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We study a screening mechanism in the context of scalar-vector-tensor (SVT) theories. This screening
mechanism is based on both the derivative self-interactions of the vector field and the interactions of the
scalar field with the vector field and curvature. We calculate the field equations in a spherically symmetric
space-time, and then, we study the conditions for which this mechanism is successful in a weak gravitational
background. In order to corroborate these analytical results, we have performed a numerical integration of
the full equations. Finally, the corrections to the gravitational potentials have also been computed. We
conclude that the present model, including both kinds of interactions, can avoid the propagation of the
additional longitudinal mode arising in these theories. We also show that the space parameter of the model is
compatible with solar system constraints. This result extends the previous one found in the literature for
generalized Proca theories to the case of SVT theories in the presence of scalar-vector interactions.
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I. INTRODUCTION

One of the most puzzling challenges in cosmology is
to explain the current accelerated expansion of the uni-
verse [1,2]. According to the standard cosmological model
(ΛCDM), a cosmological constant added to Einstein’s
equations produces the late-time acceleration of the universe
and constitutes 68% of the total energy density along with
the other 32% associated with dark and ordinary matter [3].
On the other hand, it has been discussed that this proposal
has theoretical problems such as the severe fine-tuning
problem related to its energy scale, the so-called cosmo-
logical constant problem [4–6].
Recently some tensions with increasing statistical sig-

nificance have been found between estimations of cosmo-
logical observables that involve the assumption of the
ΛCDM model and values obtained from independent local
measurements [7–10]. For instance, the value of the Hubble
constant today H0, inferred from cosmic microwave data

provided by the Planck collaboration and assuming the
ΛCDM model [11], is 4:σ to 6.3σ below local estimations
such as the one obtained from type Ia supernovae and
Cepheid data provided by the SHOES collaboration [12]. A
similar issue arises with the clustering amplitude S8: the
value obtained from Planck data and using the theoretical
predictions of theΛCDMmodel is above that obtained from
low-redshift observations [10,13–15].
Several alternative theoretical constructions have been

proposed in the literature to address the aforementioned
cosmological constant problem, and some of them could
also alleviate the so-called Hubble tension. Among them,
we can mention: (i) dynamical scalar fields minimally
coupled to gravity or matter with an appropriate potential
(usually known as quintessence) [16–19] or noncanonical
kinetic energy (also known as k-essence) [20–22];
(ii) dynamical scalar fields coupled to curvature or torsion
or matter [23–36]; (iii) dynamical scalar fields with higher
order derivatives in the action (also known as Galileons)
[37–40] and many others [41].
The Lagrangian of the covariant Galileon is constructed

to keep the equations of motion at second order, while
recovering the Galilean symmetry in the limit of Minkowski
space-time [38]. Since the equations of motion are kept up
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to second order in time and spatial derivatives, this theory
can avoid Ostrogradski’s instability [42]. Moreover, the
most general scalar-tensor theories with second-order equa-
tions of motion were first found by Horndeski in 1974 [43].
The Horndeski theory includes Brans-Dicke theory, mini-
mally and nonminimally scalar field models, covariant
Galileon, among others.
Scalar fields are not the only possibility to account for the

present accelerated expansion of the universe; namely,
vector fields have also been considered [44–49]. For
instance, in the context of generalized Proca theories, a
massive vector field breaking the Uð1Þ gauge symmetry is
introduced. It has been shown that its time-dependent
component can lead to an accelerated expansion of the
Universe by exhibiting an asymptotic de Sitter attractor
[48,50–53]. These generalized Proca theories are the most
general vector-tensor theories that lead to second-order
equations of motion. The first attempt to construct a general
vector-tensor theory dates back to 1976 when Horndeski
also derived the most general action of an Abelian vector
field with nonminimal coupling to gravity, which satisfies
second-order equations of motion [54]. In order to find this
action, he assumed that the vector field respects the gauge
symmetry and that Maxwell equations are recovered in
the flat space-time limit. Nevertheless, keeping the field
equations at second order and dropping the Uð1Þ gauge
invariance opens the opportunity to introduce nontrivial terms
associated with Galileon-type derivative self-interactions
in the framework of generalized Proca theories [55–59].
These two prominent classes of theories, the scalar

Horndeski and generalized Proca theories, can be unified
in the context of scalar-vector-tensor (SVT) theories with
second-order field equations [60,61]. The SVT theories are
usually classified into two groups depending on whether
the Uð1Þ gauge symmetry is respected. When the Uð1Þ
symmetry is kept, the total propagating degrees of freedom
(DOFs) are five: one scalar, two transverse vectors, two
tensor polarizations. In the case of a broken Uð1Þ sym-
metry, there is a propagating longitudinal scalar mode in
addition to the other five DOFs, which is consistent with a
gravitational theory that includes a massive spin-1 field and
a scalar field. Furthermore, in the presence of derivative
interactions, such as those appearing in Galileon theories, it
is natural to inquire about the existence of additional
degrees of freedom due to these modifications in gravity.
In Ref. [55], the authors proposed a generalized Proca
theory that includes derivative interactions within a second-
order action, constituting the vector model used to construct
the scalar-vector theory addressed in this paper. Through an
analysis based on the Hessian matrix, they demonstrated
that only the three DOFs of the original Proca theory can
propagate. It is crucial to highlight that, within these
theories, the fourth DOF from the massive vector field
in the off-shell configuration is unphysical, acting as a
ghost degree of freedom similar to a Boulware-Deser ghost

in massive gravity [62]. In the current theory, it is
systematically removed order by order through a system
of constraints. These constraints are established by ensur-
ing that the determinant of the corresponding Hessian
matrix vanishes [55].
In the present paper, we study the propagation of the

longitudinal component of a vector field in a spherically
symmetrical background, and its effects on the behavior of
the gravitational potentials in a scalar-vector-tensor theory.
It is important to stress that a theory that is expected to
successfully explain the present accelerated expansion of
the universe must also be consistent with local gravity
constraints [63–66]. For instance, a screening mechanism
of the longitudinal mode is usually required to lead to the
suppression of the propagation of the fifth force on local
scales. This is similar to the Vainshtein mechanism [67] for
scalar Galileons [68–71]. In this sense, the screening
mechanism of the longitudinal scalar mode for vector
Galileons in the presence of derivative self-interactions
was studied in Ref. [72]. In particular, they found that due
to the cubic-order derivative self-interactions, the screen-
ing mechanism of the longitudinal scalar mode can be
sufficiently efficient to keep the theory consistent with
solar-system constraints. Therefore, here we intend to
extend these latter results to the case of SVT theories.
On the other hand, any valid theory of gravity is severely
constrained by solar system tests. Therefore, we use
current constraints on the parameterized post-Newtonian
(PPN) parameter γ [73] to test the validity of the particular
cases of SVT theories that we consider in this paper.
The plan of the paper is the following: In Sec. II, we

present the total action of the model and the field equations.
In Sec. III, we study the analytical solutions inside and
outside a spherically symmetric compact object. In Sec. IV,
we corroborate our previous analytical results by numeri-
cally solving the field equations focusing on the case where
the compact object is the Sun, which is relevant for the
observational constraints. In Sec. V, we study the first-order
corrections to the gravitational potentials. We also discuss
the values of the free parameters of the model that are not
ruled out by solar system tests. Finally, in Sec. VI, we
summarize the obtained results.

