cover the
previously obtained results. The dashed line represents the
comparison with the α value different from 0. For increas-
ing values of the α parameter, the divergences between
curves start to be consistent, as we are approaching limit
values for the validity of our assumptions. Notice that we
have selected specific values for the eccentricity e and
orbital precession parameter α by setting all the other
parameters to representative values. However, as already
pointed out, certain combinations of physical parameters
can yield the specified values for e and α.
In Fig. 7, we report the power spectra by exploring

different values of α. Again, the values of all parameters
have been set to representative values in order to obtain the
shape such that e remains fixed while α varies according to
the values shown in the plot. The differences in the tails of
the curves are due to the fact that the system is no longer
properly described with our assumption of a precessing
semi-Keplerian orbit. The significant divergences are
therefore only due to the fact that our description of the
system breaks down at some value of α at these frequen-
cies, thus it is necessary to include higher order PN
corrections in order to obtain an appropriate and no longer
divergent curve behavior.
In fact, we can actually estimate precisely the values of α

for which our description breaks down. One indicator for
the latter is when the total energy emitted by the system no
longer is finite, as the integral of Eq. (19) diverges. In the
nonprecessing case it was shown in Ref. [25] that the power
as a function of frequency falls approximately exponen-
tially as a function of frequency, i.e. ∼e−n0κω for some real
positive number n0, thus ensuring the convergence of the
integral. Thus, in this case, we fit the tails of the curves of

Fig. 7 to exponentials of the form Pðκω ≫ 1Þ ≈ e−nκω and
we find that for log10 α ≃ −1.51 or α ≃ 0.031, the variable n
changes sign from negative (for α < 0.031) to being
positive, thus making the integral of Eq. (19) diverging.
Finally, as one can notice also in this case, even in

the zero frequency limit, there is energy emitted by the
system [25,32]. This is due to the fact that cross polari-
zation exhibits the memory effect.

D. Validity range of parameters

In the following, we want to comment about the validity
of our assumptions and, therefore, on reasonable values of
the parameters of the system, in particular α and e.
Let us remember the definition of α in terms of the

eccentricity, that is Eq. (28). In this case, it is possible to

FIG. 6. The GW power spectrum as a function of the dimensionless variable κω for different values of eccentricity e and representative
values of α, respectively, α ¼ 0.01 and α ¼ 0.025. The solid lines represent the expected distributions as in the case without orbital
precession, while the dashed lines the ones with the α values different from 0. It is possible to notice, especially for α ¼ 0.025, that the
tails end of the distributions exhibit significant divergences at high frequencies. The maximum power in each curve has been normalized
with respect to that of e ¼ 1.8.

FIG. 7. The GW power spectrum as a function of the dimen-
sionless variable κω for different values of α, in the case of e ¼ 2.
As α is increased, the tails of the power spectra undergo
considerable amplification and start to diverge further at high
frequencies. This behavior indicates that the assumption of a
precessing semi-Keplerian orbit can no longer be considered
sufficient to describe the system.
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notice that for e ≃ 1, which corresponds to the parabolic
trajectory, the α parameter tends to a constant values, while,
for high values of e, that is for high values of the asymptotic
velocity, α → 0. The latter can be explained as follows: for
this values of eccentricity no curve is defined, but a line.
This means that, due to the imposed conditions, one body
moves so fast that it does not affect each other with the
other body at rest and goes straight for its trajectory.
In Fig. 8, we report the contour plots for the validity

region of our approximation. However, it has to be kept in
mind that constraints on values of α and e are due to those
imposed on the physical quantities of interest, such as the
asymptotic velocity and maximum encounter distance. In
particular, we do not consider values less than α ¼ 10−4, as
differences with respect to the case without orbital pre-
cession would not be appreciable.
On x-axis we consider the impact parameter b normal-

ized by the Schwarzschild radius. For values of b approach-
ing the Schwarzschild radius our treatment in terms of α
parameter is no longer correct and numerical relativity is
necessary to describe the interaction.
On the y-axis we consider the asymptotic velocity v0

normalized by the speed of light. Consistent values for the
validity of this approach are v0 ≃ 10−2c: for higher veloc-
ities numerical relativity is again necessary.
In the left panel of Fig. 8, we vary the α parameter,

selecting as the contour region the one for 10−4< α< 10−2.
It is worth noting again that our description by directly
modifying the trajectory is still valid for values of

