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49Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil
50Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany

51Department of Astronomy, University of Michigan, Ann Arbor, Michigan 48109, USA
52Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,

Cantoblanco, Madrid 28049, Spain
53Department of Astronomy, University of Illinois at Urbana-Champaign,

1002 West Green Street, Urbana, Illinois 61801, USA
54National Center for Supercomputing Applications, 1205 West Clark St., Urbana, Illinois 61801, USA
55Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064, USA

56Center for Cosmology and Astro-Particle Physics, The Ohio State University,
Columbus, Ohio 43210, USA

57Center for Astrophysics | Harvard and Smithsonian,
60 Garden Street, Cambridge, Massachusetts 02138, USA

58Australian Astronomical Optics, Macquarie University, North Ryde, New South Wales 2113, Australia
59Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, Arizona 86001, USA

60George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and
Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA

61LPSC Grenoble - 53, Avenue des Martyrs, 38026 Grenoble, France
62Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

63Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology,
Campus UAB, 08193 Bellaterra, Barcelona, Spain
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Beyond-two-point statistics contain additional information on cosmological as well as astrophysical and
observational (systematics) parameters. In this methodology paper we provide an end-to-end simulation-
based analysis of a set of Gaussian and non-Gaussian weak lensing statistics using detailed mock catalogs
of the Dark Energy Survey (DES). We implement: 1) second and third moments; 2) wavelet phase
harmonics (WPH); 3) the scattering transform (ST). Our analysis is fully based on simulations, it spans a
space of seven νwCDM cosmological parameters, and it forward models the most relevant sources of
systematics of the data (masks, noise variations, clustering of the sources, intrinsic alignments, and shear
and redshift calibration). We implement a neural network compression of the summary statistics, and we
estimate the parameter posteriors using a likelihood-free-inference approach. We validate the pipeline
extensively, and we find that WPH exhibits the strongest performance when combined with second
moments, followed by ST, and then by third moments. The combination of all the different statistics further
enhances constraints with respect to second moments, up to 25 percent, 15 percent, and 90 percent for S8,
Ωm, and the figure-of-merit FoMS8;Ωm

, respectively. We further find that non-Gaussian statistics improve
constraints on w and on the amplitude of intrinsic alignment with respect to second moments constraints.
The methodological advances presented here are suitable for application to Stage IV surveys from Euclid,
Rubin-LSST, and Roman with additional validation on mock catalogs for each survey. In a companion
paper we present an application to DES Year 3 data.

DOI: 10.1103/PhysRevD.109.063534

I. INTRODUCTION

Weak gravitational lensing is a powerful tool for study-
ing the large-scale structure (LSS) of the mass distribution
in the Universe. Photons emitted by distant galaxies are
deflected when passing through regions of spacetime
affected by the mass distribution between the sources
and the observer [1]. By measuring the shapes of numerous
galaxies, statistical methods enable us to deduce the
projected spatial distribution of the mass responsible for
these weak deflections and thereby create weak lensing
mass maps [2–8]. At the time of writing, ongoing and
upcoming surveys, including the Dark Energy Survey
(DES) [9], the Kilo-Degree Survey (KIDS) [10], the
Hyper Suprime-Cam (HSC) [11], the Vera C. Rubin
Observatory’s Legacy Survey [12], and the Euclid mission
[13], are measuring (or being readied to measure) galaxy
shapes on a massive scale, encompassing thousands of
square degrees across the sky. Notably, the DES project
recently measured the shapes of more than 100 million
galaxies in an area of approximately 5000 square degrees in
the southern hemisphere [14], which led to the production
of the most extensive weak lensing mass map from a galaxy
survey to date [8]. In parallel, measurements of the lensing
of the cosmic microwave background (CMB) have led to

maps of the mass distribution projected all the way to the
redshift of the last scattering surface (see e.g. [15]).
If a mean-zero random field is Gaussian, then a two-

point statistic captures all its statistical information. Two-
point statistics of the shear field can be measured in
harmonic, configuration, or other spaces; e.g. power spectra
(harmonic space), shear two-point correlation function
(configuration space), or COSEBI (complete orthogonal
sets of E=B-Integrals) have to date been measured and used
for cosmological parameter estimation (e.g. [16–21]).
However, a significant amount of the information contained
in weak lensing mass maps lies in their non-Gaussian
features, and these features are not fully captured by two-
point statistics. Many recent studies, using a wide range of
tools and statistics, have tried to extract the non-Gaussian
information; examples include higher-order moments
[2,6,22–28], peak counts [4,27,29–37], one-point probability
distributions [38–40], Minkowski functionals [28,41–44],
Betti numbers [45,46], persistent homology [47,48], scatter-
ing transform coefficients [49–51], wavelet phase harmonic
moments [52], kNN and cumulative distribution functions
(CDFs) [53,54], map-level inference [55,56], and machine-
learning methods [57–61]. Many of these studies, however,
are limited to being proofs of concept, restricted to idealized
simulated scenarios (due to the challenges associated
with applying these techniques to real-world data).
Nevertheless, the field is rapidly progressing, with*marcogatti29@gmail.com
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a number of recent applications to observational data
[4,23,32,34,36,47,57,59,60,62].
One of the major challenges in exploiting non-Gaussian

statistics is the need for accurate modeling of measurements.
Analytic models are available only for a small set of non-
Gaussian summary statistics (e.g. moments), and often these
models are reliable only at large scales. Consequently, many
studies resort to using simulations to forward model the
observables. This procedure introduces its own challenges.
Most importantly, computational resources are a significant
concern, as it is necessary to run numerous N-body simu-
lations to cover the parameter space explored in the analysis.
Additionally, it is a formidable task to incorporate all the
relevant observational and systematic effects into these
simulations. Finally, it is critical to estimate efficiently the
parameter posteriors; this requires techniques able to recover
accurately the posterior from a limited number of simulation
samples (specifically, those available at the locations in
parameter space of the N-body simulations).
In this study, we use a set of non-Gaussian summary

statistics of weak lensing mass maps to constrain cosmol-
ogy with the first three years (Y3) of data from DES. This
work validates the methodology using simulations; a
companion paper applying this framework to the DES
Y3 data will follow. Our analysis makes use of the
following Gaussian and non-Gaussian statistics; second
and third-order moments, wavelet phase harmonic (WPH)
moments, and the scattering transform (ST) coefficients.
Moments have previously been used in analyzing DES data
using analytical models instead of simulations [23]; in
contrast, this paper fully relies on a simulation based
inference. Furthermore, WPH moments and the ST have
not been applied to data before. The WPH moments are
second moments of smoothed weak lensing mass maps that
have undergone a nonlinear transformation, allowing for
the exploration of the non-Gaussian features of the field.
The ST coefficients are built through a series of smoothing
and modulus operations applied to the input field, followed
by an average. WPH and ST have two advantages relative
to traditional higher-order correlations; better constraining
power and (as they do not go to higher than second order in
the field) lower sensitivity to noise fluctuations [52]. WPH
and ST are frequently compared to convolutional neural
networks (CNNs) because their definition bears similarities
to the architecture of CNNs [63]; however, their definition
depends only on a handful of parameters (parameters that
have clear physical interpretation), and, in contrast to
CNNs, they require no training.
For this work we produced a set of N-body simulations

(Jeffrey et al. [64]) that explores a seven-dimensional
parameter space. The simulations incorporate key obser-
vational and astrophysical systematic effects impacting
weak lensing analyses, including photometric redshift
uncertainties, shear calibration errors, intrinsic alignments,
and source clustering (as described in [65], this latter effect
has a greater influence on non-Gaussian statistics than on

Gaussian statistics). To obtain posterior estimates of the
parameters, we employ an optimal data compression
technique called neural compression, which significantly
reduces the dimensionality of our summary statistics.
Subsequently, we employ a likelihood-free inference
(LFI, e.g. [59]) approach, enabling us to estimate posteriors
without imposing restrictive assumptions about the like-
lihood or data model. This powerful approach circumvents
various technical challenges associated with conventional
analysis methods, such as covariance matrix estimation and
sampling from high-dimensional Bayesian hierarchical
models. We also examine the combination of the three
non-Gaussian summary statistics considered in this work;
to date, the combination of distinct non-Gaussian summary
statistics has only been explored in idealized simulations
[36,66], and its application to real data remains unexplored.
We test the methodology extensively with simulated data to
ensure that the results from survey data are unbiased.
This paper is organized as follows. Section II summarizes

the survey data as well as the simulations used for our model
predictions and for validation. Section III describes the
various summary statistics, their covariances, and the com-
pressed statistics obtained from them. We describe and
validate in Sec. IV the LFI methodology for parameter
inference and in Sec. V the choice of scale cuts. Section VI
validates the full pipeline with an end-to-end simulated
cosmological analysis, and we summarize our results in
Sec. VII.

II. DATA AND SIMULATIONS

A. DES Y3 weak lensing catalog

We use the DES Y3 weak lensing catalog [14]; this
contains 100,204,026 galaxies, with a weighted neff ¼ 5.59
galaxies arc min−2, over an effective area of 4139 deg2. It
was created using the METACALIBRATION algorithm
[67,68], which provides self-calibrated shear estimates
starting from (multiband) noisy images of the detected
objects. A residual small calibration (in the form of a
multiplicative shear bias) is provided; it is based on
sophisticated image simulations [69] and it accounts for
blending-related detection effects. An inverse variance
weight is further assigned to each galaxy in the catalog
to enhance the overall signal-to-noise. The sample is
divided into four tomographic bins of roughly equal
number density [70] and redshift distributions are provided
by the SOMPZ method [70] in combination with clustering
redshift constraints [71] and corrections due to the redshift-
dependent effects of blending [69].

B. Simulations

1. Gower St simulations

We use the Gower St simulation suite (Jeffrey et al. [64])
to build our pipeline. The suite consists of 791 gravity-only
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full-skyN-body simulations, produced using the PKDGRAV3

code [72]. The simulations span a seven-dimensional
parameter space in νwCDM (Ωm, σ8, ns, h100, Ωb, w,
mν). The parameter space is not spanned uniformly (Fig. 2
shows the simulation distribution in the parameter space).
Ωm and σ8 have been sampled with a mixed active-learning
strategy; in particular they were at first distributed accord-
ing to the existing DES analysis constraints, and then, after
an initial simple blind power spectrum analysis, new
simulations were run with σ8 and Ωm values (known only
to the computer) in regions of parameter space with poor
accuracy of the likelihood estimates (Jeffrey et al. [64]).
The other parameters were chosen to be distributed as
follows:

(i) ns ∼N ð0.9649; 0.0063Þ; from Planck [73] but with
the standard deviation boosted by a factor of 1.5;

(ii) h ∼N ð0.7022; 0.0245Þ; consistent with both
SH0ES [74] and Planck [73];

(iii) Ωbh2 ∼ Nð0.02237; 0.00015Þ; from Planck [73];
(iv) w ∼N ð−1; 1=3Þ, but with values less than −1 or

greater than −1=3 then discarded. For a few (64)
simulations, part of the “science verification” runs,
this discarding was not done. We kept these simu-
lations during the training phase when learning the
likelihood surface (see Sec. IV, but we used a hard
prior at w > −1 for the analysis. This choice of
w > −1 serves to exclude phantom dark energy.
Due to some practical computational challenges of
the PKDGRAV code with low values of Ωm and

w > −1, we have chosen not to explore this segment
of the parameter space (Jeffrey et al. [64], for more
details);

(v) mν: fixed at 0.06 for 192 simulations and with
logðmνÞ ∼ U½logð0.06Þ; logð0.14Þ� thereafter.

