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We study a screening mechanism in the context of scalar-vector-tensor (SVT) theories. This screening
mechanism is based on both the derivative self-interactions of the vector field and the interactions of the
scalar field with the vector field and curvature. We calculate the field equations in a spherically symmetric
space-time, and then, we study the conditions for which this mechanism is successful in a weak gravitational
background. In order to corroborate these analytical results, we have performed a numerical integration of
the full equations. Finally, the corrections to the gravitational potentials have also been computed. We
conclude that the present model, including both kinds of interactions, can avoid the propagation of the
additional longitudinal mode arising in these theories. We also show that the space parameter of the model is
compatible with solar system constraints. This result extends the previous one found in the literature for

generalized Proca theories to the case of SVT theories in the presence of scalar-vector interactions.
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I. INTRODUCTION

One of the most puzzling challenges in cosmology is
to explain the current accelerated expansion of the uni-
verse [1,2]. According to the standard cosmological model
(ACDM), a cosmological constant added to Einstein’s
equations produces the late-time acceleration of the universe
and constitutes 68% of the total energy density along with
the other 32% associated with dark and ordinary matter [3].
On the other hand, it has been discussed that this proposal
has theoretical problems such as the severe fine-tuning
problem related to its energy scale, the so-called cosmo-
logical constant problem [4—6].

Recently some tensions with increasing statistical sig-
nificance have been found between estimations of cosmo-
logical observables that involve the assumption of the
ACDM model and values obtained from independent local
measurements [7—10]. For instance, the value of the Hubble
constant today H,, inferred from cosmic microwave data
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provided by the Planck collaboration and assuming the
ACDM model [11], is 4.0 to 6.3 below local estimations
such as the one obtained from type la supernovae and
Cepheid data provided by the SHOES collaboration [12]. A
similar issue arises with the clustering amplitude Sg: the
value obtained from Planck data and using the theoretical
predictions of the ACDM model is above that obtained from
low-redshift observations [10,13-15].

Several alternative theoretical constructions have been
proposed in the literature to address the aforementioned
cosmological constant problem, and some of them could
also alleviate the so-called Hubble tension. Among them,
we can mention: (i) dynamical scalar fields minimally
coupled to gravity or matter with an appropriate potential
(usually known as quintessence) [16—19] or noncanonical
kinetic energy (also known as k-essence) [20-22];
(i1) dynamical scalar fields coupled to curvature or torsion
or matter [23-36]; (iii) dynamical scalar fields with higher
order derivatives in the action (also known as Galileons)
[37-40] and many others [41].

The Lagrangian of the covariant Galileon is constructed
to keep the equations of motion at second order, while
recovering the Galilean symmetry in the limit of Minkowski
space-time [38]. Since the equations of motion are kept up

© 2024 American Physical Society
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to second order in time and spatial derivatives, this theory
can avoid Ostrogradski’s instability [42]. Moreover, the
most general scalar-tensor theories with second-order equa-
tions of motion were first found by Horndeski in 1974 [43].
The Horndeski theory includes Brans-Dicke theory, mini-
mally and nonminimally scalar field models, covariant
Galileon, among others.

Scalar fields are not the only possibility to account for the
present accelerated expansion of the universe; namely,
vector fields have also been considered [44-49]. For
instance, in the context of generalized Proca theories, a
massive vector field breaking the U(1) gauge symmetry is
introduced. It has been shown that its time-dependent
component can lead to an accelerated expansion of the
Universe by exhibiting an asymptotic de Sitter attractor
[48,50-53]. These generalized Proca theories are the most
general vector-tensor theories that lead to second-order
equations of motion. The first attempt to construct a general
vector-tensor theory dates back to 1976 when Horndeski
also derived the most general action of an Abelian vector
field with nonminimal coupling to gravity, which satisfies
second-order equations of motion [54]. In order to find this
action, he assumed that the vector field respects the gauge
symmetry and that Maxwell equations are recovered in
the flat space-time limit. Nevertheless, keeping the field
equations at second order and dropping the U(1) gauge
invariance opens the opportunity to introduce nontrivial terms
associated with Galileon-type derivative self-interactions
in the framework of generalized Proca theories [55-59].

These two prominent classes of theories, the scalar
Horndeski and generalized Proca theories, can be unified
in the context of scalar-vector-tensor (SVT) theories with
second-order field equations [60,61]. The SVT theories are
usually classified into two groups depending on whether
the U(1) gauge symmetry is respected. When the U(1)
symmetry is kept, the total propagating degrees of freedom
(DOFs) are five: one scalar, two transverse vectors, two
tensor polarizations. In the case of a broken U(1) sym-
metry, there is a propagating longitudinal scalar mode in
addition to the other five DOFs, which is consistent with a
gravitational theory that includes a massive spin-1 field and
a scalar field. Furthermore, in the presence of derivative
interactions, such as those appearing in Galileon theories, it
is natural to inquire about the existence of additional
degrees of freedom due to these modifications in gravity.
In Ref. [55], the authors proposed a generalized Proca
theory that includes derivative interactions within a second-
order action, constituting the vector model used to construct
the scalar-vector theory addressed in this paper. Through an
analysis based on the Hessian matrix, they demonstrated
that only the three DOFs of the original Proca theory can
propagate. It is crucial to highlight that, within these
theories, the fourth DOF from the massive vector field
in the off-shell configuration is unphysical, acting as a
ghost degree of freedom similar to a Boulware-Deser ghost

in massive gravity [62]. In the current theory, it is
systematically removed order by order through a system
of constraints. These constraints are established by ensur-
ing that the determinant of the corresponding Hessian
matrix vanishes [55].

