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We compute the gravitational wave (GW) spectrum sourced by the sound waves produced during a first-
order phase transition in the radiation-dominated epoch. The correlator of the velocity field perturbations is
evaluated in accordancewith the sound shell model. In our derivation we include the effects of the expansion
of the Universe, which are relevant in particular for sourcing processes whose time duration is comparable
with the Hubble time. Our results show a causal growth of the GW spectrum at small frequencies,ΩGW ∼ k3,
possibly followed by a linear regime ΩGW ∼ k at intermediate k, depending on the phase transition
parameters. Around the peak, we find a steep growth that approaches the ∼k9 scaling previously found
within the sound shell model. The resulting bump around the peak of the GW spectrum may represent a
distinctive feature of GWs produced from acoustic motion. Nothing similar has been observed for vortical
(magneto)hydrodynamic turbulence. Nevertheless, we find that the ∼k9 scaling is less extended than
expected in the literature, and it does not necessarily appear. The dependence on the duration of the source,
δτfin, is quadratic at small frequencies k, and proportional to ln2ð1þ δτfinH�Þ for an expanding universe.
At frequencies around the peak, the growth is suppressed by a factorϒ ¼ 1 − 1=ð1þ δτfinH�Þ that becomes
linear when the GW source is short. We discuss in which cases the dependence on the source duration is
linear or quadratic for stationary processes. This affects the amplitude of the GW spectrum, both in the
causality tail and at the peak, showing that the assumption of stationarity is a very relevant one, as far as the
GW spectral shape is concerned. Finally, we present a general semianalytical template of the resulting GW
spectrum, as a function of the parameters of the phase transition.
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I. INTRODUCTION

A first-order thermal phase transition can be parametrized
in terms of a scalar field,whosevacuum state is degenerate at
a given critical temperature Tc [1–3]. According to the
Standard Model (SM), both the electroweak [4] and the
QCD [5] phase transitions have occurred as crossovers in
the early Universe. However, extensions of the SM that
provide the required conditions for baryogenesis at the
electroweak scale can also lead to first-order phase tran-
sitions (see Ref. [6] for a review, and references therein).
Moreover, a large lepton asymmetry or a primordial mag-
netic field may affect the QCD phase diagram, potentially
leading to a first-order QCD phase transition [7–11].
We assume that, for a specific model, Tc is reached while

the early Universe is cooling down in the radiation-
dominated era. Part of the potential energy in the unstable
vacuum is then transferred to the surroundings as kinetic

energy, through the nucleation and expansion of bubbles of
the broken phase [12–14].
The resulting shear stress of the fluid can have anisot-

ropies of the tensor type and, hence, source gravitational
waves (GWs) that propagate in the homogeneous and
isotropic background [15,16]. To study the power spectrum
of these GWs, the shear stress from a first-order phase
transition can be decomposed into different contributions;
bubble collisions [17–23], sound waves [24–30], and
turbulence [18,31–44] (for reviews see Refs. [6,45] and
references therein).
The dynamics of the expanding bubbles of the broken

phase is determined by the interaction of the plasma
particles with the scalar field, which is commonly modeled
as a friction term [14,21,24,46]. If the friction is strong
enough, we expect the expanding bubble walls to reach a
terminal velocity ξw, which depends on the specific value of
the friction term. On the contrary, the bubbles may run
away when the friction is not sufficiently strong [47].
However, first-order electroweak phase transitions are
expected to rarely reach this regime [48]. If the bubbles
do not run away, the long-lasting nature of the sound waves
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promotes them as the dominant source of GWs. Only if the
phase transition is supercooled, it effectively occurs in a
vacuum and hence the production of sound waves is
negligible [6,49–51].
The development of turbulence can occur due to the

interaction of the scalar field and the plasma [15,52], or in
the presence of a primordialmagnetic field [53,54], due to the
extremely high conductivity and Reynolds number in the
early universe [55,56]. The production of GWs from vortical
turbulence has been found to be subdominant with respect to
the one from acoustic turbulence [37].However, it is not clear
how much energy is converted from sound waves into
turbulence once this regime takes over, or if vortical motions
can be directly sourced from bubble collisions [57].
Moreover, the time scales corresponding to each production
mechanism are not well-understood. This information deter-
mines the resulting GW amplitudes, see, e.g., Refs. [6,58].
In the current work, we focus on the production of GWs

from sound waves. A semianalytical description of the
velocity spectrum originating from sound waves is pro-
vided by the sound shell model, put forward in the
seminal work [26]. The corresponding GW spectrum has
been studied in detail in Ref. [28] for a nonexpanding
universe, and extended in Ref. [59] to an expanding
universe. These results feature a steep growth at small
frequencies, ΩGW ∼ k9. The latter, however, has not been
found in other numerical [24,25,30] or analytical [60]
works, which are, instead, consistent with the ∼k3 low-
frequency tail typically expected outside the zone of both
spatial and temporal correlation of the GW source [33].
The goal of this work is to generalize the results of