In the above, N ðμ; σÞ denotes a normal distribution with
the indicated mean and standard deviation and U½a; b�
denotes a uniform distribution with the indicated limits. We
note that the sampling strategy does not necessarily affect
our posteriors; more details are given in Sec. IV.
The simulations used up to ten replicated boxes in each

direction so as to span the redshift interval from z ¼ 0 to
z ¼ 49, although note that the bulk of our redshift dis-
tributions (z < 1.5) can be covered by only three repli-
cations. Each individual box contains 10803 particles and
has a side-length of 1250 h−1Mpc. For each simulation,
lens planes δshellðn̂; χÞ are provided at ∼100 redshifts from
z ¼ 49 to z ¼ 0.0, equally spaced in proper time. For this
work, we downsample the original resolution of NSIDE ¼
2048 to NSIDE ¼ 512 (with pixel size ≈6.9 arc min). The
lens planes are provided as HEALPix [76] maps and are
obtained from the raw number particle counts.1 The lens
planes are converted into convergence planes κshellðn̂; χÞ
under the Born approximation [e.g. Eq. (2) from [77]].
Lastly, shear planes γshellðn̂; χÞ are obtained from the
convergence maps using a full-sky generalization of the
[78] algorithm [8].
We validate the Gower St simulations by comparing the

power spectra measured on the full-sky convergence maps,
weighted by the DES redshift distributions, against theory
predictions obtained using halofit [79]. Note that we did
not use the more recent (and more accurate) EuclidEmu
[80] for this comparison, as EuclidEmu covers only a very
limited portion of our parameter space. We generally do not
expect an agreement better than 2 percent, as this is the
typical relative error between different nonlinear power
spectrum prescriptions or other modeling implementations
(e.g. neutrinos). At the largest scales, on the other hand, box-
size effects and/or cosmic variance in the simulations might
impact the comparison. To perform the test, we build the
redshift weighted convergence maps as

κðpÞ ¼
P

s n̄ðsÞκðp; sÞP
s n̄ðsÞ

; ð1Þ

where p is a map pixel, s is the redshift shell, κðp; sÞ is the
noiseless convergence field from the simulation, and n̄ðsÞ is
the DES galaxy count across the whole footprint [70]. For
each of the four DES tomographic bins, we computed the
ratio between the power spectrum of the simulated con-
vergence field κðpÞ and the theory predictions from
halofit. We show the average of the ratio over all the

FIG. 1. Ratio of the convergence power spectrum (Cl) as
measured in the Gower St simulations and that from theoretical
predictions. The power spectrum has been measured on full-sky,
noiseless convergence maps. The ratio has been averaged over all
the simulations available. The two horizontal lines are provided
for reference and show that the typical deviation is at the 2 percent
level.

1δshellðn̂; χÞ ¼ npðn̂; χÞ=hnpðn̂; χÞi − 1, where hi indicates the
spatial average and np is the number of particles in a given pixel p.
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Gower St simulations in Fig. 1; the agreement is good, within
2 percent over the range ofmultipoles considered in thiswork
(up to l ¼ 1024; see Sec. III).

2. CosmoGridV1 simulations

We use a subset of the simulations from the
CosmoGridV1 suite [81] for additional testing and to
determine the scale cuts that need to be removed because of
baryonic contamination. The CosmoGridV1 simulations
have been produced using the PKDGRAV3 code [72]. From
the available CosmoGridV1 simulations we chose a set of

one hundred full-sky simulations at the fiducial cosmology
σ8 ¼ 0.84,Ωm ¼ 0.26,w ¼ −1,H0 ¼ 67.36,Ωb ¼ 0.0493,
ns ¼ 0.9649. Each individual simulation has also been
postprocessed with a baryonification algorithm that mimics
the impact of baryons at small scales. The algorithm used is
the baryonic correction model [82,83], which adjusts the
particle positions in gravity-only simulations to mimic the
impact of various baryonic processes on the density distri-
bution. The cosmology has been chosen to be centered well
within our priors for σ8, Ωm and w. The baryonic correction
model depends on several parameters (up to seven); these
impact both the shape and the amplitude of the power

FIG. 2. Distribution of Gower St simulations for the seven parameters spanned in this analysis (gray). The two-dimensional
marginalized contours in these figures show the 68 percent and 95 percent percentile of the simulations. For comparison purposes, we
also show (cyan) the posterior from the DES Y3 3 × 2 νwCDM analysis [75].
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spectrum.The parameter that has the largest impact isMc, the
mass scale at which haloes have lost half of their gas. Avalue
of Mc ¼ 1013.82M⊙ has been adopted, following [62,84],
based onobserved x-ray gas fractions. Thevalues of the other
parameters have been estimated by comparing against
current x-ray observation; see [84] model B-avrg for a
list of the values. More details are given in Sec. V, where we
evaluate the impact of baryons on our constraints.
The simulations were obtained using multiple replicated

boxes in each direction so as to span the redshift interval
from z ¼ 0 to z ¼ 3.5. Each individual box contains 8323

particles and has a side length of 900 h−1 Mpc. For each
simulation, lens planes δshellðn̂; χÞ are provided at ∼69
redshifts from z ¼ 3.5 to z ¼ 0.0, equally spaced in proper
time. We downsample the original resolution of NSIDE ¼
2048 to NSIDE ¼ 512 (with pixel size ≈6.9 arc min).
Convergence and shear planes are obtained using the same
procedure as adopted for the Gower St simulations.
Last, we use a few extra benchmark simulations from the

CosmoGridV1 suite, where the box size, number of
particles, and redshift resolution was varied, for testing
purposes; see Appendix E for more details.

3. DES Y3 maps-making procedure

We use the simulated full-sky convergence maps to
generate DES Y3-like weak lensing convergence maps
following the procedure outlined in [65]. The procedure is
similar to others used in past DES analyses (e.g. [23,85]),
but improves upon them by introducing for the first time an
efficient recipe to forward model source clustering effects.
We further extend that procedure to incorporate extra
observational systematic effects. Let p be a pixel, s a thin
redshift shell, γðp; sÞ the noiseless shear from the shear
simulation, and n̄ðsÞ the galaxy count across the whole
footprint [70]. Additionally, let m be the multiplicative
shear bias that models shear measurement uncertainties
[69], and let γIAðp; sÞ be the intrinsic alignment contribu-
tion to each pixel. Let δðp; sÞ be the matter overdensity in
the shear simulation, and let bg be the galaxy-matter bias of
the weak lensing sample. Each galaxy has a shear weight
wg and ellipticity eg. We randomly rotate the DES galaxy
ellipticities to erase the cosmological signal of the catalog.
The mock shear signal in pixel p is set to

γðpÞ¼
P

s n̄ðsÞ½1þbgδðp;sÞ�ð1þmÞ½γðp;sÞþ γIAðp;sÞ�P
s n̄ðsÞ½1þbgδðp;sÞ�

þ
� P

s n̄ðsÞP
s n̄ðsÞ½1þbgδðp;sÞ�

�
1=2

FðpÞ
P

gwgegP
gwg

: ð2Þ

The signal term is a weighted average over shells; here the
weights have been amended to include a shear-correlated
source galaxy count [65]. The term FðpÞ in Eq. (2) is a near-
unity scale factor introduced to avoiddouble-counting source
clustering effects. Indeed, as we estimate the shape noise

term for each pixel based on our data, the noise term already
incorporates a modulation due to source clustering of the
form 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s n̄ðsÞ½1þ bgδdataðp; sÞ�

p
. This modulation is

not correlated with the large scale structure of the simula-
tions. However, since Eq. (2) introduces a similar modula-
tion, the overall impact is a slight enhancement of the even
moments of the pixel’s simulated noise (such as variance and
kurtosis) compared to the data, predominantly at small scales
and low redshifts. The term FðpÞ corrects for this effect. We
follow [65] and assume

FðpÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Bσ2eðpÞ

q
; ð3Þ

where σ2eðpÞ is the variance of the pixel noise and A ¼
½0.97; 0.985; 0.990; 0.995� andB ¼ ½0.1; 0.05; 0.035; 0.035�
are constants (one for each tomographic bin). The term A
primarily adjusts for the variance in pixel noise, while B is
responsible for correcting thekurtosis.A further validation of
the noise properties of our simulations is provided in
Appendix A. The intrinsic alignment term γIAðp; sÞ is

γIAðp; sÞ ¼ AIA

�
1þ z
1þ z0

�
ηIA c1ρcritΩm

DðzÞ Sðp; sÞ; ð4Þ

with z0 ¼ 0.62, c1 ¼ 5 × 10−14M⊙h−2 Mpc2 [86], ρcrit the
critical density,DðzÞ the linear growth factor, and Sðp; sÞ the
shear tidal field. We obtain Sðp; sÞ directly from the density
field δðp; sÞ by applying the (inverse) Kaiser-Squires algo-
rithm. The two intrinsic alignment parametersAIA and ηIA in
Eq. (4) control respectively the amplitude and the redshift
evolution of the intrinsic alignment signal. In writing Eq. (4)
we have followed the nonlinear alignment model (NLA)
[86]; however, sincewe are including source clustering in our
simulations [the ð1þ bgÞδðp; sÞ term in Eq. (2)], the final
intrinsic alignment model includes extra clustering terms
beyond the original NLA implementation. These terms are
similar to the clustering term included in the tidal-torque
alignment (TATT)model [87]; that paper, however, estimates
those contributions only for catalog-basedGaussian statistics
using tree-level perturbation theory, whereas our implemen-
tation directly uses the clustering of the simulation and
generalizes to all the summary statistics considered in this
work. With the simulations at hand, we were not able to
include a more sophisticated IAmodel (e.g, including all the
terms of the TATT model, as was done for the fiducial DES
Y3 weak lensing analysis of [16,21]. However, we note that
the DES Y3 cosmological analyses on data [16,21,75] have
not yielded any substantial indications favoring the adoption
of a more complex model (such as TATT) over NLA;
moreover, these results are consistent with a zero intrinsic
alignment amplitude. For these reasons, we consider the IA
model implemented here to be adequate for our analysis.
This procedure is repeated for each of the four tomo-

graphic bins of the DES Y3 source catalog. As we can cut
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four independent DES Y3 footprints from each full-sky
map, we produce a total of 3164 independent DES Y3 shear
mock maps from the Gower St simulations. Additionally,
we produced another ∼9492 pseudoindependent DES Y3
shear mock maps by shifting the four independent DES Y3
footprints by 45, 90, and 135 degrees, so as to cover slightly
different parts of the full-sky maps we generated, for a total
of 12,656 mocks. We used these mocks to train the neural
network compression of the summary statistics. Then we
repeated this whole procedure to generate another 12,656
mocks, with different shape noise, that we used to train the
neural density estimators used for the likelihood-free
inference. In total, therefore, we produced 25,312 pseu-
doindependent mocks.
We note that the shifted footprints of our simulations

generally have about a ∼50 percent overlap with the
unshifted footprints. While the shape noise realizations,
which dominate at small scales, are always unique for each
mock, this implies that a portion of the large-scale signal is
not entirely independent between mocks. Typically, this is
not an issue for the training of the neural network
compression. However, it could potentially lead to artifi-
cially tighter posteriors during the training of the neural
density estimators (NDEs), especially if the majority of the
cosmological signal originates from the largest scales.
Nevertheless, our empirical coverage test indicates that
the posteriors are well calibrated (Sec. IV). This suggests
that the use of these pseudoindependent mocks does not
adversely affect our results.

