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We analyze the spectrum of gravitational waves generated by the induced spectrum of tensor fluctuation
during warm natural inflation. In our previous work, it has been demonstrated that an epoch of warm
natural inflation can lead to cosmologically relevant dark matter production in the form of primordial black
holes. Here, we show that models that solve the dark-matter production also produce a contribution to the
cosmic gravitational wave background that satisfies current constraints from pulsar timing and big bang
nucleosynthesis. More importantly, this gravitational wave background may be observable in the next
generation of space-based and ground-based gravitational wave interferometers.
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I. INTRODUCTION

In our previous paper [1], we investigated the intriguing
properties of a cosmic inflationary paradigm [2–5] in which
the inflaton effective potential is based on the natural
potential [6], and where there exists a coupling between the
inflaton field and matter fields such that matter is con-
tinuously produced during the inflationary epoch (Warm
Inflation [7–19]). This so-called “warm natural inflation”
(WNI) paradigm was first studied by [20,21] and more
recently by [22–24]. In our study [1], we discovered that
the model remarkably satisfies several observational and
theoretical constraints. Firstly, it yields a spectral index and
a ratio of the tensor-to-scalar power spectra that agree with
constraints from the Planck mission [25,26] and BICEP/
Keck [27,28]. Secondly, WNI allows for inflation to be in a
sub-Planckian regime within the effective field theory
framework. We found that it is consistent with the pre-
viously mentioned constraints for a symmetry-breaking
scale of f ¼ 0.8 with cubic dissipation (Γ ∝ T3). Recently,
[23] also confirmed our results by finding it is consistent for
fmin ¼ 0.8 in the parameter space. However, our most
important finding is that WNI naturally leads to the
significant generation of primordial black holes (PBHs).
The possibility of black hole formation in the early

Universe has been a subject of consideration for decades
[29–31]. Furthermore, it is known that if the mass of PBHs

falls within an appropriate range permitted by observations,
they could potentially explain the entirety of the inferred
dark matter in the Universe [32–35]. Reference [36]
demonstrated that warm inflation could produce sufficient
enhancement in the scalar power spectrum to give rise to
PBHs. Notably, WNI generates PBHs in significant quan-
tities and within the correct mass range to account for a
substantial fraction, if not all, of the observed dark matter
content in the Universe.
As additional motivation, it has been pointed out [37]

that a number of observational dilemmas can be understood
if there is a significant population of PBHs. Among them,
in a PBH-ΛCDM cosmology, the PBH dark matter mini
halos can collapse earlier than those comprised of standard
collisionless cold dark matter. This allows baryons to cool
and form stars and galaxies at very high redshift. This is
consistent with recent JWST observations [38] of bright
galaxies at very high redshift (z ∼ 13). The PBHs can also
collect to provide seeds for supermassive black hole
formation and thereby account for the DM-halo host-
galaxy central-black-hole connection as manifested in
the MBH − σ relation. They may also account [37] for
the x-ray and infrared backgrounds and the early formation
of the supermassive black holes powering quasars at z > 7.
However, one signature we did not consider in our

previous study [1] was the possible spectrum of gravita-
tional waves (GWs) associated with primordial black-hole
production. The purpose of the present work, therefore, is
to examine this constraint in the context of WNI models
that can account for the cosmic dark matter content. As we
will see, WNI has the capability to generate a GW spectrum
that could be detectable by several future detectors.
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There are two sources of primordial GWs that one needs
to consider. First, are the quantum tensor perturbations
generated during inflation: These are the primary GWs.
Secondly are the classical GWs generated by the enhanced
density perturbation. These are the secondary or induced
GWs. In the language of perturbation theory, at linear order,
the scalar and tensor modes evolve independently. In the
second-order of perturbation, the scalar and tensor modes
couple together. The scalar perturbation can then source the
secondary tensor mode and thereby produce induced
gravitational waves (IGWs) [39–44,44–46].
Usually, the second-orderGWsare suppressedwith respect

to the first-order by a factor of the square of the scalar
spectrum [39]. However, they can become significant and
even exceed the first-order GWs for an enhanced primordial
scalar power spectrum, such as in the case of PBH formation
[40,47,48]. Indeed, it has been shown in the literature [41] that
the second-order tensormodedominates over the first-order if
the tensor to scalar ratio is r < 10−6. The induced gravita-
tional wave production in the case of warm inflation has been
studied previously in [49–52]. Here, we specifically consider
GW production in warm natural inflation.
This paper is structured as follows: We briefly review the

