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Recent analysis on the stellar kinematics of ultrafaint dwarf (UFD) galaxies has put a stringent upper
limit on the self-scattering cross section of dark matter, i.e., σ=m < Oð0.1Þ cm2=g at the scattering velocity
ofOð10Þ km=s. Resonant self-interacting dark matter (rSIDM) is one possibility that can be consistent with
the UFDs and explain the low central densities of rotation-supported galaxies; the cross section is
resonantly enhanced to be σ=m ¼ Oð1Þ cm2=g around the scattering velocity ofOð100Þ km=s while being
suppressed at lower velocities. To further assess this possibility, since the inferred dark matter distribution
of halos from astrophysical observations is usually compared to that in constant-cross section SIDM
(cSIDM), whether the structures of rSIDM halos can be approximated by the cSIDM halo profiles needs to
be clarified. In this work, we employ the gravothermal fluid method to investigate the structural evolution
of rSIDM halos in a wide mass range. We find that except for halos in a specific mass range, the present
structures of rSIDM halos are virtually indistinguishable from those of the cSIDM halos. For halos in the
specific mass range, the resonant self-scattering renders a break in their density profile. We demonstrate
how such a density-profile break appears in astrophysical observations, e.g., rotation curves and line-of-
sight velocity dispersion profiles. We show that for halos above the specific mass range, the density-profile
break disappears through the thermalization before the present. We infer that such distinctive thermal-
ization dynamics might leave imprints on the orbital classes of stars with similar ages and metallicities.
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I. INTRODUCTION

Collisionless cold dark matter (CDM) is a successful
paradigm in explaining the observed structures at large
scales. At small scales (≲1 Mpc), however, there are
reported discrepancies between predictions of CDM-only
simulations and astrophysical observations (see, e.g., [1]
for a review on the small-scale issues). For example, the
observed rotation curves in dark-matter (DM) dominated
galaxies seem to prefer a flat central density distribution
[2–5], i.e., a core, rather than the cuspy profile predicted in
collisionless CDM-only simulations [6,7]. The subgrid
astrophysical processes of baryons, e.g., supernova feed-
back and stellar winds, are known to play a role in resolving
the issues [8–16], while it is not clear to what degree the
baryonic physics affects the halo evolution [10,17].
In light of this situation, the possibility of DM micro-

physics being responsible for the small-scale issues has
gained considerable attention, resonating with new and
creative experimental efforts to test new DM benchmarks
beyond the traditional weakly interacting massive particles
[18,19]. Dedicated studies are demonstrating how DM

microphysics can be probed by looking into the spatial
distribution of DM [20,21]. Such gravitational probes of DM
are appealing since we may probe DM interactions secluded
from the Standard Model (SM), which are difficult to probe
in terrestrial experiments. In order to maximally utilize the
upcoming and archival data, it is important to sharpen the
predictions ofDMmicrophysics on the spatial distribution of
DM and identify the distinctive features that only a specific
DM microphysics would exhibit.
Self-interacting dark matter (SIDM) is a promising

framework that mitigates some of the most prevalent
aspects of the small-scale issues (see [22,23] for reviews).
The elastic self-scattering with cross section per DM mass
of σ=m ∼ 1 cm2=g induces macroscopic conduction of DM
kinetic energy, which leads to thermalization of DM
particles in the central region of a halo in the timescale
of the age of the Universe. Such thermalization results in
the formation of a low-density core in DM-dominated
galaxies [24,25], or a denser and smaller core in baryon-
rich galaxies [26], the respective aspect alleviating the core-
cusp [27,28] (and too-big-to-fail [29,30]) issue, and the
diversity issue [31]. The former aspect is most highlighted
for dwarf/low surface brightness (LSB) spiral galaxies
(109–1012M⊙), showing the preference of σ=m ≃ 2 cm2=g
at the DM scattering velocities of 30–200 km=s [32]. On the
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other hand, a smaller cross section seems to be preferred at
larger velocities: observations on galaxy clusters (∼1014M⊙)
constrain the cross section to be σ=m≲ 0.1 cm2=g for
velocities larger than ≳1000 km=s [32–36].
Milky Way (MW) ultrafaint dwarf (UFD) galaxies are

one of the ideal sites for probing the SIDM cross section in
the low-velocity regime (≲30 km=s), since their central
DM density profile is expected to be less affected by
astrophysical processes [37–39] and more accurate infor-
mation about their structure will be provided by next-
generation spectroscopic surveys in the near future
[40,41]. Recently, the density profiles of UFDs have been
analyzed assuming the core expansion (formation) phase
of SIDM [42]. Among the 23 considered UFDs, two of
them, i.e., Segue 1 and Willman 1, put a stringent upper
bound on σ=m≲ 0.1 cm2=g in the low-velocity regime.
Further investigation may be warranted since the limited
stellar kinematic data within small radii of the UFDs may
render a large uncertainty in their structural parameters.
Nevertheless, their result points to an interesting velocity
dependence of σ=m when we take the constraint at face
values. Along with the constraints on σ=m from galaxy
clusters, σ=m is constrained to be ≲0.1 cm2=g at the
velocity scales of≳1000 km=s and ≲30 km=s, while field
dwarf/LSB galaxies prefer a larger value ∼2 cm2=g at the
intermediate velocity scales (see also Fig. 1). This requires
an enhancement of σ=m around ∼100 km=s and a sharp

drop by an order of magnitude toward lower velocities
around ∼30 km=s. It is interesting to ask which particle
physics realization exhibits such velocity dependence.
The required velocity dependence can be realized when

DM particles self-scatter through a resonant intermediate
state [43]. When the mass of the resonance is just above
twice of the DM mass, the self-scattering is resonantly
enhanced around some scattering velocity vR. Such near-
threshold resonances exist in SM QCD, and QCD-like
theories of DM can realize such states [44,45], as well as a
simple scalar extension [46]. For systems of velocities
away from the vR, e.g., galaxy clusters and UFDs, the
self-scattering misses the resonance and hence exhibits
smaller values of σ=m. Moreover, the transition width
of the velocity-averaged cross section toward lower
velocity can be sharp enough to be consistent with the
constraints from the UFDs, as will be discussed in the next
section.
Although resonant SIDM (rSIDM) appears to accom-

modate the velocity dependence consistent with the
observations of UFDs and field dwarf/LSBs, there has
been no explicit study on the evolution of rSIDM halos.
Most importantly, it has not been clarified if structures of
rSIDM halos can be mapped onto that in scenarios of
constant SIDM (cSIDM) cross section; since the favored
values and upper bounds on the SIDM cross section at a
given scattering velocity are usually inferred by applying
the isothermal Jeans modeling for cSIDM halos
[32,47,48] to observations (including the constraints from
the UFDs [42]), it is necessary to check to what extent
the existing results for cSIDM apply to rSIDM. For the
velocity dependence of Coulomb/Yukawa-like self-
interactions, the application of the isothermal Jeans
modeling to simulated velocity-dependent SIDM halos
has been explored [49], and a method for the mapping
has been proposed by employing the gravothermal
fluid equations [50], making it possible for the velocity-
dependent SIDM model parameters to be constrained
from astrophysical observations. The mapping of halo
structures may not exist for rSIDM halos at the vicinity of
the resonant velocity; inside an rSIDM halo, only a
specific region may exhibit the enhanced heat conduction
due to the sharp velocity dependence of σ=m. Such
selective enhancement inside an rSIDM halo could result
in a distinctive halo structure at present.
The goal of this study is to provide the first step in

understanding the structural evolution of rSIDM halos. By
employing the gravothermal fluid method, we numerically
follow the evolution of isolated halos in the core expansion
phase. This method allows one to follow the evolution of
halo structures down to small radii, e.g., r≲ 10 pc for
UFDs, at a small computational cost, allowing us to
accurately follow the distinctive evolution of rSIDM halo
structures and scope the dependence of the evolution on
rSIDM parameters and halo mass. We take the benchmarks

FIG. 1. Velocity-weighted average of the resonant SIDM cross
section per DM mass. The data points with error bars are the
inferred SIDM cross sections from field dwarf (red)/LSB (blue)
galaxies and galaxy clusters (green) [32]; the curves labeled by
S1 (S2) and P1 are the best-fit curves to the data points in the
narrow (broad)-width s-wave and p-wave resonant scattering,
respectively [43]. The colored regions are inferred (1σ) from
UFDs (Willman 1 and Segue 1) [42]. Motivated from the
stringent upper limit from the UFDs, we explore the P2 and
P3 benchmark parameters; they are the same with the P1
benchmark, but with smaller offset cross sections, i.e.,
0.03 cm2=g and 0.001 cm2=g, respectively.
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for p-wave resonant self-scattering that represents the
possible velocity dependencies that may be consistent with
the observations on the galaxies of different velocity scales
(see also the black curves in Fig. 1).1

