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We derive constraints on the injection of free-streaming dark radiation after big bang nucleosynthesis by
considering the decay of a massive hidden sector particle into dark radiation. Such a scenario has the
potential to alleviate the Hubble tension by introducing a new energy component to the evolution of the
early Universe. We employ observations of the cosmic microwave background (CMB) from Planck 2018
and South Pole Telescope 2018, measurements of the primordial deuterium abundance, Pantheonþ type Ia
supernovae data, and baryon acoustic oscillation measurements from BOSS DR12 to constrain these decay
scenarios. Prerecombination decays are primarily restricted by observations of the CMB via their impact on
the effective number of relativistic species. On the other hand, long-lived decay scenarios in which the
massive particle lifetime extends past recombination tend to decrease the late-time matter density inferred
from the CMB and are thus subject to constraints from Pantheonþ and baryon acoustic oscillations. We
find that, when marginalizing over lifetimes of τY ¼ ½10−12.08; 10−1.49� Gyr, the decaying particle is limited
at 2σ to only contribute a maximum of 3% of the energy density of the Universe. With limits on these
decays being so stringent, neither short-lived nor long-lived scenarios are successful at substantially
mitigating the Hubble tension.
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I. INTRODUCTION

Measurements of cosmological parameters from obser-
vations of the cosmic microwave background (CMB) [1],
baryon acoustic oscillations (BAO) [2,3], and weak lensing
[4,5] have become significantly more precise with time.
However, this increased precision has introduced apparent
discrepancies between local measurements of the Hubble
constant (H0) [6–9] and matter fluctuation parameter (S8)
[4,5,10] and the values predicted by the standard ΛCDM
model based on observations of the CMB [1]. Many
systematic uncertainties have been ruled out as the cause
for these tensions [11–17], which persist across multiple
probes, potentially hinting at the need for a new cosmo-
logical model.
Since the tension in H0 can be recast as a tension in the

measurement of the sound horizon at recombination [14],
it is common for extensions of ΛCDM to introduce new
contributions to the energy density of the Universe prior to
recombination, thereby reducing the size of the sound
horizon (e.g. [18–21]). One of the simplest extensions to
ΛCDM that reduces the size of the sound horizon is the
addition of free-streaming massless relics that alter the

effective number of relativistic species, Neff [19,22,23].
However, scenarios with a nonstandard Neff during big
bang nucleosynthesis (BBN) alter the abundance of primor-
dial elements by changing the expansion rate during BBN
and are therefore limited by measurements of primordial
abundances of deuterium and helium [24–27]. Augmenting
the radiation energy density afterBBN (e.g. [28]) can bypass
these limits, but there still exist stringent constraints on Neff
from the CMB alone [1,29–31]. Scenarios that alter Neff
after recombination by transferring energy from matter to
radiation are also capable of increasing the value of H0

inferred from the CMB by changing the angular diameter
distance to the CMB [32–34].
In this work, we consider a massive hidden sector

particle, which we call the Y particle, that decays solely
into dark radiation (DR) after BBN. We place bounds on
the particle decay rate (ΓY) as well as the maximum
contribution that the particle makes to the energy density
of the Universe. As in Sobotka et al. [35], we assume the
hidden sector to be sufficiently cold such that the Y particle
is nonrelativistic throughout BBN. The injected DR is
assumed to be relativistic and free-streaming.
We only investigate decays into DR because scenarios

that include decays into photons are significantly con-
strained [35]. Photon injection after BBN is constrained by
its influence on primordial light-element abundances, with
the most stringent bounds being placed on injected photons
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with high enough energies to photodisintegrate primordial
deuterium [36–42]. Even for injected photons that do not
have enough energy to photodisintegrate deuterium,
measurements of the abundance of deuterium still provide
strict constraints via changes in the baryon-to-photon ratio
during BBN [35]. Furthermore, the injection of new
photons after a redshift of z ∼ 106 results in spectral
distortions of the CMB energy spectrum, so bounds on
spectral distortions from the COBE satellite [43,44] or
future measurements of the CMB spectrum [45] can be
used to place limits on the time of photon injection [46–48].
In Sobotka et al. [35], we found that COBE constraints on
spectral distortions required the Y particle lifetime to be
less than ∼0.032 yr if more than ∼66% of the Y particle’s
energy was transferred to photons during its decay.
Scenarios that do not inject photons are not subject to
these constraints from BBN or spectral distortions and thus
it is possible for the Y particle to decay much later, even
after recombination.
Y particle decays into DR affect the CMB anisotropies

and predicted abundance of primordial elements. The
primary effect that an injection of DR prior to recombi-
nation has on the CMB anisotropies is via changes in Neff .
Additionally, even though this decay scenario does not
directly alter the baryon-to-photon ratio at BBN, CMB
observations favor changes in the baryon energy density
in the context of a Y decay, ultimately changing the
predicted abundance of primordial elements. Furthermore,
the presence of the hidden sector particle slightly
increases the expansion rate during BBN and thereby
alters the predicted primordial abundance of elements.
Finally, scenarios in which the Y particle lifetime extends
past the time of recombination have the potential to
simultaneously increase the value of H0 and decrease
the cold dark matter energy density content that is
preferred by CMB anisotropy data, ultimately decreasing
the relative contribution of matter to the total present day
energy density (Ωm) inferred by the CMB.
The constraints derived in this work improve upon the

limits derived in decaying cold dark matter (DCDM)
models (e.g. [49–55]), where dark matter is composed of a
stable component and a component that decays into DR.
We improve upon the constraints derived in these studies
with the inclusion of data from the third generation
South Pole Telescope 2018 (SPT-3G) [56–58], Pantheonþ
type Ia supernovae measurements [59], and bounds on the
abundance of deuterium. More importantly, the paramet-
rization that is commonly used in DCDM studies results
in constraints that depend on the choice of prior for
the particle lifetime when employing a Markov-chain
Monte Carlo (MCMC) analysis. We choose to parametrize
the amount of the decaying species with the quantity RΓ,
which is a measure of the Y particle energy density
compared to all other species at the time when ΓY equals
the expansion rate. With this parametrization, derived

bounds on RΓ are applicable to all short-lived decay
scenarios and are not prior dependent. Therefore, the
RΓ parametrization employed in this work serves as a
robust guide to how much DR can be injected prior to
recombination.
Additionally, we derive adiabatic initial conditions for

the DR perturbations in two common gauges: conformal
Newtonian and synchronous gauge [60]. Since the DR is
sourced by the decay of the Y particle, the DR energy
density initially scales as a−1, where a is the scale factor.
Therefore, a naive application of adiabaticity would lead
one to assume that δdr ¼ ð1=4Þδγ in both conformal
Newtonian and synchronous gauge, where δdr and δγ are
the fractional density perturbations in DR and photons,
respectively. While this is indeed true in conformal
Newtonian gauge, we find that δdr is not initially equal
to ð1=4Þδγ in synchronous gauge; there exists an attractor
solution in synchronous gauge that sets δdr ¼ ð17=20Þδγ .
This attractor solution quickly rectifies any incorrect initial
condition and so other DCDM studies that neglected to set
the correct initial condition for DR in synchronous gauge
are still valid. Nevertheless, we include an in-depth dis-
cussion of these DR initial conditions and provide a
generalized approach that demonstrates the presence of a
nonintuitive attractor solution in synchronous gauge if there
is energy transfer between two species.
This paper is organized as follows. In Sec. II we describe

the model and parametrization of the decaying Y particle
scenario, with Sec. II B containing a discussion of the
subtleties of the initial conditions for DR perturbations.
In Sec. III, we explore the primary effects that the decay
has on the CMB temperature anisotropies and primordial
abundances. We motivate the choice of likelihoods and
priors for our MCMC analysis in Sec. IV, and Sec. V
presents the results. A summary can be found in Sec. VI,
and we include an Appendix that contains details of our
model implementation in CLASS [61] (Appendix A), a
determination of the initial condition for DR perturbations
in synchronous gauge (Appendix B 1), as well as a
derivation of generalized adiabatic initial conditions for
two cases: non-interacting fluids (Appendix B 2) and fluids
that exchange energy via a decay (Appendix B 3). The
Appendix also includes calculations for ΔNeff resulting
from the injection of DR (Appendix C).

II. DECAYING PARTICLE MODEL

A. Parametrization

The equations describing the evolution of the energy
density of the Y particle (ρY) and that of the injected dark
radiation (ρdr) are

ρ̇Y þ 3HρY ¼ −ΓYρY; ð1Þ

ρ̇dr þ 4Hρdr ¼ þΓYρY; ð2Þ
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where ΓY is the decay rate of the Y particle, H ≡ ȧ=a with
scale factor a, and an overdot denotes a proper time
derivative.1

The physical quantities that we wish to constrain are the
Y particle’s decay rate and its maximum contribution to the
energy density of the Universe. The maximum contribution
of ρY serves as a proxy for the amount of DR injected as
well as a measure of the impact that the Y particle has on
observables while acting as extra cold dark matter. We
parametrize the maximum contribution that the Y particle
makes to the energy density of the Universe with the
quantity RΓ defined as

RΓ ≡ ρY;iðai=aΓÞ3
ρsrðaΓÞ þ ρmðaΓÞ þ ρncdmðaΓÞ

; ð3Þ

where ρY;i is the initial energy density of the Y particle, ρm
is the combined energy density of baryons and cold dark
matter, ρsr is the combined energy density of photons and
massless neutrinos, ρncdm is the energy density of noncold
dark matter (i.e. massive neutrinos), and the initial scale
factor, ai, is assumed to be deep in radiation domination.
We assume that neutrinos are composed of two massless
species and one massive species with mν ¼ 0.06 eV.
RΓ approximately describes the maximum ratio of ρY to
the total energy density, ρY=ρtot, if aΓ is chosen such that
ΓY ≃HðaΓÞ. Therefore, we define aΓ via the relation

ΓY ¼Hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρY;i

�
ai
aΓ

�
3þρmðaΓÞþρsrðaΓÞþρncdmðaΓÞ

ρr;i

vuut
; ð4Þ

where Hi ≡HðaiÞ and ρr;i ¼ ρsr;i þ ρncdm;i since massive
neutrinos are initially relativistic. We note that Eq. (4) is
not an exact statement of ΓY ¼ HðaΓÞ because ρY does
not evolve as a−3 up to aΓ and we do not include
contributions from ρdr in the computation of HðaΓÞ.
However, for the level of ρY contributions that we
consider in this work, Eq. (4) provides a value for aΓ
such that ΓY ≈HðaΓÞ without numerically solving for the
evolution of ρY .
We modify the public Boltzmann solver the Cosmic

Linear Anisotropy Solving System (CLASS) [61] to solve
Eqs. (1) and (2) when given initial values for ρY
and ρdr. Determining the initial densities that generate
decay scenarios with specified RΓ and ΓY values could be
accomplished with a shooting algorithm but, in the interest
of simplicity, we choose to derive an analytic model that
maps RΓ and ΓY to initial conditions for ρY and ρdr. This
analytic approach is described in Appendix A, and an

example of the resulting evolution of ρY and ρdr is provided
in Fig. 1. Initially, ρY mimics the evolution of standard
nonrelativistic matter (ρY ∝ a−3) until a ≈ aΓ after which
ρY exponentially decreases. As the DR is being sourced by
the Y particle decay, ρdr ∝ a−1. However, soon after a ≈ aΓ,
the Y particle decay no longer sources significant DR and
thus ρdr evolves as standard radiation, ρdr ∝ a−4. As we
explore in the following section, the fact that ρdr evolves as
a−1 even though the DR equation of state parameter is 1=3
has interesting ramifications for the initial conditions of DR
perturbations in synchronous gauge.

B. Perturbations

The initial conditions that are implemented in CLASS for
baryon, cold dark matter, photon, and neutrino perturba-
tions are described in Ma and Bertschinger [60]. Here, we
derive the superhorizon initial conditions during radiation
domination for the scalar perturbations of the Y particle
and the DR that is sourced by the decay of the Y particle.
Since Boltzmann codes such as CLASS commonly evolve
perturbations in synchronous gauge, we discuss the adia-
batic initial conditions for the Y particle and DR in both
conformal Newtonian gauge and synchronous gauge. The
Friedmann-Lemaître-Robertson-Walker metric in con-
formal Newtonian gauge is

ds2 ¼ aðτÞ2½−ð1þ 2ΨÞdτ2 þ δijð1 − 2ΦÞdxidxj�; ð5Þ

FIG. 1. Energy densities for a decay with ΓY ¼ 106.5 Gyr−1 and
RΓ ¼ 0.01. Here, ρY is the energy density of the Y particle, ρdr is
that of the DR, ρsr is the combined energy density of photons
and massless neutrinos, and ρm is the combined energy density
of baryons and cold dark matter. The Y particle energy density
scales as ρY ∝ a−3 until around a ≈ 10−5, at which point the
decay rate overcomes the expansion rate. The DR energy density
initially scales as ρdr ∝ a−1 as it is sourced by the Y particle decay
and then eventually transitions to scaling as a−4. The vertical line
marks aΓ defined by Eq. (4).

1Note that the right-hand sides of Eqs. (1) and (2) are propor-
tional tomYnY , wheremY and nY are the mass and number density
of the Y particle, respectively. However, mYnY ¼ ρY if the Y
particle equation of state is wY ¼ 0 [62].
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where Φ and Ψ are scalar perturbations to the metric and τ
is conformal time. The Friedmann-Lemaître-Robertson-
Walker metric in synchronous gauge is

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ hijÞdxidxj�; ð6Þ

where the scalar part of the perturbation hij can be
expressed in Fourier space as

hijðk⃗; τÞ ¼ k̂ik̂jhðk⃗; τÞ þ
�
k̂ik̂j −

1

3
δij

�
6ηðk⃗; τÞ; ð7Þ

with k⃗ ¼ kk̂ and k being the comoving wave number of a
perturbation mode. Throughout this discussion, a super-
script (s) or (n) denotes synchronous or conformal
Newtonian gauge, respectively.
The DCDM module that is included in the public

distribution of CLASS sets initial conditions for the
fractional density perturbation of DCDM and DR in

synchronous gauge as δðsÞdcdm ¼ ð3=4ÞδðsÞγ and δðsÞdr ¼ δðsÞγ ,

respectively, where δðsÞγ is the fractional density perturba-

tion of photons. While this condition for δðsÞdcdm is correct,

there exists a different attractor solution for δðsÞdr on super-

horizon scales; the energy transfer to ρdr quickly pushes δ
ðsÞ
dr

to ð17=20ÞδðsÞγ . This attractor promptly amends any incor-
rect initial condition for δdr and therefore the incorrect

default condition of δðsÞdr ¼ δðsÞγ set by CLASS has no
consequence (see the dotted lines in Fig. 2). For this work,

we use δðsÞdr ¼ ð17=20ÞδðsÞγ as the initial condition in CLASS,
and we enforce that perturbations are initialized at some
initial scale factor, ai, such that ΓY=HðaiÞ ≤ 10−4.