II. FIELD EQUATIONS OF MOTION

In this section, we introduce the expressions for the
Lagrangian in SVT theories with broken Uð1Þ symmetry
[60,61]. In this Lagrangian, the vector field is minimally
coupled to gravity, ensuring that the velocity of the tensor
modes remains equal to the speed of light [61]. Conversely,
the scalar field is nonminimally coupled to gravity. We focus
on the propagation of the longitudinal component of the
vector field within a spherically symmetrical background.
In order to write the general action of a massive vector

field Aμ interacting with a scalar field ϕ in the curved
spacetime, we define the variables
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X1 ¼−
1

2
∇μϕ∇μϕ; X2 ¼−

1

2
Aμ∇μϕ; X3 ¼−

1

2
AμAμ:

ð1Þ

Furthermore, we introduce the effective metric

Ghn
μν ¼ hn1ðϕ; XiÞgμν þ hn2ðϕ; XiÞ∇μϕ∇νϕ

þ hn3ðϕ; XiÞAμAν þ hn4ðϕ; XiÞAμ∇νϕ; ð2Þ

where hni are functions of ϕ and Xi with i ¼ 1, 2, 3. For the
vector field we also define the field strength Fμν, its dual
F̃μν and the symmetric tensor Sμν in the following form

Fμν ¼ ∇μAν −∇νAμ; F̃μν ¼
1

2
EμναβFαβ;

Sμν ¼ ∇μAν þ∇νAμ: ð3Þ

The covariant derivative operator ∇μ is the standard one
associated to the Levi-Civita connection. In this way, we
also have

F ¼ −
1

4
FμνFμν; Y1 ¼ ∇μϕ∇νϕFμαFν

α;

Y2 ¼ ∇μϕAνFμαFν
α; Y3 ¼ AμAνFμαFν

α; ð4Þ

which encodes the interactions arising from the pure vector
modes. Finally, the double dual Riemann tensor Lμναβ, as
well as the intrinsic vector interactions represented through
the 2-rank tensors Mμν

5 and N μν
5 , and the 4-rank tensors

Mμναβ
6 and N μναβ

6 are defined by

Lμναβ ¼ 1

4
EμνρσEαβγδRρσγδ; Mμν

5 ¼ Gh5
ρσF̃μρF̃νσ; N μν

6 ¼ Gh̃5
ρσF̃μρF̃νσ;

Mμναβ
6 ¼ 2f6;X1

ðϕ; X1ÞF̃μνF̃αβ; N μναβ
6 ¼ 1

2
f̃6;X3

ðϕ; X3ÞF̃μνF̃αβ; ð5Þ

where h̃5j (j ¼ 1, 2, 3, 4) are also functions ϕ, X1, X2 and X3.
Therefore, the general action of SVT theories with broken Uð1Þ gauge symmetry is written as [60,61]

SSVT ¼
Z

d4x
ffiffiffiffiffiffi
−g

p X6
n¼2

Ln; ð6Þ

with the Lagrangians

L2 ¼ f2ðϕ; X1; X2; X3; F; Y1; Y2; Y3Þ;
L3 ¼ f3ðϕ; X3ÞgμνSμν þ f̃3ðϕ; X3ÞAμAνSμν;

L4 ¼ f4ðϕ; X3ÞRþ f4;X3
ðϕ; X3Þ½ð∇μAμÞ2 −∇μAν∇νAμ�;

L5 ¼ f5ðϕ; X3ÞGμν∇μAν −
f5;X3

ðϕ; X3Þ
6

½ð∇μAμÞ3 − 3∇μAμ∇ρAσ∇σAρ þ 2∇ρAσ∇γAρ∇σAγ� þMμν
5 ∇μ∇νϕþN μν

5 Sμν;

L6 ¼ f6ðϕ; X1ÞLμναβFμνFαβ þMμναβ
6 ∇μ∇αϕ∇ν∇βϕþ f̃6ðϕ; X3ÞLμναβFμνFαβ þN μναβ

6 SμαSνβ; ð7Þ

where R andGμν are the Ricci scalar and the Einstein tensor,
respectively, and f4;X3

≡ ∂f4=∂X3, f5;X3
≡ ∂f5=∂X3. In

order to obtain the full SVT action with second-order
equations one could also add to (6) the action of scalar-
tensor Horndeski theories. However, we focus only on the
action (6), since we are interested in the effects on the
gravitational potentials due to the vector interactions.
Interestingly enough, the action (6) can be simplified

using the results of recent observational data. For instance,
for late-time cosmology, there is a tight bound on the speed
of the tensor modes ct constrained from the gravitational

event GW170817 [74] and the gamma-ray burst GRB
170817A [75], which gives −3×10−15≤ct−1≤7×10−16.
Thus, to guarantee ct ¼ 1 one should assume f4ðϕ; X3Þ ¼
f4ðϕÞ and f5ðϕ; X3Þ ¼ const [61]. In this case, the
Lagrangian L4 only contributes to the field equations
through the first term, while the Lagrangian L5 contributes
through the third and fourth term. Furthermore, we are
interested in studying the local gravity constraints for a
viable dark energy model, which is well described by the
flat Friedmann-Lemaître-Robertson-Walker (FLRW) met-
ric [76]. It is well known that the quantities F, Y1, Y2, Y3
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vanish on this cosmological background [61]. Also, the
Lagrangian L6, along with the interactions proportional
to Mμν

5 and N μν
5 in L5, do not affect the background

cosmology either [61]. Therefore, we can also neglect all
these interactions in action (6).
Thus, the relevant action that we consider in this work is

given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p h
f2ðϕ; X1; X2; X3; FÞ

þ f3ðϕ; X3ÞgμνSμν þ f4ðϕÞR
i
þ SmðΨm; gμνÞ; ð8Þ

where Sm is action of the matter fields.
Let us consider a spherically symmetric and static

background whose line element is written as

ds2 ¼ −e2ΨðrÞdt2 þ e2ΦðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð9Þ

being ΨðrÞ and ΦðrÞ the gravitational potentials which are
functions of the radius r.
The vector field can be expressed as

Aμ ¼ ðϕA; AiÞ; ð10Þ

with i ¼ 1, 2, 3. By using Helmholtz’s theorem, the spatial
components Ai can be decomposed into the transverse and
longitudinal modes as follows

Ai ¼ AðTÞ
i þ∇iχ; ð11Þ

where χ is the longitudinal scalar and the transverse mode

AðTÞ
i satisfies the traceless condition ∇iAðTÞ

i ¼ 0. In a

spherically symmetry background, the components AðTÞ
θ

and AðTÞ
φ vanish. Furthermore, from the traceless condition,

along with the regularity assumption for AðTÞ
r at r ¼ 0, one

can show that the transverse vector AðTÞ
i also vanishes [72].