Notably, for halos with scattering velocities close to the
resonant velocity, a break in the density profile develops at
the radius where the local heat conduction rate from DM
self-scattering is resonantly enhanced. Such a break in the
density profile is eventually thermalized, and the global
density profile converges to that in cSIDM. We find that
for the p-wave rSIDM benchmarks, rSIDM halos in a
specific mass range would exhibit the density break at
present. Such a density break can be explicitly seen in
astrophysical observations, e.g., in stellar line-of-sight
velocity dispersion (LOSVD) profiles of MW satellites
and rotation curves of dwarf/LSB galaxies, and serve as a
smoking-gun signature for rSIDM. We also remark that
the thermalization dynamics could exhibit a period during
which the density break develops into a shocklike form
that propagates toward the center. For halos of mass larger
than the aforementioned range, the propagation is com-
plete at present, and thus the distinction between cSIDM
and rSIDM is not manifest in the density profiles.
Nevertheless, the propagation dynamics of the density
break in rSIDM halos can still be observationally impor-
tant since it may leave imprints on the orbital classes of
stars formed around the time of the propagation.
In Sec. II, we begin with the parametrization of the self-

scattering cross section in rSIDM and present the grav-
othermal fluid method for treating the velocity dependence
of σ=m. Our numerical results, showing the halo evolution
for different benchmarks and halo masses, are presented in
Sec. III. We also identify the halo-mass range where the
density break can be seen at present. In Sec. IV, we discuss
the possible imprints of rSIDM halo dynamics on astro-
physical observations. We give concluding remarks in
Sec. V.

II. METHODOLOGY

A. Resonant self-interaction

In the presence of a particle resonance mediating the self-
scattering of DM, the (spin-averaged) nonrelativistic cross
section σ can be parametrized as a sum of a constant piece
σ0 and resonant piece parametrized by a Breit-Wigner
form [43]:

σ ¼ σ0 þ
4πS

mEðvrelÞ
ΓðvrelÞ2=4

½EðvrelÞ − EðvRÞ�2 þ ΓðvrelÞ2=4
; ð1Þ

where m is the DM mass, EðvÞ ¼ ðm=2Þv2=2, and S ¼
ð2sR þ 1Þ=ð2sDM þ 1Þ2 is the symmetry factor taking into
account the spin degrees of freedom of DM (sDM) and the
resonance (sR). The resonant velocity is given as EðvRÞ ¼
mR − 2m where mR is the mass of the resonance. We
assume that the total decay width of the resonance is
dominated by R → DMDM around the resonant velocity;
we parametrize the momentum-dependent decay width as
ΓðvrelÞ ¼ mRγv

2lþ1
rel , where l is the orbital angular momen-

tum for the self-scattering and γ parametrizes the coupling
between the resonance and DM.
Inside a halo, we approximate that the scattering velocity

vrel follows the Maxwell-Boltzmann distribution para-
metrized by the local one-dimensional velocity dispersion
νðrÞ:

fðvrel; νÞ ¼
v2relffiffiffiffiffiffi
4π

p
ν3

exp

�
−
v2rel
4ν2

�
: ð2Þ

We will denote the distribution averaging by h·i; the
integration range for vrel is taken to be from 0 to the local
escape velocity which is usually larger than the local velocity
dispersion in the central region of a halo. In thiswork,we take
the local escape velocity to be infinity. Note that the
expectation value of the scattering velocity is given as
hvreli ¼ ð4= ffiffiffi

π
p Þν. The semianalytic method of isothermal

Jeans modeling is often used to fit the predicted cSIDM halo
profile to the observed astrophysical data in the core
expansion phase [26,32,47,49,51]; there, the quantity
inferred from observations is hσvreli=m (vertical axis of
Fig. 1) at a given DM scattering velocity (one-dimensional
velocity dispersion) that characterizes the isothermal profile
for the inner core (horizontal axis of Fig. 1). As shown in
Fig. 1, the dwarf/LSB galaxies (red/blue data points) prefer
hσvreli=ðmhvreliÞ ∼ 2 cm2=g around hvreli ∼ 100 km=s,
while the UFDs put a stringent upper bound as
≲0.1 cm2=g at low velocities, i.e., ≲30 km=s.
Such a sharp drop toward lower velocities is realized in

rSIDM in the limit of a narrow resonance width. The
resonant contribution, i.e., the second term in the rhs of
Eq. (1), to hσvreli=m around vrel ¼ vR can be picked up by
using a narrow-width approximation (NWA) [43]:

hσvreli
m

����
res

¼ 16π3=2Sγv2lþ1
R

m3ν3
e−

v2
R

4ν2 ; ð3Þ

which is a goodestimationof hσvreli=m around the resonance
for γv2l−1R ≲ 1. The resonant part in the narrow-width limit
exhibits theminimal transitionwidth toward lower velocities,
Δhvreli ∼ vR=2; hereafter, we will focus on this case. The
peak of the distribution-averaged cross section given in
Eq. (3) happens at the hvreli ¼

ffiffiffiffiffiffiffiffiffiffi
8=3π

p
vR.

In Fig. 1, we display the velocity dependence of
hσvreli=m for the benchmark parameters that fit the

1Similar velocity dependencies are also possible in s-wave
resonant scattering; see the discussion below Eq. (3). We take the
p-wave benchmarks for purely illustrative reasons as one of the
p-wave benchmarks, i.e., P1, was presented in Ref. [43].
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observations on dwarf/LSB galaxies and galaxy clusters,
i.e., S1, S2 and P1 [43]. The S1 (S2) benchmark represents
the case of narrow (broad) s-wave resonance, i.e., l ¼ 0;
the rSIDM parameters for the S1 (S2) benchmark
are vR ¼ 120 km=s (5035 km=s), γ ¼ 10−4.5 (10−1.1),
m=S1=3 ¼ 22 GeV (16 GeV) and σ0=m ¼ 0.1 cm2=g
(≪ 0.1 cm2=g). Away from the resonant velocities, the
nonvanishing Breit-Wigner distribution renders out-of-
pole contributions which have additional γ suppression
compared to the resonant one (see Appendix A for more
discussion). The low-velocity limit of the out-of-
pole contribution to hσvreli=ðmhvreliÞ is ∼24ðlþ1Þπγ2ν4l=
ðm3v4RÞ which is not velocity suppressed for the s-wave
scattering. Such out-of-pole values can be larger than the
taken offset value σ0hvreli=m. Nevertheless, one can
always find γ and m where the out-of-pole values
(∝ γ2=m3) are negligible compared to the offset one
without changing the resonant contribution (∝ γ=m3).
For example, the S1 benchmark exhibits an out-of-pole
contribution larger than ≳0.1 cm2=g in the low-velocity
limit, making the velocity dependence incompatible with
the stringent constraint from the UFDs. However, as
discussed above, it is possible to reduce the out-of-
pole contribution while keeping the resonant contribu-
tion unchanged, so that the velocity dependence
becomes similar to that of the p-wave benchmarks,
e.g., P1. To be consistent with the constraint from the
UFDs, one needs to require a narrow width of reso-
nance, γ ≲ 10−7ðm=GeVÞ3=2½vR=ð100 km=sÞ�2.
The P1, P2 and P3 benchmarks are for p-wave resonant

self-scattering, and their velocity dependence is consistent
with the preferred cross section from the dwarfs/LSBs and
the stringent constraint from the UFDs; these three bench-
marks will be the focus of this work. We remark that while
the P2 and P3 benchmarks seem to evade the constraints
from the UFDs, the high-velocity limit of the SIDM cross
section at hvreli ∼ 1000 km=s, i.e., σ0=m, is much smaller
than the favored values from galaxy clusters. The common
rSIDM parameters for the p-wave benchmarks are
vR ¼ 108 km=s, γ ¼ 10−3 and m=S1=3 ¼ 0.4 GeV while
the values of σ0=m are 0.1, 0.03 and 0.001 cm2=g for P1,
P2 and P3 benchmarks, respectively. Contrary to the s-
wave scattering, the NWA [Eq. (3)] is a good estimation of
the resonant contribution even for relatively large couplings
γ ∼Oð1Þ. The out-of-pole contribution in the low-velocity
limit is velocity suppressed and thus negligible compared
to the considered σ0=m’s in the p-wave benchmarks; fixing
the resonant peak value as hσvreli=ðmhvreliÞ ≃ 3 cm2=g,
the out-of-pole contribution is given by ∼10−6 cm2=
g½hvreli=ðvR=2Þ�4ðγ=10−3Þ½ð108 km=sÞ=vR�. One possible
contribution for the nonzero σ0=m is the t-channel
exchange of the resonant mediator, i.e., ∼γ2=m3. Such a
minimal contribution is suppressed by the factor of γv3−2lR
compared to the resonant peak cross section, and thus the

p-wave benchmarks considered in this work require an
additional contribution for the desired σ0=m. For example,
in the QCD-like theories of DM, DM can be the dark
pseudoscalar mesons where the derivative self-couplings of
DM provide the constant σ0, and a dark vector meson state
can mediate the p-wave resonant self-scattering [44].

