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The shapes of galaxies trace scalar physics in the late-Universe through the large-scale gravitational
potential. Are they also sensitive to higher-spin physics? We present a general study into the observational
consequences of vector and tensor modes in the early and late Universe, through the statistics of cosmic
shear and its higher-order generalization, flexion. Higher-spin contributions arise from both gravitational
lensing and intrinsic alignments, and we give the leading-order correlators for each (some of which have
been previously derived), in addition to their flat-sky limits. In particular, we find nontrivial sourcing of
shear EB and BB spectra, depending on the parity properties of the source. We consider two sources of
vector and tensor modes: scale-invariant primordial fluctuations and cosmic strings, forecasting the
detectability of each for upcoming surveys. Shear is found to be a powerful probe of cosmic strings,
primarily through the continual sourcing of vector modes; flexion adds little to the constraining power
except on very small scales (l≳ 1000), though it could be an intriguing probe of as-yet-unknown rank-
three tensors or halo-scale physics. Such probes could be used to constrain new physics proposed to explain
recent pulsar timing array observations.
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I. INTRODUCTION

Through current observational projects such as DES,
KiDS, and HSC (e.g., [1–4]), and forthcoming experiments
such as Rubin and Roman (e.g., [5,6]), we will measure the
apparent shapes of hundreds of millions of galaxies across a
wide range of redshifts. The technical barriers associated
with such measurements are huge; thanks to decades of
computational, observational, and theoretical work, we are
now in a regime where they can be made robustly,
facilitating their use in modern cosmological analyses.
The principal use of galaxy shape catalogs is as a probe

of the underlying matter density of the Universe (e.g., [7–
11]). Due to gravitational lensing, photons emitted from
some distant galaxy are continuously deflected by matter as
they traverse the vast expanses of space before reaching our
telescopes; as such, their deflection angle encodes the
gravitational potential, Φ, projected along the line of sight.
For coherent sources such as galaxies, the net effect of
lensing is to distort the shape of the galaxies, such that
an initially circular projection is distorted to an ellipse

(at leading order). Furthermore, the intrinsic shape of the
galaxy is itself a probe of Φ (which itself can contain novel
physics [e.g., [12–14] ]), through tidal interactions as the
galaxy forms (e.g., [15–20]). Collating the distortions
measured from millions of objects (accounting for their
significant noise) yields a large-scale map of Φ, or, through
the Poisson equation, the matter density, ρm.
a. Vectors and tensors A full description of gravitational

lensing involves not just the scalar part of the metric,
h00 ∝ Φ, but also vector and tensor parts, h0i and hij (e.g.,
[21–24]). The same holds also for the intrinsic shapes of
galaxies, again through the tidal tensor, tij [25], though
these have been little discussed for vector modes. As such,
the shapes of galaxies provide a window into the vector and
tensor sectors of the Universe that are hard to observe in
other probes (such as galaxy density, at leading order
[26,27]). In the standard cosmological model, we expect
such contributions to be trivially small; however, nonstand-
ard cosmological models can source vector and tensor
modes, and thus be probed using galaxy shapes.
There exist a large number of theoretical models capable

of generating vector and tensor modes in the late Universe.
Many such scenarios are rooted in inflation, principally*ohep2@cantab.ac.uk
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from the appearance of vector and tensor fields, for
example in vector inflation and axionic models optionally
including Chern-Simons interactions [28–35]. They can
also be sourced from single field inflation; whilst primor-
dial vectors decay quickly, primordial gravitational waves
(tensor modes) are a signature of many canonical scenarios
(see e.g., [36] for recent constraints). An array of late-time
sources are also possible, driven by old and new fields.
Many of these are motivated by our lack of understanding
of dark energy; modified gravity scenarios such as quintes-
sence, vector dark energy, and Chern-Simons general
relativity, could lead to a spectrum of new perturbations
which become relevant at late times, thereby evading
constraints from the cosmic microwave background (e.g.,
[29,37–41]). A network of cosmic strings (arising from
some symmetry breaking scenario, such as GUT models)
would also lead to continuous production of vector and
tensor modes, and thus distortion of galaxy shapes (e.g.,
[24,42,43]). These are of particular current relevance
(e.g., [44]) given their plausibility as a model for explaining
the recent detection of a stochastic gravitational wave
background from pulsar timing array experiments [45–48].
Finally, such physics could conceivably break parity
symmetry; to some extent, this is expected from primordial
phenomena such as baryogenesis (e.g., [32,49,50]), and is
of particular current interest given the potential detections
on the CMB and distribution of galaxies [51–58] (though
see the no-go theorems in [59,60]).
b. Shear and flexion To make use of the tranche of

cosmological information contained within galaxy shapes,
we require some way of distilling this information.
Conventionally, this is performed by considering the
“shear” of galaxies, γij, which measures their ellipticity
(e.g., [7,9]). Since this is a rank-two tensor, it is sensitive to
rank-two components of the metric, including ∂i∂jh00,
∂ih0j, hij, i.e., scalars, vectors, and tensors. In general,
the shear is computed for each galaxy of interest, which
are combined to make full-sky maps, usually expressed in
terms of electric and magnetic components, γE and γB. By
measuring the two-point correlation functions, particu-
larly hγEγE�i, we can probe the power spectrum of matter,
and thus constrain parameters such as the matter density
and clustering amplitude, as well as more esoteric physics
such as primordial non-Gaussianity from higher-spin
particles [12]. For vectors and tensors, there is informa-
tion also in the B-mode spectra, such as hγBγB�i, with
parity-violating physics appearing in the cross-
spectra hγEγB�i. Further information may also arise in
higher-order correlators and cross-spectra, which probe
bispectra and beyond (cf. [61] for scalar physics, and
[12,62–64] for other applications including [anisotropic]
primordial non-Gaussianity and higher-spin inflationary
phenomena).
The gravitational distortions of galaxies are not fully

encapsulated by the shear tensor, γij. At next order, one

can define the “flexion” components, F ijk, and Gijk,
which parametrize the octopole moments of an image
(e.g., [65–71]). This is a rank-three tensor, and thus sensitive
of scalar, vector, and tensor physics.1 It may also be a probe
of new physics sourced by some irreducible rank-three
tensor, such as torsion. In this case, the field can be written
in terms of “gradient” and “curl” modes; only the latter is
sourced by standard model physics, e.g., hF g�F gi. Flexion
has been discussed in a range of previous works, with the
general conclusion being that it becomes useful in scalar
analyses only on very small scales (e.g., [66,70]); here, we
include the flexion in a complete manner, and assess
whether the above conclusions remain true for vector
and tensor physics.
In the remainder of this work, we will present an in-depth

overview of the effects of vector and tensor physics on
shear and flexion, considering both intrinsic and extrinsic
(lensing) contributions, providing a general dictionary of
novel phenomena to galaxy shapes. To this end, we will
first set out our conventions for new physics in Sec. II via
their impact on the metric tensor, and give two motivating
examples of beyond-ΛCDM physics, before presenting a
pedagogical overview of galaxy shape observables in
Sec. III. In Sec. IV, we will discuss the sourcing of shear
and flexion by scalars, vectors, and tensors, before giving the
associated power spectra in Sec. V, including their small-
scale limiting forms. To put our results in context, Sec. VI
considers the ability of upcoming cosmic shear surveys
to detect vector and tensor modes using the two fiducial
models discussed in Sec. II (sourced by inflation and cosmic
strings). Finally, we conclude in Sec. VII. Appendix A
provides a brief summary of the two-sphere mathematics
used in this work, with Appendix B outlining our cosmic
string tensormodel. Finally,AppendicesC andDderive full-
sky power spectra associated with intrinsic and extrinsic
vector modes, and Appendix E lists the mathematical
kernels appearing in the power spectra.

II. SCALARS, VECTORS, AND TENSORS

A. General formalism

Weak gravitational interactions induce a distortion in the
background (FRW) metric of the Universe, which takes the
form

ds2 ¼ a2ðηÞðημν þ hμνÞdxμdxν; ð1Þ

where η and xi are conformal time and comoving space, ημν
is the flat-space metric, and aðηÞ is the scale factor (e.g.,
[72–74]). In the weak field limit, the perturbation hμν can be

1Whilst one can go further still and define a rank-four tensor, it
is not of interest to this work (though it can enable constraints on
spin-four primordial non-Gaussianity transferred to the scalar
sector [12]).
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decomposed into independent scalar, vector, and tensor
modes, with the scalar part taking the form

hS00¼−2Ψðx;ηÞ; hS0i ¼ hSi0¼ 0; hSij¼−2Φðx;ηÞδKij;
ð2Þ

in the conformal-Newtonian gauge, where Φ and Ψ are the
Bardeen potentials. In the absence of anisotropic stress,
Φ ¼ Ψ; this will be assumed below. In the presence of
vector modes, we can write

hV00¼ 0; hV0i ¼ hVi0¼Biðx;ηÞ; hVij ¼ ∂jHiþ∂iHj; ð3Þ

for divergence-free vectors Bi andHi. Again working in the
conformal-Newtonian gauge, we can set Hi ¼ 0 and
consider only Bi (equivalent to working with the gauge-
invariant potential −σg;i ¼ Bi − ∂ηHi [24]). Finally, the
tensor degrees of freedom can be written in the form (again
working in the conformal-Newtonian gauge)

hT00 ¼ 0; hT0i ¼ hTi0 ¼ 0; hTij ¼ hij; ð4Þ

where hij (not to be confused with hμν) is the transverse-
traceless rank-two tensor associated with gravitational
wave propagation.
in the discussion below, we will find it useful to expand

the metric perturbations in Fourier-space via the relations
(e.g., [75,76])

Φðx; ηÞ ¼
Z
k
eik·xΦðk; ηÞ;

Biðx; ηÞ ¼
Z
k
eik·x

X
λ¼�

eðλÞi ðk̂ÞBλðk; ηÞ;

hijðx; ηÞ ¼
Z
k
eik·x

X
λ¼�

eðλÞij ðk̂Þhλðk; ηÞ; ð5Þ

where
R
k≡

R
dk=ð2πÞ3. Here, we have decomposed the

vector and tensor modes in helicity states, defined as

eð�Þðk̂Þ≡ ðê1 ∓ iê2Þ=
ffiffiffi
2

p
; eð�Þ

ij ðk̂Þ≡eð�Þ
i ðk̂Þeð�Þ

j ðk̂Þ; ð6Þ

where fe1; e2; k̂g is a locally orthonormal basis set. As
such, the impact of scalar, vector, and tensor modes on the
metric, and thus gravitational lensing, is controlled by the
(scalar) helicity components fΦ; B�; h�g.
Most metric perturbations of interest in cosmology are

controlled by stochastic processes such as inflationary
quantum mechanical fluctuations, and are thus random
fields. As such, their properties can be encapsulated by
correlation functions, the simplest of which are power
spectra:

hΦðk;ηÞΦ�ðk0;η0Þi ¼PΦðk;η;η0Þ× ð2πÞ3δDðk−k0Þ
hBλðk;ηÞB�

λ0 ðk0;η0Þi ¼ δKλλ0 ×PBλ
ðk;η;η0Þ× ð2πÞ3δDðk−k0Þ

hhλðk;ηÞh�λ0 ðk0;η0Þi ¼ δKλλ0 ×Phλðk;η;η0Þ× ð2πÞ3δDðk−k0Þ;
ð7Þ

(noting that the mean of each field can be set to zero
according to the equivalence principle). Here, we have
assumed that the relevant physics is homogeneous (leading
to the Dirac delta) and isotropic (such that the correlators
depend only on jkj); furthermore, the different helicity
states are uncorrelated. Finally, we may optionally assert
parity conservation (i.e., symmetry under point reflections):
this enforces PBþ ¼ PB−

and Phþ ¼ Ph− , though this is not
generically required.2

Additional information on the metric perturbations is
provided by the Einstein equations, which specify the time
evolution of fluctuations. For the scalar sector, their
linearization leads to the well-known form Φðk; ηÞ≡
TSðηÞΦðk; η0Þ, where the transfer function TSðηÞ is con-
stant in matter domination, and we normalize to the value of
the spectrum today (at η ¼ η0). From the ij part of the
perturbed Einstein equation, we obtain the following
equations for the evolution of vector and tensor modes
(e.g., [77,78]):

B0
iðx; ηÞ þ 2HðηÞBiðx; ηÞ ¼ −16πGa2ðηÞ ∂

j

∇2
δTV

ijðx; ηÞ
h00ijðx; ηÞ þ 2HðηÞh0ijðx; ηÞ −∇2hijðx; ηÞ

¼ 16πGa2ðηÞδTT
ijðx; ηÞ: ð8Þ

Here, primes denote derivatives with respect to conformal
time, HðηÞ≡ a0ðηÞ=aðηÞ is the conformal Hubble param-
eter, and δTV;T

ij are the vector and tensor parts of the
perturbed stress-energy tensor. From this equation, it is
clear that vector and tensor modes can be either (a) pri-
mordial, evolving under the homogeneous equations, or
(b) dynamically sourced by phenomena contributing to the
nonscalar stress-energy tensor (such as cosmic strings and
neutrino free-streaming). In the next section, we will
consider examples of each form.

B. Motivating examples

1. Inflationary perturbations

In the standard paradigm, quantum fluctuations in
inflation source scalar perturbations to the metric, which
seed structure formation in the late Universe. A variety of
models also predict a primordial spectrum of vector and
tensor modes, for example due to gauge fields active in

2In gravitational wave literature, the total gravitational wave
power spectrum is often denoted Ph ¼ Phþ þ Ph− .
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inflation or large excursions of the inflaton. Conventionally,
such spectra are parametrized as power laws:

PBðkÞ ¼ rVðk0Þ ×
2π2

k3
Δ2

ζðk0Þ
�
k
k0

�
nV−1

;

PhðkÞ ¼ rTðk0Þ ×
2π2

k2
Δ2

ζ

�
k
k0

�
nT
; ð9Þ

where k0 ¼ 0.002 Mpc−1 is a fiducial scale, nX is a slope,
and rX specifies the amplitude relative to the scalar power
spectrum amplitude, Δ2

ζ . For nV ¼ 1, nT ¼ 0, we find a
scale-invariant form. Observations of the CMB place strong
constraints on tensors, with rTðk0Þ ≲ 0.03 [36,79] with a
fiducial value nT ¼ −rT=8. In some scenarios, the primor-
dial perturbations can violate parity symmetry (as discussed
in Appendix B of [25]); in this case, there is a different
amplitude for the two parity states, with

PB�ðkÞ¼ð1�ϵVÞPBðkÞ; Ph�ðkÞ¼ð1�ϵTÞPhðkÞ; ð10Þ

for chirality parameter ϵX.

To model vector and tensor modes in the late Universe,
we require the evolution of Bi and hij as well as the
primordial form. This is obtained by solving the homo-
geneous version of (9), yielding (e.g., [78]):

Biðk; ηÞ ¼ TVðηÞBiðk; η�Þ; TVðηÞ ¼
�
aðη�Þ
aðηÞ

�
2

hijðk; 0Þ ¼ TTðk; ηÞhijðkÞ; TTðk; ηÞ ≈
3j1ðkηÞ

kη
; ð11Þ

where η� is some reference scale and we give the approxi-
mate form for the tensor transfer function in matter
domination. In this regime, the vector modes decay away
quickly, whilst the tensor modes evolve much more
slowly, and propagate as a damped wave. For this reason,
vector modes are rarely considered in cosmology, since
those produced only by inflation are vanishingly small at
late times.
Incorporating these transfer function definitions, we can

write the power spectra in separable form:

hΦðk; ηÞΦ�ðk0; η0Þi ¼ TSðηÞTSðη0ÞPΦðkÞ × ð2πÞ3δDðk − k0Þ
hBλðk; ηÞB�

λ0 ðk0; η0Þi ¼ δKλλ0 × TVðηÞTVðη0ÞPBλ
ðkÞ × ð2πÞ3δDðk − k0Þ

hhλðk; ηÞh�λ0 ðk0; η0Þi ¼ δKλλ0 × TTðk; ηÞTTðk; η0ÞPhλðkÞ × ð2πÞ3δDðk − k0Þ; ð12Þ

this holds true in the linear regime for any primordial
perturbations in the early Universe.