The factor of δðsÞdr =δ
ðsÞ
γ ¼ 17=20 can be derived directly

from the Boltzmann equations for DR in synchronous
gauge (see Appendix B 1).
In both synchronous and conformal Newtonian gauge,

adiabaticity is commonly assumed to mean that the
quantity δρi= ˙̄ρi is the same between all fluids, where ρ̄i
is the background energy density of a fluid and δρi ¼
ρi − ρ̄i. For noninteracting fluids, this implies δi=δj ¼
ð1þ wiÞ=ð1þ wjÞ on superhorizon scales. For example,
this condition leads to the familiar relation δcdm ¼ ð3=4Þδγ
in both conformal Newtonian and synchronous gauges for
noninteracting cold dark matter and photons.
Even for interacting fluids such as the DR sourced by

the Y decay, adiabatic conditions are defined by δρi= ˙̄ρi
being the same between all fluids in conformal
Newtonian gauge [63]. Since adiabatic initial conditions
cannot source isocurvature initial conditions, the dynam-
ics of these interacting fluids must preserve the equiv-
alency of δρi= ˙̄ρi between all fluids in conformal

Newtonian gauge. However, because these fluids are
interacting, ˙̄ρi=ρi ≠ −3Hð1þ wiÞ and so the adiabatic
condition does not result in the familiar relationship
of δi=δj ¼ ð1þ wiÞ=ð1þ wjÞ on superhorizon scales.
Solving Eq. (2) under the assumption of radiation
domination and taking ρY ∝ a−3, it follows that ρ̇dr=ρ̄dr ¼
−1 while the DR is being sourced, implying that δðnÞdr ¼
ð1=4ÞδðnÞγ initially even though DR and photons both have
an equation of state parameter equal to 1=3. The solid
dark line in Fig. 2 depicts this: while ρdr ∝ a−1, the

correct adiabatic condition for DR is δðnÞdr ¼ ð1=4ÞδðnÞγ .
Once the Y particle has sufficiently decayed away so that
the DR is no longer being significantly sourced by the

decay, ρdr ∝ a−4 and adiabaticity leads to δðnÞdr ¼ δðnÞγ .
When transforming from conformal Newtonian to syn-

chronous gauge, most of the familiar adiabatic conditions

are preserved [e.g. δðsÞY ¼ δðsÞcdm ¼ ð3=4ÞδðsÞγ ]. However, this

is not the case for DR: δðnÞdr =δ
ðnÞ
γ ≠ δðsÞdr =δ

ðsÞ
γ . The underlying

reason for this discrepancy is that the superhorizon limit
means something different in synchronous gauge compared
to conformal Newtonian gauge. Whereas δðnÞ approaches a
constant nonzero value in the kτ → 0 limit, δðsÞ is propor-
tional to ðkτÞ2 and vanishes in this limit [64].
To illustrate why this difference in superhorizon limits

between gauges leads to δðnÞdr =δ
ðnÞ
γ ≠ δðsÞdr =δ

ðsÞ
γ , we perform a

FIG. 2. Adiabatic initial conditions for a k ¼ 10−3 Mpc−1
perturbation mode and a decay with ΓY ¼ 106.49 Gyr−1 and

RΓ ¼ 0.1. In Newtonian gauge, adiabaticity requires that δðnÞdr ¼
ð1=4ÞδðnÞγ initially. However, in synchronous gauge there is an

attractor solution of δðsÞdr ¼ ð17=20ÞδðsÞγ . This attractor quickly

fixes any incorrect initial condition for δðsÞdr (dotted lines). In both
gauges, δdr ¼ δγ once the DR is no longer being sourced and
ρdr ∝ a−4.
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kτ expansion on the general gauge transformation between
conformal Newtonian and synchronous gauge [60],

δðsÞi ðkÞ ¼ δðnÞi ðkÞ − αðkÞ ρ̄
0
i

ρ̄i
: ð8Þ

Here, αðkÞ≡ ðh0 þ 6η0Þ=2k2 and a prime denotes differ-

entiation with respect to conformal time. We expand δðnÞi ðkÞ
in kτ such that it is composed of a zeroth order piece, δðnÞ;0i ,
and a second order component, Cik2τ2. Similarly, αðkÞ is
expanded such that αðkÞ ≈ α0 þ Cαk2τ2. Equation (8) then
becomes

δðsÞi ðkÞ ≈
h
δðnÞ;0i þ Cik2τ2

i
− ½α0 þ Cαk2τ2�

ρ̄0i
ρ̄i
: ð9Þ

Since adiabatic initial conditions in synchronous
gauge have leading order terms proportional to ðkτÞ2,
δðnÞ;0i ¼ α0ðρ̄0i=ρ̄iÞ.2 It follows that

δðsÞi ðkÞ ¼ Cik2τ2 − Cαk2τ2
ρ̄0i
ρ̄i
þOðk4τ4Þ: ð10Þ

In other words, one cannot simply gauge transform the
zeroth-order adiabatic solution in conformal Newtonian
gauge in order to derive the correct adiabatic condition
in synchronous gauge. The adiabatic solution in the
superhorizon limit for synchronous gauge is the second
order gauge transformation of the ðkτÞ2 terms in the
adiabatic solution in conformal Newtonian gauge [63]
(i.e. the transformation of Ci). Taking the ratio of
Eq. (10) for two different species i and j, and assuming
δðnÞ;0 ¼ α0ðρ̄0=ρ̄Þ, we have

δðsÞi

δðsÞj

¼
δðnÞ;0i

h
Ci

δðnÞ;0i

− Cα

α0

i

δðnÞ;0j

h
Cj

δðnÞ;0j

− Cα

α0

iþOðk4τ4Þ: ð11Þ

Therefore, if the coefficient of the ðkτÞ2 term in the
adiabatic initial condition for conformal Newtonian gauge

is such that Ci=Cj ≠ δðnÞ;0i =δðnÞ;0j , then the ratio of initial
conditions for δ in synchronous gauge will not be equal to
the same ratio in conformal Newtonian gauge.
In the case of noninteracting fluids, we show

below in case 1 that the usual adiabatic condition of
δi=δj ¼ ð1þ wiÞ=ð1þ wjÞ is preserved even to second
order in kτ in conformal Newtonian gauge, which

means the same condition is true in synchronous

gauge: δðsÞi =δðsÞj ¼ ð1þ wiÞ=ð1þ wjÞ.
On the other hand, if there is some interaction between

fluids such as energy exchange via a decay, we show
in case 2 that the initial condition for δðnÞ of the species
that is being sourced has a ðkτÞ2 term such that

Ci=Cj ≠ δðnÞ;0i =δðnÞ;0j . Thus, the initial condition for this
fluid in synchronous gauge does not result in the familiar
adiabatic initial condition seen in Newtonian gauge:

δðsÞi =δðsÞj ≠ ð1þ wiÞ=ð1þ wjÞ. Similar results have been
found for early dark energy models with a nonadiabatic
sound speed [64].

1. Case 1 (no energy exchange)

Let us consider two fluids with energy densities ρ1 and
ρ2. Additionally, there is a third fluid, ρd, which dominates
the energy density of the Universe. If these three fluids are
noninteracting, the evolution of their energy densities are
entirely set by their respective equation of state parameters:

ρ̇d þ 3Hð1þ wdÞρd ¼ 0; ð12Þ

ρ̇1 þ 3Hð1þ w1Þρ1 ¼ 0; ð13Þ

ρ̇2 þ 3Hð1þ w2Þρ2 ¼ 0: ð14Þ

Therefore,HðaÞ ∝ a−
3
2
ð1þwdÞ. In Appendix B 2 we solve the

suite of Boltzmann equations in conformal Newtonian
gauge for these three fluids using an iterative approach,
and determine their respective adiabatic initial conditions to
second order in kτ. The resulting density perturbation for
the jth fluid with equation of state parameter wj is given by

δðnÞj ¼ 2

�
1þwj

1þwd

�
Φp

þ 2

3

�
1þwj

1þwd

��
7þ 39wd þ 63w2

d þ 27w3
d

28þ 36wd

�
ðkτÞ2Φp;

ð15Þ

where Φp is the initial value of the metric perturbation Φ.
Equation (15) applies to all noninteracting fluids, including
the dominant fluid. Here it can be seen that there is a
zeroth-order term and a term of order ðkτÞ2, each having a
coefficient proportional to ð1þ wjÞ=ð1þ wdÞ. The quan-
tity in square brackets is solely dependant on wd and
therefore the same for fluids ρ1, ρ2, and ρd. The ratio of
the zeroth-order component for any two species is

δðnÞ;0i =δðnÞ;0j ¼ ð1þ wiÞ=ð1þ wjÞ. Similarly, the ratio of
the second order terms for two species is Ci=Cj ¼
ð1þ wiÞ=ð1þ wjÞ. Therefore, according to Eq. (11), since

Ci=Cj ¼ δðnÞ;0i =δðnÞ;0j , the ratio of initial conditions in

2Note that this expression is another manifestation of adiabatic
initial conditions in conformal Newtonian gauge: δðnÞ;0i =δðnÞ;0j ¼
ð1þ wiÞ=ð1þ wjÞ.
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synchronous gauge will equal that of the initial conditions

in conformal Newtonian gauge. In other words, δðsÞi =δðsÞj ¼
ð1þ wiÞ=ð1þ wjÞ þOðk4τ4Þ for noninteracting fluids.

2. Case 2 (exchange via decay)

Next we will consider a similar scenario to that of case 1,
except now we model species 1 as a massive species
(w1 ¼ 0) decaying into species 2 with a decay rate Γ such
that the energy densities of each fluid are set by

ρ̇d þ 3Hð1þ wdÞρd ¼ 0; ð16Þ

ρ̇1 þ 3Hρ1 ¼ −Γρ1; ð17Þ

ρ̇2 þ 3Hð1þ w2Þρ2 ¼ þΓρ1: ð18Þ

In a similar manner to case 1, we iteratively solve the
perturbations equations for these fluids in Appendix B 3 to
find the adiabatic initial conditions in conformal Newtonian
gauge up to order ðkτÞ2. Since the dominant species is still

noninteracting, the initial condition for δðnÞd is given by
Eq. (15). Additionally, under the assumption that initial
conditions are set sufficiently early, we take Γρ1 ≪ Hρ1
initially. Under this assumption, Eq. (17) reduces to

Eq. (13) for w1 ¼ 0 and therefore δðnÞ1 is described by
Eq. (15) as well. Therefore, even though species 1 is
decaying and exchanging energy with species 2, we find

that δðnÞ1 =δðnÞd ¼ 1=ð1þ wdÞ at second order3 in ðkτÞ.
In contrast, Γρ1 is not initially negligible compared to

Hρ2 so the correct adiabatic initial condition for species 2
cannot be described by Eq. (15). Instead, the adiabatic
initial condition for species 2 is

δðnÞ2 ¼
�
1 − wd

1þ wd

�
Φp þWðkτÞ2Φp; ð19Þ

whereW is a nontrivial constant that depends on wd and w2

[see Eq. (B45) in Appendix B 3]. Solving Eq. (18) ana-
lytically shows that ρ2ðaÞ ∝ a−

3
2
ð1−wdÞ. If we define an

effective equation of state w2;eff ≡ −ð1=2Þðwd þ 1Þ for
species 2, then ρ2 ∝ a−3ð1þw2;effÞ and it can be seen in

Eq. (19) that the zeroth-order term of δðnÞ2 is equal
to 2Φpð1þ w2;effÞ=ð1þ wdÞ, as expected for adiabatic
initial conditions. However, Eq. (19) demonstrates that

δðnÞ2 =δðnÞd is not equal to ð1þ w2;effÞ=ð1þ wdÞ at second
order in kτ. Therefore, comparing to any noninteracting

fluid j, we find that δðnÞ;02 =δðnÞ;0j ¼ ð1þ w2;effÞ=ð1þ wjÞ,
but C2=Cj ≠ δðnÞ;02 =δðnÞ;0j . According to Eq. (11), this means

that the correct adiabatic initial condition for species 2 in

synchronous gauge has δðsÞ2 =δðsÞj ≠ δðnÞ2 =δðnÞj . This discus-

sion demonstrates why we see δðnÞY =δðnÞγ ¼ δðsÞY =δðsÞγ ¼ 3=4

while δðnÞdr =δ
ðnÞ
γ ¼ 1=4 but δðsÞdr =δ

ðsÞ
γ ¼ 17=20.

III. EFFECTS OF A Y DECAY

The decaying Y particle and the injected DR influence
observables such as the CMB temperature anisotropy
spectrum and the abundance of primordial elements. In
this section, we describe the primary effects of a Y decay on
such observables. Understanding these effects and how
other cosmological parameters may be adjusted to mitigate
them motivates our selection of observational datasets
and will guide our interpretation of the MCMC results
presented in Sec. V.
We discuss the effects of a Y decay for three different

regimes: short lived, intermediate, and long lived. We refer
to short-lived cases as those scenarios in which the
characteristic scale factor, aΓ, is larger than the scale factor
at the end of BBN but much smaller than the scale factor of
matter-radiation equality. For RΓ < 0.1, this corresponds
to Y particle lifetimes of 10−12.08 Gyr ≲ τY ≲ 10−7 Gyr.
Intermediate cases are defined as scenarios in which aΓ is
between the scale factor when the matter density is no
longer negligible (ρm=ρtot ∼ 0.05) and that of recombina-
tion. These limits correspond to 10−7 Gyr ≲ τY ≲
10−3.22 Gyr. Finally, long-lived cases are those in which
aΓ is greater than the scale factor at recombination, which
correspond to Y particle lifetimes of τY ≳ 10−3.22 Gyr.