B. Gravothermal fluid method

We study the evolution of isolated resonant SIDM halos
by numerically following the gravothermal fluid equa-
tions. In this method, the system of DM particles is
described by a set of fluid conservation equations. In the
collisionless limit, the equations are directly derived by
taking the moments of the collisionless Boltzmann equa-
tion. To take into account the effect of self-scattering, the
energy conservation equation is modified. For a general
distribution function, the hierarchy of conservation equa-
tions is not closed at the finite truncation of the hierarchy.
Nevertheless, as we assume the spherical symmetry of
halos with skew-free velocity distribution with isotropic
velocity dispersion [Eq. (2)], the closed set of conserva-
tion equations is obtained [52]. We further assume that the
gravothermal evolution is quasistatic so that the hydro-
static equilibrium is achieved at each moment [53–58]:

∂ðρν2Þ
∂r

þGMρ

r2
¼ 0; ð4aÞ

∂M
∂r

¼ 4πr2ρ; ð4bÞ

3

ν

�
∂ν

∂t

�
M
−
1

ρ

�
∂ρ

∂t

�
M
¼ −

1

4πr2ρν2
∂L
∂r

; ð4cÞ

where ρðr; tÞ and νðr; tÞ are mass density and one-
dimensional velocity dispersion, respectively. Mðr; tÞ is
the fluid mass enclosed within radius r, and G is the
Newton’s constant. ð∂tÞM is the Lagrangian time derivative
which refers to changes within the fluid element as it
changes its state and location. Equation (4) is the con-
dition for hydrostatic equilibrium, and Eq. (4a) defines the
enclosed fluid mass M.
Equation (4c) is the energy conservation equation. The

details of microphysics appear in the rhs, which is the rate
of heat gain of a fluid element. Lðr; tÞ is the luminosity
which is the power of DM kinetic energy crossing a sphere
of radius r by heat conduction; fluid elements conduct heat
with neighboring sites in the radial direction through DM
self-interaction. The heat conduction is modeled by
Fourier’s law for heat flux:

L
4πr2

¼ −κ
∂T
∂r

; ð5Þ
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where κ is the thermal conductivity and Tðr; tÞ is the DM
temperature which is related to the one-dimensional veloc-
ity dispersion as ν ¼ ffiffiffiffiffiffiffiffiffiffi

T=m
p

. The general expression for κ
cannot be derived from the first principles. Nevertheless,
from a simple order-of-magnitude estimation for a DM
fluid, the thermal conductivity is estimated as κ ∼ ρ=m ×
d2mean=tself where tself ¼ 1=ðρhvreliσ=mÞ is the mean time
between DM self-scatterings and dmean is the mean dis-
placement (in radius) that the DM particle travels until it
deposits/gains its kinetic energy by colliding with another
DM particle in a local fluid element.
The estimations of dmean are possible in two limiting

regimes: short mean free path (SMFP) and long mean free
path (LMFP) regimes. The two regimes are defined by
comparing two length scales, i.e., the free streaming length
defined by the self-scattering λ ¼ 1=ðρσ=mÞ, and the
size of halo quantified by the Jeans length scale H ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2=4πGρ

p
. The SMFP regime is the limit of λ ≪ H,

where dmean is determined by λ. The thermal conductivity in
the SMFP regime can be calculated in the Chapman-
Enskog expansion [50,59]:

κSMFP ¼
75

ffiffiffi
π

p
64

ν

σ0K5ðνÞ
; KpðνÞ ¼

hσvpreli
σ0hvpreli

: ð6Þ

The LMFP regime is the opposite limit, i.e., λ ≫ H,
where the length separation between two successive
scatterings is now determined by the system size H; in
this work, as we focus on the core expansion phase of
rSIDM halos with σ=m≲Oð1Þ cm2=g, the halo evolu-
tions reside in the LMFP regime. Thermal conductivity in
this regime cannot be determined from first principles but
can be estimated through a naive dimensional analysis:
κ ∼ ð3C=2ÞðρH2=mtselfÞ. The dimensionless constant C is
calibrated by comparing with the halo evolution in
N-body simulations; as we focus on the halo evolution
in the core expansion phase, we adopt C ≃ 0.75 following
[55,57]. The dimensional analysis for the thermal con-
ductivity shows that κLMFP ∝ σ, but it has not been
clarified which distribution-averaged cross section, i.e.,
Kp, is most suitable to describe heat conduction in
the LMFP regime; possible choices may be ∝ hσv3reli,
acknowledging the fact that the heat conduction rate is
proportional to the energy transfer rate [59], or ∝ hσv5reli
by further taking into account the additional velocities
appearing in the length scale-squared H2 [60]. In this
work, we simply assume that κLMFP ∝ K1 to better
manifest the connection between our analyses and the
cross section that is directly read off by comparing the
isothermal Jeans modeling and astrophysical observations
(see, e.g., [26,32,47,49,51]):

κLMFP ¼ 3C

2ðπÞ3=2
ρν3σ0
Gm2

K1ðνÞ: ð7Þ

We interpolate the thermal conductivities in the two
regimes as κ−1 ¼ κ−1SMFP þ κ−1LMFP. Possible changes for
choosing different values of p are elaborated upon in
Appendix B.
We assume the initial halo density profile to be the

Navarro-Frenk-White (NFW) profile [6,7], ρNFW ¼
ρs=½r=rsð1þ r=rsÞ2� where rs (ρs) is the NFW scale radius
(density). Unless noted, we take the scale parameters
determined by the halo virial mass (M200) using the median
mass-concentration relation (at present) in cosmological
CDM N-body simulations [61]:

ρs ≃ 0.011M⊙=pc3
�
1010M⊙

M200

�
0.24

;

rs ≃ 3.43 kpc

�
M200

1010M⊙

�
0.44

: ð8Þ

III. GRAVOTHERMAL EVOLUTION
OF RESONANT SIDM HALOS

In this section, we study the structural evolution of
isolated rSIDM halos by numerically solving the gravo-
thermal equations [Eq. (4)]. We take mainly the P2
benchmark (and occasionally the P1 and P3 benchmarks)
and scope the evolutions of halos of various masses. For
each benchmark, we delineate the halo mass range where
the imprint of resonant DM self-interaction can be explic-
itly seen in the present halo structure, i.e., as a break in the
density profile. For halos outside the mass range, the
density-profile break disappears through thermalization
before the present, or does not form from the beginning;
in both cases, their present structure is well approximated
by that in cSIDM. However, even though their present
structure is indistinguishable from cSIDM halos, the
thermalization of the density-profile break exhibits unique
dynamics that may leave an imprint on the kinematic
properties of stars of specific age and metallicity, as will be
discussed in Sec. IV. We therefore study how the thermal-
ization dynamics depend on rSIDM parameters by com-
paring the dynamics among our benchmarks.