2. Cosmic strings

An example of late-time new physics that could generate
detectable vector and tensor modes is cosmic strings (e.g.,
[24,41–43,80–82]). These are one-dimensional topological
defects that are a generic prediction of any grand uni-
fication model, sourced by phenomena such as spontaneous
symmetry breaking or from superstring theory. A network
of strings will contribute to the late-time energy momentum
tensor through anisotropic stress, and thus act as a non-
decaying source for both vector and tensor metric pertur-
bations Bi and hij. These source photon-baryon vorticity,

and thus generate CMB B-modes, allowing them to be
indirectly constrained [41]. They could also be a possible
source of the signal detected in recent pulsar timing array
experiments [44].
Full modeling of the cosmic string correlators is non-

trivial, and beyond the scope of this work. For our purposes,
we consider only a simple prescription (known as the
“velocity-dependent one-scale” model), which posits a
Poissonian sample of string segments with some tension
Gμ and intercommuting (i.e., reconnecting) probabilty P
(following [e.g., [24] ]). Each Nambu-Goto string segment
can be described by a position σ and a (conformal) time η on
the stringworld sheet, and give the following contribution to
the stress-energy tensor in the transverse gauge [43]:

δTμνðx; ηÞ ¼ μ

Z
dσ

�
1 −∂ηxi

−∂ηxj ∂ηxi∂ηxj − ∂σxi∂σxj

�
δDðx − xðσ; ηÞÞ: ð13Þ

Using the Einstein equations (8), we can compute the vector and tensor metric perturbations arising from the strings, and
thus the associated power spectrum of Bi and hij. For the vector modes, an explicit calculation can be found in [24]; for
tensors, we provide a derivation in Appendix B. Following a number of simplifying assumptions (detailed in Appendix B),
we obtain the following forms for the equal-time power spectrum of vector and tensor modes:
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PB�ðk; η; ηÞ ¼ ð16πGμÞ2 2
ffiffiffiffiffiffi
6π

p
v2rms

3ð1 − v2rmsÞ
4πχ2a4

H

�
a
kξ

�
5

erf

�
kξ=a

2
ffiffiffi
6

p
�
;

Ph�ðk; η; ηÞ ¼ ð16πGμÞ2
ffiffiffiffiffiffi
6π

p

9ð1 − v2rmsÞ
4πχ2a4

H

�
a
kξ

�
5

erf

�
kξ=a

2
ffiffiffi
6

p
�
½v4rms þ ð1 − v2rmsÞ2�; ð14Þ

where vrms and ξ are the average string velocity and
length, H is the Hubble parameter, and a is the
scale factor (dropping the η-dependence for clarity). As
in [24], we will assume the fiducial values ξ ¼ 1=ðHγsÞ,
v2rms ¼ ð1 − π=3γsÞ=2, with correlation length γs ¼
ðπ ffiffiffi

2
p

=3c̃PÞ1=2 for c̃ ≈ 0.23 and P ≈ 10−3 [82]. Notably,
the spectra do not depend on the helicity state, thus the
effects are parity-conserving. These forms will be used in
Sec. VI to forecast the detectability of the cosmic string
tension parameter Gμ from galaxy shape statistics.

III. GALAXY SHAPE OBSERVABLES

A. Shear and flexion: Single sources

A photometric galaxy dataset consists of a large number
of two-dimensional galaxy images, sorted into redshift
bins. As discussed above, our main interest is not the
images themselves, but their distortions; this can be para-
metrized in terms of the image moments (defined in some
locally orthogonal basis fê1; ê2g; e.g., [9]):

Qi1…in ≡
R
dθ⃗Iðθ⃗ÞΔθi1 � � �ΔθinR

dθ⃗Iðθ⃗Þ
; i∈ f1; 2g: ð15Þ

This depends on the observed brightness profile Iðθ⃗Þ, and
the position vector Δθ⃗, relative to some suitably defined
image center. Noting that the first moment Qi vanishes
(due to the definition of Δθ⃗), the simplest way to para-
metrize the image distortions is via the dimensionless shear
parameters:

γ1 ≡ 1

2

Q11 −Q22

ζ2
; γ2 ≡ 1

2

Q12 þQ21

ζ2
; ð16Þ

for ζ2 ≡Q11 þQ22. The complex shear, γ1 � iγ2, is a spin-
�2 quantity; under rotation of the êi basis vectors by an
angle φ, it transforms as ðγ1 � iγ2Þ → e�2iφðγ1 � iγ2Þ.
Analysis of almost all current photometric surveys proceeds
by measuring the shear of each galaxy, combining them to
produce redshift-binned maps, then using the statistics of
these to place constraints on cosmology, through a theo-
retical model of lensing and intrinsic effects [1–4,83].
Whilst the shear fully encapsulates the quadrupolar

distortions of the image, there is more information to be
found if one looks also to the octopole moments, through
the fully symmetric tensor Qijk [12,68,69]. Much as the

image quadrupole can be used to form spin-�2 quantities
(γ1 � iγ2), the image octopole can be used to form spin-�1
and spin-�3 quantities, known as flexion of the first and
second kind:

F 1 ≡ 4

9

Q111 þQ122

ξ
; F 2 ≡ 4

9

Q112 þQ222

ζ3
;

G1 ≡ 4

3

Q111 − 3Q122

ζ3
; G2 ≡ 4

3

3Q112 −Q222

ζ3
; ð17Þ

where the normalization is given in terms of the image
hexadecapole; ζ3 ≡Q1111 þ 2Q1122 þQ2222. Under rota-
tion by φ, the complex-valued flexions transform as
ðF 1 � iF 2Þ → e�iφðF 1 � iF 2Þ, ðG1 � iG2Þe�3iφ, thus
they are spin-one and spin-three respectively. Unlike a
number of previous works (e.g., [65,69]), we will take
flexion to be defined by (17), rather than considering them
to be a derived quantity arising in second-order lensing.
The effects of shear and flexion on a circular source are
depicted in Fig. 1.

B. Shear and flexion: Full-sky

By combining the shear and flexion measurements from
a large catalog of galaxies, we can produce maps of the
large-scale distortion fields binned in comoving distance, χ.
These are defined as

Xaðn̂Þ¼
Z

χH

0

dχnaðχÞXðχn̂;χÞ; X∈fγ;F ;Gg; ð18Þ

whereXðχn̂; χÞ is the shear or flexion at position x ¼ χn̂ and
comoving distance χ ¼ η0 − η (which acts as a time coor-
dinate, with horizon χH). Here, we have averaged over a bin
naðχÞ in distance (or redshift, via naðχÞdχ ≡ naðzÞdz); due
to the difficulties in measuring the redshifts of lensed
galaxies, these are usually broad.
In practice, computing maps of shear and flexion over

large swathes of the sky is nontrivial. Unless one restricts to
very small scales, it is imperative to account for the
variation of the basis vectors entering the shear and flexion
definitions (15) across the sky.3 To this end, we rely on

3Note that this is ignored in many previous flexion treatments
(though see [71] for a counterexample).
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full-sky mathematics (the basics of which are outlined in
Appendix A), first defining the basis vectors

m�ðn̂Þ¼
1ffiffiffi
2

p ðêθ ∓ iêφÞðn̂Þ¼
1ffiffiffi
2

p

0
B@

cosθcosφ� isinφ

cosθ sinφ∓ icosφ

−sinθ

1
CA;

ð19Þ

(e.g., [8,84]) where we henceforth omit the dependence
on n̂≡ ðθ;φÞ for clarity. These satisfy mi

�m�i ¼ 0,
mi

�m∓i ¼ 1, and mi
�n̂i ¼ 0. Given some locally orthogo-

nal vector set fê1; ê2; n̂g, these asymptote to m� ¼
ðê1 ∓ iê2Þ=

ffiffiffi
2

p
, restoring the definitions of Sec. III A.

As discussed in Appendix A, any rank-n tensor,
Xi1…inðn̂Þ, defined on the two-sphere can be written
uniquely in terms of the basis vectors m� and coefficients
with spin-�n, spin-�ðn − 2Þ, etc. As such, the (redshift-
binned) image quadrupole can be written in a coordinate
independent form in terms of spin-�2 coefficients �2γðn̂Þ
(which generalize the complex γ1 � iγ2 quantities defined
above):

1

ζ2
Qijðn̂Þ ¼ þ2γðn̂Þmþimþj þ −2γðn̂Þm−im−j: ð20Þ

Similarly, the octopole distortions can be decomposed
into a spin-�1 piece �1F ðn̂Þ and a spin-�3 contribu-
tion �3Gðn̂Þ:

1

ζ3
Qijkðn̂Þ ¼ −

9

8

�
F ijkðn̂Þ þ

1

3
Gijkðn̂Þ

�
;

F ijkðn̂Þ≡ −
1

2
ffiffiffi
2

p ½þ1F ðn̂Þðηijmþk þ 2 permsÞ þ−1 F ðn̂Þðηijm−k þ 2 permsÞ�

Gijkðn̂Þ≡ −
1ffiffiffi
2

p ½þ3Gðn̂Þmþimþjmþk þ−3 Gðn̂Þm−im−jm−k�; ð21Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Visual depiction of weak lensing distortions applied to a simulated galaxy. The unlensed galaxy in the first figure corresponds
to a perfect Gaussian circle (neglecting shape noise for the purpose of visualization), and the following figures show the distortion of that
galaxy with 10% convergence/shear (γ1;2 and κ), 1% flexion of the first kind (F 1;2), and 10% flexion of the second kind (G1;2). The
differing spins (0, 2, 1, 3 in the four columns respectively) show different characteristic distortion shapes that can be constrained from
real galaxies. Figure created using the flexion code of [65].
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where ηij ≡ diagð1; sin2 θÞ is the spatial metric on the two-sphere. Here, �1F and �3G are the full-sky generalization of the
first and second flexion introduced previously. In the complex notation of [65,66], þ1F ¼ F , −1F ¼ F �, with an analogous
result for the spin-�3 flexion.
Since the basis functions are orthogonal, (20) and (21) may be used to extract the shear and flexion directly:

�2γðn̂Þ ¼
1

ζ2
mi∓mj∓Qijðn̂Þ →

1

2ζ2
½ðQ11 −Q22Þ � iðQ12 þQ21Þ�ðn̂Þ

�1F ðn̂Þ ¼ 8

9

ffiffiffi
2

p

ζ3
mi∓mj∓mk

�Qijkðn̂Þ →
4

9ζ3
½ðQ111 þQ112Þ � iðQ221 þQ222Þ�ðn̂Þ

�3Gðn̂Þ ¼
8

3

ffiffiffi
2

p

ζ3
mi∓mj∓mk∓Qijkðn̂Þ →

4

3ζ3
½ðQ111 − 3Q112Þ � ið3Q122 −Q222Þ�ðn̂Þ; ð22Þ

where we have taken the local limit on the right-hand side
(RHS), finding equivalence with the previous results. For
the remainder of this paper, we will work only with the
shear and flexion components of definite spin, i.e., �2γðn̂Þ,
�1F ðn̂Þ and �3Gðn̂Þ as in previous work using the full-sky
shear (e.g., [8,71] ).

C. Angular spectra

Much as Fourier modes are a convenient manner in
which to characterize information for 3D observables,
spherical harmonic coefficients provide a natural descrip-
tion of quantities on the two sphere (e.g., [7,8]). In general,
a spin-s quantity sXðn̂Þ can be written [cf. (A7)]

sXðn̂Þ ¼
X∞
l¼0

Xl
m¼−l

sXlmsYlmðn̂Þ ↔ sXlmðn̂Þ

¼
Z

dn̂ sXðn̂Þ½sYlmðn̂Þ��; ð23Þ

where sXlm are the coefficients of sXðn̂Þ, and sYlmðn̂Þ are
spin-weighted spherical harmonics, which are discussed in
Appendix A. In this work, the quantities of interest are the
shear, and the first and second flexion, whose harmonic
coefficients are respectively �2γlm, �1F lm, and �3Glm.
These can be further decomposed into components with
definite behavior under parity-transforms:

�2γlm ¼ γElm � iγBlm; �1F lm ¼ F c
lm � iF g

lm;

�3Glm ¼ Gc
lm � iGg

lm; ð24Þ

where E and c (“curl”) are parity-even, whilst B and g
(“gradient”) are parity-odd.
Using the harmonic coefficients, we can form angular

power spectra, which are the primary quantity of interest in
photometric analyses. For two fields X and Y (e.g., γE and
F c), this is defined by

CXY;ab
l ≡ hXa

lmY
b
lmi; ĈXY;ab

l ≡ 1

2lþ 1

Xl
m¼−l

Xa
lmY

b
lm

ð25Þ

for redshift bins a, b, where the expectation is
taken over the underlying random fields. The RHS gives
the standard power spectrum estimator. For a parity-
conserving source, EE, BB, gg, cc, Eg, and Bc spectra can
be nonzero; however EB, gc, Ec, and Bg spectra indicate
parity-violating physics, since the overall spectrum is
parity-odd.

IV. SOURCES OF SHEAR AND FLEXION

We now ask the following question: what are the
possible sources of galaxy shear and flexion, and how
do these depend on scalar, vector, and tensor perturbations
in the Universe? Three possibilities arise: (1) intrinsic
distortions present in the true galaxy shapes induced by
tidal fields, (2) extrinsic distortions from weak lensing of
the galaxy photons by the intervening potentials, and
(3) stochastic contributions, from observational effects
and noise. Below, we consider each in turn, before
discussing the corresponding power spectra in Sec. V.