A. Short-lived regime

When the Y particles decay before recombination, the
primary impact on the CMB arises from a change in the
effective number of relativistic species, Neff , due to
the injected DR. In Appendix C, we determine this
change to Neff as a function of both RΓ and ΓY , and find
that ΔNeff is purely a function of RΓ for short-lived cases
(ΓY ≳ 107 Gyr−1) in which the injection of DR finishes
deep in radiation domination (see Fig. 12 in Appendix C).
Therefore, bounds on ΔNeff directly translate to limits

on RΓ for these short-lived cases. This enables one to
derive an upper bound on RΓ that is independent of any
prior for ΓY within the short-lived regime. This is in
contrast to DCDMmodels, which are usually described by
the dark matter decay rate (Γdcdm) and the fraction of the
total dark matter density that is unstable (fdcdm). The
ΔNeff induced by DCDM is then determined by ΔNeff ∝
Γ−1=2
dcdmfdcdm=ð1 − fdcdmÞ [53]. Therefore, constraints on

ΔNeff translate to constraints on the combination of
Γdcdm and fdcdm; if fdcdm increases while Γdcdm decreases,
Neff can be kept constant. Due to this degeneracy between
fdcdm and Γdcdm, derived bounds on fdcdm are entirely
dependent on the prior adopted for Γdcdm. Poulin et al. [51]

3Note that this is equivalent to δðnÞ1 =δðnÞd ¼ ð1þ w1Þ=ð1þ wdÞ
since w1 ¼ 0.
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and Nygaard et al. [53] only consider 103 Gyr−1 <
Γdcdm < 106 Gyr−1 for short-lived cases, motivated by
the fact that the inclusion of larger decay rates would lead
to poor sampling convergence. Therefore, their reported
bounds on fdcdm cannot be applied to decay rates outside
of this range. Moreover, Holm et al. [65] employ profile
likelihoods to illustrate that the degeneracy between fdcdm
and Γdcdm in DCDM models introduces volume effects
when employing an MCMC analysis, resulting in the
unwanted smoothing out of features in posterior distri-
butions. Not only that, but enforcing a prior on Γdcdm
effectively places a nonphysical upper bound on fdcdm,
which prevents one from reporting accurate constraints on
fdcdm alone. The RΓ parametrization used in this work
bypasses these issues.
The injection of free-streaming DR increases Neff and

decreases the ratio of ρm to ρr at the time of recombination:
ðρm=ρrÞrec. The CMB temperature anisotropy spectrum
is very sensitive to changes in ðρm=ρrÞrec via the early
integrated Sachs-Wolfe (ISW) effect [66,67]. Therefore, an
increase in ωcdm ≡Ωcdmh2 is necessary to keep ðρm=ρrÞrec
unaltered, where Ωcdm ≡ ρcdm;0=ρcrit;0 and h≡H0=
ð100 km s−1Mpc−1Þ. Furthermore, the addition of DR
increases the prerecombination expansion rate and thereby
reduces the size of the sound horizon, rs. The locations of
the acoustic peaks in the CMB are set by the angular size
of the sound horizon (θs), so a decrease in the angular
diameter distance (dA) is required to keep θs ¼ rs=dA fixed.
A decrease in dA is partially accomplished by the
enhancement in ωcdm that was required to fix ðρm=ρrÞrec,
while any remaining change to dA can be accomplished
by increasing H0.
Once ωcdm and H0 have been increased to keep

ðρm=ρrÞrec and θs fixed, the remaining effects that a
non-zero ΔNeff has on the CMB are a change in the
damping scale and a unique phase shift in the acoustic
peaks [29–31,68]. Silk damping is affected because the
photon diffusion length scales as rD ∝

ffiffiffiffiffiffiffiffiffi
1=H

p
, whereas the

sound horizon scales as rs ∝ 1=H. Thus, enhancing H0 to
fix θs leads to an overall increase in the angular size of the
diffusion length, θD, causing extra suppression on small
angular scales of the CMB [30]. However, this suppression
can be compensated for by amplifying the baryon content,
ωb, or the spectral tilt, ns.

4 While employing Planck
anisotropy data will effectively enforce that ðρm=ρrÞrec
and θs remain fixed, the addition of SPT-3G data further
aids in constraining changes in ωb and ns that are needed to
accommodate the small-scale effects of a ΔNeff induced by
the Y decay. SPT-3G data are also sensitive to the extra

phase shift caused by a nonzero ΔNeff and can help
constrain this effect.
In addition to influencing the CMB, Y decays in the

short-lived regime have the potential to alter the abundance
of primordial elements created during BBN. Even though
we consider Y particle lifetimes that are sufficiently long
such that ΔNeff ¼ 0 throughout BBN, the Y particle can
contribute a non-negligible energy density to the Universe
during BBN, which increases the expansion rate during
BBN and alters when reactions freeze-out in a manner that
cannot be modeled with a simple ΔNeff [35]. The effect
that the Y particle has on primordial abundances will be
maximized for large RΓ and short lifetimes. In order to
ensure that Neff is unaltered throughout BBN, we choose
ΓY ¼ 1012.08 Gyr−1 to be the largest decay rate that we
consider. Additionally, we only consider values of RΓ ≤ 0.1
since any short-lived case with RΓ > 0.1 corresponds
to Neff > 3.98, which is ruled out by Planck temperature
anisotropies alone. Therefore the ρY contribution during
BBN is maximized when RΓ¼0.1 and ΓY ¼ 1012.08 Gyr−1,
for which the Y particle only makes up 0.9% of the total
energy density at a temperature of T ¼ 0.01 MeV. Thus,
the Y particle has a small influence on primordial abun-
dances. Nevertheless, we still account for this effect by
altering the BBN code PArthENoPe-v3.0 [69] to include
contributions from ρY , and we provide CLASS with a table
that was created using this modified version of PArthENoPe

(details can be found in Sobotka et al. [35]). We also
include direct measurements of the deuterium abundance in
our analysis. In addition to constraining possible changes
due to the presence of Y particles, these measurements also
restrict changes in ωb that are necessary to correct for
excessive small-scale damping by the injected DR.

B. Intermediate regime

Changes to Neff caused by injected DR are directly
proportional to RΓ for short-lived cases. However, once
the decay rate falls below ΓY ≈ 107 Gyr−1, the ΔNeff that
results from a Y decay increases with decreasing ΓY for a
fixed RΓ (see Fig. 12 in Appendix C). This dependence
on ΓY arises from how RΓ is defined; RΓ is a proxy for
ρdrðaΓÞ=ρtotðaΓÞ and, as matter becomes more significant,
the same DR contribution relative to the total energy
density implies a greater amount of DR relative to standard
radiation. Therefore, for a given value of RΓ, scenarios in
the intermediate regime of 103.22 Gyr−1 ≲ ΓY ≲ 107 Gyr−1

require larger increases in ωcdm compared to those of short-
lived cases to fix ðρm=ρrÞrec.
Furthermore, the impact of Y decays on CMB observa-

tions in the intermediate regime cannot be mimicked by
increasing Neff because perturbation modes that enter the
horizon while the Y particles are still present affect the
CMB on scales that are observable by Planck. Let us define
the mode that enters the horizon when the decay rate
surpasses the Hubble rate as kΓ ≡ aΓHðaΓÞ. This mode

4Increasing ωb also increases the helium abundance, which
would further dampen anisotropies on small scales [30,35].
However, since the helium abundance is only logarithmically
dependent on the baryon-to-photon ratio, increasing ωb has the
net effect of reducing small-scale damping.

COMPREHENSIVE CONSTRAINTS ON DARK RADIATION … PHYS. REV. D 109, 063538 (2024)

063538-7



contributes the most to temperature anisotropies at an
angular scale of lΓ ≈ kΓχCMB, where χCMB is the comoving
distance to the surface of last scattering. For intermediate
cases that have ΓY ≲ 106.64 Gyr−1, the corresponding
angular scale lΓ falls in the observable range of the
Planck satellite (lΓ ≲ 2500). Figure 3 depicts the temper-
ature spectrum resulting from a Y decay with ΓY ¼
104.7 Gyr−1 and RΓ ¼ 0.1 (solid curve). Such a scenario
has a mode of wave number kΓ ≈ 0.021 Mpc−1 entering the
horizon at aΓ, which dominates the power at an angular
scale of lΓ ≈ 288 (vertical line). Large scales that enter
the horizon after aΓ (i.e. l < lΓ) are primarily influenced
by the decay via ΔNeff and so the decay spectrum is
degenerate with a ΛCDM model with extra Neff (dot-
dashed line) for l < lΓ. On the other hand, scales that enter
the horizon before aΓ are affected by the Y particle
contributing to the dark matter content and so the decay
spectrum is suppressed compared to ΛCDM for l > lΓ.
The Wess-Zumino Dark Radiation (WZDR) model, which
generates similar scale-dependent modifications to the
phase and amplitude of the acoustic peaks, can reduce
the Hubble tension and is slightly favored by Planck and
BAO data alone [70].

C. Long-lived regime

For decays in the long-lived regime, recombination
occurs when no significant DR has been injected and
the Y particle is behaving as stable nonrelativistic matter.

Therefore, the Y particle increases ðρm=ρrÞrec and thus a
reduction in ωcdm is needed to keep ðρm=ρrÞrec fixed.
While short-lived cases significantly alter the sound

horizon via increases in Neff , the prerecombination con-
tribution of ρdr to the expansion is insignificant for long-
lived cases. Instead, the Y particle makes a non-negligible
contribution to the prerecombination expansion and
thereby reduces rs. However, the reduction in ωcdm that
is required to fix ðρm=ρrÞrec counters this effect and keeps rs
unchanged. The required reduction in ωcdm also amplifies
the angular diameter distance to the CMB, dA. Increasing
H0 can correct for this change to dA and maintain the
observed value of θs. The required adjustments to H0

and ωcdm for decays in the long-lived regime both
serve to decrease Ωcdm ¼ ωcdm=h2 and thereby decrease
Ωm. Therefore, compared to ΛCDM, decays with ΓY ≲
103.22 Gyr−1 result in a smaller value of S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
,

where σ8 is the root mean square of matter fluctuations
on 8h−1 Mpc scales. This effect is how some studies
have employed DCDM to address both the H0 and S8
tensions (e.g. [71]).

IV. ANALYSIS METHOD

We use a modified version of CLASS-v3.2
5 [61], coupled

with MontePython-v3
6 [72,73] as our MCMC engine and

employ a Metropolis-Hastings algorithm. We assume a
flat prior on the base six cosmological parameters fωb;
ωcdm; h; As; ns; τreiog and, unless otherwise specified, we
use RΓ ¼ ½0.0; 0.1� and log10ðΓY=Gyr−1Þ ¼ ½1.49; 12.08�
for priors on decay parameters (see Table I). The chosen
upper limit of log10ðΓY=Gyr−1Þ < 12.08 ensures that the
decay occurs after BBN has finished such thatNeff ¼ 3.044
is constant throughout BBN. A lower limit of
log10ðΓY=Gyr−1Þ > 1.49 ensures that Y particle lifetimes
that extend past the time of recombination are considered.
Smaller decay rates correspond to Y particle lifetimes that
extend deep into matter domination such that the injected
DR has no impact on observables. Such scenarios have
been investigated elsewhere (e.g. [34,50,51]) and are not
the primary focus of this work.
To constrain the effects that a Y decay has on the

CMB temperature anisotropies, we employ Planck 2018
high-lTT, TE, EE, low-lTT, and low-lEE likelihood
functions [1], as well as the third generation SPT-3G
TT, TE, and EE data [56–58] adapted to the CLIK format.7

To further constrain Ωm, we employ the likelihood
from BOSS DR12 [2] BAO analysis8 as well as the

FIG. 3. Temperature anisotropy spectrum of an example Y
decay in the intermediate regime (solid line). The vertical line,
labeled lΓ, represents a scale that is dominated by the mode
entering the horizon at aΓ [i.e. kΓ ¼ aΓHðaΓÞ]. The dashed curve
is the spectrum of aΛCDMmodel and the dot-dashed curve is the
spectrum of a ΛCDM model with Neff matching the postdecay
Neff calculated using Eq. (C8). For scales with l < lΓ, the decay
spectrum is degenerate with that of ΛCDM þ Neff .

5https://github.com/alexsobotka/Class_YtoDR.
6https://github.com/brinckmann/montepython_public.
7https://github.com/SouthPoleTelescope/spt3g_y1_dist.
8While newer datasets are available, DR12 combined with

CMB observations is the most effective at breaking the degen-
eracy between Ωm and rdH0, where rd is the sound horizon at the
end of the baryonic-drag epoch [74].
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Pantheonþ likelihood [75] based on uncalibrated type Ia
supernovae [59].
As discussed in Sec. III A, the deuterium abundance

provides additional constraints on ρY during BBN and also
serves as an independent constraint on ωb. We include
bounds on the primordial deuterium abundance from
Cooke et al. [76]: ðD=HÞ ¼ ð2.527� 0.030Þ × 10−5.
However, this bound only includes measurement uncer-
tainty. As in Sobotka et al. [35], we account for extra
uncertainty in D/H from nuclear reaction rates by trans-
lating the bounds on the baryon-to-photon ratio reported by
Cooke et al. [76], η ¼ ð6.119� 0.100Þ × 10−10, to bounds
on D/H. These limits on η include both measurement
uncertainty and uncertainty associated with reaction rates.
We translate these bounds to limits on the deuterium
abundance by calculating D/H for a range of 5.8 ≤ 1010η ≤
6.88 using PArthENoPe. Within this range, D=H ∝ η−1.65.
We use this fit to determine a new fractional uncertainty
for D/H (σDH=DH ¼ 1.65 × ση=η), resulting in ðD=HÞ ¼
ð2.527� 0.068Þ × 10−5. We utilize a Gaussian likelihood
function for MontePython with a mean and standard deviation
of μDH¼2.527×10−5 and σDH¼6.83×10−7, respectively.
We consider MCMC chains with a Gelman-Rubin [77]

criterion of jR − 1j < 0.01 as converged, and postprocess-
ing of all chains was done using GetDist [78] by removing
the first 30% of points as burn-in.

V. RESULTS

A. Full marginalized results

Figure 4 shows the posterior distributions for the
decay parameters ΓY and RΓ as well as ωb, ωcdm, H0,
and S8 with 68% and 95% confidence level (CL) contours
for various combinations of datasets. The posterior values
for each parameter are reported in Table II. The vertical
band in the 1D posterior for H0 in Fig. 4 shows the 1σ
and 2σ bounds reported by the SH0ES collaboration
(H0 ¼ 73.30� 1.04 km s−1 Mpc−1) [9], and the dashed
line in the 1D posteriors represents a ΛCDM model
constrained with only Planck 2018 high-lTT, TE, EE,
low-lTT, and low-lEE data. The 1D posterior of

log10ðΓY=Gyr−1Þ also contains hatched regions marking
the different Y particle lifetime regimes introduced in
Sec. III: short-lived (cross hatch), intermediate (diagonal
hatch), and long-lived (circles).
The ΓY values depicted in Fig. 4 span a wide range of Y

particle lifetimes from right after the end of BBN to about
30 million years after recombination. For this range of
decay rates, Planck anisotropy data constrain RΓ < 0.0347
(95% CL), which translates to ρY=ρtot < 0.0204 for the
shortest lifetime we consider and ρY=ρtot < 0.0291 for
the longest lifetime. The inclusion of SPT-3G data
and bounds on the primordial deuterium abundance
(Planckþ SPTþ D=H) tighten these bounds to RΓ <
0.0340 (95% CL), which translates to ρY=ρtot < 0.0200
and ρY=ρtot < 0.0286 for the shortest and longest lifetimes,
respectively. Figure 4 shows that Planckþ SPTþ D=H
constraints are comparable to those of Planck in the short-
lived regime. However, Planckþ SPTþ D=H enforces the
tightest constraints on RΓ for log10ðΓY=Gyr−1Þ ≈ 4. These
constraints relax once log10ðΓY=Gyr−1Þ≲ 4 because the
effects of a Y decay in these scenarios can be compensated
for with changes in ωcdm andH0. However, the inclusion of
Pantheonþ and BAO data limit these changes in ωcdm and
H0 and thus Planckþ SPTþ D=Hþ Panþ BAO bounds
on RΓ are stricter than those of Planckþ SPTþ D=H once
log10ðΓY=Gyr−1Þ≲ 2.5. As a result, a larger fraction of
samples that are favored by the data fall in the short-lived
regime of log10ðΓY=Gyr−1Þ≳ 7. Therefore, marginalizing
over the entire range of ΓY yields RΓ < 0.0360 (95% CL)
for Planckþ SPTþ D=Hþ Panþ BAO, which is less
constrained than the corresponding bound from Planckþ
SPTþ D=H. Being agnostic about Y particle lifetimes, this
bound of RΓ < 0.0360 (95% CL) translates to ρY=ρtot <
0.0302 over the full range of ΓY considered. However, as
will be discussed in subsequent sections, constraints on RΓ
can be more stringent based on the specific regime under
consideration.
As discussed in Sec. III, the addition of the Y particle

decreases θs. While the manner by which the Y particle
decreases θs depends on the Y particle lifetime, an increase
in H0 is always required to keep θs consistent with
CMB data. For the full range of decay rates considered,
Y decays constrained by Planck data alone give H0 ¼
68.03þ0.73

−0.99 km s−1 Mpc−1 (68% CL), whereas H0 ¼
67.29� 0.61 km s−1 Mpc−1 (68% CL) for a ΛCDM model
constrained by Planck. We find that the combination
of Planckþ SPTþ D=Hþ Panþ BAO results in H0 ¼
68.24þ0.52

−0.83 km s−1Mpc−1 (68% CL) for Y decays, only
reducing the tension with SH0ES from 5.2σ to 4.4σ.
Similarly, we find that Y decay scenarios marginalized

over the full prior for ΓY does not help mitigate the S8
tension. When considering the full combination of
datasets (Planckþ SPTþ D=Hþ Panþ BAO), we find
S8 ¼ 0.828� 0.012 (68% CL) whereas S8 ¼ 0.825þ0.011

−0.012

TABLE I. Priors used in MCMC analyses.

log10ð ΓY
GyrÞ

[1.49, 12.08] (full)
[3.14, 12.08] (prerecombination)
[1.49, 3.24] (postrecombination)

RΓ [0, 0.1]
10−2ωb [2.0, 2.7]
ωcdm [0.1, 0.15]
h [0.5, 0.85]
ln 1010As [2.9397, 3.1497]
ns [0.933, 0.9953]
τreio [0.01, 0.1103]
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(68% CL) for a ΛCDM model constrained with
Planckþ SPTþ D=Hþ Panþ BAO. Therefore, these
decay scenarios do not lessen the tension between the
value of S8 inferred from the CMB and that of local
measurements.