In the present paper, we study the propagation of the
longitudinal component of a vector field in a spherically
symmetrical background, and its effects on the behavior of
the gravitational potentials in a scalar-vector-tensor theory.
It is important to stress that a theory that is expected to
successfully explain the present accelerated expansion of
the universe must also be consistent with local gravity
constraints [63—66]. For instance, a screening mechanism
of the longitudinal mode is usually required to lead to the
suppression of the propagation of the fifth force on local
scales. This is similar to the Vainshtein mechanism [67] for
scalar Galileons [68-71]. In this sense, the screening
mechanism of the longitudinal scalar mode for vector
Galileons in the presence of derivative self-interactions
was studied in Ref. [72]. In particular, they found that due
to the cubic-order derivative self-interactions, the screen-
ing mechanism of the longitudinal scalar mode can be
sufficiently efficient to keep the theory consistent with
solar-system constraints. Therefore, here we intend to
extend these latter results to the case of SVT theories.
On the other hand, any valid theory of gravity is severely
constrained by solar system tests. Therefore, we use
current constraints on the parameterized post-Newtonian
(PPN) parameter y [73] to test the validity of the particular
cases of SVT theories that we consider in this paper.

The plan of the paper is the following: In Sec. II, we
present the total action of the model and the field equations.
In Sec. III, we study the analytical solutions inside and
outside a spherically symmetric compact object. In Sec. IV,
we corroborate our previous analytical results by numeri-
cally solving the field equations focusing on the case where
the compact object is the Sun, which is relevant for the
observational constraints. In Sec. V, we study the first-order
corrections to the gravitational potentials. We also discuss
the values of the free parameters of the model that are not
ruled out by solar system tests. Finally, in Sec. VI, we
summarize the obtained results.

II. FIELD EQUATIONS OF MOTION

In this section, we introduce the expressions for the
Lagrangian in SVT theories with broken U(1) symmetry
[60,61]. In this Lagrangian, the vector field is minimally
coupled to gravity, ensuring that the velocity of the tensor
modes remains equal to the speed of light [61]. Conversely,
the scalar field is nonminimally coupled to gravity. We focus
on the propagation of the longitudinal component of the
vector field within a spherically symmetrical background.

In order to write the general action of a massive vector
field A, interacting with a scalar field ¢ in the curved
spacetime, we define the variables
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Xl :_EVM¢Vﬂ¢’ Xzz—EA”vﬂ(ﬁ, XSZ_EA/!AM
(1)
Furthermore, we introduce the effective metric
ZZ = hnl<¢a Xi)g;w + hn2(¢in>vﬂ¢vu¢
+ hn3 (¢v Xi)AﬂAy + hn4(¢v Xi)Aﬂvv(pv (2)

where h,,; are functions of ¢ and X; with i = 1, 2, 3. For the

vector field we also define the field strength F,,, its dual

F* and the symmetric tensor S w10 the following form

. 1
F,=V,A -V,A, F,, = 55# PF o5
Sw=V,A +V,A, (3)

LHvah — %gﬂvﬂvgaﬁyé Rpo'y 5

MEP =2 ¢ (. X\ )PP,

Mo
Mg =

The covariant derivative operator V,, is the standard one

associated to the Levi-Civita connection. In this way, we
also have

1

F=—JFul" Y=V gV, pFFy,

Y, =V, pA FFF",, Y3 =AA FrF,, (4)

which encodes the interactions arising from the pure vector
modes. Finally, the double dual Riemann tensor L¥*% as
well as the intrinsic vector interactions represented through
the 2-rank tensors M~" and N%’, and the 4-rank tensors

M and N#P are defined by

G, N = G,

va, ] r Uy o
N / :Efs,x3(¢,X3)F” Fob, (5)

where f5; (j =1, 2, 3, 4) are also functions ¢, X,, X, and X;.
Therefore, the general action of SVT theories with broken U(1) gauge symmetry is written as [60,61]

6
Ssvr = / d*x\/=g Z Ly, (6)
n=2

with the Lagrangians

£2 :f2(¢’X17X25X37F9 YI’Y27 Y3)7

‘CS = f3(¢’ XS)gﬂySﬂu + f~3 (¢’ X3)AﬂAyS/un
E4 = f4(¢, X3)R + f4.X3 (¢v X3)[(VMA”>2 - VMAL/VDA#]’

’ X v
Ls = fs5(o, X3)G””VMA,, - % [(VMA”)3 - 3V”A”V,,A¢,V"A/’ + ZV,,A(,VVA/’V"AY] + Mg’”Vﬂquﬁ + g‘ Sy
Lo = fo(h, X))LHPF, F yy + MEPN N VNV 3+ Fo(by X3)LPF F gy + NES,0S 5, (7)

where R and G*¥ are the Ricci scalar and the Einstein tensor,
respectively, and f4x, =0f4/0X3, fsx, =0fs/0X;. In
order to obtain the full SVT action with second-order
equations one could also add to (6) the action of scalar-
tensor Horndeski theories. However, we focus only on the
action (6), since we are interested in the effects on the
gravitational potentials due to the vector interactions.
Interestingly enough, the action (6) can be simplified
using the results of recent observational data. For instance,
for late-time cosmology, there is a tight bound on the speed
of the tensor modes ¢, constrained from the gravitational

event GW170817 [74] and the gamma-ray burst GRB
170817A [75], which gives =3 x 10713 <¢,—1<7x 10716,
Thus, to guarantee ¢, = 1 one should assume f4(¢, X3) =
fa(@p) and fs5(p,X3) =const [61]. In this case, the
Lagrangian £, only contributes to the field equations
through the first term, while the Lagrangian L5 contributes
through the third and fourth term. Furthermore, we are
interested in studying the local gravity constraints for a
viable dark energy model, which is well described by the
flat Friedmann-Lemaitre-Robertson-Walker (FLRW) met-
ric [76]. It is well known that the quantities F, Yy, Y,, Y3
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vanish on this cosmological background [61]. Also, the
Lagrangian L4, along with the interactions proportional
to ML and N in Ls, do not affect the background
cosmology either [61]. Therefore, we can also neglect all
these interactions in action (6).