The process of creating mock datasets involves a number
of unconstrained parameters, including four multiplicative
shear biases, four redshift distributions, and the intrinsic
alignment parameters. When generating each of the
25,312 pseudoindependent mocks, we select one of these
parameters randomly from their respective priors (as
detailed in Table I). For the redshift distributions, for each
mock we pick at random one of the multiple realizations
provided by the HYPERRANK methodology [88] using
photometric redshift data xphot; we then use it as a n̄ðsÞ.
These realizations encompass the redshift calibration
uncertainties. In Fig. 3, we present for each tomographic
bin a few of the realizations used in this study. Finally, we
used the 100 independent CosmoGridV1 full-sky real-
izations to generate two sets (with and without baryonic
feedback effects) of 400 independent DES Y3 shear
mock maps.

III. SUMMARY STATISTICS

We use different Gaussian and non-Gaussian weak
lensing summary statistics in this work. All the summary
statistics are applied to weak lensing mass maps; as a first
step, therefore, we create the weak lensing mass maps
starting from the shear maps. This is achieved by using a
full-sky generalization of the [78] algorithm [8]. This
produces noisy weak lensing mass maps in the form of
HEALPix maps with a resolution of NSIDE ¼ 512 (corre-
sponding to a pixel size of ≈6.9 arcmins). This procedure

FIG. 3. Redshift distributions as estimated in data for the four
DES Y3 tomographic bins [70]. The solid colored lines are the
average nðzÞ for each bin; the gray lines are a few (∼50) samples
encompassing the redshift calibration uncertainties and that we
use to create the mocks.

TABLE I. Distribution of the parameters spanned by the Gower
St mock catalogs (second column), and the prior used in the
cosmological analysis (third column). The prior used in the
analysis can differ from the distribution of the samples as long as
these parameters have been explicitly used during the training of
the NDEs when learning the likelihood surface; more details are
given in Sec. IV. For the third column, we report the analysis prior
only if it is different from the mocks parameters distribution.

Parameter Mocks parameters distribution Analysis prior

Ωm Mixed active-learning
in Uð0.15; 0.52Þ

Uð0.15; 0.52Þ

S8 Mixed active-learning in Uð0.5; 1.0Þ Uð0.5; 1.0Þ
w N ð−1; 1

3
Þ for −1 < w < − 1

3
0 else Uð−1; 1

3
Þ

ns N ð0.9649; 0.0063Þ
h N ð0.7022; 0.0245Þ
Ωbh2 Nð0.02237; 0.00015Þ
logðmνÞ U½logð0.06Þ; logð0.14Þ�
AIA U½−3; 3�
ηIA U½−5; 5�
m1 N ð−0.0063; 0.0091Þ
m2 N ð−0.0198; 0.0078Þ
m3 N ð−0.0241; 0.0076Þ
m4 N ð−0.0369; 0.0076Þ
n̄iðzÞ pHYPERANKðn̄iðzÞjxphotÞ
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is repeated for all four tomographic bins of our catalog.
During the creation of the mass maps, we further applied a
cut at lmax ¼ 1024. The maps at NSIDE ¼ 512 formally
have nonzero support up to l ¼ 1535; most of their power,
however, is suppressed above l ∼ 1000 because of the pixel
window function. We chose to incorporate this particular
cut when we were constructing the pipeline as we were
assuming then that we would need to remove these scales
due to potential baryonic contamination; we did not revisit
this choice after the scale cut test presented in Sec. V, as it
would have required us to redo the creation of the mocks
and measurements.
The summary statistics considered in this work are as

follows: 1) second and third moments; 2) wavelet phase
harmonics; 3) the scattering transform. The statistics are
applied to smoothed versions of the weak lensing maps,
with the type of smoothing depending on the statistic;
moments use top hat filters, while wavelet phase harmonics
and the scattering transform use wavelet filters [89–91]. In
all cases we smooth the maps using filters with different
sizes. More details and relevant equations are pre-
sented below.

A. Second and third moments

The first statistics considered are second and third
moments of the weak lensing mass maps [2,6,22,23,25–
28]. While second moments are a Gaussian statistic, third
moments probe additional non-Gaussian information of the
field. Second and third moments of the DES Y3 weak
lensing mass maps have been recently used in [23] to infer
cosmology; here we adopt that paper’s implementation of
the moments estimator.
We first smooth the maps using a top-hat filter with

different smoothing scales. In practice, this is achieved by
multiplying the coefficients of the harmonic decomposi-
tions of the weak lensing mass maps by

Wlðθ0Þ ¼
Pl−1ðcosðθ0ÞÞ − Plþ1ðcosðθ0ÞÞ

ð2lþ 1Þð1 − cosðθ0ÞÞ
; ð5Þ

where Pl is the Legendre polynomial of order l, θ0 is the
smoothing scale, and l is the multipole. We consider eight
smoothing scales equally (logarithmically) spaced from
8.2–221 arc mins, and we denote the smoothed-lensing
mass map of tomographic bin i by κiθ0;p. We estimate the
second and third moments as follows:

hκ̂2θ0iði; jÞ ¼ Avgpðκiθ0;pκ
j
θ0;p

Þ; ð6Þ

hκ̂3θ0iði; j; kÞ ¼ Avgpðκiθ0;pκ
j
θ0;p

κkθ0;pÞ: ð7Þ

Here i, j, k refer to different tomographic bins; all
combinations of tomographic bins are considered (ten
independent combinations for second moments and 20

for thirdmoments). The average is over all pixelsp on the full
sky (i.e. 1 ≤ p ≤ Ntot), including regions outside the foot-
print, since the Kaiser-Squires conversion, and the sub-
sequent smoothing, transfers some of the signal from inside
to outside the DES footprint.
We can only estimate noisy realizations of the weak

lensing mass maps: κobs ¼ κ þ κN. Any statistic measured
with data will include noise contributions [6]. When
comparing measurements to analytical predictions, noise-
only terms are normally subtracted to ease the comparison.
If the noise-only terms are estimated from the data (via, for
example, random rotation of the ellipticity measurements),
subtracting the noise terms can increase the measurement
uncertainties, because the noise terms estimates are affected
by shot noise. While it would be possible to have multiple
estimates of the noise terms for every map to reduce the
shot noise contribution, we simply chose to not subtract
these terms, except in a few particular cases.
As for moments, we decided only to subtract the

following specific noise terms from our third moments
estimator:

hκ̂3θ0i ¼ hκ̂3θ0;obsi − hκ̂θ0;obsκ̂2θ0;Ni; ð8Þ

For third moments, we subtracted noise-signal third
moments of the form hκ̂θ0;obsκ̂2θ0;Ni. These terms are strictly
nonzero because of spurious noise-signal correlations arising
from source clustering; [65] found that subtracting these
terms reduces the impact of source clustering (and hence
potential biases in the analysis if the source clustering is

mismodeled in simulations). Other terms (hκ̂2θ0;obsκ̂θ0;Ni and
hκ̂3θ0;Ni) were not subtracted as they average to zero even in
presence of source clustering [65].

B. Wavelet phase harmonics

Wavelet phase harmonics [52,63] are the second
moments of smoothed weak lensing mass maps that have
undergone a nonlinear transformation. The fields are first
smoothed using a directional, multiscale wavelet transform
[89–91]; the wavelets have the advantage of being localized
both in Fourier and real space, contrary to the top-hat filters
used in this work for the second and third moments, which
are local only in real space. Moreover, we adopt “direc-
tional” wavelets, instead of using an isotropic filter.
We use the package PYWPH

2 to smooth our maps. The
package works on a two-dimensional projection rather than
on a sphere. Therefore, we first cut multiple square patches
of roughly 14.6 degrees of side covering the full DES
footprint. For this we use a gnomonic projection (as
implemented in the HEALPix GNOMVIEW function), con-
verting our patches to a 128 × 128 pixelated grid with a
pixel scale of 6.8 arc mins. Due to projection effects, the

2https://github.com/bregaldo/pywph.
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same portion of a map might appear in multiple projected
patches; we mask pixels accordingly to avoid double
counting. Note that both simulated and real data maps
undergo the same projection process.

We then smooth the projected patches using “bump
steerable wavelets” beginning in Fourier space, where we
define the wavelet

ψ̂ðk⃗Þ ¼
(
0.7309 exp

�
−ðjk⃗j−ξ0Þ2
ξ2
0
−ðjk⃗j−ξ0Þ2

�
cos2ðargðk⃗ÞÞ if 0 < jk⃗j < 2ξ0 and kx ≥ 0;

0 otherwise:
ð9Þ

Here k⃗ ¼ ðkx; kyÞ is the two-dimensional Fourier wave
number, while ξ0 denotes the central frequency of the
wavelet [the full vector is ξ⃗0 ¼ ðξ0; 0Þ] and is set to ξ0 ¼
0.85π following [92]; the prefactor and the power of the
cosine function corresponds to L ¼ 3 in their notation.
The “arg” function refers to the argument function, which is
used to determine the angle of complex numbers. Note that
ψ̂ has finite width (i.e. “compact support”) in Fourier space.
The real space Fourier transform ψ of this is then our
“mother” wavelet, from which other wavelets can be
obtained by dilating and rotating

ψn;lðθ⃗Þ ¼ 2−2nψð2−nRot−lθ⃗Þ: ð10Þ

Here Rotl denotes rotation by an angle πl=L; we consider
L ¼ 3 (so that l can be 0, 1, 2), corresponding to three
possible orientations of the steerable wavelet.3 The number
n specifies an oscillation of the order of 2nþ1 pixels as we
are using patches of 128 × 128 pixels, n runs from 0 to 5.
This choice of spacing between different filter sizes follows
the standard implementation of [52]; for simplicity, and in
order to keep our data vector size reasonably small, we
chose to not explore a thinner spacing. Note that the
wavelet is real in Fourier space and is complex in real
space.
The wavelet transform of a field is the convolution of the

field with ψn;l (for arbitrary n and l). For the wavelet
transform of the convergence map in tomographic bin i we
write,

κin;lðθ⃗Þ≡ ðκi � ψn;lÞðθ⃗Þ: ð11Þ

Its Fourier transform for each ðn;lÞ has central frequency
ξ⃗ ¼ 2−nRotlξ⃗0 and has finite width, and thus each con-
volution is a local filtering in Fourier space. As shown in
Fig. 2 of [52], it can identify both peaks and anisotropic
filaments of different orientations. The full wavelet

transform spans all of Fourier space. In addition, it has
the desirable feature of being well localized in both real and
Fourier space.
Following [52], we apply a nonlinear operation to the

smoothed fields. The nonlinear operation used is called
“phase acceleration”; this operation modifies the Fourier
spectrum of the smoothed field, without modifying the
spatial localization of its features. As it is a nonlinear
operation, it allows us to access the non-Gaussian features
of the field using second moments. Modifying the spectrum
of the field, on the other hand, allows us to capture
interactions between fields smoothed with different filters
(and therefore different scales) that would otherwise have
minimum overlapping support in Fourier space.
The smoothed and accelerated field will be called the

wavelet phase harmonic. The “phase harmonic of order q”
is defined to be

PHðreiθ; qÞ≡ reiqθ; ð12Þ

where r is the modulus of the field and θ its phase. This
function leaves its input unaltered for q ¼ 1, and takes its
modulus for q ¼ 0. The absolute value of the field has been
shown to be a useful nonlinear operation, with the desirable
property that it does not amplify noise. We consider only
q ¼ 0 or q ¼ 1; although q can reasonably assume other
values [52], we found these other statistics did not
significantly improve the constraints.
Once the fields have been transformed, we can build

statistics that are second order in the input field, of the
form:

AvgpAvglðPHðκin1;lþΔl; q1ÞPHðκjn2;l; q2ÞÞ: ð13Þ

As before, we average over all pixels. We also average over
all values of the rotation index l (i.e. 0 ≤ l < L); note that
this makes sense even when Δl ≠ 0 as the rotation indices
can simply “wraparound”. These statistics are therefore
functions of scales (n1, n2), rotation index offset (Δl),
phase harmonic orders (q1, q2), and tomographic bins (i, j).
The statistics used in this work are

S00ði; j; nÞ ¼ AvgpAvglðjκin;ljjκjn;ljÞ; ð14Þ

3Note that this l does not indicate the multipole of the
spherical harmonic decomposition, as it is done in other sections
of this paper, but rather the rotation index. We kept this notation
in this section (and in the next one) to be consistent with the WPH
literature.
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S11ði;j;nÞ≡WPHGði;j;nÞ¼AvgpAvglðκin;lκjn;lÞ; ð15Þ

S01ði; j; nÞ ¼ AvgpAvglðjκin;ljκjn;lÞ; ð16Þ

C01δl0ði;j;n1;n2Þ¼AvgpAvglðjκin1;ljκ
j
n2;l

Þ for n1 <n2;

ð17Þ

C01δl1ði;j;n1;n2Þ¼AvgpAvglðjκin1;lþ1jκjn2;lÞ forn1<n2:

ð18Þ

Here i, j vary over the four tomographic bins, whereas n (or
n1 and n2) varies over the possible wavelets under con-
sideration. Following [52] we use “S” for the statistics with
n1 ¼ n2 ¼ n (S00, S11, and S01) and “C” for the statistics
with n1 < n2 (C01δl0 and C01δl1) that capture correla-
tions at different wavelet scales.
The statistics probe non-Gaussian features of the field

(with the exception of S11, which is Gaussian in that it is
equivalent to the power spectrum of κ; for this reason we
refer to it as “WPHG”). One advantage of the WPHs over
conventional moments is that they are always “second
order” in the input field, which makes them more robust
against additive noise [52]. Additional statistics using more
combinations of WPHs could have been considered, as in
[52]; however, for computational reasons we restrict
ourselves to the summary statistics listed (having checked
that they capture nearly all the information given the noise
levels in our data). In total, we have 60 components for S11
(ten independent tomographic bin pairs and six scales), 96
components for S00 and S01 each (16 tomographic bin
pairs and six scales), and 240 components for C01δl0 and
C01δl1 each (16 tomographic bin pairs and 15 scale pairs).
As in the case of moments, we subtract some specific

WPH moments of noise-only maps from our estimators. In
particular, for WPH S01, C01δl0, and C01δl1 we subtract
a term involving one noise-only map and the observed

noisy convergence map. We empirically found these
statistics to be the ones mostly affected by source cluster-
ing, and this subtraction to be the best way to minimize
source clustering effects.

C. Scattering transform

The scattering transform [49–51,93,94] is in concept
similar to the WPHs introduced above. The idea is to
smooth the field using the directional, multi-scale wavelet
transform, followed by a modulus operation on the field.
This pair of operations can then be reapplied several times;
we finish with an overall average over the sky. This yields a
hierarchy of scattering transform coefficients STm, wherem
is the number of smoothing and modulus operations
applied. This work uses scattering coefficients of order
m ¼ 1, 2. Given a directional multiscale wavelet ψn;l and
the convergence map κi of tomographic bin i, we obtain:

ST1ði; nÞ ¼ AvgpAvglðjκi � ψn;ljÞ; ð19Þ

ST2ði; n1; n2;l0Þ ¼ AvgpAvglðjjκi � ψn1;lj � ψn2;l0−ljÞ
for n1 ≤ n2: ð20Þ

The average over l in ST2 makes this summary statistic
invariant to rotation, while preserving morphological
information. The ST1 coefficients are qualitatively similar
to the power spectrum amplitudes, weighted by a window
function, but while the power spectrum uses the L2 norm of
the convolved field, the scattering transform uses the L1

norm. The ST2 coefficients probe more non-Gaussian
information stored in the field, providing the co-occurrence
information at the scales n1 and n2 and capturing interfer-
ences of the field between features selected with two
successive wavelets.
The scattering transform coefficients are “first order” in

the input field. To enable the computation of scattering
transform coefficients including pairs of maps of different

FIG. 4. Power spectra (Cl) of convergence maps of the first (left) and last (right) tomographic bins; the maps have been smoothed by
directional wavelet (solid line) and top hat (dashed line) filters of different sizes. For plotting purposes the measured power spectra have
been smoothed with a Savitzky-Golay filter.
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tomographic bins, we follow [85] and introduce the “cross-
maps” κijðθ;ϕÞ,

κijðθ;ϕÞ ¼
Xlmax

l¼0

Xl
m¼−l

κ̂ilmκ̂
j
lmYlmðθ;ϕÞ; ð21Þ

where i and j (with i > j) denote two different tomographic
bins. We then compute the scattering coefficients ST1 and
ST2 of the cross-maps. In total, we consider 60 coefficients
for ST1 (six scales, ten independent tomographic bins), and
630 for ST2 (21 scale combinations, ten tomographic bins,
and three different orientations).
The ST is similar to the WPHs, but with a few

differences. First, the scattering transform stays “first
order” in the observed field, whereas the WPHs are always
“second order”. This means that the ST is less susceptible to

noise than the WPHs. Second, in the WPHs there is a
natural definition of cross-correlation between different
fields; this is not the case for the ST (it is for this reason that
we introduced the cross-maps so as to account for cross-
correlations between different tomographic bins). As we
will see in Sec. VI, this has an impact on the constraints, as
the ST deals with cross-correlations less efficiently. This
also applies to cross-correlations between different scales
for the non-Gaussian features: the WPHs use the cross
correlations in combination with the phase acceleration as a
nonlinear operation to couple scales (e.g. the WPH C01
coefficients); an analogous statistic cannot be defined for
the ST.
ST and WPH are often compared to machine learning

methods as they were designed to emulate information
capture in the manner of a convolutional neural network
(CNN), without the need for training data. This is quite
evident especially for the ST coefficients; the smoothing of
the field is equivalent to the CNN kernel convolution, the
modulus operation is equivalent to the CNN ReLU layer,
the average is equivalent to the CNN “pooling”, and the
hierarchy of coefficients is equivalent to the CNN’s
multiple layers. The analogy, however, stops here: for
the ST and WPH, since there is no training, we have full
control over the kernels (i.e. the wavelets), or on all the
details of the summary statistics (i.e. the order of the phase
acceleration for the WPH, or how different tomographic
bins are combined). This is different to CNNs, which are
commonly referred to as “black boxes” because of the
difficulties associated with comprehending the features
they learn and the significance of the numerous parameters
acquired during training.

D. Multipole support, covariance, and
signal-to-noise of the summary statistics

The statistics considered here implement different
filters to smooth the convergence field, so it is instructive
first to look at the support in multipole space covered by
the smoothed maps. This is shown in Fig. 4, which plots

FIG. 5. Correlation matrix for some of the statistics considered
in this work, computed from the CosmoGridV1 simulations at
the fiducial cosmology. We consider only the fourth tomographic
bin.

TABLE II. Salient properties of the summary statistics. The second column denotes whether it carries Gaussian (G) or non-Gaussian
(NG) information. The third column refers to the order of the field κ. The fourth column is the number of components of the data vector
across scales and tomographic bins. The further columns show the signal-to-noise ratio of the measurements in the CosmoGridV1
simulations for each tomographic bin. We note that this is not the total SNR of the full measurement, but only the SNR of the
measurement for one tomographic bin.

G/NG Order Length of data vector Bin 1 SNR Bin 2 SNR Bin 3 SNR Bin 4 SNR

Second moments G 2 160 3.4 7.8 16.1 15.2
Third moments NG 3 512 0.8 0.9 1.7 1.3
WPH S11 (WPHG) G 2 120 3.1 7.4 15.6 14.4
WPH S00 NG 2 96 2.8 6.9 14.9 13.6
WPH S01 NG 2 480 0.7 1.5 2.9 2.4
ST1 NG 1 60 3.3 7.8 15.3 15.3
ST2 NG 1 630 3.1 7.3 15.3 15.3
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(for the first and last tomographic bin convergence maps)
the power spectra of the smoothed maps, where this
smoothing is done using top-hat and directional wavelet
filters of different sizes. To compare roughly the two types
of filter, the top hat filter radii θ have been chosen to be
half the FWHM of the wavelet filters. Figure 4 shows that
the maps smoothed by the two sets of filters peak roughly
at the same point in multipole space, but that the top hat
filters are much less localized. This is expected as wave-
lets are designed to better isolate scales, both in real and in
multipole space.
The statistics considered here are also in part covarying,

i.e. they probe similar information. Therefore, it is instruc-
tive to construct the correlation matrix of the data vector;
this can be done starting from the 400 mock measurement
of the CosmoGridV1 simulations and by computing the
covariance matrix:

Ĉ ¼ 1

Ns

XNs

i¼1

ðd̂i − d̂Þðd̂i − d̂ÞT; ð22Þ

where Ns is the number of simulations, d̂i the data vector
measured in the ith simulation, and d̂ the sample mean. The

elements of the correlation matrix dCorr can be obtained as

dCorri;j ¼ Ĉi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉi;iĈj;j

q : ð23Þ

This is illustrated in Fig. 5, which shows the correlation
matrix of the different statistics as a function of scales. For
the sake of simplicity, we considered only the part of the
data vector including the fourth tomographic bin. We make
three remarks:

(i) Second and third moments blocks are much more
correlated than those of the scattering transform and
the WPH. This is a consequence of the smoothing
filter adopted; wavelet filters are significantly better
at isolating scales, and this makes the correlation
matrix more diagonal.

(ii) Gaussian statistics (second moments and WPHG)
are highly correlated, as expected. They are also
highly correlated with WPH S00 and the scattering
coefficients ST1 and ST2. The latter are probing both
Gaussian and non-Gaussian features of the field,
although this figure suggests they weigh Gaussian
features more.

(iii) Third moments and WPH S01 are not very corre-
lated with their Gaussian counterparts (a fact also
exacerbated by shape noise), but they are mildly
correlated with each other. This suggests WPH S01
is in part probing the bispectrum of the field.
Although not shown in the figure, we report that
WPH C01δl0 and C01δl1 behave similarly to
WPH S01.

We report the signal-to-noise ratio (SNR) of the different
statistics in Table II. We note that this SNR is computed for
the part of the measurements that only uses one tomo-
graphic bin. The Gaussian statistics considered in this work
have significantly higher signal-to-noise ratios compared to
third moments or WPH S01. On the other hand, WPH S00,
ST1 and ST2 have significance similar to Gaussian

FIG. 6. Some of the Gaussian and non-Gaussian statistics
considered in this work, as measured in simulations. The left
(resp. right) column shows the statistics measured only using the
noisy convergence map of the first (resp. fourth) tomographic bin.
The calculation was done for multiple CosmoGridV1 simu-
lations at the fiducial cosmology; solid lines are the resulting
average and the bands are 68th percentiles. For statistics
involving filters with different sizes j1, j2, we considered j1 ¼ j2.
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statistics, as they are also probing Gaussian information of
the field. Among the purely non-Gaussian statistics, we
note that WPH S01 has a higher signal-to-noise ratio than
that of the third moment. This is due to the former statistic
being only “second order” in the input field, which makes it
less affected by noise.