Refs. [28,59] to provide a semianalytical template that is
accurate and applicable to the full range of frequencies of
the GW spectrum.
We confirm the presence of a steep growth of the GW

spectrum (cf. Ref. [28]) that, however, only appears around
the peak and for certain values of the phase transition
parameters. In particular, it depends simultaneously on the
durationof theGWsourcingand themean size of thebubbles.
The steep growth extends for a short range of frequencies
around the peak, leading to a bump in the GW spectral shape.
At lower frequencies, theGWpower spectrumcandevelop an
intermediate linear growth, ΩGW ∼ k. At even smaller
frequencies, i.e., below the inverse duration of the GW
sourcing, the causal tail, ΩGW ∼ k3, takes over. We also find
that the bump around the GW peak is less pronounced when
one takes into account the expansion of the Universe.
With the detection of a stochastic GW background

(SGWB) from the early universe becoming conceivable
in the near future, it is important to crosscheck and validate
accurate theoretical templates for the signal of the different
contributions. The predicted spectral shape of the GW
signal, in fact, strongly affects forecast observational
constraints on the phase transition parameters.

The current observations by pulsar timing arrays (PTA)
have reported an SGWB at nano-Hertz frequencies that
could be compatible with sourcing anisotropic stresses
produced around the QCD scale [61–66]. PTA observations
have been extensively used in the literature to report
constraints on the phase transition parameters from the
GW production due to sound waves [67–77]. The space-
based GW detector Laser Interferometer Space Antenna
(LISA), planned to be launched in the early 2030s, will be
sensitive to GWs with a peak sensitivity of around 1 mHz
[78]. Signals produced at the electroweak phase transition
are expected to peak around these frequencies. Several
studies have used the expected sensitivity of LISA to
forecast the potential detectability of the SGWB pro-
duced by sound waves [6,49,58,79–83]. First-order phase
transitions at higher energy scales, e.g., at temperatures
T > 108 GeV have been constrained by the results of the
third observing run of the LIGO-Virgo Collaboration [84]
and can be further probed by the next generation of ground-
based GW detectors, like the Einstein Telescope or the
Cosmic Explorer.
This paper is organized as follows. In Sec. II, we provide

general formulas for the production of GWs during the
radiation-domination era, and we introduce the unequal-
time correlator (UETC) of the anisotropic stresses origi-
nating from sound waves. Section III deals with the
velocity field within the framework of the sound shell
model. We provide new results regarding the causality
bounds on the velocity field and its UETC spectrum. Being
the focus of the current work on GW production, we briefly
discuss a theoretical interpretation of the causality argu-
ment for the initial conditions used in the sound shell model
[26,28], and we extend the discussion in an accompanying
paper [85].
In Sec. IV, we study specific features of the GW

spectrum in the sound shell model, both analytically and
numerically. In particular, we discuss the occurrence of the
k3 causal tail at small frequencies. We investigate its
dependence on the duration of the source, identifying
the cases in which the assumptions of Refs. [28,59] do
not apply. The dependence of the GW amplitude on the
duration of the source is the topic of Sec. V. We study the
GW production for stationary processes by comparing
the results obtained within the sound shell model with
those obtained for a velocity field with Gaussian (cf.
Kraichnan) decorrelation.
Numerical results for the GW spectrum are presented in

Sec. VI. We show that a steep ΩGW ∼ k7 growth may
appear below the peak under certain circumstances, leading
to a bump in the spectral shape. A linear growth ΩGW ∼ k
can also develop between the causal ΩGW ∼ k3 and the
steep bump. Studying the dependence of the amplitude on
the duration of the source δτfin, we find that the causality
tail is always quadratic in δτfin, while the peak may present
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a quadratic or a linear dependence, with the latter being the
one obtained in Refs. [28,59].
We provide a template for the current-day observable

ΩGW, as a function of the parameters that describe the phase
transition. In Sec. VII, we discuss the implications and
conclude.
In the following, the notation is such that the character-

istic scales and time intervals are physical and therefore
time dependent. They are normalized by the conformal
Hubble factor H� ≡ ða�=a0ÞH�, where throughout this
paper, an asterisk subscript indicates a quantity evaluated
at the initial time of GW generation, and a zero subscript
indicates today’s values.

II. GW PRODUCTION DURING
RADIATION DOMINATION

A. Tensor-mode perturbations

We consider tensor-mode perturbations lij in an expand-
ing universe, described by conformal coordinates

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ lijÞdxidxj�; ð1Þ

where a is the scale factor. The perturbations are traceless
and transverse (TT); li

i ¼ 0 and ∂
ilij ¼ 0. Assuming

radiation domination, the scale factor a evolves linearly
with conformal time. We set aðτ�Þ ¼ 1 at the starting time
of GW generation, such that aðτÞ ¼ H�τ, where H� ≡
a0=aðτ�Þ is the conformal Hubble parameter evaluated at τ�,
and a prime denotes the derivative with respect to con-
formal time, a0 ≡ ∂τa.
The dynamics of small perturbations is described by the

linearized Einstein equations. In comoving momentum
space, k,1 the tensor-mode perturbations are governed by
the GW equation,

ð∂2τ þ 2H∂τ þ k2Þlijðτ; kÞ ¼ 16πGa2ρ̄Πijðτ; kÞ; ð2Þ

with G being the gravitational constant and k≡ jkj. The
perturbations of the stress-energy tensor Tij are denoted by