Therefore, we may focus only on the propagation of the
longitudinal mode with the components of Aμ given by

Aμ ¼ ðϕAðrÞ; e−2Φχ0ðrÞ; 0; 0Þ: ð12Þ

For the matter sector, we consider the perfect fluid with
energy-momentum tensor

Tμν ¼
�ðρm þ PmÞUμUν þ gμνPm

�
; ð13Þ

with ρm and pm the energy density and pressure respectively.
The four-velocity of the fluid is Uμ ¼ ð−eΨðrÞ; 0; 0; 0Þ such
that UμUμ ¼ −1 [64].
Thus, varying the action (8) with respect to the metric,

we obtain the field equations for the latter:

C1Ψ02 þ C2Ψ0 þ
�
C3 þ

C4
r

�
Φ0 þ C5 þ

C6
r
þ C7
r2

¼ −e2Φρm;

ð14Þ

C8Ψ02 þ
�
C9 þ

C10
r

�
Ψ0 þ C11 þ

C12
r

þ C13
r2

¼ e2ΦPm; ð15Þ

C14Ψ00 þ C15Ψ02 þ C16Ψ0Φ0 þ
�
C17 þ

C18
r

�
Ψ0 þ C19 þ

C20
r

¼ e2ΦPm; ð16Þ

while the motion equations for the scalar and vector fields
are obtained, as usual, varying the action with respect to
each field

D1Ψ00 þD2Ψ00Ψ0 þD3Ψ02 þD4Ψ03 þD5Φ0Ψ02

þ
�
D6 þ

D7

r

�
Ψ0 þ

�
D8 þ

D9

r

�
Φ0 þD10Φ0Ψ0

þD11 þ
D12

r
þD13

r2
¼ 0; ð17Þ

D14Ψ00 þD15Ψ00Ψ0 þD16Ψ00Ψ02 þD17Ψ02 þD18Ψ03

þD19Ψ04 þD20Φ0Ψ02 þD21Φ0Ψ03 þ
�
D22 þ

D23

r

�
Ψ0

þD24Φ0 þD25Φ0Ψ0 þD26 þ
D27

r
þD28

r2
¼ 0; ð18Þ

D29Ψ0 þD30 þ
D31

r
þD32

r2
¼ 0; ð19Þ

where coefficients Ci and Di are shown in Appendix A.
Besides, to make our findings more accessible, you can
follow the process of obtaining coefficients Ci and Di in an
online Mathematica® notebook [77].
Below, for simplicity, we chose to analyze the following

particular model,

f4 ¼
M2

pl

2
þ α4ϕ

2; f3 ¼
1

2
β3X3;

f2 ¼ VðϕÞ þ X1 þ β2X2 þm2X3 þ F; ð20Þ

where α4 and β3 are dimensionless constants, m represents
the vector field mass, and β2 is a constant with the same
dimension as ϕ and ϕA, i.e., dimensions of mass. We aim to
obtain analytical expressions of the gravitational potentials
ΦðrÞ and ΨðrÞ under the weak field approximation.

III. ANALYTICAL VECTOR-SCALAR PROFILES

In order to obtain approximate analytical solutions to the
field equations, we divide the space of solutions according
to two regions of interest: inside a spherically symmetric
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compact body of radius r�, that is r < r�, and outside the
body r ≥ r�.

A. Solutions for r < r�
Assuming a spherical density distribution ρ0 of radius r�

and GR potentials (B6) as leading order, the field equations
within it are written as

V 0ðϕðrÞÞ þ 2α4ρ0ϕðrÞ
3M2

pl

þ β2χ
0ðrÞ
r

þ 2ϕ0ðrÞ
r

þ 1

2
β2χ

00ðrÞ

þ ϕ00ðrÞ ¼ 0; ð21Þ

−m2ϕAðrÞ þ
ρ0ϕAðrÞ
M2

pl

−
2β3ϕAðrÞχ0ðrÞ

r
þ 2ϕ0

AðrÞ
r

− β3ϕAðrÞχ00ðrÞ þ ϕA
00ðrÞ ¼ 0; ð22Þ

m2r2χ0ðrÞ þ β3ρ0r3ϕAðrÞ2
6M2

pl

þ 1

2
β2r2ϕ0ðrÞ þ β3r2ϕAðrÞϕ0

AðrÞ

þ 2β3rχ0ðrÞ2 ¼ 0; ð23Þ

and using Eq. (23) with m ¼ 0

χ0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r
12β3

�
β3ρ0rϕAðrÞ2

M2
pl

þ 6β3ϕAðrÞϕ0
AðrÞ þ 3β2ϕ

0ðrÞ
�s
: ð24Þ

We assume that ϕðrÞ and ϕAðrÞ can be expressed as their
background values plus a small perturbation

ϕðrÞ ¼ ϕ0 þ f1ðrÞ; with ϕ0 ≫ f1ðrÞ; ð25Þ

ϕAðrÞ ¼ ϕA0 þ f2ðrÞ; with ϕA0 ≫ f2ðrÞ; ð26Þ

where we only work with decreasing functions ϕðrÞ and
ϕAðrÞ, or in other words, we assume ϕ0ðrÞ < 0 and
ϕ0
AðrÞ < 0. For a potential V ¼ 0 and m ¼ 0, Eqs. (21)

and (22) result in the following

2α4ρ0ϕ0

9M2
pl

r3 þ 1

2
β2r2χ0ðrÞ þ r2f01ðrÞ ¼ C1; ð27Þ

ρ0ϕA0

3M2
pl

r3 − ϕA0β3r2χ0ðrÞ þ r2f02ðrÞ ¼ C2; ð28Þ

and fixing C1 ¼ C2 ¼ 0 we get

2α4ρ0ϕ0

9M2
pl

r3 þ 1

2
β2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r
12β3

�
β3ρ0rϕ2

A0

M2
pl

þ 6β3ϕA0f02ðrÞ þ 3β2f01ðrÞ
�s
þ r2f01ðrÞ ¼ 0; ð29Þ

ρ0ϕA0

3M2
pl

r3 − ϕA0β3r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r
12β3

�
β3ρ0rϕ2

A0

M2
pl

þ 6β3ϕA0f02ðrÞ þ 3β2f01ðrÞ
�s
þ r2f02ðrÞ ¼ 0; ð30Þ

Now, if we consider f1 ¼ B1r2 and f2 ¼ B2r2, the two last
equations can be solved, and we obtain the following values
for B1 and B2

B1 ¼
β2ρ0

12β3M2
pl

�
−
4α4β3ϕ0

3β2
þ F ðξÞ

�
; ð31Þ

B2 ¼ −
ρ0ϕA0

6M2
pl

ð1þ F ðξÞÞ; ð32Þ

where,

F ðξÞ ¼ ξ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðs0 þ ξÞ

p
; ð33Þ

with

ξ ¼ 3M2
plð4β23ϕ2

A0 − β22Þ
16ρ0

and s0 ¼
4β3ð2α4β2ϕ0 þ 3β3ϕ

2
A0Þ

3ð4β23ϕ2
A0 − β22Þ

; ð34Þ

In this work, we restrict to the case ξ > 0 which implies
ð4β23ϕ2

A0 − β22Þ > 0. The reason for this is that we are
interested in studying deviations from the case when the
derivative self-interaction of the vector field is dominant
over the other interactions [69]. We also can express (24)
in terms of the obtained solutions for ϕðrÞ and ϕAðrÞ
[Eqs. (25), (26), (31) and (32)].
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χ0ðrÞ ¼ r
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ð2α4β2ϕ0 þ 3β3ϕ

2
A0Þ

�
1þ 2F ðξÞ

s0

�
β3M2

pl

vuut
: ð35Þ

Considering the limit ξ ≪ 1, the expression of the fields
reduces to

ϕðrÞ ≃ ϕ0 −
α4ϕ0ρ0
9M2

pl

r2; ð36Þ

ϕAðrÞ ≃ ϕA0 −
ρ0ϕA0

6M2
pl

r2; ð37Þ

χ0ðrÞ ≃ r
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ð2α4β2ϕ0 þ 3β3ϕ

2
A0Þ

β3M2
pl

s
; ð38Þ

while for ξ ≫ 1, which is the case where the self-interaction
of the vector field times the background value of its time
component is greater than the interaction between the scalar
and the vector field, we obtain

ϕðrÞ ≃ ϕ0 −
β2ρ0

12β3M2
pl

�
4α4β3ϕ0

3β2
þ s0

2

�
r2; ð39Þ

ϕAðrÞ ≃ ϕA0 −
ρ0ϕA0

6M2
pl

�
1 −

s0
2

�
r2; ð40Þ

χ0ðrÞ ≃ ρ0s0
6β3M2

pl

r: ð41Þ

The following condition s0
2
< 1 must be fulfilled for

ϕ0
AðrÞ < 0. From these results, it is straightforward to

deduce that the amplitude of χ0ðrÞ in (38) is about
ðξ=s0Þ1=2 times smaller than the amplitude obtained in
(41). For β2 ¼ 0, that is s0 ¼ 1, we recover the result found
in Ref. [72], but it is crucial to notice that this reference
does not include a scalar field. In this latter case, for
jβ3j ≫ 1, the screening mechanism works efficiently, and
then the propagation of the longitudinal mode χ is sup-
pressed. In the presence of scalar-vector interaction β2 ≠ 0,
this result remains correct as long as s0 < 2.