As discussed in Sec. III, the presence of the Y particle
has different effects on observables depending how the Y
particle lifetime compares to the times of matter-radiation
equality or recombination. It is therefore more enlight-
ening to analyze these results in the three regimes

FIG. 4. 1D and 2D posterior distributions of decay and cosmological parameters for different combinations of Planck high-lTT, TE,
EE, low-lTT, and low-lEE (Planck) data, SPT-3G 2018 TT, TE, and EE data (SPT), bounds on the observed deuterium abundance
(D/H), Pantheonþ data (Pan), and the BOSS DR12 likelihood (BAO). We include the 1D posteriors for ΛCDM constrained by
Planck (dashed line). The vertical band shows the 1σ and 2σ bounds determined by SH0ES (H0 ¼ 73.30� 1.04 km s−1 Mpc−1).
Hatches in the 1D posterior for log10ðΓY=Gyr−1Þ mark the different Y particle lifetime regimes discussed in Sec. III: short-lived (cross
hatch), intermediate (diagonal hatch), and long-lived (circles).
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discussed in Sec. III: the short-lived (τY ≲ 10−7 Gyr),
intermediate (10−7 Gyr ≲ τY ≲ 10−3.22 Gyr) and long-
lived (τY ≳ 10−3.22 Gyr) regimes.

B. Short-lived regime

Figure 5 shows the posterior distributions for
select parameters of an MCMC run with a prior of
log10ðΓY=Gyr−1Þ ¼ ½3.14; 12.08�, corresponding to decay
processes that finish before recombination and span the
short-lived and intermediate regimes. For reference, a
decay with ΓY ≈ 103.22 Gyr−1 and RΓ < 0.1 corresponds

to a scenario with aΓ ≈ arec. The lower bound of
log10ðΓY=Gyr−1Þ > 3.14 ensures that we probe the tran-
sition from the intermediate regime to the long-lived
regime. Values for select posteriors of this analysis are
presented in Table III.
Figure 5 confirms the expectation for decays in the

short-lived regime discussed in Sec. III A: Planck data
exhibit a preference for larger values of H0 and ωcdm
compared to those of a ΛCDM model (dashed line) to
avoid altering θs and ðρm=ρrÞrec. For the range of ΓY shown
in Fig. 5, corresponding to decays that finish before
recombination, the combination of Planckþ SPTþ D=H
yields ωcdm ¼ 0.1218þ0.0014

−0.0023 (68% CL) and H0 ¼
68.10þ0.67

−1.0 km s−1 Mpc−1 (68% CL) whereas a ΛCDM
model constrained with Planckþ SPTþ D=H data
lends ωcdm ¼ 0.1200� 0.0013 (68% CL) and H0 ¼
67.33� 0.54 km s−1 Mpc−1 (68% CL).
Increasing ωcdm to fix ðρm=ρrÞrec keeps the early ISW

effect minimally altered. The observed Sachs Wolfe (SW)
component of the temperature spectrum is the sum of the
temperature monopole, Θ0, and the gravitational perturba-
tion, Ψ. As ωcdm increases, Ψ becomes more negative,
leading to a partial cancellation such that the sum of
Θ0 þ Ψ is reduced. Therefore, increasing ωcdm causes a
suppression across all peaks. However, this effect can easily
be reduced by increasing the amplitude, As. Indeed, for the

TABLE II. Results for decay and cosmological parameters from MCMC analyses with a prior of log10ðΓY=Gyr−1Þ ¼ ½1.49; 12.08�,
corresponding to those shown in Fig. 4. Uncertainties are reported at 68% CL and upper limits are given at 95% CL.

ΛCDM (Planck) Planck Planckþ SPTþ D=H Planckþ SPTþ D=Hþ Panþ BAO

RΓ � � � < 0.0347 < 0.0340 < 0.0360
log10ðΓY=Gyr−1Þ � � � � � � � � � � � �
H0 [km s−1 Mpc−1] 67.29� 0.61 68.03þ0.73

−0.99 68.06þ0.64
−0.94 68.24þ0.52

−0.83
S8 0.833� 0.016 0.834þ0.016

−0.018 0.831� 0.015 0.828� 0.012
10−2ωb 2.234� 0.015 2.241� 0.017 2.239þ0.013

−0.015 2.241� 0.013
ωcdm 0.1202� 0.0014 0.1218þ0.0017

−0.0025 0.1217þ0.0016
−0.0022 0.1214þ0.0013

−0.0024
ns 0.9644� 0.0044 0.9684þ0.0049

−0.0059 0.9683þ0.0045
−0.0058 0.9693þ0.0044

−0.0052

FIG. 5. 1D and 2D posterior distributions of decays in both the
short-lived and intermediate regimes i.e. log10ðΓY=Gyr−1Þ ¼
½3.14; 12.08�. The dashed line shows the 1D posteriors for
ΛCDM constrained by Planck, and the vertical band shows
the 1σ and 2σ bounds determined by SH0ES (H0 ¼
73.30� 1.04 km s−1 Mpc−1). Hatches in the 1D posterior for
log10ðΓY=Gyr−1Þ mark the short-lived (cross hatch) and inter-
mediate (diagonal hatch) regimes.

TABLE III. Posteriors for prerecombination decays (i.e.
log10ðΓY=Gyr−1Þ ¼ ½3.14; 12.08�), corresponding to those shown
in Fig. 5. Uncertainties are reported at 68% CL and upper limits
are given at 95% CL.

Planck Planckþ SPTþ D=H

RΓ < 0.0357 < 0.0364
log10ð ΓY

GyrÞ � � � � � �
H0½ km

s·Mpc� 68.05þ0.70
−1.1 68.10þ0.67

−1.0
ωcdm 0.1219þ0.0015

−0.0023 0.1218þ0.0014
−0.0023

ln 1010As 3.051� 0.017 3.046� 0.016
10−2ωb 2.242� 0.018 2.240� 0.014
ns 0.9686� 0.0056 0.9686þ0.0046

−0.0059
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range of log10ðΓY=Gyr−1Þ¼ ½3.14;12.08�, Planck data
favor a slight increase in As: ln1010As¼3.051�0.017
(68% CL) for Y decays, while ln 1010As ¼ 3.045� 0.016
(68% CL) for ΛCDM.
Once ðρm=ρrÞrec and θs have been fixed and As has been

enhanced, there remains excessive Silk damping compared
to the observed temperature spectrum. Therefore, as postu-
lated in Sec. III A, the Planck data show a preference for
a slightly larger value of ωb in the short-lived regime
compared to ΛCDM; increasing the baryon content will
decrease the free streaming length of photons and mitigate
any extra small-scale damping. However, altering ωb also
affects the height ratios of odd and even peaks in the
temperature anisotropy spectrum. The inclusion of SPT
data aid in constraining this effect on small scales.
Additionally, the increase in ωb favored by Planck data
result in a change to the predicted abundance of primordial
elements and so including bounds on the deuterium
abundance also limits changes in ωb. This can be seen
in the ωb vs log10ðΓY=Gyr−1Þ plane of Fig. 5.
Figure 5 demonstrates the benefit of the RΓ parametri-

zation used in this work compared to that commonly used
in DCDM studies. As discussed in Sec. III A, the ΔNeff
arising from DCDM depends on the combination of Γdcdm
and fdcdm. Instead, ΔNeff is exclusively dependent on RΓ
for short-lived decays and, as a result, there is a plateau in
the RΓ vs log10ðΓY=Gyr−1Þ plane of Fig. 5. The 2σ bound
on this plateau is RΓ < 0.036 which translates to a post-
decay Neff ≤ 3.38. This bound is more relaxed than the
reported Planck 2018 TT, TE, EEþ lowE bound of Neff ¼
2.92þ0.36

−0.37 (95% CL) [1]. However, the apparent discrepancy
between these bounds stems from a difference in priors.
The reported Planck 2018 bounds result from an analysis
that allows for both positive and negative ΔNeff , and
Planck CMB observations exhibit a slight preference for
negative ΔNeff . The injected DR considered in this work
only results in a positive ΔNeff . For comparison, we
perform an MCMC analysis applying Planck constraints
to a ΛCDM model with a prior of ΔNeff ¼ ½0; 0.5�.
In doing so, we find that Neff < 3.34 (95% CL). This
ΛCDMþ ΔNeff model increases Neff during BBN, which
results in a larger helium abundance. Simultaneous
increases in both Neff and the helium abundance conspire
to produce excessive damping of small scale anisotropies
and are therefore tightly constrained [35]. Therefore,
the upper bound on Neff for a ΛCDM model with only
positive ΔNeff is more stringent than that of Y decay
scenarios in the short-lived regime.
A physically motivated extension to the Y decay model

would be to consider additional DR that is not sourced by
the decay of a Y particle. Such an ambient bath of DR
would simply be modeled as a constant ΔNeff . However,
this would be a trivial extension to the short-lived regime
given that constraints on short-lived cases are dominated by
bounds on Neff ; the inclusion of a preexisting bath of DR

would tighten the bounds on RΓ that we have derived for
the short-lived regime.

C. Intermediate regime

Figure 5 shows constraints on RΓ becoming
more stringent as the decay rate falls below
log10ðΓY=Gyr−1Þ ≈ 7. Similar to decays in the short-lived
regime, Planck data mandate an increase in both H0 and
ωcdm to effectively fix θs and ðρm=ρrÞrec for this inter-
mediate regime of log10ðΓY=Gyr−1Þ ¼ ½3.22; 7�. However,
in this intermediate regime, the ΔNeff arising from a Y
decay grows with decreasing ΓY for fixed RΓ (see Fig. 12 in
Appendix C). Consequently, the increase in ωcdm required
to fix ðρm=ρrÞrec grows as ΓY decreases. Therefore, for a
given value of RΓ, scenarios in the intermediate regime
of 103.22 Gyr−1 ≲ ΓY ≲ 107 Gyr−1 require larger increases
in ωcdm compared to those of short-lived cases to fix
ðρm=ρrÞrec.
Fixing ðρm=ρrÞrec means the early ISW effect is mini-

mally altered but, as discussed in Sec. V B, an increase in
ωcdm suppresses the SW component of the temperature
spectrum by enhancing gravitational potential wells. For
short-lived decays, this effect can be compensated for with
a increase in the amplitude, As. However, in addition to this
overall suppression, intermediate cases can simultaneously
affect some CMB scales with ΔNeff while other scales are
suppressed by the presence of the Y particle (see Sec. III B).
These effects work in tandem to foster asymmetry between
the peak heights of the temperature spectrum.
To demonstrate this suppression and asymmetry, Fig. 6

shows the temperature spectra of three Y decays with RΓ ¼
0.02 and various decay rates compared the spectrum of a
ΛCDM model. Each spectrum assumes the same values
for ωb, As, ns, and τreio, and we alter h and ωcdm such
that θs and ðρm=ρrÞrec are fixed. For the decay with
ΓY ¼ 105.5 Gyr−1, ρY is negligible by the time of recombi-
nation, and the only lasting effect is extra Neff from the
injected DR. Therefore, an increase in ωcdm is required to
fix ðρm=ρrÞrec, and the early ISW component of the
temperature spectrum (dotted line) is very similar to that
of ΛCDM. However, increasing ωcdm results in deeper
gravitational potential wells and so the SW component
(dot-dashed line) is suppressed compared to ΛCDM.
Additionally, since ρY is negligible by the times the modes
that dominate the first and second peaks enter the horizon,
there is no extra suppression from the Y particle and
therefore the ratio of the first and second peak heights
of the SW component is minimally altered.
As ΓY decreases within the intermediate regime, the

required ωcdm to fix ðρm=ρrÞrec increases. However, once
ΓY falls below 104 Gyr−1, ρY begins to contribute a non-
negligible amount to ðρm=ρrÞrec and so less of an increase in
ωcdm is necessary. Therefore, for a fixed RΓ, a decay with
ΓY ≈ 104 Gyr−1 requires the maximum increase in ωcdm
and thereby results in the maximum suppression of the SW
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component of the temperature spectrum compared to other
values of ΓY . This can be seen in the bottom panel of Fig. 6:
fixing ðρm=ρrÞrec for a decay with ΓY ¼ 104 Gyr−1 results
in a significant suppression of the SW component.
Not only is there an overall suppression in the SW

component for this decay with ΓY ¼ 104 Gyr−1, but also
the second acoustic peak is further suppressed by the
presence of the Y particle; as discussed in Sec. III B, if the
mode that dominates the second peak enters the horizon
while the Y particle is still present, the second acoustic peak
will experience extra suppression. This ultimately results in
a change in the height ratios between the first and second
peak, thus making it more difficult to compensate for these
changes with a simple shift in As. Instead, Fig. 5 shows
that Planck data exhibit a preference for RΓ → 0 as
log10ðΓY=Gyr−1Þ → 4, ensuring both that suppression from
the Y particle is negligible and that a minimal ΔNeff is
produced even for small values of ΓY .
When only applying Planck data, Figs. 4 and 5 show a

peak in the posterior of ΓY around log10ðΓY=Gyr−1Þ ≈ 4.9.
Interestingly, a similar peak was observed in Poulin
et al. [51]. Nygaard et al. [53] observed a slight plateau
rather than a peak, and attributed this to their use of a
stricter Gelman-Rubin convergence criterion for MCMC
sampling compared to that of Poulin et al. [51]. However,
by employing profile likelihoods, Holm et al. [65] pinpoint
a best-fit value of log10ðΓY=Gyr−1Þ ¼ 4.763 and explain

the appearance of a plateau rather than a peak in the
posteriors of Nygaard et al. [53] to volume effects from
Bayesian methods. We find that, with the parametrization
used in this work, there is indeed a preferential peak in the
ΓY posterior even when enforcing the same convergence
criteria as Nygaard et al. [53]. However, this preference for
log10ðΓY=Gyr−1Þ ≈ 4.9 is eliminated with the addition of
SPT data and/or bounds on the primordial deuterium
abundance.
To explain this preference for log10ðΓY=Gyr−1Þ ≈ 4.9,

we consider the resulting temperature anisotropy spectra
of Y decay scenarios with three different decay rates.
Figure 7 shows the temperature spectra for decays with
RΓ ¼ 0.03 and log10ðΓY=Gyr−1Þ values of 5.64, 4.9, or
3.79. Included in the figure is an inset in the top right
corner that depicts the Planck 1D posterior for
log10ðΓY=Gyr−1Þ found in Fig. 4, where the solid vertical
lines mark the decay rates of each decay scenario with
corresponding colors. Figure 7 also includes the spectrum
of a ΛCDM model (dashed line) with best-fit TT, TE, EE,
low-lEE values for ωb, ωcdm, θs, As, ns, and τreio reported
by Planck 2018 [1]. Each decay scenario has the same
best-fit values for ωb, θs, ns, and τreio as this ΛCDM
model. Values for H0 and ωcdm have been adjusted for
each decay scenario such that θs and ðρm=ρrÞrec are the
same between all spectra. Additionally, the three decay
spectra have been normalized to the second acoustic peak