ρ̄Πijðτ; kÞ≡ Λijlmðk̂ÞTlmðτ; kÞ, where ρ̄≡ 3H2=ð8πGa2Þ
is the critical energy density, and Λijlm denotes the
projection onto TT components,

2Λijlm ≡ PilPjm þ PimPjl − PijPlm; ð3Þ

with Pijðk̂Þ ¼ δij − k̂ik̂j and k̂i ¼ ki=k. Rewriting Eq. (2)
for hij ≡ alij during radiation domination yields

ð∂2τ þ k2Þhijðτ; kÞ ¼
6H�Πijðτ; kÞ

τ
: ð4Þ

Equation (4) shows that the scaled strains hij are sourced by
the normalized and comoving TT projection of the aniso-
tropic stresses, Πij.
While the source is active,2 τ� ≤ τ ≤ τfin, the solution to

Eq. (4) with initial conditions hijðτ�; kÞ ¼ h0ijðτ�; kÞ ¼ 0 is
the convolution of the source with the Green’s function,

hijðτ� ≤ τ ≤ τfin; kÞ

¼ 6H�
k

Z
τ

τ�
dτ1

Πijðτ1; kÞ
τ1

sin kðτ − τ1Þ: ð5Þ

At later times, τ > τfin, the solution in the free propagation
regime is

hijðτ> τfin;kÞ¼
6H�
k

Z
τfin

τ�
dτ1

Πijðτ1;kÞ
τ1

sinkðτ− τ1Þ: ð6Þ

We are interested in the fractional energy density of GWs
today

ΩGWðτ0Þ ¼
Z

∞

−∞
ΩGWðτ0; kÞd ln k ð7Þ

≡ 1

32πGρ̄0
hl̇ijðτ0; xÞl̇ijðτ0; xÞi ð8Þ

≈
1

12H2
0a

2
0

hh0ijðτ0; xÞh0ijðτ0; xÞi; ð9Þ

where a dot denotes derivatives with respect to cosmic time
∂t ≡ a−1∂τ,

3 and ΩGWðτ0; kÞ is the GW spectrum today.
Following the notation of Ref. [36], the unequal-time

correlator (UETC) spectrum Sh0 of the strain derivatives
that appear in Eq. (6), is defined as

hh0ijðτ1;kÞh�ij0ðτ2;k2Þi

≡ð2πÞ6δ3ðk−k2Þ
Sh0 ðτ1;τ2;kÞ

4πk2
; ð10Þ

1For a generic function fðxÞ, we use the Fourier convention

fðkÞ ¼
Z

d3xfðxÞeik·x; fðxÞ ¼
Z

d3k
ð2πÞ3 fðkÞe

−ik·x:

Fourier-transformed quantities are distinguished only by their
argument k.

2Since the initial time of GW production occurs within the
radiation-dominated era, τ� ≃ 1=H�.3The exact relation from Eqs. (8)–(9) is l̇ij=H ¼
ðh0ij − hij=τÞ=ðaHÞ, where H ≡ ȧ=a and aH ¼ H�. However,
terms proportional to 1=ðkτÞ are negligible inside the horizon at
present time, kτ0 ≫ 1.
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where Sh0 only depends on the wave number k for a
stochastic field with a homogeneous and isotropic distri-
bution, and on the unequal times τ1 and τ2.

4

Evaluating Eq. (9) with Eq. (6) at equal times
τ1;2 ¼ τ0 ≫ τfin, the GW spectrum ΩGW today is

ΩGWðτ0; kÞ ¼ 3kT GW

Z
τfin

τ�

dτ1
τ1

Z
τfin

τ�

dτ2
τ2

EΠðτ1; τ2; kÞ

× cos kðτ0 − τ1Þ cos kðτ0 − τ2Þ: ð11Þ
EΠ is the UETC spectrum of the anisotropic stresses,5

defined as

hΠijðτ1; kÞΠ�
ijðτ2; k2Þi

≡ ð2πÞ6δ3ðk − k2Þ
EΠðτ1; τ2; kÞ

4πk2
: ð12Þ

We call the transfer function, introduced in Eq. (11), the
prefactor that describes the redshift from GW sourcing time
to today,

h2T GW ≡
�
a�
a0

�
4
�

H�
H0=h

�
2

¼
�
g0
g�

�4
3

�
hT2

0=H0

T2�=H�

�
2

≃ 1.6 × 10−5
�
100

g�

�1
3

; ð13Þ

where g� and g0 ¼ 3.91 are the number of entropic degrees
of freedom at τ� (e.g., g� ≃ 100 at the electroweak phase tran-
sition) and at present time, respectively [86]. The temperature
today is taken to be T0 ¼ 2.725 K [87]. The Hubble rate at
present time is given in terms of h ¼ H0=ð100 km=s=MpcÞ,
while its value during the radiation-dominated era,H�, used
in Eq. (13), is H2� ¼ 4π3Gg�T4�=ð45ℏ3Þ [86].
The product of the Green’s functions in Eq. (11) can be

expressed as

2 cos kðτ0 − τ1Þ cos kðτ0 − τ2Þ
¼ cos kðτ1 − τ2Þ þ cos 2kτ0 cos kðτ1 þ τ2Þ
þ sin 2kτ0 sin kðτ1 þ τ2Þ: ð14Þ