A. Halo-mass dependence

For halos with the maximal DM velocity far below the
resonant velocity, the DM particles miss the resonance, and
thus their evolution proceeds as in cSIDM with the offset
cross section σ0=m; as shown in the panel (a) of Fig. 2, the
rSIDM (solid) and the cSIDM (dotted) density (blue) and
velocity dispersion (orange) profiles are identical. The heat
conduction timescale tcond.ðrÞ is a convenient measure to
identify the region inside a halo significantly affected by
DM self-interaction; tcond. is defined as the inverse of the
rhs of Eq. (4c) times an Oð1Þ fudge factor, assuming the
initial NFW density profile and the corresponding velocity
dispersion profile [62]. We choose the fudge factor to be
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∼1=3, as will be discussed soon. For a region with
t > tcond., we may expect a significant deviation from
the initial NFW profile. The tcond. profile for the rSIDM
(cSIDM) is shown as a green (light green) curve in Fig. 2,
where the solid curve corresponds to the region of net
heating, and the dashed curve corresponds to net cooling; in
the core expansion phase, the heat conduction from DM
self-scattering works in a way to transfer heat from the
region of r=rs ∼ 1 to smaller radii. The two tcond. distri-
butions, i.e., for the rSIDM and the cSIDM, are identical,
showing that the evolution of halos far below the resonant
velocity is basically identical to that in cSIDMwith σ ¼ σ0.
The size of the central core is conveniently predicted by
comparing a given time t with tcond.; for the region of
t > tcond., the heat conduction is efficient enough to
thermalize DM and thus form a uniform core. We define
the radius at which t ¼ tcond. as r1;in if the conduction
timescale is determined by the offset cross section; the
subscript “in” will become clear in the following discus-
sion. The fudge factor for tcond. is chosen so that r1;in
roughly coincides with the core size.
For halos of the maximal DM velocity close to the

resonant velocity, only a localized region inside a halo may
feel the resonance. Such a case is shown in panel (b) of
Fig. 2. Contrary to panel (a) where the tcond. distribution is a
monotonically increasing function with radius, tcond. in
panel (b) exhibits a local minimum at a certain radius; the

vicinity of such a radius is the region where the heat
conduction is enhanced due to the resonant self-scattering.
For our benchmarks, such a local minimum can be
defined for halos whose DM scattering velocities overlap
with the resonant velocity range at some radius, i.e.,
0.5≲ hvreli=vR ≲ 1.5. We define the tcond. (radius) at such
a local minimum as tbreak (rbreak). Shortly after t≳ tbreak,
there exist three radii where t ¼ tcond.; toward larger
radius, we define them as r1;in, r1;med, and r1;out, respec-
tively. r1;in is determined by the offset cross section, as in
panel (a) of Fig. 2. r1;med and r1;out are determined by the
resonant cross section. Contrary to panel (a), there is a
region beyond r≳ r1;in where the halo profile significantly
deviates from the NFW profile due to the heat conduction,
i.e., r1;med ≲ r≲ r1;out. The separation of the two regions
renders a break in the density profile. Such a break in the
density profile may be probed if it occurs at the radius
relevant to astrophysical observations, e.g., rotation
curves or stellar LOSVD profiles. The generation of the
break is solely due to the resonant self-scattering, and can
serve as a smoking-gun signature of rSIDM. In order for
the density-profile break to appear before the present, the
halo age should satisfy tage ≳ tbreak. For future conven-
ience, let us define the logarithmic slope of the density-
profile break αbreak, which is defined as the steepest slope
for r≲ r1;med; in panel (b) of Fig. 2, αbreak ≃ −1.2. To be

FIG. 2. Structure of rSIDM halos for the P2 benchmark at tage ¼ 10 Gyr. Blue (orange) curve represents the density (hvreli) profile;
solid curves represent the rSIDM halos, and dotted curves are the corresponding cSIDM profiles with identical innermost density. Gray
curves are the initial NFW profiles. Green curves are the heat conduction timescale profiles (see Sec. III for the definition); solid
(dashed) corresponds to net heating (cooling). (a) A halo with DM scattering velocities much smaller than the resonant velocity,
vR ¼ 108 km=s. The halo structure is the same as that in the cSIDM (dotted) with σ=m ¼ σ0=m ¼ 0.03 cm2=g. (b) A halo that exhibits
a density break at present due to resonant self-scattering of DM; tbreak ≃ 5.7 Gyr and ttherm: ≃ 17 Gyr (see Sec. III for the definition of the
timescales). The cSIDM profile is for σ=m ¼ 0.035 cm2=g (c) A halo with complete thermalization of the density break at present, i.e.,
ttherm: ≪ tage. The rSIDM profile is identical to the cSIDM profile with σ=m ¼ 0.47 cm2=g.
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concrete, we define the position of the density break as the
point of local minimum of αbreak < −1.
Eventually, the density break disappears through ther-

malization. The dynamics of the thermalization will be
discussed in detail in the next subsection. Similarly to tbreak,
one may attempt to estimate the time when the thermal-
ization completes through the tcond. profile. We define ttherm:
as the time when the two regions of efficient heat
conduction, i.e., r≲ r1;in and r1;med ≲ r≲ r1;out, merge into
one, i.e., ttherm: is the local maximum of the tcond. profile; we
define the radius at tcond. ¼ ttherm: as rtherm:. We remark that
ttherm:, which is defined by the NFW profile, tends not to be
a good estimation of the actual thermalization time for more
visible development of the density break. This is because at
the time of ttherm:, the density break can be significantly
developed so that the global halo profile significantly
deviates from the initial NFW profile. Nevertheless, we
will use ttherm: as a rough indicator for the thermalization
time. As we consider halos with the maximal DM velocity
much larger than the resonant velocity, the region of
resonant velocities is located at smaller radii (r=rs ≪ 1)
and ttherm: becomes shorter than tage; the density break
forms in a smaller radius and thermalizes before the
present. Panel (c) of Fig. 2 represents such a halo.
There, we confirm that the resultant density profile after
the thermalization is virtually indistinguishable from a
cSIDM profile with a similar central density.
We now delineate the halo-mass range where the imprint

of resonant self-scattering is explicit (as a density break) in
their present structures. We estimate the range by requiring
tbreak ≲ tage ≲ ttherm:. The estimations for the p-wave bench-
marks are shown in Fig. 3; the left panel shows the
estimated halo-mass range depending on the assumed halo

age, and the right panel shows the corresponding range in
radius where the density break can be manifested. The low
end of the halo-mass range, which is determined by tbreak ¼
tage (light blue curve), is identical among the p-wave
benchmarks since they exhibit the same resonant self-
scattering. The high end of the range is larger for smaller
σ0=m since ttherm: (blue curves) is longer for smaller σ0=m.
We confirm that the range indeed increases as we consider
smaller σ0=m, as shown as the plot markers in Fig. 3.
However, our estimation tends to overpredict the high end
of the halo-mass range as we consider smaller offset cross
sections. This is because smaller values of σ0=m result in
density breaks with larger jαbreakj where the global halo
profiles deviate more from the NFW profile, as will be
discussed in the next subsection.

B. Thermalization dynamics

For halos whose maximal DM scattering velocity is
larger than 0.5vR ≲ hvreli, a density break forms and
eventually thermalizes. The time evolution of such halos
is described in Fig. 4. The mass of the presented halo is
8 × 109M⊙ with which the density break starts to thermal-
ize around tage ¼ 10 Gyr, according to Fig. 3. The left
panel is the time when the density break starts to form, i.e.,
t ∼ tbreak. As the halo evolves further, the density break
manifests itself by increasing its logarithmic slope jαbreakj.
The density break is located within the region r1;in ≲ r≲
r1;med where we expect the heat conduction is not efficient
enough to thermalize the region (see the middle panel of
Fig. 4). The density break connects two regions of distinct
DM densities, i.e., r≲ r1;in and r1;med ≲ r≲ r1;out. The DM
density of the former region is determined by σ0=m, and