FIG. 6. Top panel: temperature anisotropy spectra of Y decay scenarios with RΓ ¼ 0.02 and different decay rates (solid curves)
compared to that of a ΛCDMmodel (dashed curve). Unless otherwise specified, each spectrum is created with the TT, TE, EE, low-lEE
best-fit values for the base six parameters reported by Planck 2018 [1]. For each decay scenario we increase h so that θs is fixed and we
adjust ωcdm to fix ðρm=ρrÞrec. The dot-dashed and dotted curves depict the SWand early ISW components of each spectrum, respectively.
Bottom panel: we plot the difference between the SWor early ISW component of each decay spectrum with that of the ΛCDM model.
Top right: the evolution of energy densities ρY (solid) and ρdr (dashed) for each decay scenario, with the vertical line marking the scale
factor of recombination.
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by augmenting As. Black points are the binned TT
spectrum data provided by the Planck collaboration9

and the lower panel of Fig. 7 depicts the fractional
residuals between the ΛCDM spectrum (shown by the
“Λ” markers) or decay spectra (colored circles) and these
binned data.
Each decay scenario in Fig. 7 injects DR before recombi-

nation and thereby requires an increase in ωcdm to fix
ðρm=ρrÞrec. Therefore, each decay spectrum in Fig. 7 expe-
riences suppression across all peaks. Additionally, depend-
ing on the value of ΓY , the presence of the Y particle
suppresses some scales more than others and leads to an
asymmetry in peak heights between the first and second
peak. By adjusting As to normalize the second peak height
between all spectra, this asymmetry effect is apparent in
Fig. 7. The log10ðΓY=Gyr−1Þ ¼ 5.64 scenario requires the
smallest increase in ωcdm compared to the other decay rates
shown in Fig. 7 and so the first peak is in good agreement
with that of ΛCDM even after normalizing the second peak
height. However, some small-scale suppression compared to
ΛCDM is present for this log10ðΓY=Gyr−1Þ ¼ 5.64 scenario
due to the presence of the Y particle. On the other hand, the
log10ðΓY=Gyr−1Þ ¼ 3.79 decay spectrum necessitates the

largest increase in ωcdm, leading to a notable suppression
across all acoustic peaks. The second acoustic peak is
further suppressed because the mode that dominates this
peak enters the horizon while the Y particle is still present.
Therefore, the second acoustic peak is more suppressed
compared to the first and third peaks and, by normalizing
the second peak height with As, the first and third peaks of
the log10ðΓY=Gyr−1Þ ¼ 3.79 spectrum are enhanced com-
pared to ΛCDM.
The decay rate of log10ðΓY=Gyr−1Þ ¼ 4.9 is more

compatible with the Planck data due to the resulting
spectrum after changing H0 and ωcdm to fix θs and
ðρm=ρrÞrec, as well as adjusting As to normalize the second
peak height. Compared to ΛCDM, the resultant spectrum
of this particular decay rate exhibits enhancement on scales
with l≲ 546, but a suppression on scales with l≳ 546.
The scale of lp ≈ 546 (vertical line in Fig. 7) is the l value
at which the temperature spectrum is invariant under
changes in the spectral index, ns. This indicates that
increasing ns is a straightforward method to align the
resulting spectrum of a log10ðΓY=Gyr−1Þ ¼ 4.9 decay with
Planck data. Alternatively, a decrease in ωb could also lead
to agreement with Planck data; decreasing ωb reduces the
height separation between the first and second acous-
tic peaks.

FIG. 7. Top panel: the dashed line shows the temperature anisotropy spectrum for a ΛCDM model with TT, TE, EE, low-lEE best-fit
values for the base six parameters reported by Planck 2018 [1]. The three solid colored curves are the resulting spectra of Y decays with
RΓ ¼ 0.03 and varying decay rates which are marked, respectively, as vertical lines in the top-right inset depicting the Planck 1D
posterior of log10ðΓY=Gyr−1Þ from Fig. 4. Each spectrum has the same Planck 2018 best-fit values for ωb, ns, and τreio. For all spectra the
values for H0, ωcdm, and As have been adjusted to keep θs, ðρm=ρrÞrec, and the second peak height fixed, respectively. The Planck 2018
binned TT data are shown by the black squares with corresponding 1σ error bars. Bottom panel: fractional residuals of the best-fit
ΛCDM (shown by “Λ” markers) and Y decay scenario (circles) with the binned Planck 2018 data. Of these scenarios, the decay with
log10ðΓY=Gyr−1Þ ¼ 4.9 is enhanced on large scales but suppressed on small scales compared to ΛCDM and therefore it is easier for the
log10ðΓY=Gyr−1Þ ¼ 4.9 decay to agree with Planck data by increasing ns.

9http://pla.esac.esa.int/pla/#cosmology.
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The preference for changes inωb and ns to accommodate
a log10ðΓY=Gyr−1Þ ≈ 4.9 decay can be seen in Fig. 8,
which depicts the 1D and 2D posterior distributions for
MCMC analyses with log10ðΓY=Gyr−1Þ ¼ ½1.49; 12.08�
and RΓ ¼ ½0; 0.1�. Figure 8 shows that Planck data permit
larger RΓ values for log10ðΓY=Gyr−1Þ ≈ 4.9 when accom-
panied by a decrease in ωb and an increase in ns. However,
this preference for log10ðΓY=Gyr−1Þ ≈ 4.9 is lost with the
inclusion of additional constraints from either SPT data or
bounds on the abundance of deuterium. Changing ωb alters
the baryon-to-photon ratio and thereby the abundance of
primordial deuterium, allowing for bounds on the deu-
terium abundance to constrain the changes in ωb necessary
to accommodate this special decay rate. Meanwhile, SPT
data help constrain small-scale anisotropies of the temper-
ature spectrum and therefore limits changes to both ωb
and ns. In fact, SPT data are better at ruling out the
preference for log10ðΓY=Gyr−1Þ ≈ 4.9 since bounds on the
deuterium abundance have no constraining power over ns,
as seen in the ns vs log10ðΓY=Gyr−1Þ plane in Fig. 8.

D. Long-lived regime

To understand the effects of scenarios in which the Y
particle lifetime extends past the time of recombination,

we analyze the results of an MCMC run with
log10ðΓY=Gyr−1Þ ¼ ½1.49; 3.24�, shown in Fig. 9. As dis-
cussed in Sec. III C, these long-lived scenarios require a
reduction in ωcdm to keep ðρm=ρrÞrec fixed and also require
a larger value of H0 to fix θs. Indeed, Fig. 9 demonstrates
the preference that Planck data have for large H0 and small
ωcdm compared to ΛCDM.
Figure 9 shows RΓ becoming more constrained as

log10ðΓY=Gyr−1Þ → 3 (shorter lifetimes), corresponding
to decay scenarios in which aΓ approaches the scale factor
of recombination. To understand why constraints tighten as
log10ðΓY=Gyr−1Þ → 3, we refer back to Fig. 6. Figure 6
depicts a long-lived scenario with ΓY ¼ 102.8 Gyr−1 that
requires a decrease in ωcdm to fix ðρm=ρrÞrec. Here it can be
seen that, even though ðρm=ρrÞrec is fixed, the early ISW
effect is still somewhat enhanced compared to ΛCDM
(dotted lines). This enhancement is the result of the Y
particle injecting DR after recombination, which results
in the evolution of gravitational potentials. Additionally,
the SW component of this long-lived spectrum is still
suppressed compared to that of ΛCDM. For this particular
decay rate of ΓY ¼ 102.8 Gyr−1, the energy density of the Y
particle begins to deviate from a ρ ∝ a−3 scaling before
recombination. Therefore, fixing ðρm=ρrÞrec does not result
in a prerecombination expansion history equivalent to that
of ΛCDM. Instead, fixing ðρm=ρrÞrec based on the value of
ρY at recombination leads to a total prerecombination dark

FIG. 8. 1D and 2D posterior distributions for Y decays with
log10ðΓY=Gyr−1Þ ¼ ½1.49; 12.08�. Hatches in the 1D posterior for
log10ðΓY=Gyr−1Þ mark the different Y particle lifetime regimes:
short-lived (cross hatch), intermediate (diagonal hatch), and long-
lived (circles). A decay rate of log10ðΓY=Gyr−1Þ ≈ 4.9 agrees
with Planck temperature anisotropies when accompanied with
changes in ωb and ns. This preference is ruled out with the
addition of SPT data and/or bounds on the abundance of
primordial deuterium (D/H).

FIG. 9. 1D and 2D posterior distributions of late decays i.e.
log10ðΓY=Gyr−1Þ ¼ ½1.49; 3.24�. The dashed line shows the 1D
posteriors for ΛCDM constrained by Planck, and the vertical
band shows the 1σ and 2σ bounds determined by SH0ES
(H0 ¼ 73.30� 1.04 km s−1 Mpc−1).
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matter content that is larger than that ofΛCDM. Thus, there
is a suppression in the SW component of the ΓY ¼
102.8 Gyr−1 curve in Fig. 6 compared to ΛCDM. As ΓY
decreases, the value of ρY at recombination will approach
ρY;iðarec=aiÞ3 and so, after decreasing ωcdm to fix
ðρm=ρrÞrec, the prerecombination expansion history will
mimic that of ΛCDM. Therefore, Planck data exhibit a
preference for larger RΓ at smaller ΓY (longer lifetimes), as
these scenarios are easily accommodated for with a simple
decrease in ωcdm.
Figure 9 confirms the expected effects of decays in the

long-lived regime outlined in Sec. III C: the increase in H0

and reduction in ωcdm required by CMB observations for
these long-lived cases result in a smaller value of Ωm, and
thereby S8, compared to that of ΛCDM. Planck 2018
reported a TT, TE, EEþ lowE bound of S8 ¼ 0.834�
0.016 (68% CL) [1], whereas the long-lived posterior
shown in Fig. 9 for Planck yields S8 ¼ 0.824� 0.018
(68% CL). However, with the addition of data from
Pantheonþ and BAO, long-lived cases are limited to
S8 ¼ 0.823� 0.013 (68% CL). Pantheonþ and BAO data
constrain the reduction ofΩm caused by decays in the long-
lived regime as this reduction shifts the time of equality
between matter and dark energy to earlier times. As a result,
the long-lived regime is sufficiently restricted by
Pantheonþ and BAO such that it does not reduce the
tension between the CMB value of S8 and that of local
measurements. This result agrees with other studies that
considered the effects of DCDM on S8 (e.g. [34,71]).
Decay cases in the long-lived regime do not signifi-

cantly increase the value of H0 inferred from the
CMB; we find Planckþ Pantheonþ BAO yields H0 ¼
67.87þ0.48

−0.54 km s−1 Mpc−1 (68% CL) for Y decays in the
long-lived regime. Therefore, neither the short-lived nor
long-lived regimes are successful in substantially mitigat-
ing the Hubble tension. Planckþ Panþ BAO posterior
values for the long-lived regime are presented in Table IV.
As mentioned in Sec. V B, DR need not be only sourced

by the decay of a Y particle; it stands to reason that there
could be an ambient background of DR that is not sourced
by the Y decay. Such a DR background serves as an
interesting extension to the long-lived cases considered
here. Constraints on Y decays in the long-lived regime
primarily derive from the necessary decrease in ωcdm to fix

ðρm=ρrÞrec, but a DR background would increase ρr at
recombination. Thus, a less significant decrease in ωcdm
would be necessary to fix ðρm=ρrÞrec while the Y particle is
contributing to ρm at recombination, potentially relaxing
the constraints enforced by Pantheonþ and BAO data.
To determine the extent to which constraints on long-lived

cases relax in the context of an ambient DR background,
we perform an MCMC analysis comparable to that shown
in Fig. 9 but with the additional freedom of a variable
and positive ΔNeff . We assume priors of RΓ ¼ ½0; 0.1�,
log10ðΓY=Gyr−1Þ¼½1.49;3.24�, and Nur¼½2.0328;2.5328�,
where Nur is the effective number of relativistic species
excluding massive neutrinos and DR created by the decay of
the Y particle. The contribution that the single massive
neutrino species makes to Neff is Nncdm ¼ 1.0132, so this
prior on Nur corresponds to ΔNeff ¼ ½0; 0.5�. This upper
bound ofΔNeff < 0.5 ensures that the we investigate the full
extent of Neff allowed by Planck data.
Figure 10 shows the 1D posterior distributions for ωcdm

and H0 resulting from these analyses that include a DR
background, and Table IV lists posterior values for select
parameters. The dashed line shows the 1D posteriors of a
ΛCDM model with fixed ΔNeff ¼ 0, while the dotted
line shows those of a ΛCDM model with the prior of
ΔNeff ¼ ½0; 0.5�. In the absence of a DR background, the
Planck data require a reduction in the parameter ωcdm for
long-lived scenarios due to the presence of the Y particle
during recombination. With the incorporation of a DR
background, Planck data favor an increase in ωcdm because
the additional DR component significantly contributes to
the radiation energy density at the time of recombination.
Comparing results from the ΛCDMþ ΔNeff model to
those of a Y decay with variable ΔNeff , the increase in
ωcdm required by Planck to fix ðρm=ρrÞrec is not as large for
the decay as for theΛCDMþ ΔNeff model. This is because
the Y particle is still contributing to the matter density at
recombination for long-lived cases and thus, for the same
ΔNeff , the increase in ωcdm required by Planck to fix
ðρm=ρrÞrec is not as large compared to that needed by a
ΛCDMþ ΔNeff model. This can be seen in Fig. 10.
With the addition of a DR background, there is an overall

reduction in the size of the sound horizon for these long-
lived cases. Consequently, the Planck data favor an increase
in H0 to fix θs. The decrease in Ωm required to match the

TABLE IV. Posteriors for post-recombination decays (i.e. log10ðΓY=Gyr−1Þ ¼ ½1.49; 3.24�), corresponding to
those shown in Figs. 9 and 10. Uncertainties are reported at 68% CL and upper limits are given at 95% CL.