A. Intrinsic alignments

The galaxy brightness profile, Iðθ⃗Þ, probes the projected
shape of the galaxy, and is thus sensitive to any physical
processes that source nonsphericity, such as large-scale
tidal fields. Understanding the intrinsic contributions from
scalar degrees-of-freedom has been the subject of a large
array of works (e.g., [15–20,85–88]); comparatively less
attention has been paid to higher-spin perturbations and
flexion (though see [70] for an overview of the scalar
sources of intrinsic galaxy flexion, and [22,23,25,85,87,89]
for a detailed discussion of tensorial intrinsic alignments).
As discussed in Sec. III A, galaxy shear and flexion

measure the quadrupole and octopole image moments, Qij
and Qijk. These are themselves projections of the three-
dimensional galaxy shape, quantified by the generalized
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moment of mass tensor Ii1…in ∝
R
dx ρðxÞΔxi � � �Δxn for

mass distribution ρðxÞ:

Qijðx; χÞ ∝ Pi0
i P

j0
j

�
Ii0j0 ðx; χÞ −

1

3
δKi0j0TrIklðx; χÞ

�
;

Qijkðx; χÞ ∝ Pi0
i P

j0
j P

k0
k Ii0j0k0 ðx; χÞ ð26Þ

(e.g., [85]), where Pij ≡ δKij − n̂in̂j is a projection operator
and i; j;…∈ f1; 2; 3g. Crucially, the moment of mass
tensor traces the metric perturbations, which thus leads
to an intrinsic shear and flexion contribution.
In the simplest approximation, we can assume that the

three-dimensional galaxy shape responds linearly to the
Newtonian potential Φ; invoking symmetry and the equiv-
alence principle, we find IijðxÞ ∝ ∂i∂jΦðxÞ, IijkðxÞ ∝
∂i∂j∂kΦðxÞ (e.g., [16]). Notably, the image quadrupole
depends on the trace-free combination tijðxÞ≡ ð∂i∂j
− 1

3
δKij∇2ÞΦðx; χÞ, thus we are assuming that Qij responds

linearly to the local tidal field (e.g., [15,16,18,70,85]), i.e.,

1

ζ2
Qijðx; χÞ

����
int

∝ Pi0
i P

j0
j ti0j0 ðx; χÞ;

1

ζ3
Qijkðx; χÞ

����
V;int

∝ χPi0
i P

j0
j P

k0
k ∂ði0 tj0k0Þðx; χÞ; ð27Þ

inserting a factor of χ to the second equation on dimensional
grounds. Using (22), we thus obtain the intrinsic contribu-
tions to shear and flexion from a scalarmetric perturbation at
some distance χ:

�2γðx;χÞjS;int¼ bSðχÞ½mi∓mj∓∂i∂j�Φðx;χÞ;

�1F ðx;χÞjS;int¼
�
8

ffiffiffi
2

p

9
χb̃SðχÞ

�
½mi∓mj∓mk

�∂i∂j∂k�Φðx;χÞ;

�3Gðx;χÞjS;int¼
�
8

ffiffiffi
2

p

3
χb̃SðχÞ

�
½mi∓mj∓mk∓∂i∂j∂k�Φðx;χÞ;

ð28Þ

using that Pi
jm

j
� ≡mi

� and δKijm
i
�m

j
� ¼ 0. This introduces

bias parameters bSðχÞ and b̃SðχÞ: these quantify the linear
responses of the shear and flexion to scalar metric pertur-
bations, and depend primarily on the formation epoch
of the galaxy. Working in 2aðχÞ=ð3H2

0ΩmÞ units (such
that∇2Φ ∼ δ in the Poisson equation), each bias is expected
to be Oð1Þ [70,85,86], as confirmed experimentally [17].
To form the observables, (28) must be averaged over a
redshift bin, as in (18).
By a similar logic, vector and tensor metric perturbations

also lead to distortions in the galaxy shape. Whilst these
could be modeled using the above symmetry arguments
(which imply that Qij is a projection of ∂ðiBjÞ and hij), this
does not properly account for time evolution. Here, we

instead adopt the approach of [22,23], which computes the
shape distortion by first estimating the induced tidal field,
tij. Using Fermi normal coordinates and assuming the
synchronous gauge such that h0i ¼ 0, we have [22,84]

tijðx; χÞ ¼
1

2
½a−1ðah0ijÞ0 þ h00;ij�ðx; χÞ: ð29Þ

For scalar perturbations [defined by (2), with time-invariant
Φ], this recovers the results of (28) [cf., [15,17] ]. For
vector perturbations, the synchronous gauge implies
h0ijjsync ¼ −2Bði;jÞjcN (for the previously used conformal

Newtonian gauge variable Bi), thus

tijðx; χÞjV ¼ −½a−1ðaBði;jÞÞ0�ðx; χÞ

¼ −
�
∂

∂η
þ aðχÞHðχÞ

�
Bði;jÞðx; χÞ

≡ −IVBði;jÞðx; χÞ; ð30Þ

defining a time-derivative operator IV for simplicity.
Similarly, the tidal field induced by a tensor mode is
given by

tijðx;χÞjT ¼
1

2

�
∂

∂η2
þaðχÞHðχÞ ∂

∂η

�
hijðx;χÞ≡1

2
IThijðx;χÞ;

ð31Þ

defining the IT operator. Using (27), the leading-order
shear and flexion contributions from vector and tensor
metric perturbations are given by [cf., [25] ]

�2γðx;χÞjV;int¼bVðχÞ½mi∓mj∓∂i�IVBjðx;χÞ;

�1F ðx;χÞjV;int¼
�
8

ffiffiffi
2

p

9
χb̃VðχÞ

�
½mði∓mj∓mkÞ

�∂i∂j�IVBkðx;χÞ;

�3Gðx;χÞjV;int¼
�
8

ffiffiffi
2

p

3
χb̃VðχÞ

�
½mði∓mj∓mkÞ∓∂i∂j�IVBkðx;χÞ;

ð32Þ

and

�2γðx; χÞjT;int ¼ bTðχÞ½mi∓mj∓�IThijðx; χÞ;

�1F ðx; χÞjT;int ¼
�
8

ffiffiffi
2

p

9
χb̃TðχÞ

�
½mði∓mj∓mkÞ

�∂i�IThjkðx; χÞ;

�3Gðx; χÞjT;int ¼
�
8

ffiffiffi
2

p

3
χb̃TðχÞ

�
½mði∓mj∓mkÞ∓∂i�IThjkðx; χÞ:

ð33Þ

As before, the bias parameters bXðχÞ and b̃XðχÞ encode the
responses of shear and flexion to metric perturbations
(which we allow to differ between scalars, vectors, and
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tensors, for full generality), and are expected to be Oð1Þ in
2aðχÞ=ð3H2

0ΩmÞ units, whence we can switch between
density and potential fluctuations [22,23,86], with bX ∼ 0.1
found experimentally [17]. Given these results, coupled
with the power spectra of Φ, Bi, and hij (7), we may
compute the statistics of shear and flexion; this is detailed
in Sec. V.
The above derivation makes a number of limiting

assumptions. Firstly, we assume that the galaxy at some
lookback time η ¼ η0 − χ traces the tidal field at the same
same time, rather than its full history. Secondly, we neglect
dependence of the bias parameters bV;T on the wavelength
of vector or tensor mode. A number of works have
considered a more nuanced “fossil” approach [23,25,89],
by explicitly computing the impact of tidal fields on the
second-order density field, both in theory and simulations.
For primordial gravitational waves, this was found to
somewhat enhance the intrinsic alignment signal, and give
some scale-dependence [cf. [87], Fig. 1]. For the purposes
of forecasting, we neglect these effects since (a) a uniform
rescaling is fully degenerate with the unknown bias
parameters if the perturbations are separable in time and
space, and (b) the scale dependence is weak for tensor (and
vector) modes with k≳ 10−3h Mpc−1. We proceed with a
general warning however that the precise values of vector
and tensor biases are not well understood.

B. Weak lensing

Next, we consider extrinsic distortions to the observed
galaxy shape, which arise from the gravitational deflection
of photons as they travel from the source galaxy to the
observer (e.g., [7,8,90]). This is a well-known source of
shear, convergence, and flexion [7,65,66,69], and encodes
information on all types of metric perturbation.
The effects of lensing are encoded in the transformation

between unlensed and lensed coordinates, θi and θ0i;

θ0iðθ⃗Þ ¼ Aijθ
j þ 1

2
Dijkθ

jθk þOðθ3Þ; ð34Þ

where the matrices Aij and Dijk are linear transformations
of the scalar perturbation Φðx; χÞ (in the weak-field
limit):

Aijðx; χÞ ¼ δijK − ∂
i
θ∂

j
θϕðx; χÞ;

Dijkðx; χÞ ¼ −∂iθ∂
j
θ∂

k
θϕðx; χÞ ð35Þ

(e.g., [7,65,90]). This uses the projected potential ϕðx; χÞ
for a source at x≡ χn̂ and redshift χ:

ϕðχn̂; χÞ ¼ 2

c2

Z
χ

0

dχ0
χ − χ0

χχ0
Φðχ0n̂; χ0Þ; ð36Þ

(e.g., [8]), which integrates over the distribution of matter
between the source (at χ0 ¼ χ) and the observer (at χ0 ¼ 0).

Associated with this transformation is a distortion in the
galaxy image, Iðθ⃗Þ, which manifests as a quadrupole
moment (and beyond). From the definitions in Sec. III, this
sources convergence, shear, and flexion fields of the form:

−Aijðx;χÞ¼κðx;χÞηijþþ2 γðx;χÞmþimþjþ−2 γðx;χÞm−im−j

Dijkðx;χÞ¼F ijkðx;χÞþGijkðx;χÞ ð37Þ
(e.g., [8]), where F ijk and Gijk can be written in terms of
spin-�1 and �3 components as in (21).4 Unlike for the
intrinsic contribution, there is no prefactor of 1=3 in front of
Gijk, thus the spin-�3 flexion is here enhanced relative to the
spin-�1 form. In the local limit, (37) reduces to the standard
relations (e.g., [65,66]):

Aij ¼
�
1 − κ − γ1 −γ2

−γ2 1 − κ þ γ1

�
;

Dij1 ¼ −
1

2

�
3F 1 þ G1 F 2 þ G2

F 2 þ G2 F 1 − G1

�
;

Dij2 ¼ −
1

2

�
F 2 þ G2 F 1 − G1

F 1 − G1 3F 2 − G2

�
; ð38Þ

where �2γ ¼ γ1 � γ2 etc. As in (22), orthogonality of the
basis vectors allows us to derive expressions for the shear
and flexion in terms of ϕ:

�2γðχn̂;χÞjS;ext ¼ ½m∓im∓j∂
i
θ∂

j
θ�ϕðχn̂;χÞ;

�1F ðχn̂;χÞjS;ext ¼
ffiffiffi
2

p
½m∓im∓jm�k∂

ði
θ ∂

j
θ∂

kÞ
θ �ϕðχn̂;χÞ;

�3Gðχn̂;χÞjS;ext ¼
ffiffiffi
2

p
½m∓im∓jm∓k∂

i
θ∂

j
θ∂

k
θ�ϕðχn̂;χÞ: ð39Þ

Alternatively, shear and flexion can be written in terms of
“spin-derivatives,” themselves defined in Appendix A. In
this form:

þ2γðχn̂; χÞjS;ext ¼
1

2
ððϕðχn̂; χÞ;

þ1F ðχn̂; χÞjS;ext ¼ −
1

6
½ððð̄þ ðð̄ðþ ð̄ðð�ϕðχn̂; χÞ

þ3Gðχn̂; χÞjS;ext ¼ −
1

2
ðððϕðχn̂; χÞ ð40Þ

(e.g., [8]), where ð (ð̄) raises (lowers) the spin by one, and
components with negative spins are obtained by interchang-
ing ð and ð̄. This allows for convenient computation of the
statistics of shear and flexion from those of ϕ.
Vector and tensor perturbations provide an additional

source of photon deflections, and thus contributions to
shear and flexion. To obtain their form, we use the general
gauge-invariant results of [[84], Eq. 64] (see also [21]),
finding:

4We will ignore convergence contributions in this work since
they are largely determined by shear (though see also [91]).
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�2γðχn̂; χÞjS;ext ¼ 2

Z
χ

0

dχ0
χ0

χ
ðχ − χ0Þmi∓mj∓∂i∂jΦðχ0n̂; χ0Þ;

�2γðχn̂; χÞjV;ext ¼ −
Z

χ

0

dχ0
��

1 − 2
χ0

χ

�
mk∓∂�Bk þ

χ0

χ
ðχ − χ0Þðn̂kmi∓mj∓∂i∂jBkÞ

�
ðχ0n̂; χ0Þ;

�2γðχn̂; χÞjT;ext ¼ −
1

2
h�ðχn̂; χÞ −

1

2
h�ð0; 0Þ

−
Z

χ

0

dχ0
��

1 − 2
χ0

χ

�
½ð∂�hlkÞml∓n̂k� −

1

χ
h� þ χ0

2χ
ðχ − χ0Þmi∓mj∓ð∂i∂jhklÞn̂kn̂l

�
ðχ0n̂; χ0Þ; ð41Þ

where hijð0; 0Þ is the tensor perturbation evaluated at the
observers position, ∂� ≡mi∓∂i, and h� ≡mi∓mj∓hij. Not-
ing that ∂iθ ¼ χ−1Pi

j∂j, it is straightforward to show the
scalar piece equals that of (39). For the vector piece
(which is equivalent to that of [24]), we have two
contributions, depending on the first and second deriva-
tives of B respectively; in practice, the second term is
expected to dominate on all but the largest scales. The
tensor spectrum contains unintegrated terms correspond-
ing to the field at the source and observer positions; the
former contributes analogously to the intrinsic piece
discussed in Sec. IVA, and can be absorbed by redefining
IThij → ½IT − 1=ð2bTðχÞÞ�hij. The latter piece contrib-
utes only to the l ¼ 2 modes [22,84], and acts to remove
the k → 0 limit.
The approach of [84] may be further extended to

compute the lensing contribution to the flexion parameters
F and G from vector and tensor modes. However, this is
nontrivial, and, foreshadowing the conclusions of Sec. VI,
unlikely to be of significant practical use. For our purposes,
we will make the following assumption for vector and
tensor sources:

þ1F ðχn̂; χÞjext ≈ −ð̄þ2γðχn̂; χÞjext;
þ3Gðχn̂; χÞjext ≈ −ðþ2γðχn̂; χÞjext;
−1F ðχn̂; χÞjext ≈ −ð−2γðχn̂; χÞjext;
−3Gðχn̂; χÞjext ≈ −ð̄−2γðχn̂; χÞjext: ð42Þ

This is justified by noting that the flexion lensing tensor
Dijk ¼ ∂

i
θA

jk contains one additional spin-derivative com-
pared to Ajk (since m−i∂

i
θ ¼ −ð and mþi∂

i
θ ¼ −ð̄ locally).

On small scales, ð̄ and ð permute, thus this recovers the
scalar results of (40) (e.g., [65,66]). In practice, the
contribution of flexion is strongly subdominant outside
the small-scale limit, thus this approximation is generally
appropriate.

C. Other sources

The last major source of shear and flexion is stochasticity
due to both experimental noise and the intrinsic variation in

galaxy shapes (e.g., [1]). Here, we assume that the local
measurement of a given observable, X∈ fγ;F ;Gg, follows
a Gaussian distribution with variance σ2X, and (ignoring
other sources) zero mean, i.e.,

X̂i ∼N
�
0;
σ2X
2

�
; i∈ f1; 2g; ð43Þ

for the component projected onto the êi axis. We will
further assert that the noise is uncorrelated (such that
each galaxy is independent), and that the variances are
independent of redshift and position. This yields a
Poissonian distribution, with a simple power spectrum
(cf. Sec. III C). Typical values for the noise amplitudes
are σγ ¼ 0.4 [86], and σF ¼ σG=3 ¼ 0.009 sr−1 [69]; the
additional factor of three in the second flexion arises from
its definition in (21).
Additional contributions to shear and flexion arise from

higher-order effects, neglected in the above sections. Under
our previous assumption, conventional physics generates
only parity-conserving modes (γE, F g, Gg), thus any robust
detection of the parity-breaking modes (γB, F c, Gc) would
imply evidence for new phenomena. In praxis, second-
order effects can generate B- and c-modes even from scalar
sources, and thus yield correlators such as hγBγB�i, which
requires new physics. For example, the intrinsic alignment
of galaxies contains a term ∝ tijδ (for matter overdensity δ)
due to the nonuniform distribution of source galaxies; as
shown in [15,25], this generates both shear E and B
components, whose spectra involve the convolution of
two PΦ spectra (via the Poisson equation). Similarly,
post-Born effects in weak lensing lead to a shear B-mode
signal [92], with another generated from the relation
between shear and “reduced shear,” g≡ γ=ð1 − κÞ [22].
In the forecasts of Sec. VI, we will consider contributions
of these phenomena to the E- and g-mode spectra (since
they are heavily subdominant), but add a rough estimate of
their size in the B-mode spectra, following previous works.
Importantly, such effects cannot contribute to the parity-
odd correlators such as EB, since their underlying physics
is parity-conserving. Ignoring systematic contamination,
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this makes EB-spectra a bountiful place in which to search
for new physics.