An average over highly oscillating modes kτ0 ≫ 1, yields

ΩGWðkÞ ≈
3k
2
T GW

Z
τfin

τ�

dτ1
τ1

Z
τfin

τ�

dτ2
τ2

EΠðτ1; τ2; kÞ

× cos kðτ1 − τ2Þ: ð15Þ

Note that the approximation in Eq. (15) is not valid if one is
interested in computing the gravitational wave spectrum

while the source is active. For this case, we provide a formula
for the full time dependency of ΩGW in Appendix A.

B. GWs sourced by sound waves

The stress-energy tensor Πij ≡ ΛijlmTlm that sources
GWs [see Eq. (4)] can contain contributions from the fluid
(depending on the enthalpy w, the pressure p, and on
ui ≡ γvi, where γ is the Lorentz factor and vi the velocity),
and from gradients of the scalar field, ϕ, among other
possible contributions (e.g., gauge fields),

Tij ⊃ wuiuj þ pδij þ ∂iϕ ∂jϕ −
1

2
ð∂ϕÞ2δij; ð16Þ

where w ¼ pþ ρ, being ρ the energy density.
In the current work, we focus on the GWs sourced by

sound waves in the aftermath of a first-order phase
transition. Hence, we only consider the GW production
from the linearized fluid motion (omitting the potential
development of turbulence), and neglect the contributions
from bubble collisions, as well as the possible presence of
electromagnetic fields that would alternatively affect the
fluid dynamics and also source GWs [15,53].
Since diagonal terms in Eq. (16) are ruled out by the TT

projection, the contributing part of the energy-momentum
tensor is the convolution of the velocity field in Fourier
space

Tijðτ; kÞ ⊃ w̄
Z

d3p
ð2πÞ3 uiðτ; pÞujðτ; p̃Þ; ð17Þ

where we have denoted p̃≡ k − p. The velocity field from
sound waves corresponds to perturbations over a back-
ground at rest with mean enthalpy w̄. Hence, fluctuations in
the enthalpy field correspond to higher-order terms in the
perturbative expansion and can be neglected at first order.
In the linear regime, we also have γ ∼ 1.
If we assume that the stochastic velocity field is

Gaussian, Isserlis’ (or Wick’s) theorem [88] allows us to
express the four-point correlations as linear superposition
of the product of two-point functions,

hTijðτ1;kÞT�
lmðτ2;kÞi⊃ w̄2

Z
d3p1
ð2πÞ3

Z
d3p2
ð2πÞ3

× ½huiðτ1;p1Þu�l ðτ2;p2Þihujðτ1; p̃1Þu�mðτ2; p̃2Þi
þhuiðτ1;p1Þu�mðτ2; p̃2Þihujðτ1; p̃1Þu�l ðτ2;p2Þi�: ð18Þ

In general, the spectrum of any statistically homo-
geneous and isotropic field can be decomposed in a
spectrum proportional to the projector Pij, given below
Eq. (3), and a spectral function proportional to k̂ik̂j [89]. In
the particular case of irrotational fields (as it is the case for

4The UETC spectrum can also be expressed in terms of the
power spectral density Ph0 ≡ 2π2Sh0=k2 or the spectrum in units
of ln k, Ph0 ≡ kSh0 in analogy to Eq. (7); see Ref. [28].

5Note that Ref. [28] uses the spectral density UΠ ¼ 2π2EΠ=k2.
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sound waves), the contribution proportional to Pij is zero,
and the two-point correlation function of the velocity
field is6

huiðτ1;kÞu�jðτ2;k2Þi ¼ ð2πÞ6k̂ik̂jδ3ðk− k2Þ

×
2Ekinðτ1; τ2; kÞ

4πk2
: ð19Þ

The assumption of the velocity field being irrotational is
motivated by the results of numerical simulations [24,25,27].
In a semianalytical approach, the sound shell model

describes the velocity field as the linear superposition of the
single-bubble contributions until the moment of collision
[26,28], based on the hydrodynamics of expanding bubbles
[46]. At later times, the velocity field is assumed to be
described by the superposition of sound waves. Hence, the
resulting velocity field is irrotational and is described by the
tensor structure of Eq. (19).
Using Eq. (19), the TT projection of the stress tensor in

Eq. (18) acts as

Λijlmðk̂Þp̂i ˆ̃pjp̂l ˆ̃pm ¼ p2

p̃2

ð1 − z2Þ2
2

; ð20Þ

where z ¼ k̂ · p̂. The UETC spectrum of the anisotropic
stresses EΠ, which sources the GW spectrum in Eq. (15),
becomes