Planckþ Panþ BAO Planckþ Panþ BAO (ΔNeff ) Planckþ Panþ BAOþ SPTþ D=H (ΔNeff )

RΓ < 0.0124 < 0.0115 < 0.0119
H0½ km

s·Mpc� 67.87þ0.48
−0.54 68.46þ0.58

−0.78 68.46þ0.54
−0.74

ωcdm 0.1195� 0.0010 0.1212þ0.0012
−0.0020 0.1208þ0.0012

−0.0017
S8 0.823� 0.013 0.826� 0.013 0.825� 0.012
Neff � � � < 3.32 < 3.29
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Planck data for long-lived Y particles without a DR
background is constrained by Pantheonþ and BAO data.
However, the inclusion of an ambient DR background
results in an increase in both ωcdm and H0, so Ωm is
minimally altered and thus the constraining power of
Pantheonþ and BAO data on such scenarios is diminished.
Therefore, the Planckþ Panþ BAO posteriors shown in
Fig. 10 for decays with a DR background are primarily the
result of Planck constraints on ΔNeff .
Naively one would expect the bounds on RΓ to relax

with the inclusion of a DR background since ðρm=ρrÞrec
can be kept fixed even with significant contributions
from ρY at recombination. However, we find that limits
on RΓ become slightly more stringent with the inclusion
of a DR background. For long-lived scenarios in which
ρY becomes negligible soon after recombination [i.e.
log10ðΓY=Gyr−1Þ ≈ 3], the Y decay injects new DR after
recombination and enhances the early ISW effect. The
addition of a DR background exacerbates these changes to
the early ISW effect. Therefore, marginalizing over the full
range of log10ðΓY=Gyr−1Þ ¼ ½1.49; 3.24�, we find that
RΓ < 0.115 (95% CL) for long-lived cases with a DR
background constrained by Planckþ Panþ BAO, whereas
long-lived cases without a DR background yield RΓ <
0.124 (95% CL) when constrained by Planckþ Panþ
BAO (see Table IV).
The inclusion of a DR background increases the expan-

sion rate during BBN and thereby alters the predicted
abundance of primordial elements. Therefore, including
bounds on the primordial deuterium abundance should
constrain this effect. However, for the level of ΔNeff that is

allowed by Planck data, the predicted abundance of deu-
terium does not change significantly; ΛCDM constrained by
Planck yields 105D=H ¼ 2.524� 0.028 (68% CL) whereas
ΛCDMþ ΔNeff constrained by Planck gives 105D=H ¼
2.545� 0.033 (68% CL). Thus, the inclusion of bounds on
the primordial deuterium abundance does not significantly
constrain long-lived scenarios that contain a DR back-
ground. The inclusion of SPTþ D=H data has a minimal
impact on the constraints on ΔNeff and thereby the value of
ωcdm needed to fix ðρm=ρrÞrec, as can be seen in Fig. 10 and
Table IV. Furthermore, the posterior for H0 is not signifi-
cantly altered with the addition of D/H limits. In Sec. III
we note that the contribution of ρY to Hubble during BBN
can also affect primordial element abundances. However,
for the long-lived regime, any contribution from ρY during
BBN is negligible so we neglect this effect on the deuterium
abundance for long-lived scenarios that contain a DR
background.
Coupled with the presence of an ambient DR back-

ground, Y particle decays in the long-lived regime
only reduce the H0 tension with SH0ES to 4.15σ; we find
that Planckþ SPTþ D=Hþ Panþ BAO yields H0 ¼
68.46þ0.54

−0.74 km s−1Mpc−1 (68% CL) for decays with a
DR background in the long-lived regime.

VI. SUMMARY AND CONCLUSIONS

We obtain updated and comprehensive constraints on the
injection of DR after the time of BBN by considering a
massive hidden sector particle, called the Y particle, that
decays into DR. We employ a modified version of the

FIG. 10. Comparison between 1D posterior distributions resulting from decay scenarios in the long-lived regime (prior of
log10ðΓY=Gyr−1Þ ¼ ½1.49; 3.24�). Dashed lines show resulting posteriors of a ΛCDM model with ΔNeff ¼ 0, while the dotted lines
are those of a ΛCDM model with a variable ΔNeff . The solid lines mark posteriors of either a decay model with only DR sourced by the
decay (same as that shown in Fig. 9) or those of a model in which DR is sourced by the Y decay as well as an ambient DR background
modeled by allowing ΔNeff to vary in the positive direction (prior of ΔNeff ¼ ½0; 0.5�). The vertical band depicts the 1σ and 2σ bounds
determined by SH0ES (H0 ¼ 73.30� 1.04 km s−1 Mpc−1).
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Boltzmann solver CLASS-v3.2 [61] to model the effects of
such a Y decay and, in doing so, we determine the existence
of an attractor solution for DR perturbations in synchronous
gauge. Under the common assumption that adiabatic initial
conditions are set by equating δρ= ˙̄ρ between all fluids, one
would expect the fractional density perturbation of DR (δdr)
to equal 1=4 of the fractional density perturbation of
photons (δγ) in both conformal Newtonian and synchronous
gauge. However, in synchronous gauge, an attractor sol-
ution enforces δdr ¼ ð17=20Þδγ . We demonstrate that this
attractor rectifies any incorrect initial condition set for δdr
and so all previous works remain valid (see Fig. 2). This
attractor stems from the fact that initial conditions in
conformal Newtonian gauge are dominated by zero-order
terms in a kτ expansion, whereas the first nonvanishing term
in the corresponding synchronous gauge initial conditions
are of order ðkτÞ2. We derive initial conditions in conformal
Newtonian gauge for species that interact via a decay and
demonstrate that, for the fluid that is being sourced by the
decay, the ðkτÞ2 term differs from that of other fluids such
that the ratio of perturbations (δ1=δ2) is not preserved
between gauges. If there is no energy exchange between
fluids, then δ1=δ2 is preserved between gauges.
We determine constraints on the Y particle decay rate

(ΓY) and the maximum contribution that the Y particle
makes to the energy density of the Universe (RΓ) by
employing observations of CMB temperature and
polarization anisotropies from both Planck 2018 [1] and
SPT-3G [56–58], bounds on the primordial deuterium
abundance [35,76], and data from Pantheon+ [59,75]
and BAO observations from BOSS DR12 [2]. We consider
Y particle lifetimes that range from right after the end of
BBN to about 30 million years after recombination
(10−12.08 Gyr < τY < 10−1.49 Gyr), ensuring that injection
of DR occurs after BBN has completed.
In the short-lived regime of ΓY ≳ 107 Gyr−1 in which the

Y particle decays during radiation domination, decays
primarily affect the CMB via changes in Neff . For these
short-lived cases, the ΔNeff that arises from injected DR is
solely a function of RΓ (see Fig. 12 in Appendix C).
In comparison, the ΔNeff arising from DCDM models
is determined by ΔNeff ∝ Γ−1=2

dcdmfdcdm=ð1 − fdcdmÞ [53],
where Γdcdm is the dark matter decay rate and fdcdm is
the fraction of total dark matter energy density that is
unstable. Therefore, while fdcdm can become unbounded by
CMB observations as Γdcdm increases, the parametrization
used in this work avoids these convergence issues; the same
bound on RΓ applies to all ΓY in the short-lived regime. We
find a 2σ upper bound of RΓ < 0.036 for ΓY ≳ 107 Gyr−1,
which translates to ρY=ρtot < 0.0211. These bounds are
similar to those derived in Sobotka et al. [35] for the range
of 1010.03 Gyr−1 ≲ ΓY ≲ 1012.08 Gyr−1, where it was found
that ρY=ρtot ≤ 0.0235 (95% CL) for a model in which the Y
particle decays into a mixture of photons and DR.

As ΓY falls below 107 Gyr−1, the ΔNeff that arises from a
Y decay increases for fixed RΓ and thus Planck data demand
increasingly large enhancements to ωcdm in order to keep the
early ISW effect relatively fixed. This increase in ωcdm
results in more suppression of temperature anisotropies.
Furthermore, Y decays in the intermediate regime can
influence some CMB scales via ΔNeff while simultaneously
suppressing other scales with the presence of the Y particle,
thereby fostering increased asymmetry between peak heights
in the temperature spectrum (see Sec. III B). Since it is
difficult to compensate for these effects with changes in ns
or ωb, CMB observations yield more stringent constraints
on RΓ in the intermediate regime of 103.22 Gyr−1 ≲ ΓY ≲
107 Gyr−1. Even so, there is a special decay rate of ΓY ≈
104.9 Gyr−1 for which the increase in ωcdm required by
Planck and the extra suppression from the Y particle alter the
ratio of peak heights in such a way that can be compensated
for by increasing ns (see Sec. V C). This same preference for
ΓY ≈ 104.9 Gyr−1 was also observed in Poulin et al. [51] and
Holm et al. [65]. However, the inclusion of SPT data restrict
this necessary change in ns and eliminates any preference for
ΓY ≈ 104.9 Gyr−1.
For cases in which the Y particle decays before recombi-

nation (103.14 Gyr−1 ≲ ΓY ≲ 1012.08 Gyr−1), the injection
of DR decreases the size of the sound horizon and so
Planck data favor an increase in H0 to fix θs. When only
constraining with Planck, these prerecombination scenarios
result in RΓ < 0.0357 (95% CL). The addition of SPT data
and bounds on the primordial deuterium abundance pri-
marily limit changes in ns or ωb needed by intermediate
cases, and thus marginalizing over the full prerecombination
range of 103.14 Gyr−1 ≲ ΓY ≲ 1012.08 Gyr−1, we find that
Planckþ SPTþ D=H yields RΓ < 0.0364 (95% CL).
This bound on RΓ translates to for ρY=ρtot < 0.0305.
Consequently, these prerecombination decay scenarios are
not successful at mitigating the Hubble tension; Planckþ
SPTþ D=H results inH0 ¼ 68.10þ0.67

−1.0 km s−1Mpc−1, only
bringing the tension between the CMB inferred value and
results from SH0ES from 5.2σ [1] to 4.4σ. Even with the
inclusion of SPT data and bounds on the deuterium
abundance, these limits on H0 are in good agreement with
those derived by Nygaard et al. [53] for short-lived cases.
Long-lived scenarios in which the Y particle lifetime

extends past the time of recombination (ΓY ≳ 103.24 Gyr−1)
are required by Planck observations to be coupled with a
decrease in ωcdm and an increase in H0. The combination of
these effects leads to an overall reduction in Ωm ¼ ωm=h2.
Therefore, long-lived cases are subject to constraints from
probes ofΩm such as Pantheon+ [59,75] and BAO data from
BOSS DR12 [2]. When applying Planck, Pantheonþ, and
BAO data, these long-lived scenarios are constrained such
that RΓ < 0.0124 (95% CL), corresponding to ρY=ρtot <
0.011 for 101.49 Gyr−1 ≲ ΓY ≲ 103.24 Gyr−1. In comparison,
McCarthy and Hill [34] derived bounds on generic models
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that convert some form of dark matter to DR after recombi-
nation by employing likelihoods for Planck, CMB lensing
[79], BAO [2,80,81], Pantheon type Ia supernovae [82], and
matter clustering from DES-Y3 [5]. McCarthy and Hill [34]
parametrize the amount of dark matter that converts into DR
with the parameter ζ and report a 2σ upper bound of
ζ < 0.0748. We translate10 our Planckþ Panþ BAO pos-
teriors for Y decays in the long-lived regime to this para-
metrization and find a more stringent bound of ζ < 0.0321
(95% CL). This discrepancy can be attributed to a difference
in priors for the particle lifetime. Whereas the postrecombi-
nation prior of 101.49 Gyr−1 ≲ ΓY ≲ 103.24 Gyr−1 used here
corresponds to 10−3.05 ≲ aΓ ≲ 10−1.92, McCarthy and Hill
[34] consider 10−4 < at < 104 where at ≈ aΓ. McCarthy
and Hill [34] see a peak in the posterior of at at at ≈ 1 that
broadens the marginalized posterior for ζ, leading to a bound
on ζ that is much less stringent than that derived here.
We find that decays in the long-lived regime result in

S8 ¼ 0.823� 0.013 (68% CL) for Planckþ Panþ BAO,
only reducing the tension between DES-Y3 reported
bounds and those inferred from the CMB from 2.5σ [1]
to 2.3σ. Furthermore, compared to prerecombination decay
cases, these long-lived scenarios are not as effective at
mitigating the Hubble tension; Planckþ Panþ BAO
results in H0 ¼ 67.87þ0.48

−0.54 km s−1Mpc−1 (68% CL) for
the long-lived regime, which agrees with results of com-
parable long-lived DCDM studies ([34,53]).
Since Pantheonþ BAO constraints on long-lived scenar-

ios are driven by the need to decrease ωcdm such that the
early ISW effect is relatively fixed, introducing more
radiation at recombination can relax these bounds.
Including an ambient background of DR in addition to
the DR sourced by the Y decay can enhance the resulting
posterior forH0 compared to long-lived cases that lack a DR
background. We model a DR background by allowing a
constant positiveΔNeff and, with a prior ofΔNeff ¼ ½0; 0.5�,
we find that long-lived cases constrained by PlanckþSPTþ
D=HþPanþBAO yield H0¼68.46þ0.54

−0.74 kms−1Mpc−1

(68% CL). These long-lived scenarios with a DR back-
ground are more successful at mitigating the Hubble
tension than prerecombination decay scenarios without a
DR background.
Overall, Planckþ SPTþ D=Hþ Panþ BAO demon-

strates less constraining power for Y decays in the
short-lived regime, reflecting the fact that scenarios in

which the Y particle lifetime is comparable to or greater than
the time of recombination are strongly disfavored by CMB
data and probes of Ωm. Marginalizing over the full range of
Y particle lifetimes considered in this work, Planckþ SPTþ
D=Hþ Panþ BAO data yield RΓ < 0.0360 (95% CL)
which implies ρY=ρtot < 0.0302. Therefore, the Y particle
is restricted to only contribute a maximum of about 3% of
the energy density of the Universe. As a result, Y decay
scenarios are sufficiently constrained such that they are not
effective at mitigating the H0 or S8 tensions. Considering a
DR background in addition to the DR sourced by Y decays
in the long-lived regime can aid in bolstering H0 further, but
still fall far short at resolving the tension with measurements
from SH0ES [9].
This work affirms the notion that the production of

relativistic particles of any kind after BBN is strongly con-
strained. The injection of photons and/or relativistic electrons
has been thoroughly investigated ([36–42]) and these sit-
uations are subject to stringent constraints from measure-
ments of primordial element abundances given their ability to
photodisintegrate deuterium. Furthermore, the production of
photons that do not photodisintegrate deuterium can intro-
duce spectral distortions in the CMB and therefore the
injection of new photons is restricted to be within the first
∼10−11 Gyr after the big bang [35]. Such photon injection
reduces the ΔNeff associated with DR injection and relaxes
CMB constraints on the amount of DR present during
recombination. However, to maintain consistency with the
precisely measured present-day CMB temperature, such
scenarios must alter the baryon-to-photon ratio during
BBNand are therefore strongly constrained bymeasurements
of the primordial deuterium abundance [35]. While the
injection of DR alone is not significantly constrained by
BBN, we find that the bounds placed on such scenarios by
CMBanisotropy observations and probes ofΩm are similar to
the stringent bounds placed on scenarios that inject photons.
In light of these results, it is evident that the production of any
new free-streaming relativistic particles in the early Universe
is highly constrained by cosmological observations. As a
result, such extensions to ΛCDM cosmology are not capable
of resolving the Hubble and S8 tensions. This exemplifies the
challenges faced when trying to resolve these tensions with
early Universe modifications alone [83–85]. Even so, exam-
ples of models that succeed in addressing the H0 and S8
tensions with only prerecombinationmodifications to cosmic
evolution do exist [70,86–90].
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APPENDIX A: MODEL IMPLEMENTATION