Last, we show in Fig. 6 some of the statistics as measured
in CosmoGridV1 simulations at the fiducial cosmology.

E. Data compression

Data compression is paramount in the likelihood-free
inference framework, as for a fixed number of simulated
mocks the density estimation is more efficient when the
dimensionality of the data vector is low [59]. Different
compression methods exist (e.g. PCA-based compression,
[37]; MOPED, [95]; neural compression, [59]). Notably, a
poor compression scheme could result in less informative
summaries, but it would not produce biased results. For this
work we follow [59] and use a neural compression scheme
to compress the summary statistics to the same dimension
as the parameters θ in which we are interested (see
Appendix B for a comparison with the MOPED compres-
sion). In particular, given a summary statistic d, we
compress it using t ¼ FϕðdÞ, and we approximate Fϕ

by a neural network. We determine the neural network
parameter ϕ by minimizing a mean squared error (MSE)
loss function using the first half (12656) of our pseudoin-
dependent mocks. The architecture used for the network
and the number of parameters are summarized in Table III.
Since in this work we consider multiple summary statistics
and their combinations, we chose to compress summary
statistics individually and to combine their compressed
versions (i.e. stack the data vectors) later on during the
likelihood-free inference process. In particular, we indi-
vidually compress second moments, third moments,
WPHG, WPH S00, ST1, and ST2. The only exception is
for WPH S01 and WPH C01, which are compressed
together. We compress the data vectors using all the
parameters, one at a time. Examples of compression are
shown in Fig. 7 for second moments and WPH S01þ C01,
against the parameters Ωm and S8. Generally, the tighter the
scatter, the better the given statistic is at constraining that
parameter. For second moments, the compressed statistics
trace fairly well the parameter against which they have been
compressed; on the other hand, the WPH S01þ C01 case
shows a poor sensitivity to Ωm. The compression is not
expected to be “unbiased”; as it can be seen from Fig. 7, the
compressed statistics do not recover the true value of the
simulations (the red line in the plot), even in the best case
(S8 for second moments). This is not a problem for the
inference; as we consistently compress both the data
vectors measured in simulations and the data, the final
posterior will be unbiased.

IV. LIKELIHOOD-FREE INFERENCE

In likelihood-free inference (also known as simulation-
based inference), the likelihood pðdjθÞ is not assumed to
have a closed form; rather, it is reconstructed from
simulated mock data as part of the inference pipeline.
Here is a summary of the procedure used to infer the

TABLE III. Neural Network Layers and number of parameters
used for the compression of the summary statistics.

Layer (type) Output shape Number of parameters

Dense 900 900 (length DVþ 1)
LeakyReLU 900 0
Dense 800 720800
LeakyReLU 800 0
Dense 100 80100
ReLU 100 0
Dense 100 10100
ReLU 100 0
Dense 1 101

FIG. 7. Example of compressed statistics using second mo-
ments (top) and PWH S01þ C01 (bottom) as summary statistics,
and Ωm and S8 for target parameters for the loss function. The
y-axis is the compressed statistic, while the x-axis is the true value
of the parameter. Each point represents one input measurement.
The red line serves to guide the eye and indicates an unbiased
compression. Generally, the tighter the scatter, the better the given
statistic is at constraining that parameter; on the contrary, a
broader and biased compression indicates poor sensitivity to that
parameter (e.g. WPH S01þ C0 for Ω). A biased compression
does not imply a biased inference, as we compress the simulated
measurements and the data in the same way.
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posterior distribution of the parameters; a more detailed
description is provided in [59].
In our implementation, the parameter inference task is

posed as a density estimation problem. Let us assume we
have a set of mock noisy data vectors d and simulation
parameters θ forming a cloud of points in fd; θg space. We
then estimate the conditional distribution pðdjθÞ with an
ensemble of neural density estimators (NDEs): specifically,
following [59], we use both Gaussian mixture density
networks (MDN) [96] and masked autoregressive flows
(MAF) [97]. We used two MDNs with two and three
Gaussian components respectively, each with two dense
hidden layers with 30 neurons per layer, and we used two
MAFs with two and three MADE (masked autoencoders
for distribution estimation) [98] layers respectively, each
with two dense hidden layers with 50 neurons per layer.
MADEs or Gaussian components, offers more flexibility in
fitting the likelihood surface, but this may also necessitate
more mock data for training. We tried different configu-
rations to identify the parameters that yielded satisfactory
convergence of the posteriors. This meant ensuring that the
posteriors of each NDE were consistent and that the
empirical coverage test indicated the posteriors were
well-calibrated (see below). For each of our neural density
estimation methods, MDN and MAF, the network was
trained to give an estimate qðdjθ;ϕÞ of the target distri-
bution pðdjθÞ (i.e. pðdjθÞ ≈ qðdjθ;ϕÞ); here ϕ are the
parameters of the network, determined by minimizing a
loss function UðϕÞ ¼ −

P
N
n¼1 logqðdnjθn;ϕÞ over the N

forward-modelled mock data dn. This loss corresponds to
minimizing the Kullback-Leibler divergence, a measure of
difference or change going from the estimate q to the target
pðdjθÞ. To perform the density estimation and the training
we used the publicly available package pyDELFI [99].
The final density estimation is a stack of the ensemble

estimates, weighted by the loss evaluated during training.
Once the target distribution pðdjθÞ has been estimated, we
evaluate it at the observed data d ¼ dobs to obtain the
likelihood. For completeness, we show in Appendix C the
posteriors obtained by each NDE and how they differ from
the stacked posterior.
Using NDEs to infer the likelihood surface rather than

the posterior has one main advantage: as long as the
parameters varied in the simulations are taken into account
during the training process, the fact that the parameter
space is not sampled uniformly does not translate into an
effective prior on our final constraints, i.e. it does not
produce tighter posteriors [99]. This means that after we
trained the NDEs and learned the likelihood surface, we can
use a different prior during the inference when estimating
our posteriors (see Table I for the priors used in the
analysis). Of course, in the regions of the parameter space
where we only have a few simulations, the estimation of the
likelihood surface will be noisier and the likelihood less
accurate; this is why the Gower St simulations have been

run in active-learning mode for Ω and S8, to increase the
accuracy of the likelihood estimation in the region covered
by the data posterior.
For practical reasons, due to our limited number ofmocks,

it is not possible to reliably estimate the likelihood surface
taking into account all the parameters varied in the simu-
lations. As we aremostly interested in the constraints onΩm,
S8, w, and AIA, the main density estimation was carried out
using the parameters θ ¼ ½Ωm; S8; w; AIA� and the associated
compressed data vectors. This means that the other param-
eters are effectively marginalized over; this time, however,
since we are not explicitly taking into account their depend-
ence during the training of the NDEs, the parameter
distribution does matter. This is explained via marginal
posterior density estimation in [100]; we can therefore
assume their marginalization follows the prior distribution
used to sample these parameters when generating the mocks
as reported in Table I.
To train the NDEs we used the compressed data vectors

and mocks that were not used to train the compression
algorithm (i.e. the last 12,656 pseudoindependent mocks).
Whenever we combine different summary statistics, we
stack the individual compressed data vectors together. We
restrict the density estimation procedure to our eventual
prior range (Table I). The final posteriors are then obtained
through Markov chain Monte Carlo (MCMC) sampling of
the likelihood, assuming the priors listed in Table I. The
MCMC sampling is performed using the public software
package EMCEE [101], an affine-invariant ensemble sam-
pler for MCMC.
To test that the confidence levels obtained through the

likelihood-free-inference are not misestimated, we perform
an empirical coverage test. We first select a subset (125) of
the full-sky Gower St simulations uniformly spanning the
Ωm − S8 − w space. We do this by uniformly dividing each
dimension into five parts, so as to partition the three-
dimensional space into 5 × 5 × 5 cuboids, and by selecting
only one simulation per cuboid. For this test, we excluded
the outermost regions of our parameter space close to the
edge of the priors, where we know we only have a few
simulations and the likelihood estimation might be uncer-
tain; in particular, we only selected simulations in the range
Ωm ∈ ½0.2; 0.4�, §8 ∈ ½0.6; 0.9�, and w∈ ½−1;−0.5�. For each
of the full-sky simulations, we choose four nonoverlapping
DES Y3 mocks (picked at random from the different noise
realizations), for a total of 500 mocks. We retrain our
compression algorithm and NDEs excluding these mocks,
then, we obtain posteriors for each of them and check the
confidence regions that cover the true values of Ωm and S8.
Finally, we report in Fig. 8 the fraction of posteriors
encompassing the true value at a given confidence level.
A perfectly calibrated posterior would have an expected
coverage probability equal to the credibility level.
Overconfident posteriors (i.e. tighter than they should
be) would lie in the bottom right part of the plots; on
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the other hand, conservative posteriors (i.e. larger than they
should be) would lie in the upper left part of the plot. The
number of posteriors we ran limits the accuracy of this test;
with 500 posteriors per summary statistics, we can deter-
mine if the posterior size is accurate at the ∼5 percent level.
The statistics considered are consistent with a perfect
calibrated posterior within the accuracy of the test.

When all the posteriors are considered (lower panel of
Fig. 8), the scatter reduces significantly, indicating no bias
in the size of the posterior at the level of a few percent.
In Appendix D we provide further tests concerning the

NDE likelihood estimates usingCosmoGridV1 simulations.

A. Comparison between approaches with theory-based
models and Gaussian likelihood

We perform in this section a comparison between (a) the
cosmological constraints obtained using the LFI pipeline
and (b) a more standard approach in which we rely on a
theoretical model for the observables and we assume the
likelihood to be Gaussian. To this end, we use as a
summary statistic the (pseudo)power spectrum, as imple-
mented in [19]. Most of the summary statistics explored in
this work do not have a theoretical model, except for the
second and third moments [22,23]; the code available to us
to model moments, however, does not allow us to margin-
alize over the neutrino mass or over w. Moreover, we do not
have a theoretical model for the covariance, which is, on the
contrary, available for the pseudopower spectrum analysis.
For these reasons we decided to use the power spectrum as
a summary statistic for this comparison.
To perform the comparison, we analyzed a theory data

vector at a fiducial cosmology. As a minor caveat, we
created (specifically for this test) mocks without source
clustering [i.e. we assumed bg ¼ 0 and FðpÞ ¼ 1 in
Eq. (2)], as this effect is not included in the theory model
for the power spectrum; moreover, with source clustering
the noise is slightly cosmology dependent, and this effect is
not captured by the theory covariance implemented in [19].
Without source clustering, we note that the IA model
reduces to a pure NLA model.
We then analyzed the same noisy data vector using the

theory model of [19], which is based on halofit [79]. We
sampled the posteriors of our parameters using POLYCHORD

[102,103]; this is a nested sampler that uses slice sampling
within the nested iso-likelihood contours. For the cosmo-
logical parameters, we varied the same parameters spanned
by our mocks (see Table I), and, where possible, we
assumed the same priors. For Ωb, h100, ns, and neutrinos,
we assumed flat priors, but we later importance-sampled
the posterior to reflect the Gower St effective priors.
The posteriors for S8 and Ωm from the two pipelines are

shown in Fig. 9, showing an excellent agreement. This
agreement is not trivial; it relies on the validity of the
Gaussian likelihood assumption for the power spectrum
analysis, on the forward modeling of our simulations to be
equivalent to the modeling used by the theory pipeline of
[19], and on the dependence of the covariance on cosmo-
logical and nuisance parameters to be negligible. In other
words, a lack of agreement would not have invalidated our
pipeline, rather it would have challenged some of the main
assumptions behind standard Gaussian likelihood analyses
of Gaussian statistics such as found in [16,19] and [21]. The

FIG. 8. Expected coverage probability of the posteriors ob-
tained using the LFI pipeline and different summary statistics
with respect to the credibility level. The two red dashed/dotted
lines indicate what the expected coverage probability would be if
the posteriors were misestimated by 5 percent. The gray shaded
regions indicate the accuracy of the test given the limited number
of posteriors (500) used here. The top panel shows the test for
each of the summary statistics considered in this work and their
combination; the bottom panel uses all the posteriors
(500 × 8 ¼ 4000) to test the size of the posteriors with a higher
accuracy.
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primary validation tests for assessing the accuracy of our
posterior estimates include the empirical coverage test
outlined in the preceding section, as well as the scale-
cut tests and the end-to-end pipeline test discussed in the
subsequent sections (Sec. V and Sec. VI).