WNI dynamics in Sec. II. The modeling of GWs and a
semianalytical calculation of the GW spectrum is given in
Sec. III. We present our findings and compare the calculated
spectrum to present and future detection sensitivities in
Sec. IV. We provide discussion and conclusions in Sec. V.

II. WARM INFLATIONARY DYNAMICS

In a homogeneous and isotropic background, the dynam-
ics of the inflaton field ϕðtÞ within warm inflation are
governed by the following equations:

ϕ̈þ 3Hð1þQÞϕ̇þ V;ϕ ¼ 0; ð1Þ

ρ̇R þ 4HρR ¼ 3HQϕ̇2; ð2Þ

3H2M2
Pl ¼ ðρϕ þ ρRÞ; ð3Þ

where over-dots represent derivatives with respect to
cosmic time t, V;ϕ ≡ ∂V=∂ϕ, ρr is the radiation energy
density, and Q≡ Γ=3H, where Γ is the dissipation coef-
ficient providing the source for the radiation bath. The last
equation is the Friedmann equation satisfied by the Hubble
parameter H.
During inflation, the potential energy dominates over

both the kinetic term and the radiation energy density, i.e.,

VðϕÞ ≫
�
1

2
ϕ̇2; ρr

�
: ð4Þ

Also, the inflaton field amplitude should not change
too quickly (ϕ̈ < 3Hϕ̇). Moreover, the condition of an

accelerating scale factor (ä > 0) then leads to the slow-roll
condition for WI such that

3Hð1þQÞ ≈ −V;ϕ; ð5Þ

and

−
d lnH
dN

¼ ϵϕ
1þQ

≪ 1; ð6Þ

−
d lnV;ϕ

dN
¼ ηϕ

1þQ
≪ 1; ð7Þ

where ϵϕ ¼ ðM2
Pl=2ÞðV;ϕ=VÞ2 and ηϕ ¼ M2

PlðV;ϕϕ=VÞ are
the usual cold inflationary (CI) slow-roll parameters.
The quantity N ¼ ln a, with a the scale factor, denotes
the number of e folds of inflation. Under the slow-roll
approximation, the warm inflationary dynamics are then
governed by the following:

3Hð1þQÞϕ̇ ≈ V;ϕ; ð8Þ

4ρr ≈ 3Qϕ̇2; ð9Þ

3H2M2
Pl ≈ V; ð10Þ

where the radiation energy density can also be written in
terms of the temperature T, since ρr ¼ ðπ2=30Þg�T4.
For our studies of warm inflation [1], we have adopted

cubic dissipation Γ ¼ CT3 with C a constant of dimension
M−2

Pl . The dynamical equation of inflation with respect to
the number of e folds can be found in our earlier work [1].
The power spectrum for curvature and tensor perturba-

tions in the case of warm inflation with a cubic dissipation
coefficient are, respectively, given by (see Ref. [53] and
references therein):

PR ¼
�
H2

2πϕ̇

�
2
�
1þ T

H
FðQÞ

�
GðQÞ; ð11Þ

PT ¼ 2H2=ðπ2M2
PlÞ; ð12Þ

with

FðQÞ ≈ 2π
ffiffiffi
3

p
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ
p ; ð13Þ

and

GðQÞ ¼ 1þ 4.981Q1.946 þ 0.127Q4.330; ð14Þ

where the GðQÞ approximates an exact numerical calcu-
lation of the effect of the coupling between the inflating
fluctuations and radiation [54].
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Finally, the natural inflation potential for the inflaton
field is given by [6]