V. POWER SPECTRA

Armed with the statistics of scalar, vector, and tensor
perturbations and their relation to shear and flexion, we
may now proceed to compute the observed angular power
spectra, CXY

l . We will first compute the general full-sky

form for both intrinsic and extrinsic sourcing, before
considering the flat-sky simplifications in Sec. V B.

A. Full-sky spectra

In the weak-field regime, the observable quantities γE;B,
F g;c, and Gg;c are linear transformations of the underlying
metric perturbations (Sec. III). As such, the power spectra,
CXY
l , depend on two copies of the perturbation in question

and can be written in the general form

CXY
l ðχ; χ0ÞjS ¼

2

π

Z
∞

0

k2dkFX;S
l ðk; χÞFY;S�

l ðk; χ0ÞPΦðk; χ; χ0Þ

CXY
l ðχ; χ0ÞjV ¼ 2

π

Z
∞

0

k2dkFX;V
l ðk; χÞFY;V�

l ðk; χ0Þ½PBþðk; χ; χ0Þ � PB−
ðk; χ; χ0Þ�

CXY
l ðχ; χ0ÞjT ¼ 2

π

Z
∞

0

k2dkFX;T
l ðk; χÞFY;T�

l ðk; χ0Þ½Phþðk; χ; χ0Þ � Ph−ðk; χ; χ0Þ�; ð44Þ

where the transfer function FX;P
l encodes the (local)

response of the field X to the perturbation P∈ fS; V; Tg,
and the second and third lines have a negative sign only for
parity-odd spectra. In practice, the observables are binned
in redshift via (18), which modifies the kernels

FX;S
l ðk; χÞ → FX

l;aðkÞ≡
Z

χH

0

dχ naðχÞFX;S
l ðk; χÞ ð45Þ

and CXY
l ðχ; χ0Þ → CXY

l;ab (absorbing the redshift-dependent
parts of PΦ; PB; Ph into the transfer functions). In the
below, we will present the relevant transfer functions,
which fully specify the observable power spectra.

1. Intrinsic contributions

As shown in [84], the angular power spectrum of a
general spin-�s quantity �sWðχn̂; χÞ (with s > 0), can be
obtained as follows:
(1) Compute the contributions to �sWðχn̂; χÞ arising

from a single Fourier mode parallel to the ẑ axis, i.e.,
k ¼ kẑ, and a single helicity state λ.

(2) Apply spin-raising and spin-lowering operators
(see Appendix A) to �sWðχn̂; χ; kẑ; λÞ to obtain

the spin-zero quantities ð̄sþsWðχn̂; χ; kẑ; λÞ and
ðs−sWðχn̂; χ; kẑ; λÞ.

(3) Extract the spherical harmonic coefficients,

�sWlmðχ; kẑ; λÞ, by integrating the scalars against
Y�
lmðn̂Þ (A12). These may be split into E and B (or g

and c) contributions, as in Sec. III C.
(4) Compute the angular power spectra by taking the

expectation of twoWX
lmðχ; kẑ; λÞ functions, integrat-

ing over Fourier modes k and averaging over m. Via
isotropy, this gives the full power spectrum from all
k modes, not just k ¼ kẑ, and allows extraction of
the associated transfer functions via (44).

In Appendix C, we utilize this scheme to derive the shear
and flexion power spectra sourced by intrinsic vector
alignments (a novel feature of this work). Since the
computations for scalars and tensors are analogous (and
the shear results can be found in previous work, e.g.,
[22,85] for scalars, though with less attention paid to parity-
breaking contributions), we present only the final expres-
sions here. Before redshift integration, the shear kernels are
given by (dropping factors of il)

FγE;P
l ðk; χÞjint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ sPÞ!
ðlþ 2Þ!ðl − sPÞ!

s
bPðχÞ
2χ2

�
χffiffiffi
2

p
�

sP
Re½Q̂ðþ1Þ

γ;P ðxÞ� jlðxÞ
xsP

IPðχÞ

FγB;P
l ðk; χÞjint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ sPÞ!
ðlþ 2Þ!ðl − sPÞ!

s
bPðχÞ
2χ2

�
χffiffiffi
2

p
�

sP
Im½Q̂ðþ1Þ

γ;P ðxÞ� jlðxÞ
xsP

IPðχÞ; ð46Þ

where P∈ fS; V; Tg labels the source-type, with corre-
sponding source spin sP ¼ f0; 1; 2g. This involves two
sets of operators: (a) the time-derivative operators IP of
Sec. IVA (with ISðχÞ ¼ 1), acting on the source power

spectrum; and (b) the spatial Q̂γ;PðxÞ operators acting on
the spherical Bessel functions, jlðxÞ, with x ¼ kχ. These
are low-order polynomials in x and ∂x, and their form is
given explicitly in (E1) of Appendix E.
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A similar calculation yields the flexion kernels:

FF g;P
l ðk; χÞjint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!ðlþ sPÞ!
ðlþ 1Þ!ðl − sPÞ!

s
4b̃PðχÞ
27χ2

�
χffiffiffi
2

p
�

sP
Re½Q̂ðþ1Þ

F ;P ðxÞ�
jlðxÞ
xsP

IPðχÞ

FF c;P
l ðk; χÞjint ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!ðlþ sPÞ!
ðlþ 1Þ!ðl − sPÞ!

s
4b̃PðχÞ
27χ2

�
χffiffiffi
2

p
�

sP
Im½Q̂ðþ1Þ

F ;P ðxÞ�
jlðxÞ
xsP

IPðχÞ

FGg;P
l ðk; χÞjint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 3Þ!ðlþ sPÞ!
ðlþ 3Þ!ðl − sPÞ!

s
4b̃PðχÞ
3χ2

�
χffiffiffi
2

p
�

sP
Re½Q̂ðþ1Þ

G;P ðxÞ� jlðxÞ
xsP

IPðχÞ

FGc;P
l ðk; χÞjint ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 3Þ!ðlþ sPÞ!
ðlþ 3Þ!ðl − sPÞ!

s
4b̃PðχÞ
3χ2

�
χffiffiffi
2

p
�

sP
Im½Q̂ðþ1Þ

G;P ðxÞ� jlðxÞ
xsP

IPðχÞ; ð47Þ

these depend on a new set of derivative operators Q̂F ;P and
Q̂G;P given in (E2) and (E3) respectively. Each of these
kernels can be binned in redshift via (45).
Notably, the above scalar operators Q̂X;SðxÞ are explicitly

real, thus the scalar B- and c-mode transfer functions
vanish. This is as expected; a scalar contains insufficient
degrees-of-freedom to generate parity-breaking distortions.
As such, if one is interested only in scalar physics (which is
usually the case), we need analyze only E and g mode
spectra. In contrast, vector and tensor modes generically
source both E=g and B=c distortions, making the latter
observable a smoking gun for new physics (once noise and
higher-order effects are taken into account). Furthermore,

we note that the vector and tensor spectra entering (44)
involve either the sum or the difference of the two helicity
spectra; this enters in the EB, gc, Ec, and Bg correlators,
and implies that such spectra provide access to the parity-
violating physical sector (e.g., [25]).

2. Extrinsic contributions

For scalar perturbations, computation of the weak
lensing power spectrum is straightforward [8]. First, we
write the definition of shear and flexion in terms of the
lensing potential ϕ (40), expanding the latter in spherical
harmonics:

þ2γðχn̂; χÞjS;ext ¼
1

2

X
lm

ϕlmðχÞððYlmðn̂Þ;

þ1F ðχn̂; χÞjS;ext ¼ −
1

6

X
lm

ϕlmðχÞ½ðð̄ ð̄þð̄ðð̄þ ð̄ ð̄ ð�Ylmðn̂Þ; þ3Gðχn̂; χÞjS;ext ¼ −
1

2

X
lm

ϕlmðχÞðððYlmðn̂Þ: ð48Þ

Using the spin-derivative relations given in (A8), this can be rewritten in terms of spin-weighted spherical harmonics,
allowing the relevant E and B mode coefficients to be extracted via orthogonality (A9):

γElmðχÞjS;ext ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ϕlmðχÞ;

iF g
lmðχÞjS;ext ¼

1

6

X
lm

ϕlmðχÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ!
ðl − 1Þ!

s
½ðl − 1Þðlþ 2Þ þ 2lðlþ 1Þ�; iGg

lmðχÞjS;ext ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þ!
ðl − 3Þ!

s
ϕlmðχÞ: ð49Þ

As in Sec. VA 1, scalar physics sources only E and g modes at leading order. To form power spectra we proceed to expand
the scalar perturbation in Fourier space and evaluate its two-point correlator yielding:

ϕlmðχÞ ¼
2

c2

Z
χ

0

dχ0
χ − χ0

χχ0

Z
dn̂Φðχ0n̂; χ0ÞY�

lmðn̂Þ ¼
2

c2

Z
χ

0

dχ0
χ − χ0

χχ0

Z
k
4πiljlðkχ0ÞΦðk; χ0ÞY�

lmðk̂Þ; ð50Þ

using (36) (e.g., [8]). Integrating over redshift, we find the extrinsic scalar transfer functions:
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FγE;S
l;a ðkÞjext ¼

1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
χH

0

dχ
χ
qaðχÞjlðkχÞ

FF g;S
l ðk; χÞjext ¼

1

3c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ!
ðl − 1Þ!

s
½ðl − 1Þðlþ 2Þ þ 2lðlþ 1Þ�

Z
χH

0

dχ
χ
qaðχÞjlðkχÞ

FGg;S
l ðk; χÞjext ¼

1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þ!
ðl − 3Þ!

s Z
χH

0

dχ
χ
qaðχÞjlðkχÞ; ð51Þ

where qaðχÞ≡
R
χH
χ dχ0 naðχ0Þðχ0 − χÞ=χ0 is the lensing efficiency. We note that any redshift-dependent

contribution to the power spectrum (i.e., the potential growth factor) should be included in the χ integrals. Finally, we
note that the full scalar transfer functions are the sum of the intrinsic and extrinsic contributions (which are nontrivially
correlated).
The power spectra arising from vector and tensor lensing can be computed analogously to the intrinsic contributions

(Sec. VA 1); this is presented in Appendix D, with the tensor case following [22] (see also [23,84,85]). The main result is
the following set of shear transfer functions

FγE;V
l;a ðkÞjext ¼

1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ 1Þ!
ðlþ 2Þ!ðl − 1Þ!

s Z
χH

0

dχ
χ
ðmaðχÞRe½Q̂ðþÞ

γ;V;1ðxÞ� þ ðmaðχÞ − qaðχÞÞRe½Q̂ðþÞ
γ;V;2ðxÞ�Þ

jlðxÞ
x

FγB;V
l;a ðkÞjext ¼

1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ 1Þ!
ðlþ 2Þ!ðl − 1Þ!

s Z
χH

0

dχ
χ
maðχÞIm½Q̂ðþÞ

γ;V;1ðxÞ�
jlðxÞ
x

FγE;T
l;a ðkÞjext ¼

1

4

Z
χH

0

dχ
χ
ðmaðχÞRe½Q̂ðþÞ

γ;T;1ðxÞ� þ ðmaðχÞ − qaðχÞÞRe½Q̂ðþÞ
γ;T;2ðxÞ�Þ

jlðxÞ
x2

FγB;T
l;a ðkÞjext ¼

1

4

Z
χH

0

dχ
χ
maðχÞIm½Q̂ðþÞ

γ;T;1ðxÞ�
jlðxÞ
x2

; ð52Þ

defining the redshift-integrated kernelmaðχÞ≡ R
χH
χ dχ0 naðχ0Þ. This depends on the Q̂ derivative operators whose forms are

given in (E4). As before, the vector and tensor modes source both E and B mode contributions, and, if the underlying
physics is parity-violating, leads to an EB spectrum.
Under the approximation (42), we may compute the flexion correlators directly from those for the shear. In particular,

expanding �2γ in spin-weighted spherical harmonics and using relation (A10) leads to:

iFF g;V=T
l;a ðkÞjext ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!ðl − 1Þ!
ðl − 2Þ!ðlþ 1Þ!

s
FγE;V=T
l;a ðkÞjext; iFF c;V=T

l;a ðkÞjext ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!ðl − 1Þ!
ðl − 2Þ!ðlþ 1Þ!

s
FγB;V=T
l;a ðkÞjext

iFGg;V=T
l;a ðkÞjext ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þ!ðl − 2Þ!
ðl − 3Þ!ðlþ 2Þ!

s
FγE;V=T
l;a ðkÞjext; iFGc;V=T

l;a ðkÞjext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þ!ðl − 2Þ!
ðl − 3Þ!ðlþ 2Þ!

s
FγB;V=T
l;a ðkÞjext: ð53Þ

The flexion power spectra thus take the forms of (52), but
with the additional l-dependent prefactors given above,
which asymptote to �l in the large-l limit.

3. Other contributions

As discussed in Sec. IV C, stochastic contributions to
shear and flexion are modeled as a random fluctuations in
each of two orthogonal directions (e.g., [7]). Averaging
over sources within some bin a, the contribution to the
spin-�s piece in harmonic space is

�sX̂a;lm ¼
Z

dχ naðχÞ
Z

dn̂�sY�
lmðn̂Þ½X̂1 � iX̂2�ðχn̂; χÞ;

ð54Þ

where the left-hand side can be decomposed into E and B
(or g and c) modes, both of which are nonvanishing.
Assuming each galaxy to be uncorrelated implies that
hX̂iðxÞX̂�

i ðx0Þi ¼ σ2XδDðx − x0Þ; after imposing spin-
weighted spherical harmonic orthonormality (A9), this
leads to the shear spectra
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CγEγE;ab
l

���
noise

¼ CγBγB;ab
l

���
noise

¼
Z

χH

0

dχ naðχÞnbðχÞσ2γ ≈ δKab
σ2γ
n̄a

; ð55Þ

with analogous forms for flexion. The RHS is obtained in
the limit of nonoverlapping bins containing n̄a discrete
sources per unit steradian. As expected, the Poisson noise is
scale-independent, and contributes only to autospectra.
Higher-order contributions to the B and g modes are

more difficult to compute since the underlying integrals are
convolutional. [92,93] present a careful treatment of sec-
ond-order lensing effects; here, we use a rough estimate of
their magnitude only, since our focus is on non-ΛCDM
physics. This is obtained by assuming that the spectra are
dominated by reduced shear contributions (i.e., those

∝ κγij), which lead to the approximate form CγBγB

l jS2;ext≈
10−3 × ð1þ qÞ2CγEγE

l jS;ext, where q ≈ 1 is the lensing bias
(cf. Fig. 7 of [22]). We assume a similar form for the flexion
c-mode spectra; CF cF c

l jS2;ext ≈ 10−3 × ð1þ qÞ2CF gF g

l jS;ext,
and similarly for G.

B. Flat-sky limits

The results presented in Sec. VA give the complete
descriptions of the angular power spectra of shear and
flexion on all scales; however, they are expensive to

implement, and difficult to interpret. At large l, one can
make use of the Limber approximation, which states [94]
(see, e.g., [95–97] for associated works):

jlðxÞ ≈
ffiffiffiffiffi
π

2ν

r
δDðx − νÞ; l ≫ 1; ð56Þ

where ν≡ lþ 1=2. This can be used to remove the Bessel
function integrals present in each transfer function,
allowing the full spectrum to be computed via a
single integral.5 Below, we discuss the limiting forms for
both the intrinsic and extrinsic spectra, paying close
attention to their scale dependence.