FIG. 3. Left: the halo-mass range where the density break from rSIDM may be probed at present. The light-blue (blue) curves
represent the halo-mass dependence of tbreak (ttherm:). The horizontal lines represent tage ¼ 10 Gyr, 13.8 Gyr. Given a halo age, our
expected mass range is determined by the condition tbreak ≲ tage ≲ ttherm:. The expected high (low) end of the mass range is determined
by the condition tage ¼ ttherm: (tage ¼ tbreak). The plot markers are the actual high end of the mass range from our simulations. While our
expected mass range coincides well with the simulations for P1 (σ0=m ¼ 0.1 cm2=g) and P2 (σ0=m ¼ 0.01 cm2=g) benchmarks (see
also the left panel of Fig. 5 for the P2 benchmark), the high end of the mass range is overestimated in the P3 (σ0=m ¼ 0.001 cm2=g)
benchmark. Right: the expected range in the halo radius where the density break is located. The horizontal axis rbreak=rs (rtherm:=rs) is the
expected radius at which the density break starts to form (thermalize) at tage ¼ tbreak (tage ¼ ttherm:).
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that of the latter region is determined by the resonant self-
scattering.
Since the region r1;in ≲ r≲ r1;med shrinks with time, we

can expect the slope of the density profile to increase until
t≲Oðttherm:Þ. Note that larger jαbreakj renders a larger heat
conduction rate around the density break. Such an
enhanced heat conduction rate is much larger than one
can expect in the initial NFW profile. Therefore, for halo
profiles with large jαbreakj ≫ 1, ttherm: loses its significance
as an approximate thermalization time of the density break;
this is why the estimated high end of the halo-mass range
dramatically fails to predict the actual value from simu-
lations, as we have discussed in Fig. 3. Nevertheless, the
density break disappears through the thermalization by the
time t ¼ Oðttherm:Þ. As shown in the right panel of Fig. 4,
heat conduction is expected to be efficient for r≲ r1;out, and

thus a core with uniform DM density and velocity
dispersion is expected to form. The thermalization happens
through the propagation of the density break toward the
halo center. At the propagation front, the DM fluid is heated
to expand in volume which leaves behind a low-density
core as in the right panel of Fig. 4. We remark that the
propagation of the density break induces an abrupt change
in the central gravitational potential, affecting the orbits of
stars around the thermalization time, as will be discussed in
the next section.
Our simulation shows that among the p-wave bench-

marks, the density break tends to evolve up to larger values
of jαbreakj and complete its propagation all the way down to
the origin for smaller values of σ0=m. This is demonstrated
in the right panel of Fig. 5 which shows the evolution of the
position and the slope (αbreak) of the density break for a

FIG. 4. Time evolution of an rSIDM halo in the P2 benchmark. The halo mass is 8 × 109M⊙ with median concentration. Left: a
snapshot of the halo profile at t ∼ tbreak. A density break starts to appear around rbreak Middle: halo profile for tbreak ≲ t ≲ ttherm:. During
this period, the density break manifests itself by increasing its slope; in the plot, αbreak ≃ −1.6. Right: halo profile for t > ttherm:. The
density break has disappeared due to the thermalization of the core.

FIG. 5. Left: evolution of the density break for the P2 (σ0=m ¼ 0.01 cm2=g) benchmark in various halo masses. The colored bars
enclosed by a red curve represent the position of the density break at a given time; the color scheme shows the evolution of the
logarithmic slope of the density break. For the halo of mass 2 × 1010M⊙, the density break thermalizes by propagating toward the origin
completely; the density break becomes steeper as it propagates. For the halo masses of 6.3 × 109M⊙ and 1010M⊙, the density break
thermalizes by relaxing the slope at a finite radius. The colored region enclosed by black curves represents the radii where the heat
conduction is inefficient, i.e., t < tcond.. Right: same as the left panel, but in the P1 (σ0=m ¼ 0.1 cm2=g), P2 (σ0=m ¼ 0.01 cm2=g), and
P3 (σ0=m ¼ 0.001 cm2=g) benchmarks for a given halo mass, M200 ¼ 6.3 × 109M⊙.
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given halo mass; since the P3 (dotted) benchmark has the
smallest offset cross section, jαbreakj evolves up to larger
values compared to P1 (solid) and P2 (dashed). At the same
time, the density break propagates relatively further toward
the center for smaller values of σ0=m. The evolution of the
density break also depends on the halo mass; see the left
panel of Fig. 5. For a fixed σ0=m, the density break evolves
up to larger jαbreakj and propagates to smaller values of r=rs
in larger halos. Both the offset cross section and halo mass
control the initial distinction between (the DM densities of)
the two regions r≲ r1;in and r1;med ≲ r≲ r1;out, i.e., the
ratio of r1;in to r1;med ¼ r1;out at t ¼ tbreak. Smaller σ0=m
and larger halo mass render larger values of the ratio, as
demonstrated in Fig. 5.

IV. IMPLICATIONS OF RESONANT SIDM

A. Astrophysical observations

In this section, we demonstrate how rSIDM halos look in
astrophysical observations, e.g., rotation curves and
LOSVD profiles. The smoking-gun signature of rSIDM
is the density-profile break, which is expected to be present
for halos in the specific mass range (see the left panel of
Fig. 3). For a concrete demonstration, we focus on a halo of
the mass ∼7 × 109M⊙ with median concentration; accord-
ing to our results, such a halo would exhibit a density break
at present in the P2 and P3 benchmarks while the density
break is already thermalized for the P1 benchmark. We
evolve the initial NFW halo for tage ¼ 10 Gyr in each
benchmark. In order to infer the density break, the
observational probes should be able to resolve the region
0.01≲ r=rs ≲ 0.1 (see the right panel of Fig. 3 for the
estimation on the possible position of the density break);
for the considered halo mass, rs ≃ 3 kpc and the actual
position of the density break is ∼0.12 kpc in the P2 and P3
benchmarks; see the top-left panel of Fig. 6. The density
profile for the P1 benchmark is virtually indistinguishable
from the cSIDM profile (green) with σ=m ¼ 0.33 cm2=g.
Note that we do not try to infer the density break or exclude
rSIDM benchmarks from the observations. Nevertheless,
we select a couple of galaxy samples that resolve the
relevant region and present them alongside the rSIDM
predictions as a reference.
Gas-rich galaxies can provide rotation curve data

which directly probe the enclosed mass profile; VcircðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ=rp

. The density-profile break is seen as a break in
the central rotation curve; this is shown in the top-right
panel of Fig. 6. The blue curves are the resultant rotation
curves of the halo. For the P1 benchmark, the inner rotation
curve scales linearly with the radius, reflecting the exist-
ence of a uniform density core. For the other benchmarks,
there is a transition of the rotation curve around the position
of the density break; rotation curves are NFW-like (black)
inside the density break, and they converge to that of the P1
at larger radius. As a reference, we display the observed

rotation curve of the WLM galaxy selected from the
LITTLE THINGS samples [5]; the sample has similar
maximal circular velocity to our halo, and data are available
down to very small radii ≲0.1 kpc. The P3 benchmark
overpredicts the inner rotation curve even with the reported
uncertainty (errors) being taken into account. If WLM’s
mass and concentration were similar to that of our halo, the
P3 benchmark might be disfavored, though a full statistical
analysis including parameter scan is beyond the scope of
this work.
Contrary to the Local Group dwarfs like WLM, MW’s

satellite galaxies are gas poor and lack the rotational
feature. For such systems, stellar kinematic data are used
to infer the density profile; for most galaxies, only the line-
of-sight motions of stars are available. The standard
quantity to infer the DM distribution is the LOSVD profile.
For spherical and DM-dominated galaxies, we get the
following Jeans equation by integrating the collisionless
Boltzmann equation for stellar velocity distribution [65]:

∂ðn⋆σ2rÞ
∂r

þ 2βn⋆σ2r
r

¼ −
GMn⋆
r2

; ð9Þ

where n⋆ðrÞ is the stellar number density and σrðrÞ is their
radial velocity dispersion. The velocity dispersion of stars
satisfies σθðrÞ ¼ σϕðrÞ from spherical symmetry. The
anisotropy parameter of stellar orbits is defined as
βðrÞ ¼ 1 − σ2θ=σ

2
r . Following Ref. [42,66], we parametrize

the anisotropy parameter as

βðrÞ ¼ β0 þ β∞ðr=rβÞη
1þ ðr=rβÞη

; ð10Þ

where β0 (β∞) is the inner (outer) anisotropy, rβ is the
transition radius, and η is the sharpness of the transition.
Given the stellar dispersion profile, the projected LOSVD
is given by