V. SCALE CUTS

We determine in this section if we need to remove scales
from our analysis because of a lack of modeling and/or
potential systematic contamination. We test three main
effects: (1) baryonic feedback processes; (2) additive biases
due to PSF errors; (3) residual source clustering contami-
nation. To anticipate the results of this section, we state here
that we found all these effects to be negligible; therefore,
our main analysis retains all the scales considered so far.

A. Impact of lack of modeling baryonic feedback

The main limitation of our analysis is the lack of a proper
model for baryonic feedback processes at small scales. The
modeling of our observables relies on our ability to produce
realistic mock catalogs; at small scales, this requires an
ability to contaminate the mock catalogs with a variety of
baryonic feedback models. Tools to create such contami-
nated catalogs exist; for example, baryonic correction
models [82,83] can adjust the particle positions in grav-
ity-only simulations to mimic the impact of various
baryonic processes on the density distribution. These
models have been shown to be flexible enough to accu-
rately replicate the 2-point and 3-point statistics of various

hydrodynamical simulations. Unfortunately, the simula-
tions we use for this project have not been postprocessed
with the baryonic correction model, forcing us to remove
scales that can be potentially affected by baryons. This is
also in line with the main DES Y3 strategy for weak lensing
analyses (e.g. [16,21,23,37]), which did not attempt to
model baryonic processes but rather removed scales poten-
tially affected by them.
To determine which scales to remove, we use another set

of public gravity-only simulations (CosmoGridV1) that
have been postprocessed with the baryonic correction
model. For each full-sky simulation (with and without
the baryonic correction model), we cut out four DES Y3
footprints and produce ten different noise realizations using
our pipeline, totalling to two sets of 400 DES Y3 mock
catalogs. The impact of the baryonic feedback model on the
statistics used in this work is shown in Fig. 10.
The main effect of the baryonic model adopted is to

suppress the values of the measured statistics, at all scales,
with more dramatic effects in the first tomographic bin (first
and second rows of Fig. 10). Statistics based on wavelets
seem to be affected more by baryonic feedback than
moments, as the latter rely on top-hat smoothing. This
is, however, not a real problem, as it is due to the top hat
filters being broader and skewed towards smaller multi-
poles/larger scales, not affected by baryons; this dilutes
the baryonic contamination. For practical purposes it is
actually better to have filters with a more compact support,
as this makes it easier to remove the part of the measure-
ments affected by systematics.
The impact of baryons on non-Gaussian statistics can be

qualitatively different from their Gaussian counterparts
[82,104]. In a first approximation a suppression of the
underlying density field should translate into a suppression
of N-point statistics that will be larger as the order of the
statistics increases. Figure 10 indeed shows a larger impact
of baryons on the amplitude of the data vector for third
moments compared to second moments. For the other non-
Gaussian statistics included in this work however, it is more
difficult to apply this qualitative argument; ST and WPH
are either linear or second order in the input field, and many
of them are highly correlated with the Gaussian statistics.
The impact of baryons on the amplitude of WPH S01 is
significantly larger compared to WPHG, but for all the
other non-Gaussian statistics, the suppression is basically
the same as that of WPHG.
To determine which scales to remove from our analysis,

we check that the posterior on the cosmological parameters
obtainedby analyzing a data vector from the simulationswith
baryonic feedback is not substantially biased with respect to
the posterior obtained from a data vector measured in
simulations without baryons. We adopted the same criterion
used by the main DES cosmological analysis [16,21,75]).
The criterion requires the peak of the marginalized two-
dimensional posterior of Ωm and S8 ≡ σ8ðΩm=0.3Þ0.5

FIG. 9. Posteriors for S8 and Ωm obtained by analyzing the
power spectrum of one of the Gower St simulations with two
pipelines: the LFI pipeline described in this work and a different
one that uses the theory model described in [19] and that assumes
a Gaussian likelihood.
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obtained by analyzing the contaminated data vector to be
within 0.3σ of the values obtained with the uncontaminated
one. We note that the baryonic model adopted by the main
DES analyses to determine the scale cut follows the pre-
dictions from the OWLS “AGN” simulations [105,106]. The
baryonic feedback of the CosmoGridV1 simulations,
however, is slightly milder than the OWLS model. This
difference is illustrated in Fig. 10, where we also show the
impact of the OWLS AGN feedback on second moments,
computed following the method in [23].
The level of contamination obtained using all the scales

at our disposal is reported in Table IV, for a subset of
individual summary statistics and for (some) of their
combinations. Fortunately, none of the summary statistics
exceed our predefined criteria for contamination, which
confirms the robustness of our analysis against potential
baryonic feedback processes. While it is true that the
baryonic model of the CosmoGridV1 simulations is
milder than the OWLS model, these numbers are safely
smaller than 0.3σ. For second moments only, where we can
compute the impact of the OWLS AGN feedback

FIG. 10. Impact of baryonic feedback effects on the summary statistics considered in this work. Each column shows the impact on the
part of the summary statistics obtained using maps from a specific tomographic bin. The top two rows show the ratio between the data
vector as computed in simulations with and without baryonic feedback; the bottom row shows the difference between the data vectors
normalized by the square root of the diagonal of the covariance matrix. For the second moment, we also show the result for the OWLS-
AGN simulations (dotted line as indicated in the legend). We note that in the first bin, the ratio between the WPH S01 data vector with
and without baryonic contamination changes sign at small scales; this is because at those scales the amplitude of the data vector changes
sign and it is close to zero.

TABLE IV. Bias of the parameter posteriors assessed by
comparing the outcomes of an analysis performed on a simulation
with baryonic feedback to that of a simulation without baryonic
feedback. Biases for different summary statistics are reported in
terms of the distance between the peaks of the posteriors in the
S8 − Ωm plane. All the biases are smaller than 0.3σ (the
maximum level of bias accepted by our analysis).

Summary statistic(s) Contamination S8 − Ωm

Second moments 0.01σ
WPHG 0.05σ
Third moments 0.09σ
WPH S00 0.01σ
WPH S01þ C01 0.04σ
WPH S00þ S01þ C01 0.11σ
ST1 0.03σ
ST2 0.03σ
ST1þ ST2 0.06σ
Secondþ thirdmoments 0.03σ
SecondmomentsþWPH 0.03σ
Secondmomentsþ ST1 0.05σ
Secondþ thirdmomentsþ STþWPH 0.05σ
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analytically, we also analyzed a theory data vector “con-
taminated” with the OWLS AGN feedback, finding only a
0.1σ shift with respect to dark-matter-only data vector. In
hindsight, we realize that we could have generated maps
with higher resolution, even beyond NSIDE ¼ 512
(∼7 arcmins). Such higher resolution would have allowed
us to explore smaller scales, but it would have come with a
considerable increase in computational cost, which we
choose to defer to future research.

B. Impact of potential mismodeling
of source clustering effects

Source clustering refers to the angular distribution of
source galaxies being not uniform, but rather being
modulated by clustering due to galaxies tracing the under-
lying density field [65,107–110]. This effect causes the
galaxy number density to be correlated with the target
lensing signal; since we expect a larger lensing signal along
overdense lines-of-sight, we preferentially sample the shear
field where its value is larger.
For estimators based on pixelized shear maps, this has

two effects [65]:
(i) the average noise-free lensing signal is modulated by

a different effective redshift distribution;
(ii) the shape noise in every pixel is correlated with the

lensing signal.
The first effect is generally small. The second effect can

be large for non-Gaussian statistics whenever the estimators
used involve correlation between the lensing signal and
even moments of the noise (e.g. in the case of third
moments). Both effects impact mostly small scales. In this
work, source clustering in our simulations was forward
modelled following the prescription presented in [65] [see
Eq. (2)]. This implementation assumes a linear galaxy-
matter bias for our sample. Furthermore, for simplicity, we
also chose not to marginalize over such a bias, instead
fixing its value to unity. We took some precautions to
minimize the effect of source clustering in case our source
clustering model does not faithfully reproduce the effects
on data (which might happen, for instance, if the galaxy-
matter bias of the source was different from unity). In [65],
the authors pointed out that for third moments the largest
effect due to source clustering is related to the spurious
signal-noise correlations, and that this can be removed
completely by subtracting from the third moments estima-
tors specific moments involving combinations of the
observed noisy maps and noise-only maps (see Sec. III A).
For the other statistics used in this work, we tested that
source clustering effects are most noticeable for WPH S01
and WPH C01, and negligible for the other statistics. For
WPH S01 and WPH C01, therefore, we adopted a noise-
subtraction procedure similar to the one applied to third
moments (see Secs. III B and III C), which we empirically
found to reduce the impact of source clustering on the
measurements.

In order to test the impact of any potential mismodeling
of source clustering effects on our results, we analyzed two
sets of maps generated assuming a galaxy-matter bias b ¼
0.5 or b ¼ 1.5 instead of unity. We verified that in none of
our combination of summary statistics did the bias in the
S8–Ωm plane exceed 0.10σ. This means that the impact on
cosmological parameters is safely negligible and that our
modeling of source clustering is sufficiently accurate that
small scales need not be removed from our analysis.