1. Intrinsic contributions

In the large-l limit, the scalar intrinsic alignment kernels
(46) and (47) have the limiting forms:

FγE;S
l ðk;χÞjint≈l2

bSðχÞ
2χ2

jlðxÞ;

FF g;S
l ðk;χÞjint≈−

1

3
F
Gg;S
l ðk;χÞjint≈l3

4b̃SðχÞ
9χ2

jlðxÞ; ð57Þ

using the small-scale limit of the Q̂ðþ1Þ
X;S operators given in

Appendix E. Integrating over redshift and using (56) leads
to the simplified forms:

FγE;S;a
l ðkÞ

���
int

¼ k

2ν1=2

ffiffiffiffiffi
π

2ν

r
naðν=kÞbSðν=kÞ;

FF g;S;a
l ðkÞ

���
int
≈ −

1

3
FGg;S;a
l ðkÞjint ≈

4kν
9

ffiffiffiffiffi
π

2ν

r
naðν=kÞb̃Sðν=kÞ; ð58Þ

where we omit the χ-dependent part of the power spectrum for clarity. The utility of such expressions is clear if we consider
the power spectra themselves, for example:

CγEγE;ab
l

���
S;int

≈
ν4

4

Z
∞

0

dχ
χ6

naðχÞnbðχÞb2SðχÞPΦðν=χ; χ; χÞ

CF gF g;ab
l

���
S;int

≈
1

9
CGgGg;ab
l

���
S;int

≈
16ν6

81

Z
dχ
χ6

naðχÞnbðχÞb̃2SðχÞPΦðν=χ; χ; χÞ ð59Þ

[95,98]; this can now be computed as a single redshift integral, which is highly accurate for l≳ 100. Notably, the spectra
are diagonal in redshift if bins a and b do not overlap.
The limiting forms for vector and tensor sources are a little more complex. Using the results of Appendix E, the limiting

forms of the vector unbinned kernels are given by

5This assumption is not always appropriate: primordially sourced tensors evolve under an oscillatory transfer function
TT ∝ j1ðkηÞ=ðkηÞ, thus the integrals in question contain two Bessel functions, and are thus not well approximated by (56).
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FγE;V
l ðk; χÞ

���
int
≈ l

bVðχÞ
2

ffiffiffi
2

p
χ
j0lðxÞIVðχÞ; FγB;V

l ðk; χÞ
���
int
≈ l

bVðχÞ
2

ffiffiffi
2

p
χ
jlðxÞIVðχÞ;

FF g;V
l ðk; χÞ

���
int
≈ −

1

3
FGg;V
l ðk; χÞ

���
int
≈ l2

2
ffiffiffi
2

p
b̃VðχÞ
9χ

j0lðxÞIVðχÞ;

FF c;V
l ðk; χÞ

���
int
≈ −

1

9
FGc;V
l ðk; χÞ

���
int
≈ −l2

2
ffiffiffi
2

p
b̃VðχÞ
27χ

jlðxÞIVðχÞ: ð60Þ

Notably, the B- and c-modes are proportional to jlðxÞ, whilst the E and g-modes depend on the Bessel function derivatives
j0lðxÞ, and are thus suppressed. This occurs due to projection: the 3D vector field is parity-odd, but can induce a small
parity-even component when projected onto the two-sphere [cf. [99] ].
Integrals involving Bessel function derivatives are harder to simplify using the Limber approximation (though see

Appendix E of [25] for a number of useful simplifications).6 Instead, one can obtain the redshift-binned kernels using
integration-by-parts, for example:

FγE;V;a
l ðkÞ

���
int
≈ l

Z
χ2

χ1

dχnaðχÞ
bVðχÞ
2

ffiffiffi
2

p
χ
j0lðxÞ ¼

�
naðχÞ

bVðχÞ
2

ffiffiffi
2

p
kχ

jlðxÞ
�
χ2

χ1

−
Z

χ2

χ1

dχ∂χ

�
naðχÞ

bVðχÞ
2

ffiffiffi
2

p
kχ

�
jlðxÞ;

≈
�
naðχÞ

bVðχÞ
2

ffiffiffi
2

p
kχ

jlðxÞ
�
χ2

χ1

−
ffiffiffiffiffi
π

2ν

r
∂χ

�
naðχÞ

bVðχÞ
2

ffiffiffi
2

p
k2χ

�
χ¼ν=k

; ð61Þ

assuming the redshift bin to have finite support over ½χ1; χ2�, and inserting (56) in the second expression.7 If the number
density distribution falls smoothly to zero at the boundaries, then the first term is negligible; however, it can be important in
the case of (largely unphysical) sharp bin boundaries. Using these relations, one can derive the flat-sky limits of power
spectra, for example, the auto-spectra of B- and c-modes:

CγBγB;ab
l

���
V;int

≈
ν2

8

Z
∞

0

dχ
χ4

naðχÞnbðχÞb2VðχÞ½PIVBþðν=χ; χ; χÞ þ PIVB−
ðν=χ; χ; χÞ�

CF cF c;ab
l

���
V;int

≈
1

81
CGcGc;ab
l

���
V;int

≈
�
2

ffiffiffi
2

p
ν2

27

�2 Z ∞

0

dχ
χ4

naðχÞnbðχÞb̃2VðχÞ½PIVBþðν=χ; χ; χÞ þ PIVB−
ðν=χ; χ; χÞ�; ð62Þ

absorbing the IV operators into the power spectrum.
The flat-sky limits of tensor correlators can be derived similarly. The unbinned kernels can be written:

FγE;T
l ðk; χÞjint ≈

�
l2

x2
− 2

�
bTðχÞ
4

jlðxÞITðχÞ; FγB;T
l ðk; χÞjint ≈

bTðχÞ
2

j0lðxÞITðχÞ; ð63Þ

FF g;T
l ðk; χÞ

���
int
≈ l

�
3
l2

x2
− 2

�
2b̃TðχÞ
27

jlðxÞITðχÞ; FGg;T
l ðk; χÞ

���
int
≈ −l

�
l2

x2
− 2

�
2b̃TðχÞ

3
jlðxÞITðχÞ;

FF c;T
l ðk; χÞ

���
int
≈ −

1

9
FGc;T
l ðk; χÞjint ≈ −l

4b̃TðχÞ
27

j0lðxÞITðχÞ: ð64Þ

We find the opposite conclusion to the vector case: the B- and c-modes are derivative suppressed compared to the E- and
g-modes [99]. Their binned forms can be obtained using integration by parts, as in (61). The unsuppressed flat-sky auto-
power spectra take the form:

CγEγE;ab
l

���
T;int

≈
1

16

Z
∞

0

dχ
χ2

naðχÞnbðχÞb2TðχÞ½PIThþðν=χ; χ; χÞ þ PITh−ðν=χ; χ; χÞ�

CF gF g;ab
l

���
T;int

≈
1

81
CGgGg;ab
l jT;int ≈

�
2l
9

�
2
Z

∞

0

dχ
χ2

naðχÞnbðχÞb̃2TðχÞ½PIThþðν=χ; χ; χÞ þ PITh−ðν=χ; χ; χÞ�: ð65Þ

7For clarity, we have dropped the χ dependence arising from IVðχÞIVðχ0ÞPB�ðk; χ; χ0Þ. In practice, this can be included by enforcing
a separable correlator via PXðk; χ; χ0Þ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PXðk; χ; χÞPXðk; χ0; χ0Þ

p
for X ∈ fΦ; B�; h�g.

6Whilst one can rewrite j0lðxÞ as the difference between two spherical Bessel functions then apply the Limber approximation, this is
numerically unstable.
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The utility of the above simplifications is twofold: firstly,
they allow for efficient computation of the high-l spectra
(which would otherwise require a dense three-dimensional
numerical integration grid), and secondly, one can easily
assess the l-scalings of the correlators. These are given
explicitly in Table I for each intrinsic autospectrum sourced
by scalar, vector, and tensor physics. This clearly demon-
strates three points, noted above:
(1) All flexion spectra are suppressed by l2 with respect

to shear, and thus contribute significantly only on
small scales.

(2) Scalar perturbations generate onlyE- and g-modes at
leading-order, whilst vectors and tensors generate
also B- and c-modes.

(3) Intrinsic vector E- and g-mode spectra are deriva-
tive-suppressed compared to B- and c-modes; the
reverse is true for tensors.

The first property implies that flexion will be useful only on
small scales, matching previous conclusions (e.g. [65]).
From the third, we conclude that the often-ignored B- and
c-mode spectra are an excellent place in which to search for
vector perturbations; in contrast, tensors require E- and
g-modes, which contain large contributions from scalar
physics, thus hampering their detectability. If the sources
are parity-violating, the cross-spectra (particularly EB) can
be of significant use, though the projection effects partially
suppress such signals [25,99].

2. Extrinsic contributions

The large-l limit of scalar lensing spectra is straightfor-
ward. From (50), the scalar transfer functions have the
asymptotic form

FγE;S
l;a ðkÞ

���
ext

≈
1

l
FF g;S
l ðk; χÞ

���
ext

≈
1

l
FGg;S
l ðk; χÞ

���
ext

≈
l2

c2

Z
χH

0

dχ
χ
qaðχÞjlðkχÞ; ð66Þ

leading to autospectra of the form

CγEγE;ab
l ≈

ν4

c4

Z
∞

0

dχ
χ4

qaðχÞqbðχÞPΦðν=χ; χ; χÞ ð67Þ

(e.g., [95]), invoking the Limber approximation (56).
Unlike the intrinsic spectra, this is not diagonal in redshift.
For the vector and tensor kernels, computation proceeds

analogously to Sec. V B 1. From (52), and using the
limiting forms of the Q̂ operators given in Appendix E,
we find

FγE;V
l;a ðkÞ

���
ext

≈ −
l3

2
ffiffiffi
2

p
Z

χH

0

dχ
χ
qaðχÞ

jlðxÞ
x

;

FγB;V
l;a ðkÞ

���
ext

≈
l

2
ffiffiffi
2

p
Z

χH

0

dχ
χ
maðχÞjlðxÞ

FγE;T
l;a ðkÞ

���
ext

≈ −
l4

8

Z
χH

0

dχ
χ
qaðχÞ

jlðxÞ
x2

;

FγB;T
l;a ðkÞ

���
ext

≈
l2

4

Z
χH

0

dχ
χ
maðχÞ

jlðxÞ
x

: ð68Þ

This leads to power spectra of the form

CγEγE;ab
l

���
V;ext

≈
ν4

8

Z
∞

0

dχ
χ4

qaðχÞqbðχÞ½PBþðν=χ; χ; χÞ þ PB−
ðν=χ; χ; χÞ�

CγBγB;ab
l

���
V;ext

≈
ν2

8

Z
∞

0

dχ
χ4

maðχÞmbðχÞ½PBþðν=χ; χ; χÞ þ PB−
ðν=χ; χ; χÞ�

CγEγE;ab
l

���
T;ext

≈
ν4

64

Z
∞

0

dχ
χ4

qaðχÞqbðχÞ½Phþðν=χ; χ; χÞ þ Ph−ðν=χ; χ; χÞ�

CγBγB;ab
l

���
T;ext

≈
ν2

16

Z
∞

0

dχ
χ4

maðχÞmbðχÞ½Phþðν=χ; χ; χÞ þ Ph−ðν=χ; χ; χÞ�; ð69Þ

TABLE I. Approximate scalings of the intrinsic alignment
and lensing power spectra in the large-l limit, as derived from

Sec. V B. In each case, we give the l-dependence of CXX
l =CγEγE

l ,
considering both shear and flexion, and scalar, vector, and tensor
physics. We display results only for the first flexion, noting thatF
and G have the same scalings at large-l. The scalings of cross-
spectra may be found by taking the harmonic mean of autospectra

scalings, i.e., the CγBF c

l scaling for vector intrinsic alignments isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 × l4

p
¼ l3 that of CγEγE

l . Note that the amplitudes of intrinsic
vector E=g-modes and tensor intrinsic B=c-modes are suppressed
due to the presence of Bessel function derivatives.

Intrinsic γEγE γBγB F gF g F cF c

Scalar 1 0 l2 0
Vector 1 l2 l2 l4

Tensor 1 l−2 l2 l0

Extrinsic γEγE γBγB F gF g F cF c

Scalar 1 0 l2 0
Vector 1 l−2 l2 l0

Tensor 1 l−2 l2 l0
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under the Limber approximation. For the flexion
spectra, we employ the simplifying ansatz of (53), which
implies

iFF g;V=T
l;a ðkÞ

���
ext

≈ −iFGg;V=T
l;a ðkÞ

���
ext

≈ l × FγE;V=T
l;a ðkÞ

���
ext
;

iFF c;V=T
l;a ðkÞ

���
ext

≈ −iFGc;V=T
l;a ðkÞ

���
ext

≈ −l × FγB;V=T
l;a ðkÞ

���
ext
;

ð70Þ

allowing simple computation of the flexion spectra
(e.g., [65,66]).
A summary of the extrinsic autospectrum scalings is

given in Table I, alongside the intrinsic results. As
before, the flexion spectra are suppressed by l2 com-
pared to the shear spectra, and the tensor B- and c-modes
are suppressed compared to the E- and g-modes, though
there are no Bessel function derivatives in this case.
Here, we find the opposite scalings of vector modes
(with E- and c-modes enhanced on large scales rather
than B- and g-modes). This can be rationalized by
looking at how vector modes impact intrinsic and
extrinsic shear, (32) and (41). In the former case, we
have dependence only through the projected derivatives
∂�B�, whilst the latter also contains a term involving
∂�∂�Bk (proportional to qðχÞ) for Bk ≡ Bin̂i, which
dominates in the large-l regime. Since this is a radial
projection instead of an angular projection, E- and B-
modes are interchanged, leading to the different
scalings.

VI. NUMERICAL RESULTS

Having discussed the physical sources of galaxy shape
distortions and their associated power spectra, we now
proceed to perform a numerical study of new physics in
shear and flexion. To this end, we will consider two
beyond-ΛCDM physics models, described in Sec. II:
(1) nonstandard inflation, with independent primordial
sourcing of vector and tensor degrees of freedom; and
(2) a late-Universe network of cosmic strings, which jointly
sources vector and tensor modes. By combining the power
spectra of the metric fluctuations with the above results, we
can consider the heuristic forms of the generated shear and
flexion spectra, and forecast the possible constraints on the
model amplitudes.

A. Setup

a. Perturbations As discussed in Sec. II B 1, we model
primordial power spectra using power laws, relative to a
fiducial scale k0 ¼ 0.002 Mpc−1 (e.g., [36]). Here, we
assume a tensor exponent nT ¼ −rT=8 (motivated by
simple inflationary models), with an independent

scale-invariant vector exponent, nV ¼ 1.8 For plotting,
we will assume the fiducial values rT ¼ rV ¼ 1, with
the vector transfer functions normalized to their values at
the last scattering surface (noting the strong decay as
a−2ðzÞ). To test constraints on parity-violating physics,
we will allow for maximum fiducial chirality ϵV;T ¼ 1,
noting that the set of spectra sourced by parity-odd and
parity-even physics are disjoint at leading order.
The power spectra of the cosmic shear metric perturba-

tions is modeled as described in Sec. II B 2 (using the
results derived in Appendix B), using the fiducial parameter
values given therein, with a baseline (squared) string
tension ðGμÞ2 ¼ 10−16 and an intercommuting probability
of P ¼ 10−3, which sets the amplitude of both vector and
tensor contributions (e.g., [24]). In the standard string
model, only parity-even correlators are sourced; here, we
will allow for parity-breaking contributions via a global
chirality parameter ϵ ¼ 1, analogous to the primordial case.
Finally, the intrinsic alignment spectra require the time-
differentiated vector and tensor spectra: following a similar
derivation to that given in Appendix B, the equal-time
correlators can be shown to equal

PIVB�ðk; η; ηÞ ¼
�
ð3aHÞ2 þ 1

3
k2v2rms

	
PB�ðk; η; ηÞ;

PITh�ðk; η; ηÞ ¼
�
½6ðaHÞ2 þ 2∂ηðaHÞ�2 þ 1

3
ð5aHÞ2k2v2rms

þ 2

9
k4v4rms

	
Ph�ðk; η; ηÞ ð71Þ

assuming time independence for v2rms and the comoving
string density.
b. Experimental parameters To compute the shear and

flexion power spectra we must also specify the number-
density of source galaxies and their noise properties.
Following [70], we will assume a projected galaxy density
of 40 arcmin−2, with the normalized distribution

nðzÞ ∝
�
z
z0

�
α

e−ðz=z0Þβ ; ð72Þ

where α ¼ 2, β ¼ 3=2, and z0 ¼ 0.64, as relevant for a
Euclid-like survey [100]. This is split into three equally
populated bins, each following a smooth (overlapping)
distribution. We will assume a sky fraction of
fsky ¼ 0.3636, as relevant for Euclid [101].