σ2l:o:s:ðRÞ ¼
2

ΣðRÞ
Z

∞

R
dr

�
1− βðrÞR

2

r2

�
n⋆ðrÞσ2rðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−R2=r2

p ; ð11Þ

where R is the projected radius and ΣðRÞ is the projected
surface density of stars. In order to solve the Jeans equation,
we use the enclosed mass profile of our simulated halo, and
use the Plummer profile [65] for n⋆ with the observed half
light radius r1=2. We adopt the best-fit stellar kinematic
parameter sets of Draco and Segue 1 for demonstration;
they are known to be one of the most cuspy classical dwarfs
and UFDs, respectively (see, e.g., Refs. [67–69]). We
choose the two galaxies because their best-fit NFW
parameters are similar to our considered halo; the best-
fit NFW parameters (ρs=ðM⊙=pc3Þ; rs=kpc) to their
observed LOSVD data are (0.014,2.9) for Draco and
(0.032,2.4) for Segue 1, while the parameters for the initial
NFW profile of our simulated halo are (0.012,3.0).
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The bottom-left(right) panel of Fig. 6 shows the pre-
dicted LOSVD profile with the stellar kinematic parameters
for Draco (Segue 1). The black data points are the observed
LOSVD profile. The NFW profile (gray curve) provides a
good fit to the data while the rSIDM benchmarks (blue
curves) do not; this is not surprising since we took best-fit
kinematic parameters for the NFW profile. Note that the
presented four curves converge at large radii, i.e., r ∼ rs,
since the density profiles are identical. For the Draco-like
parameters, one can see that σ0=m controls the central value
of σl:o:s:; in the limit of small σ0=m, the LOSVD profile in
rSIDM will converge to that of the NFW inside the density
break R≲ 0.1 kpc.
Notice that, for the Draco-like parameters, the P3

benchmark (dotted) exhibits LOSVD curve nearly parallel
to the NFW curve for R≲ 0.5 kpc. This may motivate one

to demonstrate that rSIDM benchmarks can be consistent
with the cuspy MW satellites by looking for a new stellar
kinematic parameter set that makes, e.g., the LOSVD curve
in the P3 benchmark identical to the NFW curve (gray) in
the bottom-left panel of Fig. 6. However, we find that it is
hard (though maybe not impossible) for P3 to match the
NFW curve by varying a single stellar kinematic parameter
(while fixing the other parameters) from the best-fit
parameter set assuming the NFW profile. Increasing β0
uplifts the presented LOSVD, but not uniformly for R≲
0.5 kpc (namely, it does not keep the P3 curve parallel to
the NFW one). Increasing the assumed mass/concentration
of the halo (and thus increasing the overall velocity scale)
may be another way to uplift the presented LOSVD curve
for P3 to match the NFW curve. We find that this is not a
viable option since increasing the halo mass/concentration

FIG. 6. Top left: density profiles of a halo of mass 7 × 109M⊙ at tage ¼ 10 Gyr in the rSIDM benchmarks (blue); P1 (solid,
σ0=m ¼ 0.1 cm2=g), P2 (dashed, σ0=m ¼ 0.03 cm2=g), and P3 (dotted, σ0=m ¼ 0.001 cm2=g). A cSIDM profile (green) that exhibits
the same central density with the P1 benchmark is presented for comparison; the corresponding constant SIDM cross section is
0.33 cm2=g. Top right: rotation curve of the halo in the top-left panel. The black curves correspond to the NFW profile, and the blue
curves correspond to the predictions in the p-wave benchmarks. The maximal circular velocity is Vmax ≃ 36 km=s. The gray data points
represent the observed rotation curve of the Wolf–Lundmark–Melotte (WLM) galaxy, which has a similar Vmax [5]; we display the data
up to r ¼ 2.5 kpc. The white circles are the inferred contribution of DM to the rotation curve; the error bars are expected to be similar to
that of the gray data points. Bottom left: LOSVD profile of a Draco-like galaxy; halo mass and concentration is the same as the top-left
panel. The assumed stellar kinematic parameters are the best-fit values assuming the NFW profile; ðβ0; β∞; rβ; η; r1=2Þ ¼
ð−0.105;−60.7; 850 pc; 4.65; 214 pcÞ [63]. The gray curve corresponds to the NFW profile, and the blue curves are the prediction
of the p-wave benchmarks. The black data points are the observed LOSVD of Draco [64]; the observed LOSVD is presented as a
reference, and we do not attempt to fit the data points in rSIDM. Bottom right: same as the bottom-left panel but for a Segue1-like
galaxy. The assumed stellar kinematic parameters are the best-fit values assuming the NFW profile; ðβ0; β∞; rβ; η; r1=2Þ ¼
ð−68.0;−0.894; 4.42 pc; 10; 23.5 pcÞ [63]. The black data points are the observed LOSVD of Segue1 [64].
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puts the velocity scale closer to the resonant velocity, and
thus the resultant LOSVD curve is actually lowered due to
enhanced core formation in the region r1;med ≲ r≲ r1;out.
Nevertheless, we remark that rSIDM profiles better fit the
observed LOSVD data than cSIDM profiles due to the
enhanced central density (see the top-left panel of Fig. 6).
A full statistical analysis by varying all the parameters is
beyond the scope of this work.

B. Stellar-orbit evolution

For halos of mass larger than the specific mass range, the
density profile breaks are thermalized. The thermalization
leaves behind a uniform-density core that is virtually
indistinguishable from that in cSIDM. While the explicit
smoking-gun signature for rSIDM is absent for these halos,
we point out that the orbital radii of stellar tracers that have
formed around the thermalization period could serve as
indirect evidence for rSIDM. During the thermalization,
there is a rapid outflow of DM near the density break that
lowers the central mass density. The sudden shallowing of
the gravitational potential during the thermalization
unbinds the stars and increases their orbital radii. This
renders two distinct classes of orbits among the stars that
have a similar age. Stars that formed just before the
thermalization experienced a rapid increase in orbital radii
upon the propagation of the density break. Stars that
formed just after the propagation experienced the increase
that is more marginal and gradual. The existence of two
different classes of stellar orbits is a feature that is distinct
between rSIDM and cSIDM since the mass outflow in
cSIDM is much more gradual.
To demonstrate the emergence of the two orbital classes

from the thermalization dynamics of rSIDM halos, we
follow the evolution of the mean orbital radius hrorbiti of
stars that have formed just before and after the passage of
the density break. We focus on a halo mass of ∼3.2 ×
1010M⊙ with median concentration. For such a halo, the
thermalization completes around t ∼ 1 Gyr (see the left
panel of Fig. 3). We follow the evolution of hrorbiti of stars
that have formed at t ¼ 0.6 Gyr and 1 Gyr. We assume the
stars to be initially in a circular orbit with an identical
orbital radius; this defines the initial energy and angular
momentum of stars. At a given time t, we define the mean
orbital radius by a probability weight proportional to the
time spent on a line element along the orbit [10]:

hrorbitit ¼
Z

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðtÞ − Veffðr; tÞ

p =
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðtÞ − Veffðr; tÞ

p ;

ð12Þ

where E is the energy of the orbit and Veff ¼ Φþ j2=r2 is
the 1D effective potential with the specific angular
momentum j and gravitational potential Φ. The angular

momentum is conserved throughout the evolution since
we consider spherically symmetric halo profiles. The
integration range over r is determined by requiring the
integrand to be real. The time integration is done by
assuming the change occurring on timescales shorter than
the orbital period of stars is impulsive; we assume that the
change in energy of stars during such timescales is
equivalent to the change in Φ due to evolution of the host
halo. The orbital period is estimated as Δt ∼ 2π=

ffiffiffiffiffiffi
Gρ̄

p
≃

29 Myr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10M⊙=pc3Þ=ρ̄

p
where ρ̄ðt; rÞ is the mean DM

density within the radius r at time t. For each time interval,
we estimate the mean change in energy of stars as hΔEit ¼
hΔVeffit where the mean over stars is taken as in Eq. (12);
when taking the average, we use E and Veff defined at
time t while ΔVeff ¼ Veffðtþ ΔtÞ − VeffðtÞ. We update the
energy by hΔEit after every time step.
The evolution of hrorbitit for each rSIDM benchmark is

shown in the top-right and the bottom panels of Fig. 7; we
display the evolution of stars that formed just before (red)
and after (blue) the thermalization. For each benchmark,
the distinction in the present hrorbitit between the two is
highlighted toward a smaller initial radius, due to a more
significant change in enclosed mass upon the passage of the
density break. For a given initial radius, the distinction is
larger for smaller σ0=m since the central DM density before
the thermalization is larger for smaller σ0=m while the
density profiles after the thermalization are the same for all
the benchmarks. Such distinctions are not present for
cSIDM halos. We also display the evolution hrorbitit for
cSIDM halos as thin curves in the top-right and the bottom
panels of Fig. 7. We choose a constant SIDM cross section
≃3 cm2=g so that the central density at present is the same
as that of the rSIDM benchmarks; see the top-left panel of
Fig. 7. Although the cSIDM has the same present density
profile as rSIDM, the two distinct classes of stellar orbits
only emerge for the rSIDM benchmarks due to the intrinsi-
cally different evolution history of rSIDM halos.
This would contribute to a negative metallicity gradient:

metal-rich (young) stars are more concentrated around the
center than metal-poor (old) ones. A negative metallicity
gradient is seen in many classical dwarfs [70] and UFDs
[71,72]. The rSIDM contribution will be sizable only
within a few tens parsecs, corresponding to a half-light
radius for some UFDs (such as Segue 1 andWillman 1), but
one tenths of the half-light radius for most of the dwarfs. On
the other hand, literatures report the metallicity gradient at
the scale comparable with or larger than the half light
radius. Thus, one may need to remeasure the central
gradient to assess rSIDM. In addition, to make a theoretical
prediction, one needs a star-formation rate as a function of
time (redshift) and radius. To this end, one may need to
perform a hydrodynamic simulation like [73]. This is
because, though a metallicity gradient would potentially
probe rSIDM, we leave further studies for a future work.
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V. CONCLUSIONS