B. Solutions for r ≥ r�
Outside the body, using the same hypotheses as before

(V ¼ 0 and m ¼ 0) and GR potentials (B7) as leading
order, we obtain from Eqs. (17)–(19) the following
expressions,

1

2
β2r2χ0ðrÞ þ r2ϕ0ðrÞ ¼ −

2α4ρ0ϕ0

9M2
pl

r3�; ð42Þ

− ϕA0β3r2χ0ðrÞ þ r2ϕ0
AðrÞ ¼ −

ρ0ϕA0

3M2
pl

r3�: ð43Þ

Defining

F ðsÞ ¼ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs0 þ sÞ

p
; ð44Þ

with

s ¼ ξ

�
r
r�

�
3

; ð45Þ

we find

ϕ0ðrÞ ¼ β2ρ0r3�
6β3r2M2

pl

�
−
4α4β3ϕ0

3β2
þ F ðsÞ

�
; ð46Þ

ϕ0
AðrÞ ¼ −

ρ0r3�ϕA0

3r2M2
pl

ð1þ F ðsÞÞ; ð47Þ

χ0ðrÞ ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0r3�ð2α4β2ϕ0 þ 3β3ϕ

2
A0Þ

�
1þ 2F ðsÞ

s0

�
β3rM2

pl

vuut
: ð48Þ

We observe that the behavior of (46), (47), (48) changes
when s ¼ 1. Therefore, we will identify the corresponding
radius with rv such that s ¼ ðr=rvÞ31:

rv ¼
�

16ρ0r3�
3M2

plð4β23ϕ2
A0 − β22Þ

�
1=3

;

rv ¼
r�
ξ1=3

; ð49Þ

Now, wewill show the behavior of the obtained solutions
by taking limits on the value of s. Taking the limit s ≫ 1,
which implies that r ≫ rv we obtain

ϕ0ðrÞ ≃ −
β2ρ0r3�

6β3r2M2
pl

�
4α4β3ϕ0

3β2
þ s0

2

�
; ð50Þ

ϕ0
AðrÞ ≃ −

ρ0r3�ϕA0

3r2M2
pl

�
1 −

s0
2

�
; ð51Þ

χ0ðrÞ ≃ ρ0r3�s0
6β3r2M2

pl

: ð52Þ

Otherwise, if we consider s ≪ 1, which is equivalent to
r� < r ≪ rv we get

ϕ0ðrÞ ≃ −
2α4ρ0r3�ϕ0

9r2M2
pl

; ð53Þ

1This behavior is similar to the one that appears in Galileon
models. In these kind of models rv is named as the Vainshtein
radius.
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ϕ0
AðrÞ ≃ −

ρ0r3�ϕA0

3r2M2
pl

; ð54Þ

χ0ðrÞ ≃ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0r3�ð2α4β2ϕ0 þ 3β3ϕ

2
A0Þ

β3rM2
pl

s
: ð55Þ

So, in the regime r ≫ rv, the longitudinal mode
decreases faster than in the case r� < r ≪ rv, and the
condition s0 < 2 ensures that the respective amplitudes are
small. This particular behavior was also found in Ref. [72]
for a vector-tensor theory.
In this way, Eqs. (38), (41), (52), and (55) show that the

propagation of the longitudinal mode is suppressed inside
and outside the compact body provided the condition s0 <
2 is fulfilled. This result extends the previous one found in
Ref. [72] for generalized Proca theories to the case of SVT
theories in the presence of scalar-vector interactions.
Next, we will show that the requirements on χ0ðrÞ and

ϕAðrÞ, imply bounds on α4ϕ0 that depend on the couplings
β2 and β3 and the vector background value ϕA0

. In fact,
when ξ ≪ 1 and s ≪ 1, it is necessary that s0 ≥ 0 for χ0ðrÞ
to be a real number. Additionally, when ξ ≫ 1 and s ≫ 1,
and for ϕAðrÞ to be a decreasing function, it is necessary
that s0 < 2. Therefore, with 0 ≤ s0 < 2 and taking β2, β3
and ϕA0 as positive numbers, we obtain

−
3β3ϕ

2
A0

2β2
≤ α4ϕ0 ≤

6β3
2ϕ2

A0 − 3β2
2

4β2β3
: ð56Þ

It follows from the last equation that if the condition β2 <ffiffiffi
2

p
β3ϕA0 is fulfilled, the upper bound of α4ϕ0 is positive,

while when it is not, α4ϕ0 is bounded between two negative
values.

IV. NUMERICAL SOLUTIONS

In this section, we check that the approximate analytical
solutions obtained in the previous section are continuous at
r ¼ r�. One of the aims of this work is to test our model
with solar systems constraints. Therefore, we focus on the
case where the source body is the Sun and numerically
solve Eqs. (14)–(19). We consider a more realistic model
for the solar density, taking ρSðrÞ ¼ ρ0e−ar

2=r2S . Here a is of
order 1, rS refers the Sun radius and ρ0 ¼ 162.2 g=m3

represents the solar central density.
Also, for numerical purposes, we introduce the variables

x ¼ r
r�
; y0 ¼

ϕ

ϕ0

; y ¼ ϕA

ϕ0

; z ¼ χ0

ϕ0

; ð57Þ

and we consider ϕ0 ¼ ϕA0 ¼ χ00 at r ¼ 0. Thus, expres-
sions (17), (18) and (19) evaluated at the particular model
described by (20) and fixing V ¼ m2 ¼ 0, result in the
following equations:

xðβ2r�ðxz0 þ zð−xΦ0 þ xΨ0 þ 2ÞÞ þ y00ð−2xΦ0 þ 2xΨ0 þ 4Þ þ 2xy000Þ
− 8α4y0ð−e2Φ þ x2Ψ00 þ x2ðΨ0Þ2 − xΦ0ðxΨ0 þ 2Þ þ 2xΨ0 þ 1Þ ¼ 0; ð58Þ

−
2β3r�yzϕ0

x
− β3r�yϕ0z0 þ β3r�yzϕ0Φ0 − β3r�yzϕ0Ψ0 þ 2y0

x
þ 4yΨ0

x
þ y00

−Φ0y0 þ 3Ψ0y0 − 2yΦ0Ψ0 þ 2yΨ00 þ 2yðΨ0Þ2 ¼ 0; ð59Þ

xΨ0ðy2e2ðΦþΨÞ þ z2Þ þ xye2ðΦþΨÞy0 þ β2e2Φxy00
2β3ϕ0

þ 2z2 ¼ 0: ð60Þ

In Fig. 1 we depict the behavior of y0, y00, y, y
0 and z for

several different values of the parameters α4, ξ and the
quotient β2=ðβ3ϕ0Þ, considering fixed values of Φ0 ¼ 10−6