Thus, the relevant action that we consider in this work is
given by

S= [ diy=g [0 X1 X0 0, F)
13 X)9 S+ La(DIR] + Sp(Pnsg)s (8)

where S, is action of the matter fields.

Let us consider a spherically symmetric and static
background whose line element is written as
ds® = —e??0)de> + 2 dr? 4 r?(d6? + sin® Odg?), (9)
being W(r) and ®(r) the gravitational potentials which are

functions of the radius r.
The vector field can be expressed as

A = (s A"), (10)

with i = 1, 2, 3. By using Helmholtz’s theorem, the spatial
components A’ can be decomposed into the transverse and
longitudinal modes as follows

A, =AT 1 vy, (11)

where y is the longitudinal scalar and the transverse mode
AST) =0.In a

spherically symmetry background, the components AgT)

satisfies the traceless condition ViAST)

and A((/,T) vanish. Furthermore, from the traceless condition,

along with the regularity assumption for Al

can show that the transverse vector AgT) also vanishes [72].
Therefore, we may focus only on the propagation of the

longitudinal mode with the components of A* given by

at r = 0, one

A = (¢alr).e72%'(r),0,0). (12)

For the matter sector, we consider the perfect fluid with
energy-momentum tensor

T/w = [(/)m + Pm)U/th + g;u/Pm]v (13)

with p,, and p,, the energy density and pressure respectively.
The four-velocity of the fluid is U, = (—e*"), 0,0, 0) such
that U, U" = —1 [64].

Thus, varying the action (8) with respect to the metric,
we obtain the field equations for the latter:

ClP2 +CW + <C3 1 G )CD’+C5 +C6 +C — -2,
(14)
CglP/Z"f‘ <Cg +@>\P/+Cll+@+%: 2(I>Pm, (15)
r

c C
CLa®" + CisW? + Cpg W' + (cn + 18) Y4 Chg 4 -2

=P, (16)

while the motion equations for the scalar and vector fields
are obtained, as usual, varying the action with respect to
each field

DY + D, Y'Y + D3¥? + D3 + Dsd'P?

D, Dy
<D6 + )‘P’ <D + )d)’ + D, @'Y

D, D
+D11+¥+ﬁ_0, (17)

rDMlI;// + DISLP//LP/ + quﬂ/qﬂz + D”\P/z + ’Dlg‘PB
Dy
+ D1 ¥ + Dyy®Y? + Dy 'Y? + <D22 + —> v

D,, D
+ Dy, @ + Dys @'Y +D26+i+ﬁ_o, (18)

D32

Ds,
Dy¥' + Dy +— +— 2

=0, (19)
where coefficients C; and D; are shown in Appendix A.
Besides, to make our findings more accessible, you can
follow the process of obtaining coefficients C; and D; in an
online Mathematica® notebook [77].

Below, for simplicity, we chose to analyze the following
particular model,

2

1
f4:Tpl+054¢27 f3:§ﬂ3x3,
fz = V(¢) + X] +ﬁ2X2 + m2X3 + F, (20)

where a4 and 5 are dimensionless constants, m represents
the vector field mass, and f, is a constant with the same
dimension as ¢ and ¢4, i.e., dimensions of mass. We aim to
obtain analytical expressions of the gravitational potentials
®(r) and ¥(r) under the weak field approximation.

III. ANALYTICAL VECTOR-SCALAR PROFILES

In order to obtain approximate analytical solutions to the
field equations, we divide the space of solutions according
to two regions of interest: inside a spherically symmetric
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compact body of radius r,, that is r < r,, and outside the

r) 2 Ny (r) 2¢,(r
body r > r,. mgq,)A(r)Jrﬂod’Az( )_ ﬂ3¢A( ))(( )+ ¢A( )
M ol r r
A Solutions for 7 <, | — Bsa(r)z (1) + 94" (1) = . (22)
Assuming a spherical density distribution p of radius r,
and GR potentials (B6) as leading order, the field equations
within it are written as 2,21 B3por’ pa(r)* 1 2 4 2 /
m r)((r)+6T+§ﬁzr @' (r) + Psr°pa(r) iy (r)
2a r "(r) 2¢'(r) 1 o
VI($(r) + 4/)0(:2( )_I_ﬂZ)(( )+ Al >+—ﬁ2)(//(r) +2/),3r)(,<r>2:0’ (23)
3Mpl r r 2
¢"(r) 21 and using Eq. (23) with m =0
|
r (Baporda(r)?
20 =/- ( DA L 6 t(r) + 3ﬁz</)’(r)>- (24)
1245 M,
|
We assume that ¢(r) and ¢, (r) can be expressed as their ~ and (22) result in the following
background values plus a small perturbation
2a4p0¢h0 /3 )
b0V =do+ [1(0). with do>fi().  (25) oy, " 2 SPA 4P =6 2)
pl
$a(r) = dao + f2(r).  with  dag> f5(r). (26) Dot
. , , 31 = paoBsr’y (r) + P f3(r) = Co (28)
where we only work with decreasing functions ¢(r) and 3M;,
¢a(r), or in other words, we assume ¢'(r) <O and
@'y (r) < 0. For a potential V=0 and m =0, Egs. (21)  and fixing C; = C, = 0 we get
|
2a4p000 r (Papo ¢A0
ST T SR OBl 3010 ) £ A ) =0 (29)
PoPao r(Bapord;
32, = paofsr \/ 25 ( 72, A0 4 6B3paofh(r) + 3ﬁzf’1(r)> + rfy(r) =0, (30)
|
Now, if we consider f; = Byr> and f, = B,r?, the two last  with
equations can be solved, and we obtain the following values
for B, and B, _ 3M§1(4ﬁ§¢2Ao -/5)
4 16pg
a
B = P (_fabsbo  p) 3y 453 afado + 3PsbRo)
12ﬂ3M1 3ﬂ2 and S0 = ) 5 s (34)
oP 3(4p3¢30 — B3)
B _P0¢Ao In this work, we restrict to the case £ > 0 which implies
B, = 6M?, (1+F(9). (32) (4p3d3o — B3) > 0. The reason for this is that we are
interested in studying deviations from the case when the
where derivative self-interaction of the vector field is dominant
’ over the other interactions [69]. We also can express (24)
in terms of the obtained solutions for ¢(r) and ¢, (r)
F(&) =&—/E(so+ &), (33)  [Egs. (25), (26), (31) and (32)].