It has been recently demonstrated that the inferred
structures of ultrafaint dwarf galaxies can put a stringent
upper bound on the SIDM cross section. If we take the
constraint at face value, any SIDM model invoked to
address the core-cusp problem of rotation-supported gal-
axies should have an extraordinary velocity dependence
where σ=m sharply drops by an order of magnitude toward
lower velocities around the scattering velocity of
∼30 km=s. rSIDM is an interesting possibility that exhibits
such velocity dependence. To further assess this possibility,
structural evolution of resonant SIDM halos needs to be
explored and compared to that in cSIDM.
In this work, we have studied the structural evolution of

isolated resonant SIDM halos for the first time by employ-
ing the gravothermal fluid method. We have focused on the
three resonant SIDM benchmarks of different offset
cross sections that may explain the low central densities

of dwarf/LSB galaxies while being consistent with the
constraints. We remark that while the benchmarks with
smaller values of the offset cross section, e.g., the P2 and P3
benchmarks, better evade the constraints from the UFDs,
the high-velocity limit of the cross section hardly fits the
cross section favored by central cores of galaxy clusters.
For each benchmark, we have scoped the halo-mass
dependence of the structural evolution over a wide mass
range, i.e., 109–1015M⊙.
We have found that, except for the halos in a specific

mass range, present-day structures of rSIDM halos are
virtually indistinguishable from that in cSIDM. For the
halos smaller than the specific mass range, the DM
scattering velocities do not overlap with the resonant
velocity range at any radius, and thus their structure is
determined by the constant offset cross section. For the
halos within the specific mass range, only a limited region
inside a halo experiences the resonance and develops a

FIG. 7. Top left: time evolution of an rSIDM halo (3.2 × 1010M⊙) in the P2 benchmark (blue). The time evolution of a cSIDM halo is
shown for comparison (red); the cSIDM cross section is chosen so that the cSIDM and the rSIDM benchmark exhibit the same central
density at present. Top right: time evolution of mean orbital radius of stars residing in the rSIDM (thick solid)/cSIDM (thin solid) halos
presented in the top-left panel. The formation time and initial radius of stars are marked by filled circles. For a given initial orbital radius,
the distinction between the present orbital radius of stars that have formed just before (t ¼ 0.6 Gyr, red) and after (t ¼ 1 Gyr, blue) the
thermalization emerges for the rSIDM benchmark, but not for the cSIDM halo. Bottom left: same as the top-right panel but for the P1
benchmark. Bottom right: same as the top-right panel but for the P3 benchmark.
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density break that is observable in their present structures.
For the halos larger than the range, the density break is
thermalized before the present, and their structure becomes
indistinguishable from that of cSIDM halos. We have
delineated the halo-mass range for each rSIDM benchmark
from the simulations. We have found that the low end of the
mass range can be conveniently predicted by analyzing the
radial distribution of the heat conduction timescale of
the initial NFW halo, while the high end of the range
can be overestimated by this method.
The density break of the rSIDM halos in the specific

mass range might be probed by astrophysical observations.
We have indicated how the density break might be
manifested in rotation curves and LOSVD profiles. The
density break renders a break in the rotation curve that is
more highlighted for smaller values of the offset cross
section. We have also indicated how the rSIDM bench-
marks might better fit the LOSVD profiles of some of the
most cuspy satellites of the MW compared to cSIDM,
while explaining the low central densities of rotation
supported galaxies. This motivates us to do a concrete
investigation on how the observed structures of galaxies
constrain the rSIDM parameter space, while we leave it for
future work. Lastly, we have suggested a distinct observ-
able feature of rSIDM halos that are thermalized at present.
The thermalization dynamics of the density break renders
two distinct orbital classes among stars with a similar age,
depending on whether a star has formed before or after the
thermalization; the former would have significantly larger
orbital radius than the latter at present. We have indicated
that such a feature might be used to distinguish rSIDM
from cSIDM in principle.
Although we have demonstrated interesting dynamics of

isolated rSIDM halos, confirming if similar dynamics and
observable signatures are valid for cosmological halos is
warranted. In particular, mergers and tidal strippings would
potentially change the tcond. profile and thus tbreak and the
mass range where the density break is seen at present. On
the other hand, we would expect that these changes are
minor at least qualitatively, since the characteristic radii like
r1 are much smaller than rs; in other words, relevant
dynamics occurs within the central region of a halo. Once
confirmed, having a semianalytic modeling for rSIDM halo
structures would be helpful for searching the smoking-gun
signatures of rSIDM in astrophysical observations. It would
also be interesting to check if the resonant self-interaction
contributes to the diversity of halo structures in cosmo-
logical simulations. For example, we have demonstrated
the diverse structures among rSIDM halos of similar mass;
while the halos in a specific mass range still exhibit large
central density, halos slightly above the range could exhibit
significantly lower central density due to the thermalization
of the density break.

Though we have focused on the core-expansion phase of
SIDM, the following core-collapse phase [52–56] has also
been attracting growing interest [58,74]. It is worth study-
ing how a sharp velocity dependence of σ=m like rSIDM
affects the gravothermal collapse.

ACKNOWLEDGMENTS

The authors would like to acknowledge Kohei Hayashi
and Satoshi Shirai for providing the line-of-sight velocity
dispersion data and the corresponding best-fit structural
parameters. A. K. acknowledges partial support from the
Norwegian Financial Mechanism for years 2014-2021,
Grant No. 2019/34/H/ST2/00707; and from National
Science Centre, Poland, Grants No. 2017/26/E/ST2/
00135 and No. DEC-2018/31/B/ST2/02283. H. K. thanks
Hyungjin Kim and Chang Sub Shin for helpful discussions.
The work of H. K. is supported by IBS under the project
code, IBS-R018-D1.

APPENDIX A: VELOCITY-AVERAGED
CROSS SECTION

The distribution average of the rSIDM cross section [see
Eq. (1)] with respect to the Maxwell-Boltzmann distribu-
tion is given as

hσvreli
m

¼ σ0hvreli
m

þ 256πS
m3

Ilðγ; vR; νÞ; ðA1Þ

where the integral Il is defined as

Ilðγ; vR; νÞ ¼
Z

vmax

0

γ2v4lþ1
rel

ðv2rel − v2RÞ2 þ 16γ2v2ð2lþ1Þ
rel

× fðvrel; νÞdvrel: ðA2Þ

As in the main text, we take the local escape velocity to be
infinity. At the vicinity of the resonant velocity, i.e.,
hvreli ¼ ð4= ffiffiffi

π
p Þν ∼ vR, Il is dominated by the singular

behavior of the denominator in Eq. (A2). One may
approximate such a contribution using the NWA; using
limϵ→0

ϵ
x2þϵ2

¼ πδðxÞ, we make the replacement

1

ðv2rel − v2RÞ2 þ 16γ2v2ð2lþ1Þ
rel

→
πδðvrel − vRÞ
8γv2ðlþ1Þ

R

; ðA3Þ

which leads to the resonant contribution given in Eq. (3) of
the main text. One can find that the peak value of the reso-
nant contribution is given as 96

ffiffiffi
6

p
π3=2Sγv2l−2R =ðe3=2m3Þ

which is only γ suppressed due to the cancelation of a γ
from the NWA. Note that the NWA becomes more accurate
as the half width of the distribution Eq. (A3) is smaller
compared to vR, i.e., Δvrel ∼ 2v2lR γ < vR.
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We define the contributions to Il outside the width as
the out-of-pole contributions. For the contribution from the
low-velocity side, i.e., 0 ≤ vrel ≲ vR − 2v2lR γ, one may
approximate

1

ðv2rel − v2RÞ2 þ 16γ2v2ð2lþ1Þ
rel

→
1

v4R
: ðA4Þ

With this replacement, the out-of-pole contribution in the
low-velocity side is approximated as