(which is the approximate value of the gravitational
potential of the Sun at its surface) and a ¼ 4. In order
to determine the boundary conditions of y0, y, and dy=dx
around the center of the body (in this case, the Sun), we
use Eqs. (25), (26), (35). It follows from Fig. 1 that
the functions −ϕ0, −ϕ0

A, and χ0 grow linearly in r for the
distance smaller than rS as can be expected from the

analytical solutions obtained in the limit r < r� [(36)–(38)].
Likewise, for r > rS Fig. 1 shows a decreasing behavior for
the same functions, which is also consistent with the
obtained analytical solutions [Eqs. (50)–(55)]. Also, from
(49), we can see a relation between rv, parameter ξ and rS;
in particular, for ξ ¼ 1, we obtain rS ¼ rV . Figure 1 shows
that the functions ϕðrÞ and ϕAðrÞ are nearly constants in the
whole regime studied. The reason for this lies in that the
r-dependent corrections to ϕðrÞ and ϕA are at most of order
ϕ0Φ0 and ϕA0Φ0.
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V. CORRECTIONS TO GRAVITATIONAL
POTENTIALS

In this section, we calculate the corrections to the
gravitational potentials of GR, ΦGR and ΨGR, that arise
when considering an SVT model described by (20). We
focus in the gravitational potential of the Sun

(Φ0 ¼ ρ0r2S
M2

pl
∼ 10−6). The first-order corrections to the gravi-

tational field equations (14) and (15) give us

2M2
pl

r
Φ0 −

M2
pl

r2
ð1 − e2ΦÞ ¼ e2Φρm þ ΔΦ; ð61Þ

2M2
pl

r
Ψ0 þM2

pl

r2
ð1 − e2ΦÞ ¼ e2ΦPm þ ΔΨ; ð62Þ

where the functions ΔΦ and ΔΨ represent the first order
corrections. We stress that the regime ξ ≪ 1 is very
unlikely for a nonvanishing vector field because according

FIG. 1. Numerical solutions of y0ðxÞ, y00ðxÞ, yðxÞ, y0ðxÞ and zðxÞ as functions of x ¼ r
rS
for different values of α4, ξ, and

β2
β3ϕ0

. We
consider a ¼ 4 and Φ0 ¼ 10−6. Vertical lines represent r ¼ rS and r ¼ rV . Note that the cases considered in the left column,
r ¼ rS ¼ rV . (a) α4 ¼ 10−6, ξ ¼ 1, and β2

β3ϕ0
¼ 1. (b) α4 ¼ 10−6, ξ ¼ 10−4, and β2

β3ϕ0
¼ 1. (c) α4 ¼ 1, ξ ¼ 1, and β2

β3ϕ0
¼ 1. (d) α4 ¼ 1,

ξ ¼ 10−4, and β2
β3ϕ0

¼ 1. (e) α4 ¼ 10−6, ξ ¼ 1, and β2
β3ϕ0

¼ 10−1. (f) α4 ¼ 10−6, ξ ¼ 10−4, and β2
β3ϕ0

¼ 10−1.

MANUEL GONZALEZ-ESPINOZA et al. PHYS. REV. D 109, 063542 (2024)

063542-8



to Eq. (34) the difference β23ϕ
2
A0 − β22 must be of order

10−94M2
pl if ρ0 is the density of the Sun. This would require

an extremely fine-tuning of the model parameters.
Therefore, we focus on the regime ξ ≫ 1. First we obtain
the expressions of ΔΦ and ΔΨ inside the sun (r < rS). In
this regime, we can approximate the solutions for ϕ0ðrÞ,
ϕ0
AðrÞ, and χ0ðrÞ with Eqs. (39)–(41). Consequently, when

considering the leading-order potentials as given in (B7),
the first-order corrections for (61) and (62) can be
expressed as follows

ΔΦ ≃
ρ0ð4α4ð4α4 þ 3Þβ3ϕ2

0 þ s0ð6α4β2ϕ0 − 3β3ϕ
2
A0ÞÞ

6β3M2
pl

;

ð63Þ

and

ΔΨ ≃ −
2α4ϕ0ρ0ð8α4β3ϕ0 þ 3β2s0Þ

9β3M2
pl

: ð64Þ

In what follows, we will show the conditions that make
these corrections of order 10−2ρ0 so that the potentials
inside the Sun can be considered to be the same as in GR.
Now, we focus on the case r > rs. For this, we use

leading-order potentials ΦGR and ΨGR, Eq. (B7), and
solutions of ϕ0ðrÞ, ϕ0

AðrÞ and χ0ðrÞ given by (46)–(48).
To analyze this regime, it is useful to divide the analysis in
two cases of interest: s ¼ ξð rrSÞ3 ≫ 1 and s ¼ ξð rrSÞ3 ≪ 1.

A. The s ≫ 1 regime

If we consider the case ξ ≥ 1, the following relation

4β23ϕ
2
A0 − β22 ≳ 5 × 10−6r−2S ; ð65Þ

is satisfied, and it follows from (49) that rv ≤ rS.
In this regime, and assuming that s ≫ 1 (which

implies r ≫ rv), the solutions of ϕ0ðrÞ, ϕ0
AðrÞ and χ0ðrÞ

are approximately given by (50), (51) and (52).
Consequently, considering leading-order potentials (B7),
the first order corrections of Eqs. (61) and (62) can be

written as

ΔΦ ≃
r2SΦ2

0ϕ
2
A0s1

72r4
and ΔΨ ≃−

rSΦ0ϕ
2
A0s2

r3
−
r2SΦ2

0ϕ
2
A0s3

72r4
;

ð66Þ

where,

s1¼−
1

β22
ðβ22ð2−7s0Þs0−4ð8α4−5Þβ23ðs0−1Þ2ϕ2

A0Þ; ð67Þ

s2 ¼
1

β22
ðs0 − 1Þðβ22s0 − 4β23ðs0 − 1Þϕ2

A0Þ; ð68Þ

s3 ¼
1

β22
ðβ22s0ð7s0 − 6Þ − 28β23ðs0 − 1Þ2ϕ2

A0Þ: ð69Þ

After integrating (61) and (62), along with Eq. (66), we
find that outside the Sun, the gravitational potentials are
given by

ΦðrÞ ≃ rSΦ0

6r

	
1 −

rSs1Φ0ϕ
2
A0

24M2
plr



; ð70Þ

ΨðrÞ ≃ −
rSΦ0

6r

	
1 −

3s2ϕ2
A0

M2
pl

−
rSðs1 þ s3ÞΦ0ϕ

2
A0

48M2
plr



: ð71Þ

In addition, the PPN parameter γ ≡ −Φ=Ψ becomes

γth≃1−
3s2ϕ2

A0

M2
pl

þ rSΦ0ϕ
2
A0

48M2
plr

�
−
6s1s2ϕ2

A0

M2
pl

þ s1− s3

�
: ð72Þ

Since ξ > 0, it follows that 4β23ϕ
2
A0 − β22 > 0. Therefore,

we can define A ¼ β2
2β3ϕA0

so that 0 < A < 1 and rewrite (72)
in terms of this new parameter:

jγ − 1jth ≃ −
4α4ϕ0ð3AϕA0 þ 4α4ϕ0Þ

3ðA2 − 1ÞM2
pl

þ rSΦ0

48r

	
32α4

2ð4α4 þ 1Þϕ0
2

9ðA2 − 1Þ2M2
pl

−
512α4

4ϕ0
4ð7A2 þ 8α4 − 5Þ

27ðA2 − 1Þ3M4
pl

−
16Aα4ϕ0ϕA0ðA4 − 4A2α4 þ 4α4 þ 2Þ

3ðA2 − 1Þ3M2
pl

þ 2ϕA0ð8A3α4ϕ0 þ ðA2 − 1ÞϕA0ðA2ð4α4 − 1Þ þ 2ÞÞ
ðA2 − 1Þ3M2

pl

−
32α4

2ϕ0
2ϕA0ðð2A4 − A2 þ 5ÞϕA0 þ 4Aα4ð8α4 − 1Þϕ0Þ

3ðA2 − 1Þ3M4
pl

−
8Aα4ϕ0ϕA0

2ð32Aα42ϕ0 þ 5ϕA0Þ
ðA2 − 1Þ3M4

pl

−
8A3α4ϕ0ϕA0ð16α42ϕ0

2 þ ð8α4 − 3ÞϕA0
2Þ

ðA2 − 1Þ3M4
pl



; ð73Þ
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We want to compare the above expression with the
experimental bound jγ − 1j ≤ 2.3 × 10−5 reported in [73].
First, we note that the Cassini mission measures the delay
time of a signal traveling from Earth to Saturn and back.
Therefore, the relevant values of r in (73) are in the range
rS < r < dSAT ≃ 103rS where dSAT is the distance from the
Sun to Saturn. Besides, since the theoretical expression
described in (73) is complex, we need to make some
assumptions. Therefore, we consider β2, β3 ϕ0 and ϕA0
all positive. Next, we use a numerical method to obtain the
regions in the A − α4 plane that satisfy the following
conditions: (i) expression (73) is below the observational
constraint and (ii) the corrections described by Eqs. (63)
and (64) are lower than 10−2ρ0. We analyze two cases:

(i) 0 ≤ α4ϕ0 ≤
6β3

2ϕ2
A0−3β2

2

4β2β3
and (ii) − 3β3ϕ

2
A0

2β2
≤ α4ϕ0 < 0.

As regards the values of ϕ0 and ϕA0, a first reasonable
choice is that both quantities are equal than Planck’s mass.
However, we found that no value of α4 and A was able to
satisfy condition (ii) i.e. that the corrections to the potentials
are negligible inside the Sun. However, this last condition
can be achieved if we take ϕ0 ≤ 0.1Mpl and ϕA0 ≤ 0.1Mpl,
so we have decided to fix both magnitudes in theses values
(ϕ0 ¼ ϕA0 ¼ 0.1Mpl). Figure 2 shows the region in the
α4 − A plane that meets conditions (i) and (ii) in the case
0 < α4 <

9−16A2

12A . We note that α4 > 0, necessarily implies

A <
ffiffi
2

p
2
. Besides, for this case, jγ − 1j decreases while r

increases, so its maximum value is reached when r ¼ rS and
therefore the reported values in Fig. 2 are calculated taking
r ¼ rS in Eq. (73). On the other hand, it follows from Fig. 2
that if jα4j ≲ 5 × 10−4, all A values in the proposed range

FIG. 2. The parameter region that satisfies the observational bound for jγ − 1j when 0 < α4 <
9−16A2

12A and 0 ≤ A < 0.7. In order to
better understand the behavior, subfigure (a) has a linear scale in α4 while subfigure (b), has a logarithmic scale in α4.

FIG. 3. The parameter region that satisfies the observational bound for jγ − 1j when − 3
4A < α4 < 0 and 0 ≤ A < 1.

The subfigure (b) represents the logarithmic mode of subfigure (a) in order to better understand the behavior of the variables when
α4 approaches to 0. The blue regions symbolize the α4 and A values that are consistent with the observational bound for r ¼ rS while the
red ones, for r ¼ dSAT.
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fulfill the experimental condition for jγ − 1j. While as α4
grows, the allowed region narrows very quickly, and the A
values get smaller (e.g for α4 ∼ 5 × 10−5, A < 0.1) in such a
way that for the limit of A tending to 0, α4 < 2.2 × 10−2.
Fig. 3 shows the allowed region in the α4 − A plane in

the case − 3
4A < α4 < 0. We note that if α4 < 0, 0 < A < 1.

For certain values of α4 and A, the PPN parameter γ is
maximum when r ¼ rS (blue region) while for others, it is
reached when r ¼ dSAT (red region). Besides, it follows
from Fig. 3 that if jα4j≳ 0.02, the relationship between the
variables is almost linear given by the approximate expres-
sion α4 ∼ −Aþ 3 × 10−2, being α4 ∼ −0.25 the minimum
value for said variable. On the other hand, if jα4j≲ 0.02 the
behavior changes. Indeed, as α4 approaches 0 a greater
number of A values are possible to satisfy the constraint. In
this way, if jα4j≲ 1 × 10−3 all A < 0.7 values in the
proposed range fulfill the experimental condition for
jγ − 1j. We note that although the allowed range for A is
between 0 and 1, the observational constraints restrict the
allowed values to 0 < A < 0.7.

VI. CONCLUDING REMARKS

In the present paper, we have analyzed the screening
mechanism of the fifth force in scalar-vector-tensor (SVT)
theories. These latter theories arise from unifying scalar
Horndeski and generalized Proca theories and keeping the
field equations at second order. For the broken Uð1Þ gauge
symmetry, there is a propagating longitudinal scalar mode
in addition to the other standard five degrees of freedom.
Thus, to avoid the propagation of the fifth force and comply
with local gravity constraints, a screening mechanism in
SVT theories is required. The screening mechanism studied
here is similar to the Vainshtein mechanism but based on
both the derivative self-interactions of the vector field and
the interactions of the scalar field with the vector field and
curvature [72].
In order to obtain analytical solutions for the fields, we

carried out an analysis similar to the one presented in [72].
We assumed that the derivative self-interaction of the vector
field dominates on the interaction between the fields. In this
way, we studied a field configuration where the interaction
between the scalar and vector fields is a small perturbation
on the dynamics of this two-field system. This is a natural
choice because our proposal relied on studying the field
space dynamics around the model proposed in Ref. [72].
Thus, we found analytical solutions for the scalar and vector
profiles by studying a gravitating spherically symmetric
compact body. These solutions were obtained by first
studying the region inside the body and then outside it.
We found that for a dominant derivative self-interaction of
the vector field, the screening mechanism works efficiently,
and then the propagation of the additional longitudinal
mode is suppressed. This particular behavior was also found
in Ref. [72] for a vector-tensor theory. Furthermore, in the

presence of scalar-vector interaction, this result remains
correct as long as some conditions on the parameters are
satisfied. So, we have shown that the propagation of the
longitudinal mode is suppressed inside and outside the
compact body. This result extends the previous one found in
Ref. [72] for generalized Proca theories to the case of SVT
theories in the presence of scalar-vector interactions.
Finally, we corroborated all these analytical results by
numerically integrating the field equations.
Additionally, we have computed the corrections to the

Post-Newtonian parameter γ. By applying the solar system
constraints, we have set bounds for the leading-order values
of the vector field and the scalar field as well as for the
nonminimal scalar-tensor coupling parameter. Our results
are compatible with those presented by A. De Felice et al.
[72] in the limit of a dominant derivative self-interaction of
the vector field. Besides, we point out that the inclusion of
the nonminimally coupled scalar field leads to additional
deviations from GR in the PPN parameter γ.
Thus, we conclude that the present model, including both

interactions, can avoid the propagation of the additional
longitudinal mode arising in these theories. Therefore, it is
also compatible with local gravity constraints. This result
extends the previous one found in the literature for
generalized Proca theories to the case of SVT theories in
the presence of scalar-vector interactions.
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APPENDIX A: Ci AND Di