C. Impact of additive biases due to point spread
function errors

We assess here the degree of contamination in our data
vector resulting from the inclusion of additive biases
associated with the misestimation of the point spread
function (PSF). The misestimation of the PSF can introduce
additional biases in the measured shapes of galaxies,
leading to deviations from their true values,

γest ¼ γ þ δesysPSF þ δenoise: ð24Þ

To quantify these unwanted contributions, we can
employ a model that accounts for the errors in PSF
modeling and use a catalog of “reserved” stars. These
reserved stars are not used in training the PSF model and
serve as a reference to characterize the spurious effects
accurately. We follow [111] and [14] by assuming that

δesysPSF ¼ αemodel þ βðe� − emodelÞ þ η

�
e�
T� − Tmodel

T�

�
;

ð25Þ

where α, β, and η are coefficients estimated from data, e� is
the PSF ellipticity measured directly using the reserved
stars catalog, Tmodel is the modeled PSF size, and T� is the
PSF size measured from the reserved stars catalog. The
coefficients α, β, and η for the DES Y3 shape catalog for the
four tomographic bins are provided in [16].
We use an empirical method to estimate the contribution

of PSF additive biases to the summary statistics used in this
work. We first created maps of emodel, e�, and e�

T�−Tmodel
T�

from the reserved stars catalog. Using the estimated values
for α, β, and η, we then created maps of δesysmodel, one for
each tomographic bin. We added these systematic maps to a
set of simulated maps at the fiducial cosmology, and
proceeded to compute the summary statistics and to analyze
the measurement with our LFI pipeline. We repeated the
same procedure on maps with no PSF additive biases, and
compared the two analyses at the level of the constraints in
the S8–Ωm plane. We verified that in none of our combi-
nations of summary statistics did the bias in the S8–Ωm
plane exceed 0.10σ, indicating that PSF modeling errors are
negligible for the range of scales used in this work.
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VI. END-TO-END TESTS ON SIMULATIONS

Having verified that all the scales used in our analysis are
safe against a number of systematics, we next verify that we
are able to recover the true cosmology of a set of simulations
that have not been used to build our pipeline. To this end, we
use 400 independent DES Y3 mock catalogs produced with
the CosmoGridV1 simulations. Each mock has the same
cosmology; we further assume no intrinsic alignment, while
for the other nuisance parameters (shear calibration and
redshift uncertainties) we assume values at the centre of the
priors. We measure all the summary statistics in the mocks,

and then we average them, to reduce the impact of noise. In
AppendixE,weperforma fewadditional end-to-end analyses
using other CosmoGridV1 simulations were the box size,
number of particles, and redshift resolution is varied.
Our LFI analysis marginalizes over seven cosmological

parameters, assuming a νwCDM model; moreover, it
marginalizes over multiplicative shear bias (four parame-
ters), intrinsic alignment (two parameters), and redshift
distributions, as summarized in Table I. In addition to these
parameters, we will also quote results in terms of the S8
parameter, defined as

FIG. 11. Posterior distributions of the cosmological parameters Ωm, S8, and σ8, for different summary statistics and their
combinations, as measured in CosmoGridV1 simulations. The dotted black lines indicate the values of the cosmological parameters
in the simulations. The two-dimensional marginalized contours in these figures show the 68 percent and 95 percent confidence levels.
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S8 ≡ σ8ðΩm=0.3Þα: ð26Þ

The value of α can be chosen so that S8 best constrains the
degeneracy between Ωm and σ8. However, the summary
statistics considered in this work have different directions
and so there is no value of α that simultaneously optimizes
all. For sake of simplicity we adopt α ¼ 0.5. We also quote
a figure-of-merit (FoM), defined for S8, Ωm, and their
covariance:

FoMS8;Ωm
¼ ðdetðCS8;Ωm

ÞÞ−0.5: ð27Þ

Figure 11 shows the posteriors for S8, Ωm, and σ8 for a
combination of different summary statistics; posteriors for
other summary statistics are shown in Fig. 12 for S8 and
Ωm. In Fig. 11, “All” means that all the summary statistics
are combined, except for WPHG, as we found it does not
add additional information compared to second moments
alone. For this reason we also chose to always use second
moments as a default Gaussian statistic when combining
with other non-Gaussian probes. Individual parameter
constraints, together with the FoMS8;Ωm

, are reported in
Table V.
From Figs. 11 and 12 it can be noted that non-Gaussian

statistics such as third moments and WPH S01 and C01 are
characterized by a slightly different degeneracy tilt in the
σ8-Ωm plane compared to second moments. This distinc-
tion also becomes apparent in the S8-Ωm plane, as the
posteriors deviate from alignment with the S8 axis. For
other non-Gaussian statistics, such as ST1, ST2, or WPH
S00, this is less evident, and is probably due to their being
highly correlated with the second moments.
When all the summary statistics are combined, the gain

in terms of constraining power over the standard Gaussian
statistics (either second moments or WPHG) is substantial;
the constraints on S8 improve by ∼25 percent, whereas the
gain in terms of FoMS8;Ωm

is ∼90 per cent, i.e. almost
double. This level of improvement is expected, and is due
to the additional non-Gaussian information probed by the
non-Gaussian WPH moments, ST, and third moments, and
the degeneracy breaking.
When looking at the individual probes, we find that the

WPHG are slightly less constraining than second moments
alone (∼10 percent less constraining on the FoM). As they
both probe the power spectrum of the maps, this indicates
that the spacing between the wavelet filters used for the
WPHG (where each filter scale is double the size of the one
preceding it) is inferior to the spacing of the top hat filters
used for the second moments filters (where we considered
more intermediate scales). A similar results was also found
by [36] using simulations. This problem could be mitigated
by also introducing additional scales for the wavelet filters;

FIG. 12. Posterior distributions of the cosmological parameters
Ωm and S8, for different summary statistics and their combina-
tions, as measured in CosmoGridV1 simulations. The dotted
black lines indicate the values of the cosmological parameters in
the simulations. The two-dimensional marginalized contours in
these figures show the 68 percent and 95 percent confidence
levels.
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we leave this exploration to future works. We also find that
ST1 and ST2, either individually or combined, are not as
constraining as second moments (∼10 percent less con-
straining on the FoMwhen combined), despite appearing to
be highly correlated (Fig. 5), and despite being charac-
terized by a high signal-to-noise (Table II). We found that
this is due to a nonoptimal information extraction from
cross-bins [Eq. (21)]; including the cross-maps in the data
vector for ST improves the constraints only a small amount,
whereas second moments or WPHG significantly improve
their constraints when cross-bins are included in the data
vector. This would suggest a need to explore alternative
ways of incorporating cross-correlation information among
diverse fields within the ST framework. Alternatively, this
lends support to the idea of employing WPH, which
naturally facilitates the correlation of distinct fields.
Next, of the three categories of non-Gaussian statistics

examined in this study, the strongest performance—in
terms of constraining power when combined with second
moments—is exhibited by WPH, with ST following, and
third moments trailing. Nevertheless, the combination of all
the different statistics continues to enhance the constraints,
underscoring that each statistic delves into slightly distinct
information.
We next look into the constraints for the other parameters

varied in this analysis.
Figure 13 shows the constraints on S8 and AIA (the

amplitude of IA) for some of the summary statistics (and
their combinations) considered here (see also Table V). The
amplitude of IA is one of the other main parameters
constrained by weak lensing probes [112]. The posteriors
recover the correct value (AIA ¼ 0); interestingly, whenever
second moments are combined with any of the non-
Gaussian statistic considered here, constraints on AIA are
improved, up to almost 20 percent. The parameter ηIA
(which controls the redshift evolution of the IA amplitude)
is not very well constrained as, for AIA ¼ 0, any value of
ηIA would provide an equally good fit. Recall that we used a
slightly simpler IA model than the fiducial DES Y3
analysis; ours does not include tidal-torque terms (because
our current pipeline lacks the capability to compute these
terms). It is possible that the enhancement in constraining

power resulting from the incorporation of the non-Gaussian
statistics of these extra IA terms might be different the ones
obtained for AIA and ηIA; we defer this investigation to
future work.
Figure 14 shows the constraints on S8 and w (see also

Table V). The CosmoGridV1 simulations used here have
been produced assuming a ΛCDM cosmology (w ¼ −1);
correctly, Fig. 14 shows the posteriors skewed towards the
edge of the prior. Despite these posteriors being partially
prior dominated, the combination of different non-Gaussian
statistics improves the constraints on w with respect to
second moments by roughly 10 percent. We also analyzed
the posterior distributions of the four parameters describing

TABLE V. Constraints on various parameters for different summary statistics and their combinations. All the other parameters are
marginalized over (see Table I for a list of parameters and their priors). For each parameter we report the 68 percent confidence interval;
numbers in parentheses refer to the percentage gain (or loss) with respect to the constraints from the second moments. Note that the
improvement on the FOM in the last column is the most meaningful metric of a method’s statistical power.

Summary statistic(s) σðS8Þ½×100� σðσ8Þ½×100� σðΩmÞ½×100� σðwÞ½×10� σðAIAÞ½×10� FoMðS8;ΩmÞ
Second moments 2.7 5.3 3.4 1.3 4.4 904
Secondþ thirdmoments 2.6ðþ3%Þ 5.0ðþ6%Þ 3.4ð−0%Þ 1.3ð−3%Þ 4.2ðþ5%Þ 1035ðþ15%Þ
Secondmomentsþ ST 2.7ðþ2%Þ 4.3ðþ19%Þ 3.0ðþ12%Þ 1.2ðþ11%Þ 4.4ðþ0%Þ 1245ðþ38%Þ
SecondmomentsþWPH 2.4ðþ11%Þ 4.4ðþ18%Þ 2.9ðþ15%Þ 1.1ðþ15%Þ 3.9ðþ10%Þ 1385ðþ53%Þ
Secondmoments þ STþWPH 2.0ðþ25%Þ 4.4ðþ18%Þ 2.9ðþ15%Þ 1.2ðþ9%Þ 3.6ðþ17%Þ 1684ðþ86%Þ
Secondþ thirdmoments þ STþWPH 2.0ðþ25%Þ 3.9ðþ26%Þ 2.9ðþ14%Þ 1.2ðþ12%Þ 3.6ðþ17%Þ 1733ðþ92%Þ

FIG. 13. Posterior distributions of the cosmological parameters
S8 and AIA, for different summary statistics and their combina-
tions, as measured in CosmoGridV1 simulations. The dotted
black lines indicate the values of the cosmological parameters in
the simulations. The two-dimensional marginalized contours in
these figures show the 68 percent and 95 percent confidence
levels. Note that there is significant improvement from using non-
Gaussian statistics in the 95 percent confidence levels but less so
in the 68 percent levels.
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the shear multiplicative biases (mi), and four parameters
(Δzi) describing the shift in the mean redshift of the nðzÞ.
The Δzi have been estimated for each of the multiple nðzÞ
realizations that have been used to produce our simulated
maps with respect to the fiducial DES Y3 nðzÞ given by the
mean of all these realizations. As for the priors on Δzi, we
assumed them be Gaussian with zero mean and standard
deviations equal to the spread of the shifts. These param-
eters are usually dominated by their priors, and, typically,
conventional Gaussian statistics struggle to improve over
these prior constraints. Some recent studies have pointed
out the potential of non-Gaussian statistics for self-
calibration, as evidenced by their ability to enhance precision
beyond prior limitations in such parameters [113]. Indeed,
we already saw this effect for AIA. The posteriors forΔzi and
mi, however, were basically the same as their priors; we
noted only a small improvement for the Δzi corresponding
to the second, third, and fourth bins by 5–10 percent for the
combination of all the summary statistics.

VII. CONCLUSIONS

In this methodology paper, we have presented an end-to-
end simulation-based cosmological analysis of a set of
Gaussian and non-Gaussian weak lensing statistics using
detailed mock catalogs of the first three years of data of the
Dark Energy Survey. Our main goals are to show the
constraining power of wavelet based non-Gaussian statis-
tics and to validate a simulation based inference framework
for a broad class of statistics for lensing surveys.