VðϕÞ ¼ Λ
�
1þ cos

�
ϕ

f

��
; ð15Þ

where the inflaton ϕ is an “axionlike” field that is
analogous to the Goldstone Boson of a broken Peccei-
Quinn-like symmetry. The parameter f is the symmetry-
breaking scale. This potential has been studied previously
in the context of warm inflation [20–24]. In our study, we
have taken C ¼ Cϕ=Λ1=2 with Cϕ being a dimensionless
model parameter, and Λ is the amplitude from Eq. (15).
The primordial curvature power spectrum for three

representative sets of parameters for this model were given
in Fig. 1 and are summarized here in Table I. The power
spectra associated with these parameters nicely produce
PBHs in the desired mass range, whereby a significant
fraction (or all) of the current dark matter could be in the
form of PBHs without violating observational constraints.
Since our conclusions are based upon an analysis in

perturbation theory, it is important to establish that inflation
terminates within the perturbative regime. In particular, the
enhanced curvature perturbations must not exceed order
Oð1Þ, above which the perturbative treatment collapses.
At the same time, PBH production also requires an

enhancement of the power spectrum beyond 10−2 to initiate
a collapse. This latter requirement is due to the length scale
of the fluctuations needing to be greater than the Jean’s
length when the associated mode reenters the horizon. It is,
therefore, necessary to justify that the power spectrum will
remain below the nonperturbative regime in this scenario.
To show that the nonperturbative regime is avoided, we

demonstrate that inflation terminates in WNI before the
perturbations exceed unity. That is, unlike cold inflation,
warm inflation ends once the radiation energy density, ρr
exceeds that of the inflation field, thus halting the growth in
the power spectrum. As ρr becomes greater than the energy
density of the inflaton, ρϕ, the Universe continuously enters
into the radiation-dominated era, without the need for a
reheating phase.
This is depicted in Fig. 2, where for ease of comparison,

we plot renormalized densities ρ=2Λ for both the inflaton
and radiation fields versus the number of e folds during
inflation for each model. It is clear from this figure that the
rapid falloff of ρϕ for each model occurs at the number of e
folds at which ρr becomes dominant. Thus, the power
spectrum reaches its maximum right before the end of
inflation while still in the perturbative regime. After the
inflation ends, the perturbation modes will start reentering
the horizon. All of the higher k (k > keq) modes then
reenter during radiation dominated epoch, keeping the
power spectrum unchanged, such that the perturbation
theory does not break down.

III. BASICS OF INDUCED
GRAVITATIONAL WAVES

To model the GWs, a metric that includes both scalar and
tensor perturbations is used. Within the Newtonian con-
formal gauge, the metric is then given by [39,42]

FIG. 1. Primordial power spectra generated in the WNI. The
color codes are the same for the parameters as depicted in Table I.

TABLE I. The inflationary observable for different sets of
model parameter values. The different color codes are maintained
in the plots. This is the same from [1].

Color N Λðm4
pÞ Cϕ ns r

Red 55 1.00 × 10−11 50 0.964 4.0 × 10−3

Blue 63 7.87 × 10−12 60 0.966 4.5 × 10−4

Green 44 1.77 × 10−11 40 0.966 1.0 × 10−3

FIG. 2. Variation of normalized densities ρϕ=2Λ and ρr=2Λ
with the number of e foldings (N). The color codes for the models
are the same as depicted in Table I. Solid lines are for radiation,
and the dotted lines are for the inflaton. Inflation ends once
ρr > ρϕ at the N quoted in Table I.
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ds2 ¼ aðηÞ2
�
−ð1þ 2ΦÞdη2

þ
�
ð1 − 2ΨÞδij þ

hij
2

�
dxidxj

�
; ð16Þ

where a, is the scale factor, η is the conformal time, Φ and
Ψ are the scalar perturbations, while hij is the tensor
perturbation added on top of the metric. The effect of the
anisotropic stress is neglected in the following discussion
since its contribution is small [42]. Thus, Φ ¼ Ψ.
The action describing the tensor mode is given by