We modify CLASS to solve Eqs. (1) and (2) when given
initial values for ρY and ρdr. To determine these values,
we derive a mapping from RΓ and ΓY to ρY;i and ρdr;i.
Combining Eqs. (3) and (4) determines aΓ=ai as a function
of ΓY and RΓ, which can then be inserted back into Eq. (3)
to solve for ρY;i. However, the function for aΓ=ai must be
determined separately for the regimes in which the massive
neutrinos are relativistic or nonrelativistic at aΓ. The
evolution of ρncdm can be approximated by a broken power
law that pivots from scaling as a−4 to a−3 at some pivot
scale factor ap:

ρncdmðaÞ ¼
8<
:

ρncdm;i

	ai
a



4 if a < ap

ρncdm;i

�
ai
ap

�
4	ap

a



3 if a > ap

: ðA1Þ

Here, ap ¼ a0ðT0=TpÞð4=11Þ1=3 and Tp ¼ mν=3.15 [91],
withmν being the mass of the massive neutrino species. We
take the minimal assumption that neutrinos are composed
of two massless species and one massive species with
mν ¼ 0.06 eV. Combining Eqs. (A1) and (3), we find that

ρY;i
ρr;i

¼ RΓ ×

8>><
>>:

�
ai
aΓ
þ ρm;i

ρr;i

�
; aΓ < aph

ϵ
�
ai
aΓ

�
þ ρm;i

ρr;i
þ ð1 − ϵÞ

�
ai
ap

�i
; aΓ > ap;

;

ðA2Þ
where ϵ≡ ρsr;i=ρr;i and ρr;i ¼ ρsr;i þ ρncdm;i. Inserting
this initial condition back into Eq. (4), we obtain the
quartic equation

�
aΓ
ai

�
4

þ c

�
aΓ
ai

�
þ d ¼ 0; ðA3Þ

where

d ¼ −
�
Hi

ΓY

�
2

ðRΓ þ 1Þ; ðA4Þ

c ¼ d ×

8>><
>>:

�
ρm;i

ρr;i

�
if aΓ < aph

ρm;i

ρr;i
þ ð1 − ϵÞ

�
ai
ap

�i
if aΓ > ap

: ðA5Þ

Equation (A3) can be solved analytically. Therefore, under
the assumption of ai being deep in radiation domination
such that Hi is completely determined by ρr;i, a value for
aΓ=ai can be determined when equipped with values for
RΓ, ΓY , ρm;i, and ρr;i. From there, ρY;i is determined via
Eq. (A2). Finally, solving Eq. (2) under the assumption of

radiation domination such that HðaÞ ≈Hiða=aiÞ−2 leads to
ρdr;i ¼ ðΓY=3HiÞρY;i. We modify CLASS to derive these
initial conditions for ρY and ρdr when given values for RΓ
and ΓY . Note that Eq. (A1) is only used when relating RΓ
and ΓY to initial conditions; we do not modify the default
calculations for ρncdm in CLASS.

APPENDIX B: INITIAL CONDITIONS

1. Initial conditions for DR perturbations

We can derive the attractor initial condition for δðsÞdr ,
where the superscript (s) denotes synchronous gauge, by
analytically solving the Boltzmann equations. The scalar
perturbation equations for the Y particle and DR follow
from the continuity and Euler equations and, in synchro-
nous gauge, these result in

δ0ðsÞdr ¼ −
4

3
θðsÞdr −

4

3

�
h0

2

�
þ aΓY

ρY
ρdr

ðδðsÞY − δðsÞdr Þ; ðB1Þ

θ0ðsÞdr ¼ k2

4
δðsÞdr − aΓY

3ρY
4ρdr

�
4

3
θðsÞdr − θðsÞY

�
: ðB2Þ

Here, a prime denotes a derivative with respect to con-
formal time and we have assumed that anisotropic stress is
initially negligible. Assuming initial conditions are set

during radiation domination, δðsÞγ ¼ −ð2=3ÞCðkτÞ2 and h ¼
CðkτÞ2 [60], where C is an arbitrary constant. As demon-
strated in Sec. II B, if the evolution of an interacting
fluid’s energy density is unaffected by its interaction, then
δi=δγ is the same in both synchronous and conformal
Newtonian gauge, where δi is the density perturbation of
the interacting fluid. Since ρY ∝ a−3 initially, we know

δðsÞY ¼ ð3=4ÞδðsÞγ and θðsÞY ¼ 0. Additionally, if we take
HðaÞ ¼ Hiða=aiÞ−2, then the initial evolution of ρdr
can be determined by solving Eq. (2) analytically:
ρdrðaÞ ¼ ðΓYρY;i=3HiÞða=aiÞ−1. It follows that

ΓY
ρY
ρdr

¼ 3H: ðB3Þ

For adiabatic initial conditions, the DR perturbations will
take the same form as standard radiation in that the first
nonvanishing terms in a power series expansion in (kτ) for

δðsÞdr and θðsÞdr are

δðsÞdr ¼ DðkτÞ2; θðsÞdr ¼ Ek4τ3; ðB4Þ
where D and E are constants. Recalling that h ¼ CðkτÞ2,
δðsÞY ¼ ð3=4ÞδðsÞγ ¼ −ð1=2ÞCðkτÞ2, θðsÞY ¼ 0, and that
ρY=ρdr is given by Eq. (B3), it follows that Eqs. (B1)
and (B2) reduce to the algebraic equations of

2Dk2τ ¼ −
4

3
Ek4τ3 −

2

3
ð2Ck2τÞ − 3k2τ

�
C
2
þD

�
; ðB5Þ
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3Ek4τ2 ¼ 1

4
Dk4τ2 − 3Ek4τ2: ðB6Þ

Solving Eqs. (B5) and (B6), we find that

D ¼ 24E; ðB7Þ

E ¼ −
17C

8ð90þ k2τ2Þ ≈ −
17C
720

: ðB8Þ

Therefore, δðsÞdr ¼−ð17=30ÞCðkτÞ2 and δðsÞdr =δ
ðsÞ
γ ¼ ð17=20Þ.

We enforce this initial condition in the perturbation module
of CLASS. Note that while this derivation does not formally

prove δðsÞdr =δ
ðsÞ
γ ¼ ð17=20Þ is an attractor solution, the

numerical solution shown in Fig. 2 confirms that δðsÞdr

quickly converges to ð17=20ÞδðsÞγ .

2. Generalized initial conditions
for noninteracting species

We employ an iterative approach to derive a general
expression for adiabatic initial conditions of scalar pertur-
bations in conformal Newtonian gauge. We consider three
noninteracting species with energy densities ρ1, ρ2, and ρd,
where ρd is assumed to dominate the energy density of the
Universe. Since these fluids do not exchange energy, the
evolution of their energy densities are determined by their
respective equation of state parameters w1, w2, and wd [see
Eqs. (12)–(14)].
The perturbation equations for these species can be derived

by perturbing the covariant form of Eqs. (12)–(14). We treat
each species as a perfect fluid with an energy momentum
tensor of

ðiÞTμν ¼ pigμν þ ðρi þ piÞuμðiÞuνðiÞ; ðB9Þ

where i denotes each individual fluid, pi is the pressure
of the fluid, and uμðiÞ ≡ dxμ=dλ is the fluid’s four velocity.

Since these fluids are noninteracting

∇μððiÞTμ
νÞ ¼ 0: ðB10Þ

The perturbation equations are found by evaluating Eq. (B10)
with the perturbed conformalNewtonianmetric in Eq. (5) and
introducing perturbations to the energy density of each fluid
ρiðt; x⃗Þ ¼ ρ0i ðtÞ½1þ δiðt; x⃗Þ�, where ρ0i ðtÞ is the background
energy density of each fluid and δiðt; x⃗Þ≡ δρi=ρ0i is the
fractional density perturbation of a fluid. We also introduce
perturbations to the four-velocity of each fluid: u0 ¼ ð1 −ΨÞ
and ujðiÞ ¼ ð1 −ΨÞVj

ðiÞ, where V
j
ðiÞ ≡ dxj=dt is the peculiar

velocity of fluid i.
The ν ¼ 0 component of Eq. (B10) reduces to

dδi
dt

þ ð1þ wiÞ
θi
a
þ 3ð1þ wiÞ

dΦ
dt

¼ 0; ðB11Þ

where θi ≡ a∂jV
j
ðiÞ is the divergence of the fluid’s con-

formal velocity. The divergence of the spatial component
(ν ¼ j) of Eq. (B10) results in

dθi
dt

þ ð1 − 3wiÞHθi þ
∇2Ψ
a

þ wi

1þ wi

∇2δi
a

¼ 0: ðB12Þ

We apply Eqs. (B11) and (B12) to the three noninteracting
fluids we are considering and the resulting suite of
equations that we solve is

a2EðaÞδ01ðaÞ þ ð1þ w1Þθ̃1ðaÞ þ 3ð1þ w1Þa2EðaÞΦ0ðaÞ ¼ 0; ðB13Þ

a2EðaÞθ̃01ðaÞ þ ð1 − 3w1ÞaEðaÞθ̃1ðaÞ þ k̃2ΦðaÞ −
�

w1

1þ w1

�
k̃2δ1ðaÞ ¼ 0; ðB14Þ

a2EðaÞδ02ðaÞ þ ð1þ w2Þθ̃2ðaÞ þ 3ð1þ w2Þa2EðaÞΦ0ðaÞ ¼ 0; ðB15Þ

a2EðaÞθ̃02ðaÞ þ ð1 − 3w2ÞaEðaÞθ̃2ðaÞ þ k̃2ΦðaÞ −
�

w2

1þ w2

�
k̃2δ2ðaÞ ¼ 0; ðB16Þ

a2EðaÞδ0dðaÞ þ ð1þ wdÞθ̃dðaÞ þ 3ð1þ wdÞa2EðaÞΦ0ðaÞ ¼ 0; ðB17Þ

a2EðaÞθ̃0dðaÞ þ ð1 − 3wdÞaEðaÞθ̃dðaÞ þ k̃2ΦðaÞ −
�

wd

1þ wd

�
k̃2δdðaÞ ¼ 0; ðB18Þ

k̃2ΦðaÞ þ 3a2E2ðaÞ½aΦ0ðaÞ þΦðaÞ� ¼ 3

2
a2½ρ̃dðaÞδdðaÞ þ ρ̃1ðaÞδ1ðaÞ þ ρ̃2ðaÞδ2ðaÞ�:

ðB19Þ
Here, EðaÞ≡HðaÞ=Hi, k̃≡ k=Hi, θ̃≡ θ=Hi, ρ̃≡ ρ=ρcrit;i, and a prime denotes a derivative with respect to scale

factor, a. Equation (B19) is the perturbed time-time component of the Einstein equation.
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We assume perturbations evolve from an initial scale
factor of ai ¼ 1 and that the initial time is set sufficiently
early such that all modes of interest are superhorizon
(k̃ < 1). In conformal Newtonian gauge, perturbations
are constant outside the horizon at zeroth order in k=aH
so we begin by setting Φ0 ¼ 0. If ρd dominates the energy
density of the Universe, then EðaÞ ≈ a−

3
2
ð1þwdÞ and ρ̃dðaÞ ≈

a−3ð1þwdÞ because ρd;i=ρcrit;i ≈ 1. Under these conditions
and dropping terms proportional to k̃2 and Φ0, Eq. (B19)
results in δdðaiÞ ¼ 2ΦðaiÞ at zeroth order in k=aH. This
result can then be used to simplify Eq. (B18), which has the
solution

θ̃d ¼ −
2a

1
2
ð1þ3wdÞ

3ð1þ wdÞ
k̃2Φp; ðB20Þ

where Φp ≡ΦðaiÞ. The superhorizon initial conditions for
δ1 and δ2 at zeroth order in k=aH can be found by
combining Eqs. (B13), (B15), and (B17) while neglecting
θ̃ ∝ k̃2 terms. In doing so, we find that δ1 ¼ 2Φpð1þ w1Þ=
ð1þ wdÞ and δ2 ¼ 2Φpð1þ w2Þ=ð1þ wdÞ. Combining
these results with Eqs. (B14) and (B16) and solving, it
follows that θ̃d ¼ θ̃1 ¼ θ̃2. This result is a manifestation
of the fact that adiabatic initial conditions in conformal
Newtonian gauge have the same velocity perturbations
between all fluids [60].
While Φ0 ¼ 0 at zeroth order in k=aH, Φ can evolve

at higher orders in k=aH. To determine this evolution,
we begin by simplifying Eq. (B19) to

1

3
a1−3wd k̃2ΦðaÞ þ aΦ0ðaÞ þΦðaÞ ¼ 1

2
δd: ðB21Þ

Differentiating Eq. (B21) with respect to scale factor and
combining with Eqs. (B17) and (B20), we obtain the
differential equation

0 ¼ aΦ00ðaÞ þΦ0ðaÞ
�
1

3
a1þ3wd k̃2 þ 3

2
ð1þ wdÞ þ 2

�

þΦðaÞ½wda3wd k̃2�: ðB22Þ

Solving Eq. (B22) with the ansatz of ΦðτÞ ¼ Aþ Bk2τ2,
where

τ ¼
�

2

1þ 3wd

�
a

1
2
ð1þ3wdÞ

Hi
ðB23Þ

results in

Φ ¼ Φp −
�

2wda1þ3wd

4 − 24ð1þ wdÞ þ 27ð1þ wdÞ2
�
k̃2Φp

þOðk̃3Þ: ðB24Þ

Combining Eqs. (B20) and (B24) with either Eqs. (B13),
(B15), or (B17), it follows that the adiabatic initial con-
dition for each of the three fluids takes the form of

δj≃2

�
1þwj

1þwd

�
Φp

þ2

3

�
1þwj

1þwd

��
7þ18wdþ9w2

d

7þ30wdþ27w2
d

�
að1þ3wdÞk̃2Φp: ðB25Þ

Or, applying the transformation of Eq. (B23),

δj ≃ 2

�
1þ wj

1þ wd

�
Φp

þ 2

3

�
1þ wj

1þ wd

��
7þ 39wd þ 63w2

d þ 27w3
d

28þ 36wd

�
ðkτÞ2Φp:

ðB26Þ

Note that the term in square brackets is only dependent on
wd and is therefore the same between all individual fluids.
Even at next-to-leading order in kτ, the ratio of initial
conditions between any two noninteracting fluids is
δi=δj ¼ ð1þ wiÞ=ð1þ wjÞ.