063542-5



MANUEL GONZALEZ-ESPINOZA et al.

PHYS. REV. D 109, 063542 (2024)

r [Po2aufadbo + 3B303%) (1 n m)
2 (r) = 6 ﬂ3M2] . (35)
P

Considering the limit £ < 1, the expression of the fields
reduces to

_agopo

#(r) = o Wzl”, (36)
p

ha(r) = o = . (37)
P

or g \//’0(2“4,32450 + 3ﬂ3¢12;o)’ (38)

BsMy,

while for £ > 1, which is the case where the self-interaction
of the vector field times the background value of its time
component is greater than the interaction between the scalar
and the vector field, we obtain

— Papo (4a4ﬁ3¢0 S_o) 2 39
W) == (T t2) @)
Palr) =~ _P0¢A0 _So\ o
)= o =0 (1)) (40)

p
ren P0So
1 (r)~ 6ﬂ3M§1 r. (41)

The following condition 3 <1 must be fulfilled for
¢ (r) <0. From these results, it is straightforward to
deduce that the amplitude of y/(r) in (38) is about
(é/50)'/* times smaller than the amplitude obtained in
(41). For 3, = 0, that is s, = 1, we recover the result found
in Ref. [72], but it is crucial to notice that this reference
does not include a scalar field. In this latter case, for
|#3] > 1, the screening mechanism works efficiently, and
then the propagation of the longitudinal mode y is sup-
pressed. In the presence of scalar-vector interaction 3, # 0,
this result remains correct as long as sy < 2.

B. Solutions for r > r,

Outside the body, using the same hypotheses as before
(V=0 and m = 0) and GR potentials (B7) as leading
order, we obtain from Egs. (17)-(19) the following
expressions,

_ 2a4potho 5

1
3 Bar?y (r) + ¢/ (r) = 9M§1 r, (42)
baobsry (r) +r ¢A(r) 3M§1 r (43)

Defining
F(s) =s=/s(so+5), (44)
with
r\3
s=e(7) (45)
we find
o Bapor da, B3¢
¢ (l’) _6ﬂ3r2M51 <_ 3ﬂ2 +.7:(s)>, (46)
/ _ _PO’&¢AQ
Palr) = 3PM, (1 +F(s)), (47)
(r) =1 port Caspato + 38:R0) (1457 (48)
y(r)= 5 ﬁ3rM§1 .

We observe that the behavior of (46), (47), (48) changes
when s = 1. Therefore, we will identify the corresponding
radius with r, such that s = (r/r,)?":

< 16pors )1/3
ry, = ,
3M3 (453030 — 53)

r,

= 517 (49)

r?)

Now, we will show the behavior of the obtained solutions

by taking limits on the value of s. Taking the limit s > 1,
which implies that » > r, we obtain

Bapor 3 doyfspy | So
, o — N
¢ (r) - 6ﬂ3r2M§1 3ﬂ2 + 2 ’ (50)
3
por: s
#2500 (1) (51)
p
2(r) = _Poriso (52)
N 6/ rzMg1 '

Otherwise, if we consider s < 1, which is equivalent to
r<r<r, we get

2054/)0”2450
r) ¢ ———— 53
V== "5on (53)

"This behavior is similar to the one that appears in Galileon
models. In these kind of models r, is named as the Vainshtein
radius.
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3
Poridao
C3PME (54)
pl

Pu(r) =

oy L pori(2auBago + 3p3die)
X ()= \/ Py -

So, in the regime r> r,, the longitudinal mode
decreases faster than in the case r, < r < r,, and the
condition sy < 2 ensures that the respective amplitudes are
small. This particular behavior was also found in Ref. [72]
for a vector-tensor theory.

In this way, Egs. (38), (41), (52), and (55) show that the
propagation of the longitudinal mode is suppressed inside
and outside the compact body provided the condition s, <
2 is fulfilled. This result extends the previous one found in
Ref. [72] for generalized Proca theories to the case of SVT
theories in the presence of scalar-vector interactions.

Next, we will show that the requirements on y'(r) and
¢4 (r), imply bounds on a,¢, that depend on the couplings
f, and f3 and the vector background value ¢, . In fact,
when £ < 1 and s < 1, it is necessary that sy > 0 for y/(r)
to be a real number. Additionally, when £ > 1 and s > 1,
and for ¢4 (r) to be a decreasing function, it is necessary
that s, < 2. Therefore, with 0 < sy < 2 and taking f,, f3
and ¢, as positive numbers, we obtain

3o 6p5> %o — 3627
T STy 9

It follows from the last equation that if the condition 5, <
V2P0 is fulfilled, the upper bound of a,¢, is positive,
while when it is not, a,¢, is bounded between two negative
values.

IV. NUMERICAL SOLUTIONS

In this section, we check that the approximate analytical
solutions obtained in the previous section are continuous at
r = r*. One of the aims of this work is to test our model
with solar systems constraints. Therefore, we focus on the
case where the source body is the Sun and numerically
solve Egs. (14)—(19). We consider a more realistic model

for the solar density, taking pgs(r) = poe~"!"s. Here a is of
order 1, rg refers the Sun radius and p, = 162.2 g/m?
represents the solar central density.