EΠðτ1; τ2; kÞ ¼ 2k2w̄2

Z
1

−1
dz

Z
∞

0

dp
p2

p̃4
ð1 − z2Þ2

× Ekinðτ1; τ2; pÞEkinðτ1; τ2; p̃Þ: ð21Þ

Hence, under the assumption of Gaussianity of the velocity
field, the UETC of the anisotropic stresses EΠ is reduced to
a quadratic function of the UETC of the velocity field Ekin,
integrated over p and z.
A useful alternative form of Eq. (21) is found by

changing the integration variable from z to p̃ with

p̃2 ≡ jk − pj2 ¼ p2 þ k2 − 2pkz; ð22Þ
yielding

EΠðτ1;τ2;kÞ¼ 2kw̄2

Z
∞

0

dppEkinðτ1;τ2;pÞ

×
Z

kþp

jk−pj
dp̃

Ekinðτ1;τ2; p̃Þ
p̃3

½1− z2ðp̃Þ�2: ð23Þ

This expression is used in Ref. [28] and we use it in
Appendix B for a comparison with their results.

In Sec. III, we present the computation of the UETC of
the velocity field for the sound waves produced upon
collision of broken-phase bubbles, following the sound
shell model. A detailed derivation, and theoretical aspects
of the velocity UETC are presented in an accompanying
paper [85].

III. SOUND WAVES FROM FIRST-ORDER PHASE
TRANSITIONS IN THE SOUND SHELL MODEL

A. Velocity field

In a first-order phase transition, the hydrodynamic
equations of the fluid around the expanding bubbles of
the broken phase can be derived imposing the conservation
of energy and momentum, ∂μTμν ¼ 0, and assuming radial
symmetry around the center of bubble nucleation [28,46].
Once the broken-phase bubbles collide, it can be assumed
that the Higgs field has reached its true vacuum state and
the fluid perturbations follow a linear hydrodynamical
description without any forcing term, leading to the
development of compressional sound waves, according
to the sound shell model [26,28]. Defining the energy
density fluctuations λ≡ ðρ − ρ̄Þ=w̄, the linearization of the
fluid equations leads to wave equations for u and λ,

λ0ðτ; kÞ − ikiuiðτ; kÞ ¼ 0; ð24Þ

u0iðτ; kÞ − ikic2sλðτ; kÞ ¼ 0: ð25Þ

The equation of state c2s ≡ dp̄=dρ̄ relates the background
fluid pressure p̄ and energy density ρ̄. The solution is a
longitudinal velocity field, ui ¼ k̂iu,

uðτ; kÞ ¼
X
s¼�

AsðkÞeisωðτ−τ�Þ; ð26Þ

where the dispersion relation is ω ¼ csk. The coefficients
A� depend on the velocity and energy density fields at the
time of collisions [28,85],

A�ðkÞ ¼
1

2
½uðτ�; kÞ � csλðτ�; kÞ�: ð27Þ

Alternatively, as initial conditions, we could use the
velocity u and acceleration u0 fields, as done in
Ref. [24]. Reference [28] suggests the use of λ in
Eq. (27) to respect the causality condition of irrotational
fields when k → 0 [89,90]. We show in an accompanying
paper that the causal limit does not depend on this choice,
however the latter is required to avoid discontinuities on u
and λ at τ� [85].
According to the sound shell model, the velocity and

energy density fields are the linear superposition of the
fields produced by the expansion of each of the Nb single
bubbles [24,28],

6Note that Ref. [28] uses the spectral density G ¼ 4π2Ekin=k2.
We add an extra factor of 2 in Eq. (19) such that the kinetic energy
density is 1

2
hu2ðxÞi ¼ R

EkinðkÞdk.
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A�ðkÞ ¼
XNb

n¼1

A�ðχÞT3
neik·x

ðnÞ
0 ; ð28Þ

where, for the nth bubble, Tn ¼ τ� − τðnÞ0 is its lifetime, τðnÞ0

is its time of nucleation, and xðnÞ0 is its nucleation location.
The functions A�ðχÞ, where χ ≡ kTn, are

A�ðχÞ ¼ −
i
2
½f0ðχÞ � icslðχÞ�; ð29Þ

being fðχÞ and lðχÞ integrals of the single-bubble radial
profiles vipðξÞ and λipðξÞ over a normalized radial coor-
dinate ξ,

fðχÞ ¼ 4π

χ

Z
∞

0

dξvipðξÞ sinðχξÞ; ð30Þ

lðχÞ ¼ 4π

χ

Z
∞

0

dξξλipðξÞ sinðχξÞ: ð31Þ

We follow Refs. [28,46] to compute the single-bubble
profiles, and present the detailed calculation in an accom-
panying paper [85].