S ¼ M2
Pl

32

Z
dηd3xa2½ðh0ijÞ2 − ð∂lhijÞ2�; ð17Þ

where the prime 0 denotes differentiation with respect to
conformal time η, while ∂lhij represents the derivative of
hij with respect to spatial coordinate l.
Next the tensor perturbation can be decomposed into its

Fourier modes as

hijðη;xÞ ¼
Z

d3k

ð2πÞ3=2
X
s¼þ;×

ϵsijðkÞhskðηÞeikx; ð18Þ

where ϵþijðkÞ and ϵ×ijðkÞ are time-independent transverse
traceless polarization vectors, defined in an orthonormal
basis (eiðkÞ; ēiðkÞ) as

ϵþijðkÞ ¼
1ffiffiffi
2

p ½eiðkÞejðkÞ − ēiðkÞējðkÞ�; ð19Þ

ϵ×ijðkÞ ¼
1ffiffiffi
2

p ½eiðkÞējðkÞ þ ēiðkÞejðkÞ�: ð20Þ

The dimensionless power spectrum for the tensor pertur-
bation is then given by

hhλkðηÞhλ
0
k0 ðηÞi ¼ δλλ0

2π2

k3
δðkþ k0ÞPhðk; ηÞ; ð21Þ

where λ; λ0 ¼ fþ;×g. What remains is to formulate equa-
tions of motion for the Fourier modes of the tensor
perturbations hkðηÞ. The scalar perturbations in the gravi-
tational potential Φ act as the source for the tensor
equations of motion. Hence, following [39], we write

h00kðηÞ þ 2Hh0kðηÞ þ k2hkðηÞ ¼ 4SkðηÞ; ð22Þ

where the source term Sk is

Sk¼
Z

d3q

ð2πÞ3=2eijðkÞqiqj
�
2ΦqΦk−q

þ 4

3ð1þwÞðH
−1Φ0

qþΦqÞðH−1Φ0
k−qþΦk−qÞ

�
; ð23Þ

The above has made use of −2Ḣ ¼ ρþ P ¼ ð1þ wÞρ ¼
3ð1þ wÞH2, while w ¼ P=ρ is the usual equation-of-state
parameter, andH≡ a0=a ¼ aH is the Hubble parameter in
conformal time. The Fourier modes of the gravitational
potential Φk are similar to those of the tensor mode.
Next, a Green’s function method can be used to solve for

hkðηÞ,

aðηÞhkðηÞ ¼ 4

Z
η
dη̄Gkðη; η̄Þaðη̄ÞSkðη̄Þ: ð24Þ

Here, the Green’s function Gkðη; η̄Þ is the solution to

G00
kðη; η̄Þ þ

�
k2 −

a00ðηÞ
aðηÞ

�
Gkðη; η̄Þ ¼ δðη − η̄Þ; ð25Þ

and derivatives are with respect to η.
The equation of motion for the gravitational potential

(e.g., [55]) is

Φ00
k þ 3Hð1þ c2s ÞΦ0

k þ ð2H0 þ ð1þ 3c2s ÞH2 þ c2sk2ÞΦk

¼ a2

2
τδS; ð26Þ

where the sound speed c2s ¼ w and the temperature τ are
defined via δP ¼ c2sδρþ τδS, and S is the entropy density.
In the absence of entropy perturbations, the gravitational
potential equation of motion reduces to