Also, for numerical purposes, we introduce the variables

: 4 _ P 2 sy

X =—, y - > y — 3 =—-,

Ty 0 bo bo $o
and we consider ¢y = ¢p49 =y at r = 0. Thus, expres-
sions (17), (18) and (19) evaluated at the particular model
described by (20) and fixing V = m? = 0, result in the
following equations:

x(Por.(x7' + 2(—=x@ + 2V +2)) + yi(—2xD" + 22V + 4) + 2xy()

— 8ayyo(—e*® + X2W" + x2(V')? — x®' (x¥' +2) +2x¥' + 1) =0, (58)
2p5r, 2y AyW
- rxyZ%‘ = s yho?’ + Par.yzo® — Par.yzdo ¥ + Ty - yx x4
— @y + 39y — 2y®'Y + 2yP" + 2y(¥')? = 0, (59)
Pre*Pxy,

le/(yZez(CD-‘r‘P) + 22) + xyez(q)-‘rl{’)y/ +

In Fig. 1 we depict the behavior of yy, y;, v, ¥’ and z for
several different values of the parameters ay, £ and the
quotient 3,/ (B3¢ ), considering fixed values of ®; = 107°
(which is the approximate value of the gravitational
potential of the Sun at its surface) and a = 4. In order
to determine the boundary conditions of y,, y, and dy/dx
around the center of the body (in this case, the Sun), we
use Egs. (25), (26), (35). It follows from Fig. 1 that
the functions —¢’, —¢/,, and y’ grow linearly in r for the
distance smaller than rg as can be expected from the

= 0422, 60
oty (60)

analytical solutions obtained in the limit r < r, [(36)—(38)].
Likewise, for r > rg Fig. 1 shows a decreasing behavior for
the same functions, which is also consistent with the
obtained analytical solutions [Egs. (50)—(55)]. Also, from
(49), we can see a relation between r,,, parameter & and rg;
in particular, for £ = 1, we obtain rg = ry. Figure 1 shows
that the functions ¢(r) and ¢, (r) are nearly constants in the
whole regime studied. The reason for this lies in that the
r-dependent corrections to ¢(r) and ¢, are at most of order

Do®y and ¢4 D).
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FIG. 1. Numerical solutions of yy(x), y;(x), y(x), y
consider ¢ =4 and ®, =

Pao

E=10"% and ﬁf;% =1.(a,=10% =1, and ﬁ% =10"". () ay =

V. CORRECTIONS TO GRAVITATIONAL
POTENTIALS

In this section, we calculate the corrections to the
gravitational potentials of GR, ®gr and WgR, that arise
when considering an SVT model described by (20). We
focus in the gravitational potential of the Sun

((D() f)Or
1

tational field equations (14) and (15) give us

~ 107°). The first-order corrections to the gravi-

/(x) and z(x) as functions of x = £ for different values of a, & and 2. We

ﬂ"& (b()

1070, Vertical lines represent r = rg and r = ry. Note that the cases considered in the left column,
r=re=ry.(@a, =105 =1,and 2 =1.(b) ay = 107, £ =

107, and 2= = 1. ay = 1, E= 1, and £2- = 1. (d) ay = 1,

1076, £ = 1074, and ”2 =10
2M? M?
g 1) =0y, 46y (6)
2M? M2
rpl\P'+ . Pl = 2) = &2®P, + Ay,  (62)

where the functions Ag and Ay represent the first order
corrections. We stress that the regime &< 1 is very
unlikely for a nonvanishing vector field because according
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to Eq. (34) the difference 3¢5, — f3 must be of order
107*M?, if py is the density of the Sun. This would require
an extremely fine-tuning of the model parameters.
Therefore, we focus on the regime & > 1. First we obtain
the expressions of Ag and Ay inside the sun (r < rg). In
this regime, we can approximate the solutions for ¢'(r),
@'\ (r), and y/'(r) with Egs. (39)—(41). Consequently, when
considering the leading-order potentials as given in (B7),
the first-order corrections for (61) and (62) can be
expressed as follows

A~ po(4ay(4ay + 3)Baeps + s0(6asPacbo — 3B3¢b3e))
* 68:M2

tl

(63)

and

_ 2a4¢0p0 (8360 + 3P250) ‘

Ay ~
! 9BM2)

(64)

In what follows, we will show the conditions that make
these corrections of order 1072p, so that the potentials
inside the Sun can be considered to be the same as in GR.

Now, we focus on the case r > r,. For this, we use
leading-order potentials ®gr and Wgr, Eq. (B7), and
solutions of ¢'(r), ¢/,(r) and y'(r) given by (46)—(48).
To analyze this regime, it is useful to divide the analysis in
two cases of interest: s = £(£)3 > 1 and 5 = &(L£)3 < 1.

T I
rs rs

A. The s > 1 regime

If we consider the case & > 1, the following relation

4B530 — B> 2 5 x 10752, (65)
is satisfied, and it follows from (49) that r, < rg

In this regime, and assuming that s> 1 (which
implies > r,), the solutions of ¢'(r), ¢,(r) and y'(r)
are approximately given by (50), (51) and (52).
Consequently, considering leading-order potentials (B7),
the first order corrections of Eqs. (61) and (62) can be

4oy (3Adag + daudhy)

written as

2242 2 2H2 42
L sPoPaos _rsPodaosa  rsPoPaoss

Bo= 725 and - Ao = r 72,7
(66)
where,
1
S1= —ﬁ(ﬁ%(z —Ts0)so—4(8as— S)ﬁ%(so - 1)2(1&0), (67)
2
1
5y = 7 (so = 1) (B350 —4B3(s0 — 1)dRg).  (68)
2
1
53 = 7 (B350(Tsg = 6) = 2843 (so — 1)°¢3,).  (69)