B. UETC of the velocity field

The UETC of the velocity field in Eq. (19) can be
computed from the resulting velocity field given in
Eq. (26),

Ekinðτ1; τ2; kÞ ¼ Eð1Þ
kinðkÞ cosωðτ1 − τ2Þ

þ Eð2Þ
kinðkÞ cosωðτ1 þ τ2 − 2τ�Þ

þ Eð3Þ
kinðkÞ sinωðτ1 þ τ2 − 2τ�Þ; ð32Þ

whose coefficients EðnÞ
kinðkÞ are given as [28,85]

EðnÞ
kinðkÞ ¼

k2

2π2β6R3�

Z
∞

0

dT̃ νðT̃Þ T̃6 EðnÞðT̃k=βÞ; ð33Þ

where β denotes the inverse duration of the phase transition
and T̃ ≡ Tβ is the normalized bubble lifetime. The mean
bubble separation, R� ≡ ð8πÞ1=3ξw=β [13], corresponds to
the characteristic length scale of the fluid motion. The
distribution of the bubbles’ lifetime, νðT̃Þ, is considered in
Ref. [28] for the scenarios of exponential and simultaneous
nucleation,

νexpðT̃Þ ¼ e−T̃ ; νsimðT̃Þ ¼
1

2
T̃2e−

1
6
T̃3

: ð34Þ

The functions EðnÞ in Eq. (33) are

Eð1ÞðχÞ ¼ jAþj2 ¼
1

4
½f02ðχÞ þ c2s l2ðχÞ�; ð35Þ

Eð2ÞðχÞ ¼ ReðAþA�
−Þ ¼

1

4
½f02ðχÞ − c2s l2ðχÞ�; ð36Þ

Eð3ÞðχÞ ¼ ImðAþA�
−Þ ¼

1

2
csf0ðχÞlðχÞ; ð37Þ

where A�ðχÞ are defined in Eq. (29).
Following Ref. [28], we expect the amplitude of the

oscillatory contributions corresponding to Eð1Þ
kin in Eq. (32)

to be larger than those from Eð2Þ
kin and Eð3Þ

kin. This is a
consequence of the inequalities among their amplitudes,

Eð1ÞðχÞ ≥ Eð2ÞðχÞ ≥ Eð3ÞðχÞ: ð38Þ

However, when the term proportional to Eð2Þ
kin is not highly

oscillating, it cannot be neglected with respect to the one

proportional to Eð1Þ
kin. This occurs in the limit ω≡ kcs ≪

ð2δτfinÞ−1, since 0 ≤ τ1 þ τ2 − 2τ� ≤ 2δτfin, where we
denote the duration of the source as δτfin ≡ τfin − τ�.
Let us first focus on the case k ≫ 1=ð2csδτfinÞ. Then, we

find a stationary UETC [28],

Ekinðk; τ1; τ2Þ ≈ EkinðkÞ cosðkcsτ−Þ; ð39Þ

where EkinðkÞ ¼ Eð1Þ
kinðkÞ and τ− ¼ τ2 − τ1. Figure 1

shows benchmark results for the normalized ζkinðkÞ ¼
EkinðkÞ=E�

kin, E�
kin denoting the maximum value of

EkinðkÞ, obtained for a benchmark phase transition strength
α ¼ 0.1 and a range of broken-phase bubble wall speeds
ξw ∈ ½0.1; 0.9�. We present the details of these calculations
in an accompanying paper [85].
Since the resulting velocity field due to the superposition

of sound waves is irrotational, the causality condition
requires Ekinðτ1; τ2; kÞ ∼ k4 in the limit k → 0 [28,89,90].
We note that, since EkinðkÞ is an integral over T̃ of Eð1ÞðχÞ,
the limit of EkinðkÞ when k → 0 is equivalent to the limit of
Eð1ÞðχÞ when χ → 0. The integrand is then proportional to
f02ðχÞ þ c2s l2ðχÞ [see Eq. (35)].
As mentioned above, Ref. [28] justifies the choice of λ

(which leads to the c2s l2 contribution in Ekin) in Eq. (29) for
the initial conditions, instead of u0, to ensure the causality
condition. However, the function l2ðχÞ in Eq. (31) leads
to the asymptotic limits l2ðχÞ ∼ χ0 when χ → 0, and
EkinðkÞ ∼ k2 when k → 0, as we show in an accompanying
paper [85]. This naively seems to violate causality. The
same is true when one chooses u0 to impose the initial
conditions. The key point to recover the causality condition
is to note that the assumption in Eq. (39) is not valid in
the limit k ≪ 1=ð2csδτfinÞ. In this limit, one finds from
Eq. (32),
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lim
k→0

Ekinðτ1; τ2; kÞ ¼ Eð1Þ
kinðkÞ þ Eð2Þ

kinðkÞ: ð40Þ

The UETC of the velocity field in the k → 0 limit is then
proportional to f02ðχÞ [see Eqs. (35) and (36)], and not to
l2ðχÞ, as previously found using Eq. (39). Then the χ → 0

limit is indeed f02 ∼ χ2, such that Ekin ∼ k4, as expected
from causality.
In the following, we take Eq. (39) to describe the UETC

spectrum and will refer to Ekin as the kinetic spectrum.
Even though Ekin does not describe the UETC in the limit
k → 0, it does for all the scales that are relevant for the
study of GW production (see Fig. 1).
Following the normalization of Ref. [42], we define a

characteristic amplitude E�
kin and wave number k�. For the

kinetic spectrum corresponding to sound waves, we set
k� ¼ 1=R� and E�

kin to be the maximum amplitude, which is
located at Kpeak

kin ¼ kpeakkin R� ∼Oð1Þ (see Fig. 1 and values in
Table I). Then, the kinetic spectrum can be expressed as