8Strictly, it is inconsistent to simultaneously assume almost
scale-invariant tensors (nT ¼ −rT=8) and exactly scale-invariant
vectors (nV ¼ 1), if sourced by a common inflationary origin.
Here, we consider the two perturbations separately, and note that
small deviations of either from scale-invariance will have very
minor impact on our constraints.
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To model the intrinsic contributions, we require the
shear and flexion alignment biases, bXðχÞ and b̃XðχÞ.
Due to hydrodynamic effects, these are difficult to predict
from theory or simulations, even for the scalar case.
Here, we follow [85], and fix the scalar shear bias to

bSðχÞ ¼ bI1ðχÞ 2aðχÞ
3H2

0
Ωm0

, with bI1ðχÞ ¼ −0.1Ωm0Dð0Þ=DðχÞ,
consistent with [17]. Assuming all components to impact
the shear only through the tidal tensor yields the relations
bT ¼ bS=2, bV ¼ −bS, reinserting the previously dropped
constants of proportionality [cf., [22] ]. We additionally
assume the same bias for shear and flexion, i.e., bX ¼ b̃X,
motivated by the analytic results of [[70], Eq. 18].
c. Numerical setup We numerically compute angular

power spectra for all auto- and cross-spectra of shear and
spin-�1 flexion for 39l-bins in the range [2, 2000], using
linear spacing for l ≤ 10 and logarithmic else. We ignore
the spin-�3 flexion for clarity, noting that this will not
change our overall conclusions. Spectra are computed in
Python using numerical quadrature, with the Limber
approximation (Sec. V B) used for l > 100 (except for
pathological situations, such as primordially sourced ten-
sors). Throughout, we assume the fiducial cosmology fh ¼
0.7; As ¼ 1.95× 10−9; ns ¼ 0.96;Ωb ¼ 0.049;Ωm ¼ 0.3g,
and evaluate scalar spectra using the “halofit” formalism to
approximate nonlinear effects [102].

B. Power spectra

Under null assumptions (i.e., without vector and tensor
modes), the following spectra are sourced at leading order:

CγEγE

l ; CF gF g

l ; CγEF g

l ðfrom scalarsÞ
CγEγE

l ; CF gF g

l ; CγBγB

l ; CF cF c

l ðfrom noiseÞ: ð73Þ

For noise and intrinsic-only contributions, only autospectra
a ¼ b are sourced (for redshift bins a, b, in the large-l
limit), whilst lensing sources also a ≠ b bin pairs and cross-
correlations with intrinsic effects. At second order, scalars

also source contributions to CγBγB

l , CF cF c

l , and CγBF c

l , which
are modeled as discussed in Sec. VA 3. In the presence of
vector or tensor perturbations, we source the following
spectra:

CγEγE

l ;CγBγB

l ;CF gF g

l ;CF cF c

l ;CγEF g

l ;CγBF c

l ðparity-conservingÞ
CγEγB

l ;CF gF c

l ;CγEF c

l ;CγBF g

l ðparity-breakingÞ; ð74Þ

depending on the parity-properties of the underlying metric
correlators.
a. Inflationary perturbations In Fig. 2, we plot the

primordially-sourced vector and tensor correlators of
shear and flexion, alongside the fiducial power spectra
arising from scalar physics and noise. Notably, detecting
such spectra will be challenging. Whilst we forecast a very

strong shear E-mode signal (principally arising from
lensing), the only other scalar cross-spectrum with a
realistic hope of being detected is that between γE and
F g (or between γE and Gg), which requires a large lmax
[cf. [67,68,70] ]. As previously noted, the parity-
odd scalar modes are strongly suppressed compared to
the parity-even forms, and do not contribute to parity-
violating cross-spectra.
Spectra sourced by primordial vector perturbations

show a strong scale dependence, with largest contribu-
tions seen on smallest scales. In this scenario, the
correlators are dominated by weak lensing contributions,
and, as predicted in Table I, E-modes exhibit steeper
scalings with l than B-modes. If one considers the
intrinsic contributions alone, the opposite is true, match-
ing Sec. V B, and analogous conclusions can be drawn for
flexion (though at much lower signal-to-noise). In our
fiducial parametrization, we find extremely small ampli-
tudes for the vector spectra; we will discuss the resulting
constraints on rV and ϵVrV in Sec. VI C.
The primordial tensor contributions are very different

from those of vectors. As in [22], the spectra peak on
ultralarge scales but quickly decay away to small values
(whose inference is complicated by numerical error
intrinsic to the Bessel function integrals). In this case,
the intrinsic alignment E-mode contribution dominates at
large scales, but much of this power is canceled by an
analogous extrinsic contribution due to the equivalence
principle. The gravitational waves contribute nontrivially
to an array of correlators with different l-dependencies;
however, their power is always small, even at the fiducial
amplitude rT ¼ 1. As shown in [22] and discussed below,
the signal can be boosted somewhat by using a higher-
redshift galaxy sample.
b. Cosmic strings Figure 3 shows the analogous results

for the cosmic string power spectrum, which are much
more promising. With the fiducial string tension of
Gμ ¼ 10−8, vector contributions to galaxy shapes are
significant, and are usually larger than the scalar pieces,
particularly for low-l B-modes and high-l E-modes. Many
of spectra are dominated by lensing contributions [cf.,
[24] ], though intrinsic alignment contributions are found to
be important for B-modes, and the cross-correlation of
lensing and intrinsic effects dominates in the γE − γB

spectrum. Flexion spectra are also of interest, with a clear
signal appearing in the γE − F g correlator for l≳ 100. The
parity-odd signal may also be detectable through the γE −
γB cross-spectrum though we note that this is not sourced in
the standard string paradigm.
The tensorial contributions induced by cosmic strings are

heavily suppressed compared to the vector pieces, with
correlators one-to-two orders of magnitude smaller. The
overall scalings with l also differ slightly from vectors, due
to differing absolute importance of intrinsic and extrinsic
contributions (cf. Table I). For the string scenario, we
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FIG. 2. Shear and flexion spectra sourced by scalar physics as well as primordially-generated vector and tensor modes. Each panel
shows a separate cross-spectrum, as marked in the title, and the two plots show parity-conserving (top) and parity-breaking (bottom)
correlators. The gray bands indicate 1σ errorbars, with dashed (dotted) lines showing spectra containing only lensing (intrinsic
alignment) contributions. The experimental setup is as described in Sec. VI A for a Euclid-like experiment, and we plot only results from
the central redshift bin with z̄ ≈ 0.95. The fiducial spectra have amplitudes rT ¼ 1 for tensors, and rV ¼ 1 for vectors, with the latter
spectra defined relative to the surface of last scattering. For parity-violating correlators, we assume a chirality parameter ϵV;T ¼ 1.
Gravitational wave contributions (green) are difficult to detect except on ultralarge scales in shear. Vector modes of this type contribute
significantly only on small scales, though this depends on the primordial tilt. The scatter in the tensor curves is not physical; this arises
from numerical inaccuracies in the oscillatory integrals.
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FIG. 3. As Fig. 2, but for a late-time network of cosmic strings, which sources both vector and tensor correlators. Here, we set the
fiducial string tension toGμ ¼ 10−8, and optionally allow for parity-odd contributions with chirality ϵ ¼ 1. For this choice of amplitude,
we find large contributions from vector lensing modes, particularly in shear E- and B-mode correlators on small scales.
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conclude that the vector contributions will dominate the
constraining power on the model amplitude; however, this
statement is strongly model-dependent.

C. Fisher forecasts

We now elucidate the constraining power of shear and
flexion on the physical models themselves. For this, we
utilize a Fisher forecast (e.g., [103]), computing the optimal
constraints on some set of parameters fpαg, via
σ2ðpαÞ ≥ F−1

αα , for Fisher matrix

Fαβ ≡
X
l

∂Dl

∂pα
C−1
l

∂Dl

∂pβ
: ð75Þ

This depends on a data-vector, Dl, and covariance Cl,
where the former contains all independent auto- and cross-
spectra. Using three tomographic bins, we find a total of 42
(12) parity-even and 36 (9) parity-odd spectra when flexion
is (is not) included. Assuming Gaussian statistics, the
covariance between any pair of spectra is given by:

CovðCXY;ab
l ; CZW;cd

l0 Þ

¼ 2δKll0

ð2lþ 1Þfsky
½CXZ;ac

l CYW;bd
l þ CXW;ad

l CYZ;bc
l �; ð76Þ

which is diagonal in l. Under null hypotheses, the spectra
on the RHS contain only signals from scalar perturbations
and stochasticity; furthermore, parity-odd and parity-even
spectra are uncorrelated, thus we may compute their
contributions to parameter constraints separately.
Table II lists the forecasted constraints on the model

amplitudes of the two sources of vector and tensor physics
discussed above: the vector/tensor-to-scalar amplitude rX,
and the squared string tension parameter ðGμÞ2. We
consider constraints from both parity-even and parity-
odd correlators, and optionally include the flexion auto-
and cross-spectra. To ascertain the scale-dependence of the
constraints, we plot the derivatives of the Fisher matrix with

l in Figs. 4 and 5; this additionally shows whether the
intrinsic or lensing contributions are dominant.
a. Inflationary perturbations Considering first the pri-

mordial sources, we find that the 1σ constraints on rV are
weak, with the tightest bound of σðrVÞ ¼ Oð104Þ. This
constraint is dominated by the smallest scales and lensing,
matching the conclusions drawn from Fig. 2; the former
property implies that flexion can (and does) add significant
information, tightening the bounds by some 10–20% at
l ≤ 2000. Noting that the amplitude parameter has been
normalized relative to the CMB, the implication of this
study is that galaxy shapes are highly unlikely to yield
useful constraints on primordially sourced vector modes.
This occurs due to the a−2ðzÞ transfer function intrinsic to
vectorial physics.
The constraints on rT are considerably tighter than those

on rV , yet still unlikely to be competitive in the near future.
Here, we find σðrTÞ ≈ 260 from a Euclid-like experiment,
which is dominated by the lowest l-modes, and highly
sensitive to the sample redshift; restricting to the first
redshift bin reduces the constraining power by roughly a
factor of ten, matching the conclusions of [22].
Furthermore, intrinsic alignments dominate the information
content; this matches the results of [[22], Fig. 6], and
imparts significant model dependence since the intrinsic
alignment biases are not well known. The situation is
similar for parity-odd tensor modes, with a somewhat
weaker bound of σðϵTrTÞ ≈ 600; such modes are less
commonly constrained in other probes, though our bound
is still unlikely to be competitive [cf., [25] ]. In this
scenario, the addition of flexion does not improve the
constraints due to the strong scale dependence.
b. Cosmic strings Turning to the cosmic string con-

straints, we find 1σ bounds on the squared string tension
ðGμÞ2 of Oð10−20Þ from parity-even correlators or
Oð10−19Þ from the parity-odd sector (if present). These
agree with the lensing shear forecast of [24], though we
note that the results have strong dependence on the
assumed intercommuting probability P, with the degen-
eracy direction ðGμÞ2P−3=2. Furthermore, the constraints

TABLE II. Constraints on the amplitudes of primordial and string-induced vector and tensor modes, obtained from Fisher forecasts
appropriate for a Euclid-like survey, measuring shear and flexion for l∈ ½2; 2000�. In each case, we give the 1σ constraint on the model
amplitude (rX for primordial sources, ðGμÞ2 for strings), quoting primordial vector results relative to the amplitude at last scattering.
Parity-odd constraints assume maximal chirality (ϵ ¼ 1), and we additionally separate vector and tensor contributions to ðGμÞ2. In
general, we find that the addition of flexion somewhat improves constraining power for spectra contributing at high-l, and parity-odd
spectra are less constraining than parity-even spectra. The constraints on primordial tensors (i.e., gravitational waves) are generally
weak, whilst those on strings are relatively tight. The l-dependence of these constraints is explored in Figs. 4 and 5.

Observable Parity σ½rV � σ½rT � σV½ðGμÞ2� σT½ðGμÞ2�
Shear Even 4.5 × 104 260 2.2 × 10−20 1.2 × 10−19

Shear Odd 2.6 × 107 600 1.1 × 10−19 5.0 × 10−17

Shear & flexion Even 3.9 × 104 260 2.0 × 10−20 1.1 × 10−19

Shear & flexion Odd 2.3 × 107 600 1.0 × 10−19 5.0 × 10−17

WHAT CAN GALAXY SHAPES TELL US ABOUT PHYSICS … PHYS. REV. D 109, 063541 (2024)

063541-21



are of a similar amplitude to the limits from pulsar timing
array experments, with Gμ≲ 10−10 (though this statement
is inherently model dependent) [44]. Both vector- and
tensor-derived constraints show strong scale-dependence,
with maximal detection significance at l ∼ 1000. As
before, this implies that flexion can lead to significantly
improved constraints, though all spectra will saturate at
high-l due to Poisson noise. Here, we find that the overall
constraints are dominated by lensing at high redshift, which
is rationalized by noting that vector modes decay quickly
after their sourcing. As in Fig. 3, we note that string-
induced tensors contain significantly less information than
vectors, with roughly 500 × weaker constraints. Overall,
the prospect of constraining cosmic strings with galaxy

shapes is promising, particularly when we include all
sources of information available.

VII. SUMMARY AND CONCLUSIONS

Perturbations in the Universe can be decomposed into
scalars, vectors, and tensors. To date, only scalar physics
has been observed; however, there exist a wealth of
cosmological models that could source vector and tensor
contributions at early or late times, thus their study can
yield strong constraints on the Universe’s initial conditions
and evolution. In this work, we provide an indepth study of
the impact of such modes on galaxy shape statistics. These
are a natural place in which to look for new physics since

FIG. 4. Constraints on primordial vector (top) and tensor (bottom) amplitudes from parity-even (left) and parity-odd (right) shear and
flexion power spectra. In each case, we plot the per-l contribution to the Fisher matrix on the amplitude parameter rX, motivated by the
Cramér-Rao bound σX ≥ F−1=2

X . Red lines show results using only the shear correlators, whilst blue lines additionally include flexion
(and cross-correlations). Dashed lines show the constraints in the absence of weak lensing, whilst the dotted lines show the constraints
from only the first redshift bin. We observe that constraints on vector amplitudes are dominated by high-l, whilst those on tensor
amplitudes depend principally on the largest scales measured.
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they are tensorial (and thus respond directly to metric
perturbations), and will be observed in great depth in the
coming decade.
New physics can distort galaxy shapes both intrinsically

(through correlations with the local tidal field (e.g.,
[12,15,17]) and extrinsically (through weak gravitational
lensing e.g., [7,10]). Both effects can be straightforwardly
written in terms of derivatives of the metric perturbations,
and thus mapped to galaxy shape observables, such as shear
and its higher-order generalization, flexion (e.g., [65,66])
(though the scale dependence of such effects may com-
plicate analyses slightly). For scalar perturbations, only
shear-E and flexion-gmodes are sourced; vector and tensor
physics yield signals also in shear-B and flexion-c observ-
ables. Spectra of the latter could thus be a natural place to
search for new physics without contamination from scalar
modes (at leading order); these are additionally free from
cosmic variance limitations (though their scalings with l
usually differ from the E- and g-modes) [e.g., [22] ]. In
addition, if the Universe contains parity-violating physics,
such as chiral gravitational waves, EB cross-correlations
(and beyond) will be sourced (e.g., [25]), which again do
not suffer from cosmic variance at leading order. We
caution, however, that B modes are often used as a
consistency check in weak lensing analyses (see [104]
for a detailed discussion); if a survey finds a nontrivial
shear-B power spectrum (in excess of noise), this is usually
attributed to systematics effects, and the null tests are said
to have failed. Although this could well be the case, new
physics could also be hiding in such regimes!
To place these results in quantitative context, we have

considered test cases for vector and tensor physics, sourced
by primordial and late-time physics, with the latter

involving a network of cosmic strings. For a Euclid-like
lensing experiment, we concluded that primordial gravita-
tional waves would be very difficult to detect (unless one
worked at much higher redshift, as discussed in [22,25],
though without flexion), though competitive constraints on
cosmic string physics could be possible (as in [24], though
without flexion, intrinsic alignments, or tensors). Drawing
general conclusions from specific physical models is, in
general, difficult; however, we may make the following
broad statements:

(i) Shear and flexion spectra induced by new physics
models can have a wide range of scale and redshift-
dependencies, due to the large array of possible
underlying perturbation power spectra and transfer
functions. For example, cosmic strings and primor-
dial vectors source spectra dominant at high-l,
whilst gravitational waves contribute only on very
large scales.