After integrating (61) and (62), along with Eq. (66), we
find that outside the Sun, the gravitational potentials are
given by

rS(DO rsslq)0¢i0
D(r) ~ 1- s 70
(=6 [ 24M2 (70)
rs® Bsapng  rs(s1 4 53)Podiag
Y(r)~— 1- - . 71
(r) 6r [ M2 4802 (71)

In addition, the PPN parameter y = —®/¥ becomes

35245%0
Mgl

Yol — rs@odro <_65152¢/2x0
th

+S] —S3>. (72)
48Myr M3
Since & > 0, it follows that 43¢5, — 3 > 0. Therefore,
L2 gothat0 < A < 1 and rewrite (72)

) 283040
in terms of this new parameter:

we can define A =

7= T 3(A - )M, 487

16AC(4¢0¢A0 (A4 - 4-A2a4 + 4-614 + 2)

rsq)o 32&42(4a4 + 1)¢02 _ 512044¢04(7A2 + 804 - 5)
9(AT = 1)°M3,

27(AZ = 1) MY,
250 (8A%aypy + (A% — 1)pag(A%(day — 1) +2))

3(A2 - 1)°M3

(AT 1)°M3,

320,70’ Pao((24* — A +5)¢p0 + 4Aay(8ay — 1)epy)  8Aauodar®(32AasPo + 5¢a0)

3(A7—1)°M},

_ 8A%ayhopao(16a4>do* + (8ay — 3)pao’)

(A2 = 1)°MY

(42— 1M},

J (13)
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FIG. 2. The parameter region that satisfies the observational bound for |y — 1| when 0 < ay < 2242 and 0 < A < 0.7. In order to

12A

better understand the behavior, subfigure (a) has a linear scale in a, while subfigure (b), has a logarithmic scale in ay.

We want to compare the above expression with the
experimental bound |y — 1] < 2.3 x 1073 reported in [73].
First, we note that the Cassini mission measures the delay
time of a signal traveling from Earth to Saturn and back.
Therefore, the relevant values of r in (73) are in the range
rg < r < dgar = 103rg where dgar is the distance from the
Sun to Saturn. Besides, since the theoretical expression
described in (73) is complex, we need to make some
assumptions. Therefore, we consider f,, f3 ¢y and ¢ag
all positive. Next, we use a numerical method to obtain the
regions in the A —a, plane that satisfy the following
conditions: (i) expression (73) is below the observational
constraint and (ii) the corrections described by Egs. (63)
and (64) are lower than 1072p,. We analyze two cases:

. 6371, —3p>° . 3393
(1) 0 < ayeh S% and (ii) —/323/—;’2’“’5054450 <0.

0.7 4

0.6

0.5 4

0.4

0.3

0.2 4

0.14

0.0 4

-0.25 -0.20 -0.15 -0.10 -0.05 0.00
Qag

(a)

As regards the values of ¢y and ¢, a first reasonable
choice is that both quantities are equal than Planck’s mass.
However, we found that no value of a, and A was able to
satisfy condition (ii) i.e. that the corrections to the potentials
are negligible inside the Sun. However, this last condition
can be achieved if we take ¢y < 0.1M; and g < 0.1M,
so we have decided to fix both magnitudes in theses values
(ho = Ppao = 0.1M,)). Figure 2 shows the region in the
a4 — A plane that meets conditions (i) and (ii) in the case

1642 . .
9=164° We note that a, > 0, necessarily implies

0<a4<

A< %2 Besides, for this case, |y — 1| decreases while r
increases, so its maximum value is reached when r = rg and
therefore the reported values in Fig. 2 are calculated taking
r = rg in Eq. (73). On the other hand, it follows from Fig. 2
that if |a,| <5 x 107%, all A values in the proposed range

10 1077 107® 10° 10 1073 1072 107!
laa]

(b)

FIG. 3. The parameter region that satisfies the observational bound for |y — 1| when —% <o <0 and 0<A<1.
The subfigure (b) represents the logarithmic mode of subfigure (a) in order to better understand the behavior of the variables when
ay approaches to 0. The blue regions symbolize the a; and A values that are consistent with the observational bound for r = rg while the

red ones, for r = dgar.
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fulfill the experimental condition for |y — 1|. While as ay
grows, the allowed region narrows very quickly, and the A
values get smaller (e.g foray, ~5 x 107>, A < 0.1)in such a
way that for the limit of A tending to 0, a, < 2.2 x 1072,

Fig. 3 shows the allowed region in the @, — A plane in
the case —ﬁ < ay <0.Wenote thatifay <0,0 <A < 1.
For certain values of a4 and A, the PPN parameter y is
maximum when r = rg (blue region) while for others, it is
reached when r = dga7 (red region). Besides, it follows
from Fig. 3 that if |ay| = 0.02, the relationship between the
variables is almost linear given by the approximate expres-
sion ay ~ —A + 3 x 1072, being a, ~ —0.25 the minimum
value for said variable. On the other hand, if |a,| < 0.02 the
behavior changes. Indeed, as @, approaches 0 a greater
number of A values are possible to satisfy the constraint. In
this way, if |ay <1x 1073 all A <0.7 values in the
proposed range fulfill the experimental condition for
|y — 1|. We note that although the allowed range for A is
between O and 1, the observational constraints restrict the
allowed values to 0 < A < 0.7.

VI. CONCLUDING REMARKS

In the present paper, we have analyzed the screening
mechanism of the fifth force in scalar-vector-tensor (SVT)
theories. These latter theories arise from unifying scalar
Horndeski and generalized Proca theories and keeping the
field equations at second order. For the broken U(1) gauge
symmetry, there is a propagating longitudinal scalar mode
in addition to the other standard five degrees of freedom.
Thus, to avoid the propagation of the fifth force and comply
with local gravity constraints, a screening mechanism in
SVT theories is required. The screening mechanism studied
here is similar to the Vainshtein mechanism but based on
both the derivative self-interactions of the vector field and
the interactions of the scalar field with the vector field and
curvature [72].