EkinðkÞ ¼ E�
kinζkinðKÞ; ð41Þ

where K ¼ k=k� ¼ kR� and ζkin determines the spectral
shape of the kinetic spectrum. The spectral shape found
within the sound shell model (see Fig. 1) is proportional to
k4 at low k, as discussed in Sec. III B, and follows a k−2

decay at large k. At intermediate scales, ζkin can present an
additional intermediate power law, especially for values of
the wall velocity ξw close to the speed of sound cs ¼ 1=

ffiffiffi
3

p
,

and develop a double peak structure, as can be seen in
Fig. 1 and shown in Refs. [28,80].
The total kinetic energy density ΩK, expressed as a

fraction of the critical energy density, is computed from
Eq. (39) at equal times τ1 ¼ τ2 ¼ τ,

ΩK ¼
Z

∞

0

Ekinðτ; τ; kÞdk ¼ E�
kin

R�
K; ð42Þ

where we have used Eq. (41), and7

K ≈
Z

∞

0

ζkinðKÞdK; ð43Þ

only depends on the spectral shape, characterizing how
broad is the spectrum around K ¼ 1. The values of K are
listed in Table I for the benchmark phase transitions shown
in Fig. 1. The kinetic energy density ΩK is estimated by the
single-bubble profiles in Ref. [46] as ΩK ≡ κα=ð1þ αÞ,
where κ is an efficiency factor that depends on α and ξw. We
omit the comparison of ΩK found in the sound shell model
with that of Ref. [46] since we focus on the GW production
in the current work. This relation will be explored in an

FIG. 1. Time-independent component of the normalized velocity field UETC spectrum ζkinðkÞ≡ EkinðkÞ=E�
kin [see Eq. (39)], E�

kin
being the maximum value of the spectrum. Numerical results are obtained according to the sound shell model [28], as described in
Ref. [85], for the phase transition strength parameter α ¼ 0.1 and a range of wall velocities ξw ∈ ½0.1; 0.9�. The results are computed in
the cases of exponential (black) and simultaneous (red) bubble nucleations [28]. Vertical dashed lines indicate the wave numbers, kpeakkin ,
where the maxima, E�

kin, are reached. Their numerical values are given in Table I.

7As discussed above, ζkin is not a valid description of the
UETC spectrum at small K. However, the effect on K is
negligible, since ζkin becomes very small in this range of K,
and it does not contribute appreciably to the integral.
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accompanying paper [85] (see also the discussion of
Refs. [24,26–30]).

C. UETC of the anisotropic stress

We consider the UETC of the anisotropic stresses EΠ,
defined in Eq. (21), under the stationary assumption of
Eq. (39). Introducing the normalization of Eqs. (41)–(43)
one obtains,

kEΠðτ1; τ2; kÞ ≃ 2w̄2K3

�
ΩK

K

�
2

CζΠðτ−; KÞ; ð44Þ

where, following Ref. [42], we have defined

CζΠðτ−;KÞ¼
Z

∞

0

P2ζkinðPÞcosðPcsk�τ−ÞdP

×
Z

1

−1
ð1− z2Þ2 ζkinðP̃Þ

P̃4
cosðP̃csk�τ−Þdz; ð45Þ

and used the notation P≡p=k�¼pR� and P̃≡p̃=k�¼ p̃R�.
The constant C is defined such that ζΠðKÞ → 1, in the
K → 0 limit, at equal times, i.e., τ− ¼ 0 (see Table I for
values of C of the benchmark phase transitions),

C ¼ 16

15

Z
∞

0

ζ2kinðKÞ
K2

dK: ð46Þ

The spectral shape is therefore encoded in ζΠ. We note that,
as discussed in the previous section, the UETC of the
velocity field in this limit should be taken from Eq. (40), so
it does not only depend on the time difference τ− when
k ≪ 1=ð2csδτfinÞ.
At equal times, Eq. (45) becomes

CζΠðKÞ¼
Z

∞

0

P2ζkinðPÞdP
Z

1

−1
ð1−z2Þ2 ζkinðP̃Þ

P̃4
dz; ð47Þ

where ζΠðKÞ ≤ 1 is a monotonically decreasing function,
shown in Fig. 2 for the benchmark phase transitions of
Fig. 1. This condition can be understood from the derivative
of CζΠ with respect to K,

C∂KζΠðKÞ ¼
Z

∞

0

P2ζkinðPÞdP
Z

1

−1
ð1 − z2Þ2

×

�
ζ0kinðP̃Þ −

4ζkinðP̃Þ
P̃

�
K − Pz

P̃4
dz: ð48Þ

We find that the term in square brackets is always negative
if ζkinðP̃Þ ∝ P̃n with n ≤ 4 at all P̃, which is indeed the
case. The second term K − Pz is positive for most of the
integration range since it becomes negative only when
z > K=P. Since 1 − z2 is symmetric in z, then the final
integral is almost always negative, unless the term in the
square bracket, once multiplied by P2ζkinðPÞ, has a larger

TABLE I. Numerical values of the amplitudes and peak frequencies that characterize the spectra of the velocity field (columns 3 to 6)
and of GWs (columns 7 to 9), within the sound shell model for exponential (“exp”) and simultaneous (“sim”) types of nucleation
[28,85]. The bubble wall velocities ξw correspond to the benchmark phase transitions shown in Fig. 1, with α ¼ 0.1. The parameters in
the last five columns determine the fit of K3ζΠðKÞ in Eq. (50).