3. Generalized initial conditions for interacting case

Here we employ a similar approach to that used in
Appendix B 2 in order to derive the superhorizon adiabatic
initial conditions for interacting fluids in conformal
Newtonian gauge. Let us consider three fluids with energy
densities ρ1, ρ2, and ρd, where ρd dominates the energy
density of the Universe and species 1 is a massive particle
(w1 ¼ 0) that decays into species 2 with a decay rate Γ.
Equations (16)–(18) describe the energy density evolution
of the three species. Each species is assumed to be a
perfect fluid with an energy momentum tensor given by
Eq. (B9), and so the covariant form of Eqs. (16)–(18) can be
written as

∇μððiÞTμ
νÞ ¼ QðiÞ

ν ; ðB27Þ

where i specifies each fluid. It follows from Eqs. (16)–(18)
that

QðdÞ
ν ¼ 0; ðB28Þ

Qð1Þ
ν ¼ ðiÞTμνu

μ
ð1ÞΓ; ðB29Þ

Qð2Þ
ν ¼ −Qð1Þ

ν : ðB30Þ

We derive the perturbation equations by evaluating
Eq. (B27) with the perturbed conformal Newtonian metric
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of Eq. (5) and enforcing the same perturbations to the
fluid energy density and velocity as in Appendix B 2:
ρiðt; x⃗Þ ¼ ρ0i ðtÞ½1þ δiðt; x⃗Þ�, u0 ¼ ð1 −ΨÞ, and ujðiÞ ¼
ð1 −ΨÞVj

ðiÞ. From these perturbations, we find

Qð1Þ
0 ¼ Γρ01ð1þ δ1 þ ΨÞ; ðB31Þ

Qð1Þ
j ¼ −Γρ01a2δkjVk

1: ðB32Þ

Here, the quantityQð1Þ
0 is composed of a zeroth-order piece,

Qð1Þ;ð0Þ
0 ≡ Γρ01, and a first order component, Qð1Þ;ð1Þ

0 ≡
Γρ01ðδ1 þ ΨÞ. It follows that the ν ¼ 0 component of
Eq. (B27) lends

dδi
dt

þð1þwiÞ
θi
a
þ 3ð1þwiÞ

dΦ
dt

¼ 1

ρ0i

h
QðiÞ;ð0Þ

0 δi−QðiÞ;ð1Þ
0

i
;

ðB33Þ

and the divergence of the ν ¼ j component of Eq. (B27)
results in

dθi
dt

þ ð1 − 3wiÞHθi þ
∇2Ψ
a

þ wi

1þ wi

∇2δi
a

¼ 1

ρ0i

�
∂jQ

ðiÞ
j

að1þ wiÞ
þQðiÞ;ð0Þ

0 θi

�
: ðB34Þ

Considering the energy exchange between each species
described by Eqs. (B28)–(B30), the suite of equations that
derive from Eqs. (B33) and (B34) are

a2EðaÞδ01ðaÞþ θ̃1ðaÞþ3a2EðaÞΦ0ðaÞ¼aΓ̃ΦðaÞ; ðB35Þ

a2EðaÞθ̃01ðaÞ þ aEðaÞθ̃1ðaÞ þ k̃2ΦðaÞ ¼ 0; ðB36Þ

a2EðaÞδ02ðaÞ þ ð1þ w2Þθ̃2ðaÞ þ 3ð1þ w2Þa2EðaÞΦ0ðaÞ ¼ aΓ̃
ρ̃1ðaÞ
ρ̃2ðaÞ

½δ1ðaÞ − δ2ðaÞ −ΦðaÞ�; ðB37Þ

a2EðaÞθ̃02ðaÞ þ ð1 − 3w2ÞaEðaÞθ̃2ðaÞ þ k̃2ΦðaÞ −
�

w2

1þ w2

�
k̃2δ2ðaÞ ¼ aΓ̃

ρ̃1ðaÞ
ρ̃2ðaÞ

�
θ̃1ðaÞ
1þ w2

− θ̃2ðaÞ
�
; ðB38Þ

a2EðaÞδ0dðaÞ þ ð1þ wdÞθ̃dðaÞ þ 3ð1þ wdÞa2EðaÞΦ0ðaÞ ¼ 0; ðB39Þ

a2EðaÞθ̃0dðaÞ þ ð1 − 3wdÞaEðaÞθ̃dðaÞ þ k̃2ΦðaÞ −
�

wd

1þ wd

�
k̃2δdðaÞ ¼ 0; ðB40Þ

k̃2ΦðaÞ þ 3a2E2ðaÞ½aΦ0ðaÞ þΦðaÞ� ¼ 3

2
a2½ρ̃dðaÞδdðaÞ þ ρ̃1ðaÞδ1ðaÞ þ ρ̃2ðaÞδ2ðaÞ�:

ðB41Þ

Here, Γ̃≡ Γ=Hi and again Eq. (B41) is the perturbed time-time Einstein equation.

At zeroth order in k=aH, Φ0 ¼ 0 outside the horizon
in conformal Newtonian gauge. As in Appendix B 2,
we assume ρ̃d ≫ ρ̃1; ρ̃2 such that EðaÞ ≈ a−

3
2
ð1þwdÞ and

ρ̃dðaÞ ≈ a−3ð1þwdÞ. Applying the superhorizon limit
(k̃2;Φ0 → 0) to Eq. (B41) results in δdðaiÞ ¼ 2ΦðaiÞ at
zeroth order in k=aH. This solution can be combined with
Eq. (B40) which results in θ̃d being equivalent to Eq. (B20).
The initial condition at zeroth order in k=aH for δ1 can be
derived by combining Eqs. (B35) and (B39) and dropping
θ̃ ∝ k̃2 terms. Additionally, we assume that the initial time
is set sufficiently early such that Γ=Hi is initially small.
This leads to δ1 ¼ 2Φp=ð1þ wdÞ at zeroth order in k=aH,
which mirrors the noninteracting case of Appendix B 2

since w1 ¼ 0. To solve for the initial condition of δ2 at
zeroth order in k=aH, we combine the zeroth-order result
for δ1 with Eq. (B37) while neglecting any θ̃ ∝ k̃2 terms,
and enforcing that δ02 ¼ Φ0 ¼ 0 on superhorizon scales.
Doing so results in δ2 ¼ Φp½ð1 − wdÞ=ð1þ wdÞ� at zeroth
order in k=aH. Inserting these zeroth-order results for δ1
and δ2 in Eqs. (B36) and (B38) leads to θ̃1 ¼ θ̃2 ¼ θ̃d all
being equivalent to Eq. (B20). This confirms that, even in
the presence of energy transfer, the initial velocity pertur-
bation for all fluids is universal for adiabatic perturbations
in conformal Newtonian gauge.
Since the evolution of ΦðaÞ on superhorizon scales is

completely determined by the dominant species of the
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Universe, and ρd is still noninteracting, it follows that the
superhorizon evolution of ΦðaÞ at second order in k=aH is
still given by Eq. (B24). This would still be true if ρ1 were
the dominant energy density instead of ρd; even though
species 1 is interacting, the evolution of ρ1 is unaffected by
this interaction and so its influence onΦðaÞ is equivalent to
that of a noninteracting dominant fluid.
Equipped with θ̃ðaÞ and ΦðaÞ at second order in k=aH,

we can derive the adiabatic initial conditions for δ1, δ2,
and δd at order ðk=aHÞ2. Combining Eqs. (B20) and (B24)
with either Eq. (B35) or Eq. (B39), and applying Eq. (B23)
to report in terms of τ, the density perturbations for
species 1 is

δ1 ≃ 2

�
1

1þ wd

�
Φp

þ 2

3

�
1

1þ wd

��
7þ 39wd þ 63w2

d þ 27w3
d

28þ 36wd

�
ðkτÞ2Φp;

ðB42Þ

and the density perturbation for the dominant species is

δd≃2Φpþ
2

3

�
7þ39wdþ63w2

dþ27w3
d

28þ36wd

�
ðkτÞ2Φp: ðB43Þ

Both Eqs. (B42) and (B43) are equivalent to Eq. (B26)
in Appendix B 2 (since w1 ¼ 0). For species 2, inserting
Eqs. (B20) and (B24) into Eq. (B37) and applying the
transformation Eq. (B23) results in

δ2 ≃
�
1 − wd

1þ wd

�
Φp þWðkτÞ2Φp; ðB44Þ

where W is a constant equal to

W ¼ 1þ 3wd

6ð5þ 6w2 þ 9wdÞð7þ 16wd þ 9w2
dÞ

× ½35þ 162wd þ 225w2
d þ 90w3

d

þ 2w2ð28þ 102wd þ 99w2
d þ 27w3

dÞ�: ðB45Þ

APPENDIX C: POSTDECAY Neff

Decays in the short-lived regime are primarily con-
strained by their influence on the CMB anisotropies via
changes in ΔNeff from injected DR. Here, we derive a
mapping between the ΔNeff resulting from a decay and the
decay parameters RΓ and ΓY .
Let us define the ratio of the comoving radiation energy

density before and after the decay as

g≡ ðρsr;f þ ρdr;fÞa4f
ρsr;ia4i

; ðC1Þ

where ρsr is the combined radiation energy density of
photons and massless neutrinos, ρdr is the energy density
of DR, and the i and f subscripts denote before and after
significant production of DR from the decay, respectively.
To fit g as a function of RΓ and ΓY , we apply the sudden
decay approximation in which all of the Y particle’s energy
is instantaneously converted to DR at a scale factor of aSD.
Under this approximation, we have

g − 1 ¼ ρsr;fa4f þ ρdr;fa4f − ρsr;ia4i
ρsr;ia4i

≈
ρdrðaSDÞ
ρsrðaSDÞ

; ðC2Þ

where we have assumed that the standard comoving
radiation is unchanged (i.e. ρsr;ia4i ¼ ρsr;fa4f) and that
the decay is instantaneous such that ai ¼ af ¼ aSD.
Taking ρdrðaSDÞ ¼ ρYðaSDÞ, it follows that

g − 1 ≈
�
aSD
ai

�
ρY;i
ρsr;i

≈
�
aSD
ai

�
ρY;i
ρr;i

ϵ−1; ðC3Þ

where ϵ≡ ρsr;i=ρr;i and ρr;i ¼ ρsr;i þ ρncdm;i. Inserting
Eq. (A2) into Eq. (C3) gives

g − 1

RΓξ
≈
aSD
aΓ

; ðC4Þ

where

ξ¼1

ϵ
×

8>><
>>:

�
1þaΓ

ai

ρsm;i

ρr;i

�
; aΓ<aph

ϵþaΓ
ai

ρsm;i

ρr;i
þð1−ϵÞ

�
ai
ap

�
aΓ
ai

i
; aΓ>ap

: ðC5Þ

Both aSD and aΓ parametrize the scale factor at which
ΓY ≈H, so we expect these quantities to be similar in
all decay scenarios. The left-hand side of Eq. (C4) should
therefore have a simple functional form that minimally
depends on RΓ and ΓY . Figure 11 shows ðg − 1Þ=ðRΓξÞ as a
function of RΓ and ΓY . Here we see a plateau at large ΓY ,
corresponding to cases in which the Y particle decays deep
in radiation domination, and another plateau at smaller ΓY
corresponding to scenarios in which the decay predomi-
nately occurs during matter domination.
The small dependencies that ðg − 1Þ=ðRΓξÞ has on RΓ

and ΓY in Fig. 11 are the result of inaccuracies in the sudden
decay approximation, which incorrectly assumes the
decay to be instantaneous. While the duration of the decay
depends on proper time, t, the amount that ρY changes
while ρdr is being produced is dependent on scale factor.
Therefore, the height of the plateaus change depending on
if the decay occurs predominately in radiation or matter
domination because the mapping between t and a is
different for these two regimes. At large ΓY , there is a
slight dependence on RΓ because an increase in RΓ leads to
a larger contribution of ρY and thus a deviation from
radiation domination. Towards smaller ΓY the dependence
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on RΓ stems from a deviation from matter domination; an
increase in RΓ leads to more DR production and a further
deviation from matter domination.
The dashed black line in Fig. 11 shows a numerical fit

described by

g − 1

RΓξ
¼ xþ yðx−1ΓYÞz

1þ ðx−1ΓYÞz
; ðC6Þ

for x ¼ 1.18, y ¼ 1.25, and z ¼ 0.78. From this fit, we can
determine gðRΓ;ΓYÞ. If Nur is the effective number of
relativistic species before injection, excluding the massive
neutrino, and N0

ur is the corresponding number after the
injection of DR, then it follows that

g ¼ ðρsr;f þ ρdr;fÞa4f
ρsr;ia4i

¼
ργ;fa4f

h
1þ 7

8
N0

ur

�
4
11

�
4=3

i

ργ;ia4i
h
1þ 7

8
Nur

�
4
11

�
4=3

i : ðC7Þ

The comoving photon energy density does not change and
so this reduces to

N0
ur ¼ Nur þ ðg − 1Þ

�
8

7

�
11

4

�
4=3

þ Nur

�
: ðC8Þ

The contribution that the single massive neutrino species
makes to Neff is Nncdm ¼ ð11=4Þ4=3ð0.71611Þ4 ¼ 1.0132,
and we enforce that Neff ¼ Nur þ Nncdm is equal to 3.044
before the injection of any DR. The postdecay Neff is then
determined via Eq. (C8). Figure 12 shows the postdecay
Neff values for a range of RΓ and ΓY . For a fixed ΓY , a
larger RΓ corresponds to larger ΔNeff, as expected.
If a decay scenario occurs deep in radiation domination,
then ΔNeff is solely a function of RΓ. However, as we
approach Y particle lifetimes that extend to matter
domination, ΔNeff picks up an additional dependence
on ΓY . This dependence on ΓY stems from how RΓ is
defined. RΓ is a measure of the energy density of the Y
particle compared to the total energy density of the
Universe at the scale factor of aΓ. In other words,
RΓ ∼ ρYðaΓÞ=ρdðaΓÞ ∼ ρdrðaΓÞ=ρdðaΓÞ, where ρd is the
dominant species. Therefore, if aΓ ≪ aeq, RΓ ∼
ρdrðaΓÞ=ρsrðaΓÞ and thus ΔNeff is solely dependent on
RΓ. However, if aΓ > aeq, then RΓ ∼ ρdrðaΓÞ=ρmðaΓÞ ∼
½ρdrðaΓÞ=ρsrðaΓÞ� × ½ρsrðaΓÞ=ρmðaΓÞ� and so ΔNeff ∼ RΓ ×
½ρmðaΓÞ=ρsrðaΓÞ� for Y particle lifetimes extending into
matter domination.

FIG. 12. Postdecay Neff for varying values of RΓ and ΓY . For
short-lived cases in which the Y particle decays during radiation
domination, ΔNeff is simply a function of RΓ. Once the energy
density of nonrelativistic matter begins making a non-negligible
contribution to the total energy density, ΔNeff also becomes
sensitive to ΓY .

FIG. 11. Dependence of Eq. (C4) as a function of both RΓ and
ΓY . Deep in radiation domination (large ΓY ), this quantity has no
dependence on ΓY and only a minimal dependence on RΓ. The
dashed black line shows the numerical fit of Eq. (C6).
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