In order to obtain analytical solutions for the fields, we
carried out an analysis similar to the one presented in [72].
We assumed that the derivative self-interaction of the vector
field dominates on the interaction between the fields. In this
way, we studied a field configuration where the interaction
between the scalar and vector fields is a small perturbation
on the dynamics of this two-field system. This is a natural
choice because our proposal relied on studying the field
space dynamics around the model proposed in Ref. [72].
Thus, we found analytical solutions for the scalar and vector
profiles by studying a gravitating spherically symmetric
compact body. These solutions were obtained by first
studying the region inside the body and then outside it.
We found that for a dominant derivative self-interaction of
the vector field, the screening mechanism works efficiently,
and then the propagation of the additional longitudinal
mode is suppressed. This particular behavior was also found
in Ref. [72] for a vector-tensor theory. Furthermore, in the

presence of scalar-vector interaction, this result remains
correct as long as some conditions on the parameters are
satisfied. So, we have shown that the propagation of the
longitudinal mode is suppressed inside and outside the
compact body. This result extends the previous one found in
Ref. [72] for generalized Proca theories to the case of SVT
theories in the presence of scalar-vector interactions.
Finally, we corroborated all these analytical results by
numerically integrating the field equations.

Additionally, we have computed the corrections to the
Post-Newtonian parameter y. By applying the solar system
constraints, we have set bounds for the leading-order values
of the vector field and the scalar field as well as for the
nonminimal scalar-tensor coupling parameter. Our results
are compatible with those presented by A. De Felice et al.
[72] in the limit of a dominant derivative self-interaction of
the vector field. Besides, we point out that the inclusion of
the nonminimally coupled scalar field leads to additional
deviations from GR in the PPN parameter y.

Thus, we conclude that the present model, including both
interactions, can avoid the propagation of the additional
longitudinal mode arising in these theories. Therefore, it is
also compatible with local gravity constraints. This result
extends the previous one found in the literature for
generalized Proca theories to the case of SVT theories in
the presence of scalar-vector interactions.
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APPENDIX A: C; AND D,

In this appendix we show coefficients C; and D; 5

C = 432\P¢/24f2,p (A1)
C = 432\?4”3;)(’][3.)(3 + 4 ¥ Pud)s for, (A2)
C3= 23_2(3()/)3](3,)(3 - 262‘P¢/21/f3.x3 =20 f4.4, (A3)
Cs = ~4f44r (A4)
Cs = P32 frx, — @ f2 + ¥ (P)) for

+ 20 3.9+ 262 ' P f 3 x,

- 26—2¢()(/)2)(//f3,x3 +2f449"(r)

+2() fagp + 262 P3A" f3x, (AS)
Co = 432\P¢fx)(/f3,x3 + 44 f4 4 (A6)
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Cq=2f4—2e%f4, (A7)
Cs = 4™ 3 fa . (AB)
Co =4 s for — 26—2®()(’)3f3,x3 - 262\?4’%)(’]‘3,)(3 +2¢' f4.4r (A9)
Cio = 4f4, (A10)

Ci= <¢')2(—f2,xl) _)(,¢/f2,X2 - €2q>f2 + ez\P(fﬁg)zfz,F - ()(/)zfz.x3 - 2)(/¢’f3,x3 - 232\P¢A)('¢2f3,xg’ (Al 1)

Cio =44 f44— 43_2(1)()(/)3f3,x37 (A12)
Crs = 2f4 — 262°f,. (A13)
Ciy = 2f4, (A14)
Cis = 2f4, (A15)
Ci6 = —2f4, (Al6)
Ci7 =2 f3x,030 = 2f4®' + 24/ f4 4, (A17)
Cis = 21, (A18)
Cio = 2€2Tf3,x3¢A)(/¢i1 - 2‘3_2(1)f3,x3 )"+ 2f350'd 4+ 2f 440" (r) — f2e*® + 2(¢/)2f4,¢¢7 (A19)
Cao = 2149, (A20)

D, = 462‘Pf2.X|F¢31lP/¢/ +2e*¥ 122, X\ Fpad' )y + zeijfz,szébi)(/qﬂ + ezwfz,szqu)(/qbfq -2 1 (). (A21)
D, = 4¢*Y o x r i + 26 fo x, r 31 . (A22)
D; = —4€2Tf2,x]F¢fx¢/‘D/ - Zezwfz,szd’/za)/q)' + 832\yf2,X1F¢A¢/¢54 + 462\Pf2,X2F¢A)(/¢/A - 232®fﬁ (¢) (A23)
Dy = 4e* o x r3d +2¢*¥ forx,r 30 (A24)
Ds = —4€2Wf 2.X1F¢f2;¢/ - 2€Nf 2.X2F¢fx)( !, (A25)
Do = =4 1 x, rpa®' B Py + fox,x, 03T + 4*¥ fo 3 p 3V Y + 26 f1 x, rpad Pl
+ 3€2lyf 2,X,F¢/(¢f4)2 - 262‘{1]‘ 2,X2F¢A(D/){ /(/’Q + %f 2.X,X; %em”‘lj){ "+ 232\?]‘ 2,X2F¢%)(“P"
+ e fox,rax' ¥ls + %ezwfz,xzﬁ(/(fﬁ;x)z +26*%fr 40 + %emfz,xzﬂ/ + P fox, @ +27D fyy, (A26)
Dy = —4e*%f4 4, (A27)
Dy = _462lpf2,X1F¢,%1 (‘P/)zﬁb/ - 4€2Tf2,X1F¢A\P/¢/¢2 - ezwfz,xlFéb/(ﬁbﬁ;)z - 262\Ff2,X2F i)(/(qﬂ)z
- zewfz,szCbA)("P/@; - %eijfz,xzﬁ(/(@x)z - 232®f3,(/;)(/ - % ezq)fz.xzﬂ/ + %fz,xp@ ()(/)3