(ii) Due to their strong scaling with redshift, vector
modes sourced in the early Universe will be essen-
tially impossible to detect using galaxy shapes (or
any other late-Universe probe). Vector modes
sourced at late times could be detectable however,
as seen from the cosmic string example.

(iii) If the new physics contributes significantly on small
scales, the addition of flexion correlators can boost
signal-to-noise, and may allow various models to be
differentiated. This may be of particular relevance
for dark matter studies, and may yield significantly
tighter constraints on phenomena such as fuzzy dark
matter (e.g., [105–110]). If irreducible rank-three
tensors also exist in the Universe (e.g., from some
modified gravity phenomena, such as torsion), one

FIG. 5. Constraints on the cosmic string tension parameter ðGμÞ2 from parity-even (left) and parity-odd (right) shear and flexion power
spectra. This is analogous to Fig. 4, but displays the joint constraint from vector and tensor modes (with the tensor-only results shown as
dot-dashed lines). In this scenario, information is principally sourced by vector lensing correlations and is more equally distributed
across scales than for the primordial constraints (Fig. 4). At large l (≳1000), we find that adding flexion into the analysis can lead to
improved constraints.
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might also expect them to show up in flexion
spectra.

(iv) Depending on the type of spectrum and physical
model of interest, the shear and flexion correlators
could be dominated either by lensing, intrinsic
alignments, or their cross-correlation; as such, both
effects should always be included in analysis
pipelines.

(v) BB and EB spectra could be smoking guns of new
physics. Whilst their utility depends on noise
parameters (since they are not cosmic-shear limited)
and systematic contamination, these spectra are not
sourced by scalars at leading order (or, for the cross-
spectrum, at any order). They could thus be a robust
cosmological probe, particularly for parity-violating
physics.

Based on the above, the overarching conclusion of this
work is clear: if we wish to make full use of the treasure
trove of cosmological information provided by upcoming
galaxy shape surveys, we must look not just to vanilla
ΛCDM physics and simple observables, but also to
nonstandard physics and higher-order statistics, such as
vectors, tensors, B-modes, and flexion.
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APPENDIX A: TENSORS ON THE TWO-SPHERE

A general rank-s tensor, T , on the two-sphere may be
written in terms of the m� basis vectors defined in (19) as

T i1…isðn̂Þ ¼ þsT ðn̂Þðmþ ⊗ � � � ⊗ mþÞi1…is

þ −sT ðn̂Þðm− ⊗ � � � ⊗ m−Þi1…is ðA1Þ

(e.g., [8,84]). Here, �sT ðn̂Þ is the spin-�s component of T ,
which transforms as �sT → e�isφ�sT under rotation by φ.
Using the basis vector properties outlined in Sec. III B, we
may extract the spin-�s components from the components
of T in some arbitrary coordinate chart as

�sT ðn̂Þ ¼ ðmi1∓ � � �mis∓ÞT i1…isðn̂Þ; ðA2Þ

assuming the Einstein summation convention. In a local
orthogonal basis fê1; ê2; n̂g, the basis vectors can be written

m� ¼ ðê1 ∓ iê2Þ=
ffiffiffi
2

p
, such that the spin components take a

simple form. As an example, a vector field has �1vðn̂Þ ¼
ðv1 � iv2Þ=

ffiffiffi
2

p
locally.

To alter the spin of objects on the two-sphere, we can use
the spin-raising and spin-lowering operators, ð and ð̄
(“edth”). These are defined by their action on spin-s
functions (for both s < 0 and s > 0):

ðsT ðn̂Þ ¼ −ðsin θÞs½∂θ þ i csc θ∂φ�ðsin θÞ−ssT ðn̂Þ;
ð̄sT ðn̂Þ ¼ −ðsin θÞ−s½∂θ − i csc θ∂φ�ðsin θÞssT ðn̂Þ ðA3Þ

(e.g., [8,111,112]), assuming a spherical coordinate chart
fθ;φg. It is straightforward to show that ðsT has spin
(sþ 1) and ð̄sT has spin (s − 1). In the flat-sky limit, the
operators reduce to

ðsT ðn̂Þ → −ð∂1 þ i∂2ÞsT ðn̂Þ;
ð̄sT ðn̂Þ → −ð∂1 − i∂2ÞsT ðn̂Þ; ðA4Þ

i.e., −∂ and −∂� in the complex-valued notation of [65,66].
Furthermore, the derivatives can be written in terms of the
covariant derivative ∇ on the two-sphere:

ð½sT ðn̂Þ� ¼ −
ffiffiffi
2

p
ð∇k½sfðn̂Þ�mk

− þ sτsT ðn̂ÞÞ;
ð̄½sT ðn̂Þ� ¼ −

ffiffiffi
2

p
ð∇k½sT ðn̂Þ�mkþ − sτ̄sT ðn̂ÞÞ ðA5Þ

Reference [8], where τ ¼ ∇kmþimi
−mk

− accounts for the
spatial variation of the basis functions. A particularly useful
result is the action of s ð̄ operators on a spin-s function
(with s > 0), or s ð operators on a spin-−s function. This
yields

ð̄ssT ðn̂Þ ¼
�
∂μ þ

i∂φ
1 − μ2

	
s
ð1 − μ2Þs=2sT ðn̂Þ

ðs−sT ðn̂Þ ¼
�
∂μ −

i∂φ
1 − μ2

	
s
ð1 − μ2Þs=2−sT ðn̂Þ; ðA6Þ

where μ≡ cos θ.
Much like a scalar on the two-sphere can be written in

terms of spherical harmonics, a rank-s tensor can be written
in terms of spin-weighted spherical harmonics. Explicitly,

sT ðn̂Þ ¼
X
lm

sT lmsYlmðn̂Þ; ðA7Þ

where l and m are integers satisfying l ≥ 0, jmj ≤ l. The
spin-weighted spherical harmonics may be obtained by
applying the spin-raising and spin-lowering operators to the
standard spherical harmonics, Ylm:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞ!
ðl − sÞ!

s
sYlmðn̂Þ ¼ ðsYlmðn̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞ!
ðl − sÞ!

s
−sYlmðn̂Þ ¼ ð−1Þsð̄sYlmðn̂Þ ðA8Þ

(for s ≥ 0). These are orthonormal (for arbitrary s):Z
dn̂sYlmðn̂Þ½sYl0m0 ðn̂Þ�� ¼ δKll0δ

K
mm0 ; ðA9Þ

and obey the relations (e.g., [8])

ðsYlmðn̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylmðn̂Þ;

ð̄sYlmðn̂Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylmðn̂Þ: ðA10Þ

Via orthogonality, the coefficients appearing in (A8) can be
extracted straightforwardly:

sT lm ¼
Z

dn̂ sT ðn̂Þ½sYlmðn̂Þ��: ðA11Þ

An additional relation of use is obtained by performing
integration by parts on the above expression, and using
(A10):

sT lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − jsjÞ!
ðlþ jsjÞ!

s Z
dn̂ð−ð̄ÞssT ðn̂Þ½Ylmðn̂Þ��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − jsjÞ!
ðlþ jsjÞ!

s Z
dn̂ ðs−sT ðn̂Þ½Ylmðn̂Þ�� ðA12Þ

for s > 0. To extract the basis functions, one can thus apply
spin-lowering or raising operations to the spin components

�sT ðn̂Þ, and integrate with respect to a spherical harmonic.

APPENDIX B: COSMIC STRING TENSOR
MODES

Below, we provide a brief derivation of the tensor power
spectrum arising from cosmic string sources. This follows
[24], whereupon vector perturbations were considered.
Starting from (13), the ij component of the stress-energy
tensor from a single string segment can be written

δTijðx; ηÞ ¼ μ

Z
dσ eik·xðσ;ηÞðẋiẋj − xi0xj0Þðσ; ηÞ: ðB1Þ

Via the Einstein equation (8), this can be related to the
metric perturbation hij. Projecting onto the tensor helicity
basis (which removes the trace term), we find:

ḧ�ðk; ηÞ þ 2
ȧ
a
ḣ�ðk; ηÞ þ k2h�ðk; ηÞ ¼ 16πGμa2

Z
dσ eik·xðσ;ηÞeð∓2Þ

ij ðk̂Þðẋiẋj − xi0xj0Þðσ; ηÞ; ðB2Þ

where, in contrast to the above, dots and primes denote derivatives with respect to η and σ in this section. To proceed we
make the simplifying assumption that the source can be considered time-independent (i.e., we assume steady-state
behavior), which permits the solution:

h�ðk; ηÞ ¼
16πGμa2

k2

Z
dσ eik·xðσ;ηÞeð∓2Þ

ij ðk̂Þðẋiẋj − xi0xj0Þðσ; ηÞ; ðB3Þ

henceforth disregarding the propagating modes (i.e., gravitational waves). To obtain the shear and flexion predictions, one
should properly consider the unequal-time power spectrum of hij; here we follow [24] and make the assumption that
Ph�ðk; η; η0Þ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ph�ðk; η; ηÞPh�ðk; η0; η0Þ

p
. This is not exact, but is appropriate for this rough forecast. The equal-time

correlation function can be obtained from (B3):

Ph�ðk; η; ηÞ ¼
ð16πGμÞ2a4

k4
nsdV

1

V
eð∓2Þ
ij ðk̂Þeð�2Þ

kl ðk̂Þ
Z

dσ1dσ2heik·ðxðσ1;ηÞ−xðσ2;ηÞÞðṙiṙj − ri0rj0Þðσ1; ηÞðṙkṙl − rk0rl0Þðσ2; ηÞi;

ðB4Þ
for comoving volume elementdV ¼ 4πχ2=H, string segment number densityns ¼ a3=ξ3, survey volumeV, and characteristic
string length ξ. Asserting the isotropic and time-independent correlators hṙiðσ1;ηÞṙjðσ2;ηÞi¼ 1

3
δijKVsðσ1−σ2Þ,

hri0ðσ1; ηÞrj0ðσ2; ηÞi ¼ 1
3
δijKTsðσ1 − σ2Þ, with heik·ðxðσ1;ηÞ−xðσ2;ηÞi ¼ e−k

2Γsðσ1−σ2Þ=6 with ΓsðσÞ ≈ σ2TsðσÞ, we can write

Ph�ðk; η; ηÞ ¼
2

9

ð16πGμÞ2a4
k4

4πχ2a3

Hξ3
1

V

Z
dσ−dσþe−ð1=6Þk

2σ2−Tsðσ−Þ½V2
sðσ−Þ þ T2

sðσ−Þ�; ðB5Þ

defining σ� ¼ σ1 � σ2. As in [24], we assume the correlators have the scale invariant forms Vs ≈ v2rms, Ts ≈ ð1 − v2rmsÞ on
scales σ < ξ=a, and zero else. Noting that

R
dσþ=V is the length of the string segment per unit volume,≈a2=ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2rms

p
, and

that jσ−j≲ ξ=2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2rms

p
, we find
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Ph�ðk; η; ηÞ ¼ ð16πGμÞ2
ffiffiffiffiffiffi
6π

p

9ð1 − v2rmsÞ
4πχ2a4

H

�
a
kξ

�
5

erf
�
kξ=a

2
ffiffiffi
6

p
�
½v4rms þ ð1 − v2rmsÞ2�: ðB6Þ

APPENDIX C: INTRINSIC VECTOR SPECTRA

Here, we derive the shear kernels sourced by vector intrinsic alignments, following the methodology of [85]. Starting
from (32), and expanding in helicity states using (5), we find

�2γðx; χÞjV;int ¼ bVðχÞ
Z
k
eik·xðik�Þ

X
λ

IVBλðk; χÞeðλÞ� ðk̂Þ; ðC1Þ

where k� ≡mi∓ki and eðλÞ� ≡mi∓e
ðλÞ
i . For a single Fourier mode along k ¼ kẑ, the basis definition of (19) implies

k� ¼ −ðk= ffiffiffi
2

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
, and eðλÞ� ¼ ð1=2Þðμ� λÞe−iλφ for μ≡ cos θ ¼ ẑ · n̂. Additionally restricting to a single polari-

zation state λ, we find the contribution

�2γðχn̂; χ; kẑ; λÞjV;int ¼
−ik
2

ffiffiffi
2

p bVðχÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
ðμ� λÞe−iλφIVBλðk; χÞeikχμ: ðC2Þ

To obtain the shear harmonic coefficients, it is convenient to first compute the spin-zero quantities ð̄2þ2γ and ð2−2γ. Using
relation (A6), these can be written

ð̄2þ2γðχn̂; χ; kẑ; λÞjV;int ¼
−ik
2

ffiffiffi
2

p bVðχÞIVBλðk; χÞe−iλφ
�
∂μ þ

λ

1 − μ2

	
2

½ð1 − μ2Þ3=2ðμþ λÞeikχμ�

≡ bVðχÞ
2

ffiffiffi
2

p
χ
IVBλðk; χÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
e−iλφQ̂ðλÞ

γ;VðxÞeixμ

ð2−2γðχn̂; χ; kẑ; λÞjV;int ¼
−ik
2

ffiffiffi
2

p bVðχÞIVBλðk; χÞe−iλφ
�
∂μ −

λ

1 − μ2

	
2

½ð1 − μ2Þ3=2ðμ − λÞeikχμ�

≡ bVðχÞ
2

ffiffiffi
2

p
χ
IVBλðk; χÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
e−iλφQ̂ðλÞ �

γ;V ðxÞeixμ; ðC3Þ

where x≡ kχ, and we have defined the operator Q̂ðλÞ
γ;VðxÞ ¼ x½4x þ ð12 þ x2Þ∂x þ 8x∂2x þ x2∂3x�þ

iλx2½x þ 4∂x þ x∂2x�, which satisfies Q̂ðλÞ
γ;VðxÞ ¼ Q̂ð−λÞ

γ;V ðxÞ. The spin-weighted spherical harmonic coefficients �2γlm ≡
γElm � iγBlm can be obtained via the relation

þ2γlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
dn̂ ð̄2þ2γðn̂ÞY�

lmðn̂Þ; −2γlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
dn̂ ð2−2γðn̂ÞY�

lmðn̂Þ ðC4Þ

Equation (A12). To perform the integral over n̂, we use the result proved in Ref. [84] (Appendix A):