Φ00
kðηÞ þ

6ð1þ wÞ
ð1þ 3wÞηΦ

0
kðηÞ þ wk2ΦkðηÞ ¼ 0: ð27Þ

The primordial value ϕk is derived from the relation
Φk ¼ ΦðkηÞϕk where the transfer function ΦðkηÞ
approaches unity well before the horizon entry. The
primordial value then relates to the curvature perturbation
according to

hϕkϕk0 i ¼ δðkþ k0Þ 2π
2

k3

�
3þ 3w
5þ 3w

�
2

PζðkÞ; ð28Þ

where the EoS parameter w is evaluated before the horizon
entry. The “primordial” value ϕk is also evaluated just
before the horizon entry.
The correlation function hSkðηÞSk0 ðη0Þi is obtained by

adopting Gaussian primordial curvature perturbations.
Finally, by comparing hSkðηÞSk0 ðη0Þi with Ph, using
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Eqs. (21) and (24) and doing some algebra, the power
spectrum can be deduced from the curvature perturbation
Pζ [39]:

Phðη; kÞ ¼ 4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4vu

�
2

× I2ðv; u; xÞPζðkvÞPζðkuÞ; ð29Þ

where x≡ kη, and

Iðv; u; xÞ ¼
Z

x

0

dx̄
aðη̄Þ
aðηÞ kGkðη; η̄Þfðv; u; x̄Þ; ð30Þ

with

fðv; u; x̄Þ ¼ 6ðwþ 1Þ
3wþ 5

Φðvx̄ÞΦðux̄Þ þ 6ð1þ 3wÞðwþ 1Þ
ð3wþ 5Þ2

× ðx̄∂η̄Φðvx̄ÞΦðux̄Þ þ x̄∂η̄Φðux̄ÞΦðvx̄ÞÞ

þ 3ð1þ 3wÞ2ð1þ wÞ
ð3wþ 5Þ2

× x̄2∂η̄Φðvx̄Þ∂η̄Φðux̄Þ; ð31Þ

and x̄≡ kη̄, whileH ¼ aH ¼ 2=½ð1þ 3wÞη�. The function
fðu; v; x̄Þ contains the information about the source.
A change of variables of uþ v − 1 → t and u − v → s

recasts the integral (29) as

Phðη; kÞ ¼ 2

Z
∞

0

dt
Z

1

−1
ds

�
tð2þ tÞðs2 − 1Þ

ð1 − sþ tÞð1þ sþ tÞ
�

2

× I2ðs; t; xÞPζðkvÞPζðkuÞ: ð32Þ

For GWs produced in a radiation-dominated universe in
the late time limit (x → ∞), the oscillation average of
I2ðs; t; xÞ can be written as in [39],

I2ðs; t; x → ∞Þ

¼ 288ð−5þ s2 þ tð2þ tÞÞ2
x2ð1 − sþ tÞ6ð1þ sþ tÞ6

×

�
π2

4
ð−5þ s2 þ tð2þ tÞÞ2θðt − ð

ffiffiffi
3

p
− 1ÞÞ

þ ð−ðt − sþ 1Þðtþ sþ 1Þ

þ 1

2
ð−5þ s2 þ tð2þ tÞÞ log

				−2þ tð2þ tÞ
3 − s2

				
��

; ð33Þ

where θðxÞ is the Heaviside step function.

Combining Eqs. (32) and (33) and further simplifying
the integral by another change of variable (tþ 1 →

ffiffiffi
r

p
),

the following power spectrum is obtained:

Phðη; kÞ ¼
Z

∞

1

dr
Z

1

−1
ds

72ðr− 1Þ2ðs2 − 1Þ2ðrþ s2 − 6Þ2
x2

ffiffiffi
r

p ðr− s2Þ8

×

��
ðrþ s2 − 6Þ log

�				 3− r
s2 − 3

				
�
− 2ðr− s2Þ

�
2

þ π2ðrþ s2 − 6Þ2θð ffiffiffi
r

p
−

ffiffiffi
3

p
Þ
�

×Pζ

�
1

2
kð ffiffiffi

r
p

− sÞ
�
Pζ

�
1

2
kð ffiffiffi

r
p þ sÞ

�
: ð34Þ

This can be numerically integrated using Pζ from
Eq. (28).