We considered the following summary statistics of weak
lensing mass maps: 1) second and third moments; 2) wave-
let phase harmonics (WPH); 3) the scattering transform
(ST). Second moments are Gaussian statistics, whereas
third moments probe additional non-Gaussian information
of the fields. The WPH moments are second moments of
smoothed weak lensing mass maps that have undergone a
nonlinear transformation, allowing for the exploration of
the non-Gaussian features of the field. The ST coefficients
are built through a series of smoothing and modulus
operations applied to the input field, followed by an
average. The WPH and STare often linked to convolutional
neural networks (CNNs) because the definition of the
statistics bears similarities to the architecture of CNNs
(but note the latter requires training data). They capture
both Gaussian and non-Gaussian features of the fields;
however, being only first or second order in the input data,
they are generally more robust to noise than higher-order
moments. Moreover, in our implementation of the WPH
and ST, we considered maps smoothed by directional
wavelets, whereas for moments we only considered iso-
tropic top-hat filters.
Our analysis is fully based on simulations. We produced

791 full-sky N-body simulations, spanning seven cosmo-
logical parameters assuming a νwCDM cosmology; Ωm,
σ8, ns, h100, Ωb, w, mν. Using the N-body full-sky
simulations, we generated almost 13,000 pseudoindepend-
ent DES Y3 weak lensing mock mass maps, which we used
for our inference pipeline. Our mock mass maps implement
realistic masks, noise variations, source clustering of the
sources, and include the following astrophysical observa-
tional systematic effects: intrinsic alignments, shear cali-
bration, and redshift calibration biases. Our analysis is
tomographic, i.e. we forward model the four tomographic
bins and maps into which the DES Y3 weak lensing sample
is divided.
We implemented a neural network compression of the

summary statistics, and we estimated the parameter pos-
teriors using a likelihood-free-inference (LFI) approach,
with a combination of Gaussian mixture density networks
and masked autoregressive flows to estimate the likelihood
surface from our mocks. We extensively validated our
pipeline, testing the size of the posteriors with a coverage
probability test, and comparing the posterior obtained from
the LFI pipeline against a theory-based and Gaussian
likelihood approach for the special case of Gaussian
statistics (i.e. the power spectrum of the maps).
We tested that the scales used in this work were not

affected by systematics not properly modelled in our
simulations; namely, baryonic feedback effects, PSF model-
ing errors, and differences in the prescriptions used to model
source clustering. Finally, we tested our pipeline on a set of
independent simulations that have not been used in our
training process, demonstrating we could recover the true
values of the cosmological parameters of the simulation.

FIG. 14. Posterior distributions of the cosmological parameters
S8 and w, for different summary statistics and their combinations,
as measured in CosmoGridV1 simulations. The dotted black
lines indicate the values of the cosmological parameters in the
simulations. The two-dimensional marginalized contours in these
figures show the 68 percent and 95 percent confidence levels.
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Of the three combinations of “non-Gaussian statistic plus
second moment” examined, WPH exhibits the strongest
constraining power, followed byST, and then thirdmoments.
The combination of all the different statistics continues to
enhance the constraints, underscoring that each statistic
delves into slightly distinct information. In particular, we
found that when all the summary statistics are combined, the
constraints on S8, Ωm, and on the figure-of-merit FoMS8;Ωm

are improved by roughly 25 percent, 15 percent, and
90 percent, respectively, over the constraints from second
moments. Similar gains are found onw (∼15 percent), and on
the amplitude of intrinsic alignment (∼20 percent).
This work highlights the importance of analyzing probes

of higher-order statistics to improve the cosmological
constraints, and showcases the power of a full simula-
tion-based framework to efficiently model and combine
different non-Gaussian probes. Here we targeted the
analysis at the third year (Y3) data from the DES, but
the methodological advances presented here are suitable for
application to Stage IV surveys from Euclid, Rubin-LSST,
and Roman, once any necessary additional validation is
caried out on mock catalogs for each survey. In a
companion paper (Gatti et al., in prep.) we present an
application to the DES Year 3 data.
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APPENDIX A: NOISE PROPERTIES
OF THE SIMULATIONS

In this Appendix, we conduct several sanity checks to
evaluate the noise characteristics of our simulations.
Specifically, we ensure that the noise properties of the
simulations encompass those of the actual data. The noise
properties of the simulations should be mildly cosmology
dependent, due to source clustering effects (see Sec. II B 3).
To perform this test, we consider the following statistics:

moments (second, third, and fourth order) and CDFs. The
CDFs [53,54] for a given field are defined as the fraction of
circles that have an enclosed value of the field larger than a
given threshold:

CDFðθ; k ¼ Pðκθ > kÞÞ; ðA1Þ

where k is the threshold. The CDFs can be formally shown
to contain all volume integrals of higher-order functions
[54]. We measure the CDFs across ten smoothing
scales, spaced logarithmically between 3.2 arc mins and
200 arc mins; for each scale, we use five thresholds
k∈ ½−20;−6;−2; 0; 2� × 10−3.
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FIG. 15. Moments and CDFs of noise-only maps (gray shaded regions) in the Gower St simulations compared to the same quantities in
data (red lines). The three different gray shaded regions encompass the 68, 95, and 99.5 percentiles spanned by the noise moments and
CDFs in the simulations.
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In Fig. 15 we compare a) moments and CDFs from data
to b) moments and CDFs from simulations; there is a good
match, indicating that the noise properties of our simu-
lations reproduce well the noise of the data.

APPENDIX B: NEURAL COMPRESSION VS
MOPED COMPRESSION

In this work we opted for a neural compression scheme
to compress our summary statistics. Other compression
methods exist; the most notable is the MOPED algorithm
[95], which is lossless when the likelihood is Gaussian and
the covariance matrix of the observables has a negligible
dependence on the parameters. The neural network imple-
mented in this work is in principle more powerful and
general than the MOPED compression, as it does not make
any assumption about the Gaussianity of the likelihood, nor
about any dependence on the model parameters. Even if
desired, we would not have been able to implement the
MOPED compression for most of the statistics, as doing so
would have required an estimate of the derivative of the
model with respect to the parameters; such derivatives are
available in closed form for analytical models, or via finite
difference for observables where the model is estimated
from simulations—the Gower St simulations, however,
do not allow us to estimate derivatives through finite
differences.
In this appendix we compare the neural network com-

pression with the MOPED compression for the only

summary statistic for which we have an analytical model,
i.e. the second moments. We also know that for second
moments the likelihood should be fairly Gaussian, and the
covariance should only weakly depend on parameters, so
the MOPED compression should be close to lossless. We
therefore compute the derivatives needed for the MOPED
compression using the analytic model from [22]; for the
covariance, we estimate it from the 400 measurements of
the second moments in the CosmoGridV1 simulations.
Figure 16 shows the posteriors obtained using our pipeline,
compressing second moments either with the neural net-
work or with the MOPED compression. Results are fairly
similar, with the neural network compression delivering
only slightly tighter contours.

APPENDIX C: NDEs AND PARAMETERS
POSTERIOR

In this study, we utilized four distinct NDEs for posterior
estimation. Specifically, we employed two variations of
Gaussian MDNs and two types of MADEs. All reported
parameter constraints and posteriors showed in this work
were derived by averaging these four diverse NDEs. Given
that each NDE is sufficiently versatile to accurately
represent our likelihood surface, they should all be con-
sistent with each other, as long as the volume of training

FIG. 16. Posterior distribution of the cosmological parameters
Ωm and S8 as measured in CosmoGridV1 simulations. The two
different posteriors have been obtained by analyzing the
second moments data vector compressed both with our fiducial
neural network compression and with the alternative MOPED
compression.

FIG. 17. Posterior distributions of the cosmological parameters
Ωm and σ8 for the combination of all the summary statistics
considered in this work, as measured in CosmoGridV1 simu-
lations. We show the different posteriors as estimated by the
different NDEs used in this work; we also show their stacked
combination (the fiducial setup used in the other figures of this
paper). The dotted black lines indicate the values of the
cosmological parameters in the simulations. The two-dimen-
sional marginalized contours in these figures show the 68 percent
and 95 percent confidence levels.
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simulations is large enough. Figure 17 illustrates the
individual posteriors obtained from each NDE in our most
restrictive scenario (which involves the combination of all
summary statistics), for both the wCDM and ΛCDM
analyses. As expected, they all agree with each other.

APPENDIX D: ADDITIONAL
LIKELIHOOD TESTS

In this appendix we perform extra tests on our estimated
likelihoods using the CosmoGridV1 simulations. First,
for the 400 compressed data vectors at our disposal, we
looked at the distribution of residuals for each entry of our
data vector. This is shown in Fig. 18. The residuals are well
described by a Gaussian, with no clear sign of strong
deviations from Gaussianity. This is true also for the non-
Gaussian statistics implemented in this work. As was
already noted by [22], this is partially thanks to the data
compression algorithm, which helps to give the compressed
data a more Gaussian distribution due to the central limit
theorem [114].
As a second test, we sample from the likelihood

estimated using our NDEs at the CosmoGridV1 cosmol-
ogy, and compare with the distribution of the compressed
data vector measured in the CosmoGridV1 simulations.

In particular, we sample the likelihood at Ωm ¼ 0.26,
S8 ¼ 0.26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.84=0.3

p
, w ¼ −1, and AIA ¼ 0. For this test,

we generated 400 new CosmoGridV1 maps and we also
marginalized over redshift uncertainties and multiplicative
shear bias (in contrast to the CosmoGridV1 maps used in
the rest of the paper, where we fixed nuisance parameters to

FIG. 18. Residuals of individual data points in units of their
expected standard deviation for the compressed data vector of the
CosmoGridV1 simulations. We compare to a Gaussian with
zero mean and unit standard deviation.

FIG. 19. Samples of compressed summary statistics from the
CosmoGridV1 simulations (gray), compared to samples drawn
from the learned likelihood at the CosmoGridV1 cosmology
(red). We also compare to the distribution we would have
obtained had we assumed a Gaussian likelihood (black). The
top panel refers to second moments and the bottom panel refers to
PWH S01þ C01.
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their mean values). Such a comparison is shown in Fig. 19,
for the case of second moments and PWH S01þ C01.
Although not shown here, other summary statistics show a
similar behaviour. The samples obtained from the NDEs
match fairly well the distribution of compressed data vectors
from the simulations, although for second moments they are
slightly larger. This is expected as the likelihood estimated by
the NDEs also marginalizes over Ωb, ns, h100, and neutrino
mass, and we cannot fix them, because when training the
NDEs we only made explicit the dependence on Ωm, S8, w,
and AIA. The CosmoGridV1 samples do not marginalize
over these additional parameters, so their distribution might
be slightly smaller than the one predicted from the NDEs.
In Fig. 19 we also compare with the samples we would

have obtained if we had assumed a Gaussian likelihood,
estimating the mean and the covariance from the com-
pressed CosmoGridV1 measurements. These samples
match very well the distribution of compressed measure-
ments; this would not have been guaranteed had the
likelihood been strongly non-Gaussian. Together with
the residual tests (Fig. 18), this suggests that assuming a
Gaussian likelihood for our compressed summary statistics
could have been a reasonable option, at least at the
CosmoGridV1 cosmology. Of course, we cannot assume
this generalizes to other points in the parameter space, nor
we could exclude a priori any cosmological dependence of
the covariance. We note that our NDEs have learned that
the likelihood is Gaussian at this point in parameter space,
as the NDEs did not have any prior knowledge concerning
the form of the likelihood.

APPENDIX E: ROBUSTNESS TO THE
SIMULATIONS PROPERTIES

We assess our capability to accurately retrieve the
cosmological parameters from simulations with different

characteristics. For this purpose, we utilized an additional
set of simulations from the CosmoGridV1 suite. These
simulations differed from the fiducial CosmoGridV1
simulations used in Sec. VI in three key aspects: (1) they
employed double the number of particles; (2) they were
produced with twice the box size; and (3) they featured
double the redshift resolution. The results, illustrated in
Fig. 20, consistently confirm our success in accurately
recovering the true cosmological values of the simulations
in each scenario.
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