α < 10−4. However, for such values of the parameter α
the differences on the observables would not be appreci-
able. By varying α we are essentially changing the ratio of
the Schwarzschild radius to the minimum separation
distance, see Eq. (28) and remember that b and rmin are
related by Eq. (2). The Schwarzschild radius represents the
gravitational influence of a compact object and is directly
related to its mass. The minimum separation distance, on
the other hand, reflects the closest approach of the two
objects during the hyperbolic encounter.
In the right panel, we are varying the eccentricity of the

system. The selected contour region encodes values of
1 < e < 2 × 105, with the maximum value corresponding
to the extreme values of the parameter space of the contour
plot, i.e b=Rs ¼ 105 and v0=c ¼ 1. By varying e, we are in
fact varying the particular shape of the orbit.
Let us conclude this section with a remark on the

eccentricity and semimajor axis. As said, during a hyper-
bolic encounter between massive compact objects, GWs
are emitted as a result of the objects interaction and motion.
These GWs carry away energy and angular momentum
from the system, causing changes in the orbital parameters,
in particular the eccentricity e and semimajor axis a. In the
context of Newtonian theory, these quantities are constants
of motion. However, in GR they become time-dependent
functions, being related to the total energy and relative
angular momentum [17]. This change might be negligible
compared to the initial values for e and a. Therefore, by
fixing them to specific values in our analysis, we are

FIG. 8. Contour plots of the parameter space that highlight the various regimes of the CHE. The x-axis represents the impact parameter
normalized by the Schwarzschild radius Rs, while the y-axis the asymptotic velocity normalized by the speed of light, in logarithmic
scale. Here, NR stands for Numerical Relativity and outlines the region where it is needed for a proper analysis of the system. EOB
stands for effective-one-body theory, which is one of the possible methods to describe high-velocity, small-gravity regime. On the other
hands, higher PN corr. indicates the parameter region where using the PN expansion method is required, including higher order
corrections. Finally, α corr. delimits the area where our analysis with the modification of the trajectory is valid. Note that it is still valid
also for values of α < 10−4, but the differences in the observables would not be appreciable, as already pointed out. The contour lines
delineate the range of parameter values for which the analysis of hyperbolic encounters is well defined. The left panel defines the validity
area by varying α, while the right one by varying the eccentricity e.
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assuming that the emitted GWs have a minimal impact on
altering the eccentricity and semimajor axis of the orbit
during the encounter. This assumption allows us to facili-
tate the analysis.
This aspect was already pointed out in Ref. [25] for the

simplest case without considering orbital precession. In
order to be sure of the validity of this assumption, we
evaluate the energy radiated E from this system by GWs
and the angular momentum L [17] and then perform the
variation in time of the eccentricity and the semimajor axis
in the case of hyperbolic orbit

δe ≃
LðLΔEþ 2EΔLÞ

G2M2eμ3
; ð34Þ

δa
a
≃ −

GM μΔE
2E2

: ð35Þ

After these evaluations, we find that such variations are
negligible for realistic values. For instance, in the case of a
hyperbolic encounter between two black holes of 30M⊙,
with a ¼ 0.01 AU, α ∼ 10−4 and eccentricity e ¼ 2, we get
both variations of the order of 10−10.
Also, in Fig. 9 we show contour plots of the variation δe

of the eccentricity and δa
a of the semimajor axis, taking into

account the energy and angular momentum loss, for two
black holes of massesm1;2 ¼ 30M⊙. As can be seen in both
panels of Fig. 9, for reasonable values of the semimajor axis
and the eccentricity, the variation in the orbital elements of
the hyperbolic orbit is vanishingly small and only become
important when the semimajor axis becomes too small
(below 10−5 AU). Therefore, we find that it is possible to
keep the value of the eccentricity and semimajor axis fixed
during all the analysis of the emitted GW signal.

Finally, we note that there is a “glitch” on the left panel
of Fig. 9, due to the way we plot the contours, namely the
function changes sign at e ∼ 2.5 for large values of the
semimajor axis a, while as the two bodies get closer,
relativistic effects kick-in and push the sign change to
higher eccentricities. For α ¼ 0 we can calculate exactly
where this change of sign happens using Eq. (34) and
expanding the expression. Doing so we find:

δeðe; α ¼ 0Þ

¼ 2G5=2μm3=2

45a5=2c5
1

eðe2 − 1Þ3
�
72e6 − 349e4 − 793e2

þ 3ð47e4 − 280e2 − 192Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
sec−1ð−eÞ þ 1070

�
;

ð36Þ

which we can easily see, by solving numerically the
equation δeðe; α ¼ 0Þ ¼ 0, that it flips sign at e ≃ 2.536.
Doing a similar analysis including the effects of precession
results in an expression for δe that, at linear order, depends
on α as:

δeðe; αÞ ¼ δeðe; α ¼ 0Þ þ δe1ðe; α ¼ 0ÞαþOðα2Þ; ð37Þ

where δe1ðe; α ¼ 0Þ is a complicated expression that
depends only on the eccentricity e. This then causes a
shift of the root of δeðe; αÞ ¼ 0 to the right in the left panel
of Fig. 9.