IV. CONSTRAINTS ON THE
GW ENERGY DENSITY

To compare WNI with GW detector sensitivities, we
need to calculate the present gravitational wave closure
contribution as a function of frequency. The power spec-
trum described in the previous section can be related
directly to the energy density in gravitational waves. The
GW energy density within the horizon is ρGWðηÞ ¼R
d ln kρGWðη; kÞ and can be evaluated [56] as

ρGW ¼ M2
Pl

16a2
hhij;khij;ki; ð35Þ

where the overline indicates an average over the oscilla-
tions. We have considered the parity invariance for the
polarization modes such that both have the same contri-
bution to the energy density. The fraction of the GWenergy
density per logarithmic wave number, ΩGWðη; kÞ is then
given by:

ΩGWðη;kÞ¼
1

ρtotðηÞ
dρGWðη;kÞ

d lnk

¼ ρGWðη;kÞ
ρtotðηÞ

¼ 1

24

�
k

aðηÞHðηÞ
�

2

Phðη;kÞ; ð36Þ

where a sum has been made over the two polarization
modes. During the radiation-dominated era, the term in
parentheses simplifies to

�
k

aðηÞHðηÞ
�

2

¼ k2η2 ¼ x2: ð37Þ

To obtain the present spectrum of gravitational waves
from Eq. (37) following [39], we deduce (see Appendix)
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ΩGW;0ðkÞ ¼ 0.39

�
g�ðTcÞ
106.75

�
−1=3

Ωr;0 ΩGWðηc; kÞ; ð38Þ

where the subscript (c) denotes quantities evaluated when
the perturbation is within the horizon during the radiation-
dominated era when ρGW is a constant fraction of the
radiation energy density. We useΩr;0h2 (¼4.18 × 10−5) for
the present closure contribution from photons and neutri-
nos. Finally, the wave number k is related to the frequency
of gravitational waves by

f ¼ k
2π

¼ 1.5 × 10−15
�

k
1 Mpc−1

�
Hz: ð39Þ

Figure 3 shows the present gravitational closure con-
tribution as a function of frequency. The continuous green,
red, and blue lines show calculated contribution in gravi-
tational radiation ΩGWh2 from primordial black holes for
N ¼ 44, 55, 63 e folds of inflation, respectively. Note the
sharp dropoff in the power once the scale of PBH formation
is obtained.
Various lines on Fig. 3 indicate current (blue lines) and

anticipated future (pink lines) constraints from various GW
observatories as labeled. The jagged blue lines indicate
existing pulsar timing array constraints from EPTA [57],
NANOGrav [58], andPPTA [59]. The horizontal blue dashed
line shows the BBN upper bound on the energy density
in gravitational waves, ΩGWh2 < 1.8 × 10−6 (95% C.L.)
deduced in [39].
The pink lines show sensitivity curves [60] of various

future GW observations reproduced from Ref. [61]. The

curves are from SKA [62], eLISA [63], LISA [64], BBO
[65], DECIGO [66], Einstein Telescope [67], Cosmic
Explorer [68], and KAGRA [69].
As seen from this figure, the predicted contribution

from PBH GWs easily satisfies current constraints from
pulsar timing and BBN. Perhaps, more interesting is the
fact that pending space-based detectors such as LISA,
BBO, and DECIGO will have sufficient sensitivity to
detect this contribution from PBH gravitational waves.
Even next-generation ground-based detectors like the
Einstein Telescope and the Compton Explorer may get a
glimpse of this possible GW background.

V. CONCLUSION

We have calculated the contribution to the closure
density ΩGWh2 from the energy density in gravitational
waves for models of warm natural inflation that produce
PBHs in a mass range that could account for as much as all
of the presently inferred dark matter. The case of PBHs in
cold inflation has been studied extensively in the recent
literature (e.g., Refs. [70–74]). However, we have shown in
particular that the contribution of ΩGW from WNI satisfies
all existing constraints from BBN and pulsar timing.
Moreover, we show the interesting result that this cosmic
background in GWs may be detectable in the next gen-
eration of space-based and ground-based gravitational
wave interferometers.
The observation of GWs predicted by this model could

point toward indirect evidence of the warm inflationary
paradigm. Of course, one should also explore many
avenues to check the shape of the secondary GWs produced
due to the enhancement in the primary scalar power
spectrum. For example, one interesting aspect that one
can check is the effect on the GW spectrum in the case of
resonant particle production during inflation as described
in [75,76].
Also, a more general form of pseudo-Nambu Goldstone