In this appendix we show coefficients Ci and Di 5

C1 ¼ 4e2Ψϕ2
Af2;F; ðA1Þ

C2 ¼ 4e2Ψϕ2
Aχ

0f3;X3
þ 4e2ΨϕAϕ

0
Af2;F; ðA2Þ

C3 ¼ 2e−2Φðχ0Þ3f3;X3
− 2e2Ψϕ2

Aχ
0f3;X3

− 2ϕ0f4;ϕ; ðA3Þ

C4 ¼ −4f4;ϕ; ðA4Þ

C5 ¼ ϕ2
Ae

2Φþ2Ψf2;X3
− e2Φf2 þ e2Ψðϕ0

AÞ2f2;F
þ 2χ0ϕ0f3;ϕ þ 2e2ΨϕAχ

0ϕ0
Af3;X3

− 2e−2Φðχ0Þ2χ00f3;X3
þ 2f4;ϕϕ00ðrÞ

þ 2ðϕ0Þ2f4;ϕϕ þ 2e2Ψϕ2
Aχ

00f3;X3
; ðA5Þ

C6 ¼ 4e2Ψϕ2
Aχ

0f3;X3
þ 4ϕ0f4;ϕ; ðA6Þ
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C7 ¼ 2f4 − 2e2Φf4; ðA7Þ

C8 ¼ 4e2Ψϕ2
Af2;F; ðA8Þ

C9 ¼ 4e2ΨϕAϕ
0
Af2;F − 2e−2Φðχ0Þ3f3;X3

− 2e2Ψϕ2
Aχ

0f3;X3
þ 2ϕ0f4;ϕ; ðA9Þ

C10 ¼ 4f4; ðA10Þ

C11 ¼ ðϕ0Þ2ð−f2;X1
Þ − χ0ϕ0f2;X2

− e2Φf2 þ e2Ψðϕ0
AÞ2f2;F − ðχ0Þ2f2;X3

− 2χ0ϕ0f3;X3
− 2e2ΨϕAχ

0ϕ0
Af3;X3

; ðA11Þ

C12 ¼ 4ϕ0f4;ϕ − 4e−2Φðχ0Þ3f3;X3
; ðA12Þ

C13 ¼ 2f4 − 2e2Φf4: ðA13Þ

C14 ¼ 2f4; ðA14Þ

C15 ¼ 2f4; ðA15Þ

C16 ¼ −2f4; ðA16Þ

C17 ¼ 2e2Ψf3;X3
ϕ2
Aχ

0 − 2f4Φ0 þ 2ϕ0f4;ϕ; ðA17Þ

C18 ¼ 2f4; ðA18Þ

C19 ¼ 2e2Ψf3;X3
ϕAχ

0ϕ0
A − 2e−2Φf3;X3

ðχ0Þ2χ00 þ 2f3;ϕχ0ϕ0 þ 2f4;ϕϕ00ðrÞ − f2e2Φ þ 2ðϕ0Þ2f4;ϕϕ; ðA19Þ

C20 ¼ 2f4;ϕϕ0; ðA20Þ

D1 ¼ 4e2Ψf2;X1Fϕ
2
AΨ0ϕ0 þ 2e2Ψf22; X1FϕAϕ

0ϕ0
A þ 2e2Ψf2;X2Fϕ

2
Aχ

0Ψ0 þ e2Ψf2;X2FϕAχ
0ϕ0

A − 2e2Φf04ðϕÞ; ðA21Þ

D2 ¼ 4e2Ψf2;X1Fϕ
2
Aϕ

0 þ 2e2Ψf2;X2Fϕ
2
Aχ

0; ðA22Þ

D3 ¼ −4e2Ψf2;X1Fϕ
2
Aϕ

0Φ0 − 2e2Ψf2;X2Fϕ
2
Aχ

0Φ0 þ 8e2Ψf2;X1FϕAϕ
0ϕ0

A þ 4e2Ψf2;X2FϕAχ
0ϕ0

A − 2e2Φf04ðϕÞ; ðA23Þ

D4 ¼ 4e2Ψf2;X1Fϕ
2
Aϕ

0 þ 2e2Ψf2;X2Fϕ
2
Aχ

0; ðA24Þ

D5 ¼ −4e2Ψf2;X1Fϕ
2
Aϕ

0 − 2e2Ψf2;X2Fϕ
2
Aχ

0; ðA25Þ

D6 ¼ −4e2Ψf2;X1FϕAΦ0ϕ0ϕ0
A þ f2;X1X3

ϕ2
Ae

2Φþ2Ψϕ0 þ 4e2Ψf2;X1Fϕ
2
AΨ00ϕ0 þ 2e2Ψf2;X1FϕAϕ

0ϕ00
A

þ 3e2Ψf2;X1Fϕ
0ðϕ0

AÞ2 − 2e2Ψf2;X2FϕAΦ0χ0ϕ0
A þ 1

2
f2;X2X3

ϕ2
Ae

2Φþ2Ψχ0 þ 2e2Ψf2;X2Fϕ
2
Aχ

0Ψ00

þ e2Ψf2;X2FϕAχ
0ϕ00

A þ 3

2
e2Ψf2;X2Fχ

0ðϕ0
AÞ2 þ 2e2Φf2;ϕχ0 þ

1

2
e2Φf2;X2

χ0 þ e2Φf2;X1
ϕ0 þ 2e2ΦΦ0f4;ϕ; ðA26Þ

D7 ¼ −4e2Φf4;ϕ; ðA27Þ

D8 ¼ −4e2Ψf2;X1Fϕ
2
AðΨ0Þ2ϕ0 − 4e2Ψf2;X1FϕAΨ0ϕ0ϕ0

A − e2Ψf2;X1Fϕ
0ðϕ0

AÞ2 − 2e2Ψf2;X2Fϕ
2
Aχ

0ðΨ0Þ2

− 2e2Ψf2;X2FϕAχ
0Ψ0ϕ0

A −
1

2
e2Ψf2;X2Fχ

0ðϕ0
AÞ2 − 2e2Φf3;ϕχ0 −

1

2
e2Φf2;X2

χ0 þ 1

2
f2;X2X3

ðχ0Þ3

− e2Φf2;X1
ϕ0 þ 3

2
f2;X1X2

χ0ðϕ0Þ2 þ 1

2
f2;X2X2

ðχ0Þ2ϕ0 þ f2;X2X3
ðχ0Þ2ϕ0 þ f2;X1X1

ðϕ0Þ3 þ 2e2ΦΨ0f4ϕ ; ðA28Þ
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D9 ¼ 4e2Φf4ϕ ; ðA29Þ