IV. CONCLUSIONS

In this paper, we have offered a comprehensive theo-
retical overview about hyperbolic encounters between
massive compact objects, including the effects of orbital

FIG. 9. Contour plots of the variation δe of the eccentricity and δa
a of the semimajor axis, taking into account the energy and angular

momentum loss, for two black holes of masses m1;2 ¼ 30M⊙, using Eqs. (34) and (35). The gray-shaded region corresponds to the
approximate region where the precession approximation completely breaks down (roughly α ∼ 0.03).
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precession. These encounters can occur in dense clusters
where two objects interact gravitationally and undergo a
scattering event. During the closest approach of the objects,
they emit Bremsstrahlung gravitational radiation, which
has the potential to be detected by future interferometers.
This analysis has involved nonspinning binaries and the

calculations have been performed by including the effects of
precession via the α parameter in the orbital equation, as in
Eq. (27). The aimwas to offer an initial estimate of the effects
caused by the precession of the orbit due to the gravitational
interaction between two objects. In particular, the waveform
resulting from a hyperbolic encounter differs significantly
from the waveform produced by a binary inspiral. The
burstlike structure of the signal in hyperbolic encounters
carries distinctive features that can be used in parameter
estimation to extract crucial information about the system.
We have presented a review of the theory underlying

hyperbolic encounters, at first excluding the effects of
orbital precession. We have derived the main relations
governing the geometry and physics of these encounters
and provided analytical expressions for the strain amplitude
and power spectrum of the emitted GWs. Thereafter, we
have extended the formalism to include orbital precession
and evaluate its effects on the emission. We have directly
modified the trajectory expression, by incorporating in the
α parameter some general relativistic effects between the
objects responsible for precession. It is worth noticing that
although the effect of orbital precession on GW signals is
small, it properly accounts for relativistic effects in the
system. Additionally, we have derived analytical expres-
sions for the linear memory effect associated with GWs in
both cases, finding that only the cross polarization state
exhibits such effect. This means that there is a nonvanishing
difference between the amplitude of the signal at early and
late times. Finally, we have explored the range of validity
for the parameters of the system and discussed the
implications of our results.
In conclusion, hyperbolic encounters between massive

compact objects and their GW signatures could provide
valuable information that can help in estimating parameters
and broaden our knowledge of these intriguing phenomena.
This is also a challenge from an experimental point of view,
as in the future it will be necessary to disentangle these
signals from typical interferometer noise bursts. Detection
and analysis of these events would complement observa-
tions of binary mergers in the observable Universe and offer
insights into the nature of the objects that originated them.
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APPENDIX: NUMERICAL INTEGRATION
OF THE FOURIER TRANSFORMS RELATED

TO THE POWER EMITTED

Here we briefly discuss the numerical integration tech-
niques required to perform the Fourier transforms of the
quadrupole tensor in the case of precessing orbits, as then it
is not straightforward to perform the calculations analyti-
cally in terms of Hankel functions, as in the nonprecess-
ing case.
The problem arises as in the case of hyperbolic

encounters for the Fourier transforms we need to numeri-
cally integrate all the way to infinity rapidly oscillating
functions that are not bounded at infinity, eg cosh ξ etc, but
also very complicated forms in terms of the precession
parameter α.
To avoid this issue, the following technique is imple-

mented. First, to avoid numerical issues from the numerical
integration, we break the integration of the Fourier trans-
form into parts of length equal to the period ω and then
perform the infinite, but converging, sum using the com-
mand NSum in Mathematica. For example, the Fourier
integral of the quadrupole tensor becomes

Q̂ijðα;ωÞ ¼
X∞
j¼−∞

Z ðjþ1Þπ=ω

jπ=ω
eiωtðξÞQijðα; ξÞdt; ðA1Þ

where Qijðα; ξÞ is the quadrupole tensor including pre-
cession and tðξÞ is given by Eq. (21).
Second, we perform a linear expansion of the quadrupole

tensor in terms of α, in order to speed up the calculations by
removing the dependence on this parameter. This approxi-
mation is valid in the context of our analysis, as we expect
the system to be nonrelativistic, i.e. α ≪ 1. So, we expand
the quadrupole tensor as

Qijðα; ξÞ ≃Qijðα ¼ 0; ξÞ þ αδQijðξÞ þ…; ðA2Þ

where δQijðξÞ is a complicated expression resulting from
the Taylor expansion, while in this case Qijðα ¼ 0; ξÞ is
given by Eq. (22). Doing so has the advantage that we can
calculate the Fourier transforms of Qijðα ¼ 0; ξÞ and
δQijðξÞ only once for every frequency ω, without having
to take into account α, thus significantly speeding up the
calculations.
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Therefore, we can write the Fourier transformed quadru-
pole tensor as

Q̂ijðα;ωÞ ≃ Q̂ijðα ¼ 0;ωÞ þ αdδQijðωÞ þ…; ðA3Þ

and then the power can be shown to be, using Eq. (23),
quadratic in the precession parameter α.

To validate our methodology and make sure any numeri-
cal errors are under control, we compare the results of the
analysis with those of the case without precession (α ¼ 0),
where we know the exact analytic result in terms of Hankel
functions. In fact, we find excellent agreement between the
two methods in the α ¼ 0 limit, thus confirming our
analysis.
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