Il;lowðγ; vR;νÞ ¼
Z

vR−2v2lR γ

0

γ2v4lþ1
rel

v4R
fðvrel;νÞdvrel

¼ 42lþ1
ffiffiffi
π

p
γ2

v4R
ν4lþ1

×

�
Γð2lþ 2Þ−Γ

�
2lþ 2;

vR− 2v2lR γ

4ν2

��
;

ðA5Þ

where in the second equality, the second term in the square
bracket is the incomplete Gamma function which is
negligible in the ν → 0 limit. Away from the resonant
velocities, i.e., hvreli ≪ vR, this out-of-pole contribution is
dominant over the resonant contribution which is exponen-
tially suppressed. Remark that in the s-wave scattering
case, Il;low is only ν suppressed which is the same
suppression for the offset contribution (the first term) in
the rhs of Eq. (A1); one needs to ensure that this constant
out-of-pole contribution to hσvreli=ðmhvreliÞ is small

enough to be compatible with the constraints from the
UFDs.
Similarly for the high-velocity side, i.e., vrel ≳ vR þ

2v2lR γ, we make the replacement

1

ðv2rel − v2RÞ2 þ 16γ2v2ð2lþ1Þ
rel

→
1

v4rel
; ðA6Þ

which approximates the out-of-pole contribution as

Il;highðγ; vR; νÞ ¼ 42l−1
ffiffiffi
π

p
γ2ν4l−3

× Γ
�
2l;

ðvR þ 2v2lR γÞ2
4ν2

�
; ðA7Þ

where the incomplete Gamma function converges to the
complete Gamma function in the high-ν limit. Inspecting
the ν dependence of Il;high, this out-of-pole contribution
dominates over the resonant contribution for p-wave
scattering in the high-ν limit. For the s-wave scattering,
the ν dependencies are the same between the resonant and
the out-of-pole contributions, and the relative magnitude
between them depends on the assumed rSIDM parameters.

APPENDIX B: DISTRIBUTION
AVERAGING IN rSIDM

In the main text, we have assumed a specific distribution
averaging for the SIDM cross section appearing in the
thermal conductivity in the LMFP regime, i.e., κLMFP ∝
K1ðνÞ. Since the halo evolution we have explored resides in
the LMFP regime, our quantitative results, e.g., the specific
mass range of rSIDM halos, may change among different

FIG. 8. Left: velocity dependence of KpðνÞ for different values of p. For p ¼ 1, the rSIDM parameters are the same as the P2
benchmark. For p ¼ 3 and p ¼ 5, the rSIDM parameters are the same as the P2 benchmark except the DM mass is adjusted so that the
maximum ofKp ’s are identical to that of p ¼ 1;m=S1=3 ¼ 0.4 GeV for p ¼ 1,m=S1=3 ¼ 0.43 GeV for p ¼ 3 andm=S1=3 ¼ 0.45 GeV
for p ¼ 5. Middle: radial profile of tcond. for different values of p. The presented halo mass is the low end of the specific mass range
(defined by taking p ¼ 1 for the distribution averaging of the SIDM cross section) for the P2 benchmark, i.e., M200 ¼ 5.2 × 109M⊙.
Right: same as the middle panel, but the presented halo mass is the high end of the specific mass range for the P2 benchmark,
i.e., M200 ¼ 8.4 × 109M⊙.
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choices for the distribution averaging. The velocity depend-
ence of KpðνÞ for different choices of p are shown in the left
panel of Fig. 8; we took the P2 benchmark for p ¼ 1, and
adjusted theDMmass from the P2 benchmark forp ¼ 2, 3 so
that the peak values of Kp are identical. The velocity range
where the Kp is resonantly enhanced is narrower for larger
values ofp since hvpreli ∝ νp, the denominator ofKp, exhibits
sharper velocity dependence for hvreli > vR while the numer-
ator barely depends on ν (predominantly depend on vR).
The difference in the velocity dependence may change

the specific mass range for rSIDM halos. The expected
change is a slight shift in the low/high end toward a smaller
halo mass. In the middle panel of Fig. 8, we show the tcond.
profiles inside a halo of mass M200 ¼ 5.2 × 109M⊙, which
is the low end of the specific mass range presented in the
main text, i.e., for p ¼ 1 (determined by the condition
tbreak ¼ 10 Gyr). For larger values of p, tcond. is relatively
shorter around r ¼ rbreak due to the sharper velocity
dependence of Kp. Therefore, the estimation for the low
end of the specific mass range is smaller for larger values of
p; the low end determined by tbreak ¼ 10 Gyr is 4ð3Þ ×
109M⊙ for p ¼ 3ð5Þ. Similarly, the high end of the specific
mass range may be smaller for larger values of p; see the
right panel of Fig. 8. The high-end mass estimated by the
condition ttherm: ¼ 10 Gyr is 6ð5Þ × 109M⊙ for p ¼ 3ð5Þ,
while 8.4 × 109M⊙ for p ¼ 1.

APPENDIX C: CORED NFW INITIAL
CONDITIONS

In the main text, we have assumed the NFW profile as
the initial condition for rSIDM halos. However, finite initial
core densities may be rendered in reality due to, e.g., the
astrophysical processes of baryons. In this section, we try to
scope the possible impact of initial cores on the distinctive
evolution of rSIDM halos, i.e., the formation and thermal-
ization of the density break. We take the cored NFW profile
to represent the initial cores of rSIDM halos: ρcNFWðrÞ ¼
ρsrs=½ðrþ rcÞð1þ r=rsÞ2�where rc parametrizes the initial
core size. In Fig. 9, we present the time evolution of rSIDM
halos with different values of the initial core size in the P3
benchmark; the left panels are for the NFW profile
(rc ¼ 0), and the middle (right) panels are for the finite
initial core size rc=rs ¼ 10−1.5 (rc=rs ¼ 10−1).

The formation time of the density break can be conven-
iently estimated by tbreak which is the time at which the halo
age is identical to the local minimum of the tcond. profile, as
discussed in Sec. III of the main text. The values of tbreak are
1.7 Gyr, 2.9 Gyr and 6.2 Gyr for the left, middle and right
panels, respectively; the formation time of the density break
is smaller for a smaller initial core size. This is because
initial profiles with larger cores have smoother central
profiles which render a longer heat conduction timescale.
Indeed, the density break appears later for halos with
larger initial cores, as demonstrated in the snapshots for
t ¼ 2 Gyr in Fig. 9.
Contrary to the formation time of the density break, the

thermalization time of rSIDM halos does not display a clear
trend with respect to the initial core size. The values of the
thermalization timescale ttherm: estimated from the initial
tcond. profile are 18 Gyr, 9.4 Gyr and 15 Gyr for left, middle
and right panels, respectively. The halo with rc=rs ¼ 10−1.5

(middle panels) has a shorter thermalization timescale than
the halo of the initial NFW profile (left panels) since the
SIDM cross section is resonantly enhanced due to larger
scattering velocities at the center. Such tendency is reversed
as we further increase the core size; the halo with
rc=rs ¼ 10−1. (right panels) has a longer thermalization
timescale than the halo with rc=rs ¼ 10−1.5 (middle pan-
els). This is because when the initial core size becomes
comparable to rbreak, i.e., the radial position of the local
minimum of the initial tcond. profile, the central profiles
become smooth enough and render a longer heat conduc-
tion timescale for a larger initial core size. Meanwhile, the
actual thermalization time of the density breaks is not
identical to our estimated timescales ttherm:, as we have
discussed in Sec. III of the main text. The actual thermal-
ization times are 9.5 Gyr, 8.7 Gyr and 10.7 Gyr for left,
middle and right panels, respectively. The trend based on
the comparison among ttherm: coincides with the compari-
son of the actual thermalization times between the left and
middle panels, and between the middle and right panels,
with an exception for the comparison between the left and
right panels. This suggests that a comparison among ttherm:
is not enough to capture the trends of the variation of the
thermalization time with respect to the initial core size.
Nevertheless, our results shows that the thermalization time
has weak dependence on the initial core size.
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FIG. 9. Snapshots for the time evolution of a rSIDM halo of massM200 ¼ 1010M⊙ in the P3 benchmark; see the caption of Fig. 2 in the
main text for the information of each curves. The left panels assume the NFW profile (gray curves) as the initial condition. The middle
(right) panels assume the cored NFW profile (gray curves) with rc=rs ¼ 10−1.5 (rc=rs ¼ 10−1.) as the initial condition.
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