3 1
- frx ¢ + zfz,X]XQZ/(Cﬁ/)z + Efz,xzx2 U2 + frx, ) + foxx, (@) + 292@?744,’ (A28)
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Dy = 432®f4¢,

Dy = _462\Pf2,X|F¢A¢/¢,/4 - 2e2‘yf2_sz¢A;(’¢i\ + 262¢f4¢’

1 1
Dy = fox,x;pa® ¥ Pl + e fox p ' Py + Efz,xzx3 Pa® Y P + 5 e fox, v X Py
1
+ emfz,xlfﬁ”(”) - Zfz,xzx2 ()(/)24)”(”) - fz,x,xzﬁ(/qblfﬁ”(r) = fax,x, (¢')2¢”(’”) + 2€2®f3,(/;)(”

1 1 1
+ ) emfz,xz)(” + €4¢f2,¢ - Efz,xzx3 ()(/)2)(// + ) emfz,(/)xz)(/(ﬁ/ + e2®f2,¢X1 (¢/)2

1 1
- Efz.xlx//(fﬁl)z - Zfz,xzxz)(’)(”(f’, - fz.xlxgﬂ(')//gb/’

Dy =4 f3 50 + ® fax X +26* fr4x, 9.

Dy =4 340+ fax .0 + 2" f24x, ¢

Dy =26 f5 ppa + 8™V o prdy (W) + 8 fo prd i Wy + 2¢* fo prpa(9))7,
Dys = 862\{1f2,FF¢%\¢,’45

Dyg = 862\1}f2,FF¢317

Dy; = —12€2q’fz,pp¢i¢>’¢g + 2f2,x3F¢/3.;62®+2W +26*®f5 s + 832Wf2,FF¢i‘P”
+14¢*¥ f) pppa(P)? + 4€*¥ fo prdi

Dig = 20e* f5 prpidly — 8™ fo prh3 @'
Dy = 8e* f5 prd},

Dy = —126* 5 pr i

Dy, = =8¢ f, pr 3.

Dy = —fax,;rPal' d" = 2f2.x, rPad'@" + 212 %, rpa®y'¢" + 2f2,X,F¢Aq)/(¢/)2 + 262q)f2,(/)F¢A¢/
- f2,X2F¢A)(”¢/ + 2f2,X3F¢A®/()(/)2 - 662Wf2,FF¢Aq)/(¢,/4)2 - 232¢f2,F¢Aq)/ - 2€2¢f3 <0’l)¢A)(/
+ 3 2x,r P32 TP 4 3 o p = 2f 2 x,rbax' X" + 8XY fo pp W Py + 42 o prbady )
+3e* frrr (@),

Dy3 = 462@f 2,F¢A,

Doy =22 x, ;P V' P + fox, e &' &)y + 2f2,X1F¢AlP/(¢/)2 + fax,r (@) +2¢*C f5 x,ax’
=26 [ pp V' — 2 fo ply + 2f>x,rPa )" + f2,X3F()(/)2¢1/4 — 8¢ f5 prpy (V)3
- 1262‘Pf2,FF¢,% (qﬂ)zdx - 662Wf2.FF¢A\{‘/(¢fA)2 - EZTfZ,FF(¢f4)3

Das = 2f2x,,PaX' @ + 2f2.x,rPa(P)? —2*Cf2 pba + 2f 2 x,7pa (') — 6e>Y 5 prpa(d))?,

1 1
Dys = — Ef 2,X2F)(/¢1/4¢” -f 2,X1F¢/¢,/4¢” + ezq)f 2,¢F¢/¢,/4 - Ef 2,X2F)(//¢/¢1/4 - 2€2<Df 3.X; dax"

+ f2,X3F¢A62¢+2\P(¢14>2 + 2o pply — €4¢f2,x3¢A = fox, e X X" + e fo rr(P))* P,
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Dy = 2€2®f2.F¢,/4 - 4ezd)f3.x3¢A)(/, (A47)
Dyg = 2*®f) pply — 4€*® 3 x,bax’ . (A48)
Dyy = —462\Pf3,x3¢fx - 46—2®f3,x3 ('), (A49)

Dy = —462\Ff3.X3¢A¢f4 - 2f2.x3)(/ - 4f3,,/;¢/ - f2’X2¢/’

(AS50)
Dy = —8e2f5 %, (¥')2. (AS1)
Dy, = —86‘_24)]03,)(3 (). (A52)

APPENDIX B: GENERAL RELATIVITY

In GR, we have f,=f3;=0 and f, =M}/2, so
Egs. (14) and (15) read

2M?, M,

Qg —— (1 - o) = 2Porp,, - (BI)
2M2 2

rpl Vo 7"1 (1 —e®cr) = 2P, (B2)

Pm(r) =po for r < r, and p,,(r) =0 for r > r,, being
M, the reduced Planck mass. The gravitational potentials
inside and outside the body are given by

2 2
o =2 oo L por
2 3M, 2 3M,
e®cr = <1 — p0r2>‘1/2
3M},
for r < r,, and

3\ 1/2 3\ -1/2
e\PGR — 1— :002* , e(I)GR — 1— pO’;* . (B4)
3Mr 3Mr

for r > r,. In the following, we employ the weak gravity
approximation under which |¥| and |®| are much smaller
than 1, i.e.,

2

r*

D, Ep02 < 1.
M,

(BS)

This condition means that the Schwarzschild radius of the
source 7, & pors /My is much smaller than r,. Then, the
solutions (B3) and (B4) reduce, respectively, to

2

W0 (2-312), Dgg=PY forr<r,, (B6

GR 12M§1(r }") GR 6M§1 r<r ( )
2 2
Por o”

Wor & — s, GR =, forr>r,. (B7)
6M, 6M?
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