Z
dn̂Y�

lmðn̂Þð1 − μ2Þjrj=2eirφeixμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ jrjÞ!
ðl − jrjÞ!

s
iril

jlðxÞ
xjrj

δKmr ðC5Þ

for integer r, l, and m, and spherical Bessel function jlðxÞ. This leads to the following shear coefficients:

þ2γlmðχ; kẑ; λÞjV;int ¼ il−λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ 1Þ!
ðlþ 2Þ!ðl − 1Þ!

s
bVðχÞ
2

ffiffiffi
2

p
χ
IVBλðk; χÞQ̂ðλÞ

γ;VðxÞ
jlðxÞ
x

× δKmð−λÞ: ðC6Þ

The expression for −2γlm is analogous, but with Q̂ðλÞ
γ;VðxÞ replaced with its conjugate. To form the shear power spectrum

arising from vector perturbations, we need simply take the expectation of two copies of γXlm (for X∈ fE;Bg), summing over
λ, averaging over m, and integrating over k:
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CγXγY

l ðχ; χ0ÞjV;int ¼
1

2lþ 1

Xl
m¼−l

X
λ¼�1

Z
k
hγXlmðχ; kẑ; λÞjV;intγY�lmðχ0; kẑ; λÞjV;inti: ðC7Þ

By isotropy, this recovers the full spectrum, even though we have only considered k ¼ kẑ. In full, we obtain the spectra

CγXγY

l ðχ; χ0ÞjV;int ¼
2

π

Z
∞

0

k2dkFγX;V
l ðk; χÞFγY ;V�

l ðk; χ0Þ½PBþðk; χ; χ0Þ � PB−
ðk; χ; χ0Þ�; ðC8Þ

using the correlation properties of Bλðk; χÞ (7), where we take the difference of two helicity states if X ≠ Y.9 From the
spectrum, we can read off the kernels (dropping a trivial il factor)

FγE;V
l ðk; χÞ

���
int

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ 1Þ!
ðlþ 2Þ!ðl − 1Þ!

s
bVðχÞ
2

ffiffiffi
2

p
χ
Re½Q̂ðþ1Þ

γ;V ðxÞ� jlðxÞ
x

IV

FγB;V
l ðk; χÞ

���
int

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ 1Þ!
ðlþ 2Þ!ðl − 1Þ!

s
bVðχÞ
2

ffiffiffi
2

p
χ
Im½Q̂ðþ1Þ

γ;V ðxÞ� jlðxÞ
x

IV: ðC9Þ

As discussed in the main text, vectors source both E- and B modes (unlike scalar perturbations); moreover, if the spectrum
does not conserve parity PBþ ≠ PB−

, and an EB cross-spectrum will be sourced. These spectra can be promoted to binned
form by simply integrating over χ and χ0 via (45).
The flexion kernels can be similarly computed. Restricting our attention to the spin-�1 flexion (for brevity), the Fourier-

mode expansion of (32) gives

�1F ðx; χÞjV;int ¼
8

ffiffiffi
2

p
χb̃VðχÞ
27

Z
k
eik·x

X
λ

½ðik�Þ2eðλÞ∓ ðk̂Þ þ 2ðik∓Þðik�ÞeðλÞ� ðk̂Þ�IVBλðk; χÞ: ðC10Þ

The contribution to ð̄þ1F from a Fourier mode k ¼ kẑ and a single helicity state is equal to

ð̄þ1F ðχn̂; χ; kẑ; λÞjV;int ¼ −
2

ffiffiffi
2

p
χb̃VðχÞ
27

k2e−iλφ
�
∂μ þ

λ

1 − μ2

	
½ð1 − μ2Þ3=2eixμð3μþ λÞ�IVBλðk; χÞ

¼ −
2

ffiffiffi
2

p
b̃VðχÞ
27χ

IVBλðk; χÞe−iλφ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
Q̂ðλÞ

γ;VðxÞeixμ; ðC11Þ

where Q̂ðλÞ
F ;VðxÞ≡ x2½4þ 12∂2x þ 3x∂xð1þ ∂

2
xÞ þ iλxð1þ ∂

2
xÞ�. ð−1F takes a similar form but replacing Q̂ðλÞ

F ;VðxÞ with its
conjugate. As before, the spin-zero coefficients can be used to obtain the spherical harmonic decomposition of F :

þ1F lmðχ; kẑ; λÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s Z
dn̂ ð̄þ1F ðχn̂; χ; kẑ; λÞY�

lmðn̂Þ

¼ il−λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p 2
ffiffiffi
2

p
b̃VðχÞ
27χ

IVBλðk; χÞQ̂ðλÞ
F ;VðxÞ

jlðxÞ
x

× δKmð−λÞ ðC12Þ

again using (C5). The resulting spectrum takes the same form as (C8), but with the modified kernels

FF g;Vðk; χÞ
���
int

¼ 2
ffiffiffi
2

p
b̃VðχÞ
27χ

Re½Q̂F ;VðxÞ�
jlðxÞ
x

IV;

FF c;Vðk; χÞ
���
int

¼ −
2

ffiffiffi
2

p
b̃VðχÞ
27χ

Im½Q̂F ;VðxÞ�
jlðxÞ
x

IV: ðC13Þ

9This arises since ReQ̂ð−1ÞðxÞ ¼ ReQ̂ðþ1ÞðxÞ, but ImQ̂ð−1ÞðxÞ ¼ −ImQ̂ðþ1ÞðxÞ.

WHAT CAN GALAXY SHAPES TELL US ABOUT PHYSICS … PHYS. REV. D 109, 063541 (2024)

063541-27



Derivations for other intrinsic alignment spectra, such as those sourced by scalars and tensors, follow similarly, and make
use of the kernels given in Appendix E.

APPENDIX D: EXTRINSIC VECTOR AND TENSOR SPECTRA

Here, we derive the full-sky power spectrum of shear sourced by vector and tensor lensing, following an analogous
procedure to Appendix C (from [22]). The vector contribution can be written

�2γðχn̂; χÞjV;ext ¼ −
Z

χ

0

dχ0
Z
k
eikχ

0k̂·n̂
X
λ

Bλðk; χ0Þ
��

1 − 2
χ0

χ

�
ðik�ÞeðλÞ� ðk̂Þ þ χ0

χ
ðχ − χ0Þðik�Þ2eðλÞk ðk̂Þ

�
; ðD1Þ

where eðλÞk ≡ n̂keðλÞk . Restricting to a single helicity state and Fourier mode with k ¼ kẑ, we find

þ2γðχn̂; χ; kẑ; λÞjV;ext ¼
Z

χ

0

dχ0Bλðk; χ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
2

ffiffiffi
2

p
�
ix0ðμþ λÞ

�
1

χ0
−
2

χ

�
þ x02ð1 − μ2Þ

�
1

χ0
−
1

χ

��
e−iλφeix

0μ; ðD2Þ

using that eðλÞk ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
=

ffiffiffi
2

p Þe−iλφ and setting x0 ≡ kχ0. The spin-zero part, ð̄2þ2γ, can be obtained with (A6):

ð̄2þ2γðχn̂; χ; kẑ; λÞjV;ext ¼
1

2
ffiffiffi
2

p
Z

χ

0

dχ0Bλðk; χ0Þe−iλφ
�
∂μ þ

λ

1 − μ2

	
2

×

�
ix0ðμþ λÞð1 − μ2Þ3=2

�
1

χ0
−
2

χ

�
þ x02ð1 − μ2Þ5=2

�
1

χ0
−
1

χ

��
eix

0μ;

≡ 1

2
ffiffiffi
2

p
Z

χ

0

dχ0

χ0
Bλðk; χ0Þe−iλφ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q �
Q̂ðλÞ

γ;V;1ðx0Þ þ
χ0

χ
QðλÞ

γ;V;2ðx0Þ
�
eix

0μ; ðD3Þ

defining the new operatorsQðλÞ
γ;V;1=2ðxÞ, whose forms are given in (E4). The expression for ð2−2γ is analogous but with all Q̂

operators replaced by their conjugates. As in Appendix C, we proceed by integrating (D3) against a spherical harmonic
using (C5) to yield

þ2γlmðχ; kẑ; λÞjV;ext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þp
2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ 1Þ!
ðlþ 2Þ!ðl − 1Þ!

s
il−λ

Z
χ

0

dχ0

χ0
Bλðk; χ0Þ

�
Q̂ðλÞ

γ;V;1ðx0Þ þ
χ0

χ
QðλÞ

γ;V;2ðx0Þ
�
jlðx0Þ
x0

; ðD4Þ

if m ¼ −λ, and zero else. Integrating over redshift via (45) gives

þ2γlm;aðkẑ; λÞ
���
V;ext

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þp
2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðlþ 1Þ!
ðlþ 2Þ!ðl − 1Þ!

s
il−λ

×
Z

χH

0

dχ
χ
Bλðk; χÞ½maðχÞQ̂ðλÞ

γ;V;1ðxÞ þ ðmaðχÞ − qaðχÞÞQðλÞ
γ;V;2ðxÞ�

jlðxÞ
x

; ðD5Þ

exchanging the order of integration and introducing qa and
ma kernels. This yields spectra of the general form (44)
with the kernels given in (52).
A similar form may be obtained for the shear spectrum

from tensor modes, starting from (41). Here, we implement
the h�ð0; 0Þ term by subtracting the k → 0 limit of the
scalar shear kernel (which is nonzero only for l ¼ 2), and
absorb the − 1

2
h�ðχn̂; χÞ term into the intrinsic tensor shear

contribution, redefining IThij → ðIT − 1=2bTðχÞÞhij. For
the remaining terms, a procedure analogous to the above

(described in detail in [22]) leads to the kernels given
in (52).

APPENDIX E: BESSEL FUNCTION OPERATORS

Below, we list the various Q̂ðxÞ Bessel function oper-
ators appearing in the full-sky power spectra of Sec. VA.
Firstly, the relevant operators for shear sourced by intrinsic
scalar, vector, and tensor perturbations (Sec. VA 1) are
given by:
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Q̂ðλÞ
γ;SðxÞ ¼ x2½4þ 12∂2x þ 8x∂xð1þ ∂

2
xÞ þ x2ð1þ ∂

2
xÞ2�

Q̂ðλÞ
γ;VðxÞ ¼ x½4xþ ð12þ x2Þ∂x þ 8x∂2x þ x2∂3x� þ iλx2½xþ 4∂x þ x∂2x�

Q̂ðλÞ
γ;TðxÞ ¼ ½12 − x2 þ 8x∂x þ x2∂2x� þ 2iλx½4þ x∂x�; ðE1Þ

whilst those for the spin-�1 flexion are

Q̂ðλÞ
F ;SðxÞ ¼ 3x3½xþ 4∂x þ x∂2x�ð1þ ∂

2
xÞ

Q̂ðλÞ
F ;VðxÞ ¼ x2½4þ 12∂2x þ 3x∂xð1þ ∂

2
xÞ þ iλxð1þ ∂

2
xÞ�

Q̂ðλÞ
F ;TðxÞ ¼ x½xþ 12∂x þ 3x∂2x þ 2iλx∂x�; ðE2Þ

and for the spin-�3 flexion:

Q̂ðλÞ
G;SðxÞ ¼ −x3½xðx2 þ 18Þ þ 18ðx2 þ 4Þ∂x þ 3xðx2 þ 36Þ∂2x þ 12ð3x2 þ 10Þ∂3x þ 3xðx2 þ 30Þ∂4x þ 18x2∂5x þ x3∂6x�

Q̂ðλÞ
G;VðxÞ ¼ −x2½6ðx2 þ 4Þ þ xðx2 þ 66Þ∂x þ 24ðx2 þ 5Þ∂2x þ 2xðx2 þ 45Þ∂3x þ 18x2∂4x þ x3∂5x

þ iλxð6þ x2 þ 12x∂x þ 2ðx2 þ 15Þ∂2x þ 12x∂3x þ x2∂4xÞ�
Q̂ðλÞ

G;TðxÞ ¼ x½xðx2 − 30Þ − 6ðx2 þ 20Þ∂x − 90x∂2x − 18x2∂3x − x3∂4x − 2ixλð6xþ ðx2 þ 30Þ∂x þ 12x∂2x þ x2∂3xÞ�: ðE3Þ

The scalar, vector, and tensor operators act on jlðxÞ, jlðxÞ=x, and jlðxÞ=x2 respectively.
The kernels relevant to the extrinsic power spectra (Sec. VA 2) are given by

Q̂ðλÞ
γ;V;1ðxÞ ¼ −x½xðx2 þ 8Þ þ ð11x2 þ 12Þ∂x þ 2xðx2 þ 14Þ∂2x þ 11x2∂3x þ x3∂4x − iλxðxþ 4∂x þ x∂2xÞ�

Q̂ðλÞ
γ;V;2ðxÞ ¼ x½xðx2 þ 12Þ þ 12ðx2 þ 2Þ∂x þ 2xðx2 þ 18Þ∂2x þ 12x2∂3x þ x3∂4x�;

Q̂ðλÞ
γ;T;1ðxÞ ¼ −

x
2
½xðx2 þ 14Þ þ 2ð7x2 þ 20Þ∂x þ 2xðx2 þ 25Þ∂2x þ 14x2∂3x þ x3∂4x

− 2iλð4þ x2 þ 6x∂x þ x2∂2xÞ�

Q̂ðλÞ
γ;T;2ðxÞ ¼

1

2
½24ðx2 þ 1Þ þ x4 þ 16xðx2 þ 6Þ∂x þ 2x2ðx2 þ 36Þ∂2x þ 16x3∂3x þ x4∂4x�: ðE4Þ

In the large-l limit, the action of the Q̂ operators on the spherical Bessel functions simplifies considerably. The intrinsic
functions have the following asymptotic forms:

Q̂ðλÞ
γ;SðxÞjlðxÞ≈l4jlðxÞ; Q̂ðλÞ

γ;VðxÞ
jlðxÞ
x

≈l2j0lðxÞþ iλl2jlðxÞ; Q̂ðλÞ
γ;TðxÞ

jlðxÞ
x2

≈
�
l2

x2
−2

�
jlðxÞþ2iλj0lðxÞ;

Q̂ðλÞ
F ;SðxÞjlðxÞ≈3l4jlðxÞ; Q̂ðλÞ

F ;VðxÞ
jlðxÞ
x

≈3l2j0lðxÞþ iλl2jlðxÞ; Q̂ðλÞ
F ;TðxÞ

jlðxÞ
x2

≈
�
3
l2

x2
−2

�
jlðxÞþ2iλj0lðxÞ;

Q̂ðλÞ
G;SðxÞjlðxÞ≈−l6jlðxÞ; Q̂ðλÞ

G;VðxÞ
jlðxÞ
x

≈−l4j0lðxÞ− iλl4jlðxÞ; Q̂ðλÞ
G;TðxÞ

jlðxÞ
x2

≈−l2

�
l2

x2
−2

�
jlðxÞ−2iλl2j0lðxÞ;

ðE5Þ
where j0lðxÞ≡ ∂xjlðxÞ. A similar form can be obtained for the extrinsic kernels:

Q̂ðλÞ
γ;V;1ðxÞ

jlðxÞ
x

≈ −
l4

x
jlðxÞ þ iλl2jlðxÞ; Q̂ðλÞ

γ;V;2ðxÞ ≈
l4

x
jlðxÞ ðE6Þ

Q̂ðλÞ
γ;T;1ðxÞ

jlðxÞ
x2

≈ −
l4

2x2
jlðxÞ þ iλ

l2

x
jlðxÞ; Q̂ðλÞ

γ;T;2ðxÞ ≈
l4

2x2
jlðxÞ: ðE7Þ
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