Boson(pNGB) inflaton has been studied in [77] and studied
in alternative scenarios in [78–81]. This has been dubbed as
Goldstone inflation. In this case, natural inflation is just a
limiting case of the more general Goldstone inflation. It
will be of interest to study this more general model in the
context of theWI and study further the PBH production and
GW production associated with it.
Furthermore, a reconstruction of the inflationary poten-

tial in the WI paradigm while keeping the PBH production
in mind to account for the total DM density could lead to
interesting results as in the case of [82].
Finally, we note a recent suggestion that the production of

PBHs faces a no-go theorem in the case of single-field cold
inflation [83].We emphasize, however, that the production of
PBHs and consequently GWs in the context of WNI as
discussed here is both allowed and quite inevitable. Thus,
testing this theory following the path of [83–88] (though
there are counterarguments presented in [89]) could

FIG. 3. Green, red, and blue solid lines show calculated closure
contribution in gravitational radiation ΩGWh2 from primordial
black holes in WNI for N ¼ 44, 55, 60 e folds of inflation. These
are compared with various constraints as labeled. Blue colors
denote existing constraints from pulsar timing and BBN, while
pink colors show constraints from future space-based and
ground-based GW observatories.
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lead to interesting insight into the physics of the early
inflationary universe. The authors plan to consider these
in future work.
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APPENDIX

Here we show the derivation ofΩGW. Following [39], we
write

ΩGW;0ðkÞ ¼
ρGWðη0; kÞ
ρtotðη0Þ

¼ ρGWðη0; kÞ
ρGWðηc; kÞ

ρGWðηc; kÞ
ρtotðη0Þ

¼ ρGWðη0; kÞ
ρGWðηc; kÞ

ρGWðηc; kÞ
ρtotðηcÞ

ρtotðηcÞ
ρtotðη0Þ

: ðA1Þ

During the radiation dominated era, ρtotðηcÞ ≈ ρrðηcÞ and
also ρGW ∼ a−4. Thus, can we write

¼ aðηcÞ4
aðη0Þ4

ΩGWðηc; kÞ
ρrðηcÞ
ρtotðη0Þ

ðA2Þ

¼ aðηcÞ4
aðη0Þ4

ΩGWðηc; kÞ
ρrðη0Þ
ρtotðη0Þ

ρrðηcÞ
ρrðη0Þ

ðA3Þ

¼ aðηcÞ4
aðη0Þ4

ΩGWðηc; kÞΩr;0
ρrðηcÞ
ρrðη0Þ

: ðA4Þ

Now, from the conservation of entropy we get

ρrðηcÞ
ρrðη0Þ

¼ g�;c
g�;0

�
Tc

T0

�
4

ðA5Þ

¼ g�;c
g�;0

�
g�S;0
g�S;c

�
4=3 aðη0Þ4

aðηcÞ4
; ðA6Þ

where g�;c is the number of relativistic degrees freedom at
temperature Tc; similarly g�S is the same for entropy
density. Before eþ − e− pair annihilation during the radi-
ation era, g�S;c ≈ g�;c, Thus, we deduce

ΩGW;0ðkÞ ¼
�
g�;c
g�;0

��
g�S;0
g�S;c

�
4=3

Ωr;0 ΩGW

¼ 0.39
�

g�;c
106.75

�
−1=3

Ωr;0 ΩGWðηc; kÞ; ðA7Þ

where, the latter equation makes use of standard values
g�;0 ¼ 3.36 and g�S;0 ¼ 3.91, and 106.75 is the number of
degrees of freedom from standard-model particles.
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