D10 ¼ −4e2Ψf2;X1FϕAϕ
0ϕ0

A − 2e2Ψf2;X2FϕAχ
0ϕ0

A þ 2e2Φf4ϕ ; ðA30Þ

D11 ¼ f2;X1X3
ϕAe2Φþ2Ψϕ0ϕ0

A þ e2Ψf2;X1Fϕ
0ϕ0

Aϕ
00
A þ 1

2
f2;X2X3

ϕAe2Φþ2Ψχ0ϕ0
A þ 1

2
e2Ψf2;X2Fχ

0ϕ0
Aϕ

00
A

þ e2Φf2;X1
ϕ00ðrÞ − 1

4
f2;X2X2

ðχ0Þ2ϕ00ðrÞ − f2;X1X2
χ0ϕ0ϕ00ðrÞ − f2;X1X1

ðϕ0Þ2ϕ00ðrÞ þ 2e2Φf3;ϕχ00

þ 1

2
e2Φf2;X2

χ00 þ e4Φf2;ϕ −
1

2
f2;X2X3

ðχ0Þ2χ00 þ 1

2
e2Φf2;ϕX2

χ0ϕ0 þ e2Φf2;ϕX1
ðϕ0Þ2

−
1

2
f2;X1X2

χ00ðϕ0Þ2 − 1

4
f2;X2X2

χ0χ00ϕ0 − f2;X1X3
χ0χ00ϕ0; ðA31Þ

D12 ¼ 4e2Φf3;ϕχ0 þ e2Φf2;X2
χ0 þ 2e2Φf2;ϕX1

ϕ0; ðA32Þ

D13 ¼ 4e2Φf3;ϕχ0 þ e2Φf2;X2
χ0 þ 2e2Φf2;ϕX1

ϕ0 ðA33Þ

D14 ¼ 2e2Φf2;FϕA þ 8e2Ψf2;FFϕ3
AðΨ0Þ2 þ 8e2Ψf2;FFϕ2

AΨ0ϕ0
A þ 2e2Ψf2;FFϕAðϕ0

AÞ2; ðA34Þ

D15 ¼ 8e2Ψf2;FFϕ2
Aϕ

0
A; ðA35Þ

D16 ¼ 8e2Ψf2;FFϕ3
A; ðA36Þ

D17 ¼ −12e2Ψf2;FFϕ2
AΦ0ϕ0

A þ 2f2;X3Fϕ
3
Ae

2Φþ2Ψ þ 2e2Φf2;FϕA þ 8e2Ψf2;FFϕ3
AΨ00

þ 14e2Ψf2;FFϕAðϕ0
AÞ2 þ 4e2Ψf2;FFϕ2

Aϕ
00
A; ðA37Þ

D18 ¼ 20e2Ψf2;FFϕ2
Aϕ

0
A − 8e2Ψf2;FFϕ3

AΦ0; ðA38Þ

D19 ¼ 8e2Ψf2;FFϕ3
A; ðA39Þ

D20 ¼ −12e2Ψf2;FFϕ2
Aϕ

0
A; ðA40Þ

D21 ¼ −8e2Ψf2;FFϕ3
A; ðA41Þ

D22 ¼ −f2;X2FϕAχ
0ϕ00 − 2f2;X1FϕAϕ

0ϕ00 þ 2f2;X2FϕAΦ0χ0ϕ0 þ 2f2;X1FϕAΦ0ðϕ0Þ2 þ 2e2Φf2;ϕFϕAϕ
0

− f2;X2FϕAχ
00ϕ0 þ 2f2;X3FϕAΦ0ðχ0Þ2 − 6e2Ψf2;FFϕAΦ0ðϕ0

AÞ2 − 2e2Φf2;FϕAΦ0 − 2e2Φf3ð0;1ÞϕAχ
0

þ 3f2;X3Fϕ
2
Ae

2Φþ2Ψϕ0
A þ 3e2Φf2;Fϕ0

A − 2f2;X3FϕAχ
0χ00 þ 8e2Ψf2;FFϕ2

AΨ00ϕ0
A þ 4e2Ψf2;FFϕAϕ

0
Aϕ

00
A

þ 3e2Ψf2;FFðϕ0
AÞ3; ðA42Þ

D23 ¼ 4e2Φf2;FϕA; ðA43Þ

D24 ¼ 2f2;X2FϕAχ
0Ψ0ϕ0 þ f2;X2Fχ

0ϕ0ϕ0
A þ 2f2;X1FϕAΨ0ðϕ0Þ2 þ f2;X1Fðϕ0Þ2ϕ0

A þ 2e2Φf3;X3
ϕAχ

0

− 2e2Φf2;FϕAΨ0 − e2Φf2;Fϕ0
A þ 2f2;X3FϕAðχ0Þ2Ψ0 þ f2;X3Fðχ0Þ2ϕ0

A − 8e2Ψf2;FFϕ3
AðΨ0Þ3

− 12e2Ψf2;FFϕ2
AðΨ0Þ2ϕ0

A − 6e2Ψf2;FFϕAΨ0ðϕ0
AÞ2 − e2Ψf2;FFðϕ0

AÞ3 ðA44Þ

D25 ¼ 2f2;X2FϕAχ
0ϕ0 þ 2f2;X1FϕAðϕ0Þ2 − 2e2Φf2;FϕA þ 2f2;X3FϕAðχ0Þ2 − 6e2Ψf2;FFϕAðϕ0

AÞ2; ðA45Þ

D26 ¼ −
1

2
f2;X2Fχ

0ϕ0
Aϕ

00 − f2;X1Fϕ
0ϕ0

Aϕ
00 þ e2Φf2;ϕFϕ0ϕ0

A −
1

2
f2;X2Fχ

00ϕ0ϕ0
A − 2e2Φf3;X3

ϕAχ
00

þ f2;X3FϕAe2Φþ2Ψðϕ0
AÞ2 þ e2Φf2;Fϕ00

A − e4Φf2;X3
ϕA − f2;X3Fχ

0χ00ϕ0
A þ e2Ψf2;FFðϕ0

AÞ2ϕ00
A; ðA46Þ
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D27 ¼ 2e2Φf2;Fϕ0
A − 4e2Φf3;X3

ϕAχ
0; ðA47Þ

D28 ¼ 2e2Φf2;Fϕ0
A − 4e2Φf3;X3

ϕAχ
0; ðA48Þ

D29 ¼ −4e2Ψf3;X3
ϕ2
A − 4e−2Φf3;X3

ðχ0Þ2; ðA49Þ

D30 ¼ −4e2Ψf3;X3
ϕAϕ

0
A − 2f2;X3

χ0 − 4f3;ϕϕ0 − f2;X2
ϕ0;

ðA50Þ

D31 ¼ −8e−2Φf3;X3
ðχ0Þ2; ðA51Þ

D32 ¼ −8e−2Φf3;X3
ðχ0Þ2: ðA52Þ

APPENDIX B: GENERAL RELATIVITY

In GR, we have f2 ¼ f3 ¼ 0 and f4 ¼ M2
pl=2, so

Eqs. (14) and (15) read

2M2
pl

r
Φ0

GR −
M2

pl

r2
ð1 − e2ΦGRÞ ¼ e2ΦGRρm; ðB1Þ

2M2
pl

r
Ψ0

GR þM2
pl

r2
ð1 − e2ΦGRÞ ¼ e2ΦGRPm: ðB2Þ

ρmðrÞ ≃ ρ0 for r < r� and ρmðrÞ ≃ 0 for r > r�, being
Mpl the reduced Planck mass. The gravitational potentials
inside and outside the body are given by

eΨGR ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ0r2�
3M2

pl

s
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ0r2

3M2
pl

s
;

eΦGR ¼
�
1 −

ρ0r2

3M2
pl

�−1=2
; ðB3Þ

for r < r�, and

eΨGR ¼
�
1 −

ρ0r3�
3M2

plr

�
1=2

; eΦGR ¼
�
1 −

ρ0r3�
3M2

plr

�−1=2
; ðB4Þ

for r > r�. In the following, we employ the weak gravity
approximation under which jΨj and jΦj are much smaller
than 1, i.e.,

Φ0 ≡ ρ0r2�
M2

pl

≪ 1: ðB5Þ

This condition means that the Schwarzschild radius of the
source rg ≈ ρ0r3�=M2

pl is much smaller than r�. Then, the
solutions (B3) and (B4) reduce, respectively, to

ΨGR≃
ρ0

12M2
pl

ðr2−3r2�Þ; ΦGR≃
ρ0r2

6M2
pl

; for r< r�; ðB6Þ

ΨGR ≃ −
ρ0r2

6M2
pl

; ΦGR ≃
ρ0r2

6M2
pl

; for r > r�: ðB7Þ
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