Type ξw 104E�
kin=R� Kpeak

kin K 102ΩK C KGW ðK3ζΠÞpeak K1 K2 b α1 α2

exp 0.1 26.8 1.15 7.49 2.0 1.21 2.03 0.90 1.18 2.39 0.34 0.76 1.22
exp 0.2 25.7 1.28 5.42 1.4 0.94 2.39 1.36 1.59 2.39 1.06 0.66 1.33
exp 0.3 21.6 1.53 5.52 1.2 0.80 3.01 2.41 1.98 3.00 0 0.67 1.10
exp 0.4 16.0 1.80 8.43 1.4 0.76 4.01 4.93 1.99 6.70 0 0.70 1.30
exp 0.5 10.3 2.02 21.95 2.3 0.75 8.44 13.97 2.26 12.81 0.36 0.73 1.31
exp 0.6 5.3 2.28 58.88 3.1 0.75 20.33 68.80 2.79 26.94 0.78 0.68 1.08
exp 0.7 3.2 2.21 88.82 2.9 0.73 56.63 102.37 3.42 91.89 0.42 0.49 1.27
exp 0.8 5.3 2.05 22.98 1.2 0.72 9.53 14.09 1.63 11.94 1.47 1.81 0.39
exp 0.9 5.1 2.04 10.90 0.6 0.68 6.36 9.09 2.33 10.66 0 0.69 1.38
exp 0.99 4.5 2.04 7.95 0.4 0.66 4.99 7.36 2.20 7.82 0 0.73 1.49

sim 0.1 18.2 2.59 10.43 1.9 0.44 3.42 7.51 1.74 3.81 0.92 1.41 2.34
sim 0.2 19.0 2.82 7.08 1.3 0.31 4.03 10.85 2.09 4.04 0.93 1.34 2.13
sim 0.3 16.1 3.29 7.29 1.2 0.26 5.07 18.45 2.56 4.77 1.29 1.39 1.25
sim 0.4 11.6 3.64 11.11 1.3 0.25 6.76 35.29 3.53 10.50 0 0.92 2.39
sim 0.5 7.2 3.85 30.66 2.2 0.25 16.95 102.40 4.20 20.63 0.33 0.85 2.95
sim 0.6 3.7 4.16 84.35 3.1 0.25 40.79 528.01 5.36 44.62 0.75 0.71 2.15
sim 0.7 2.3 4.20 123.32 2.8 0.24 113.65 718.45 7.15 154.60 0.29 0.45 2.86
sim 0.8 3.8 4.06 31.14 1.2 0.23 16.07 97.56 3.14 23.38 1.02 1.70 0.71
sim 0.9 3.6 4.12 14.92 0.5 0.22 10.72 63.57 4.15 16.72 0 0.88 2.74
sim 0.99 3.2 4.13 10.84 0.4 0.22 8.41 52.26 3.96 12.37 0 0.96 2.66
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contribution when K=P < 1 and K=P < z < 1 than in the
rest of the range, but this is not the case for any of the
evaluated spectra (see Fig. 2).
At intermediate K, ζΠ strongly depends on the specific

spectral shape of the velocity power spectrum ζkinðKÞ, and
it requires numerical evaluation of the integral in Eq. (47).
However, in the asymptotic limit K → ∞, indicated by a∞
superscript, Eq. (47) becomes

ζ∞Π ¼ ζ∞kin
K4

Z
∞

0

P2ζkinðPÞdPZ
∞

0

ζ2kinðPÞ
P2

dP
: ð49Þ

Therefore, if the kinetic spectrum decays as ζ∞kin ∼ K−b,
then ζ∞Π decays as K−b−4. However, since P is integrated
from 0 to ∞, it can become of the same order as K and the
power law decay K−b−4 might not be reached exactly. In
particular, we find ζ∞Π ∼ K−5, which is close to the
estimated K−6 slope, for the benchmark kinetic spectra
[see Fig. 2, where dashed lines correspond to the fit in
Eq. (50), with an exact K−5 decay].
We find in Sec. VI that the final GW spectrum is

proportional to K3ζΠ in the limit of short duration of the
GW sourcing, δτfin=R� ≪ 1. For longer duration, the GW
spectrum can deviate with respect to K3ζΠ by a factor Δ̃
(see Sec. VI). In any case, the GW spectrum approximately
peaks at KGW, defined as the wave number where K3ζΠ
takes its maximum value ðK3ζΠÞpeak. The value of KGW

depends on how steep is the negative slope of ζΠ when it
starts to decay around K ∼Oð1Þ; it therefore requires
numerical evaluation of ζΠ using Eq. (47). We give in
Table I the numerical values of KGW and ðK3ζΠÞpeak.

Due to the double peak structure of ζkinðKÞ, which
appears when the wall velocity ξw approaches cs, an
appropriate fit for K3ζΠ is a smoothed double broken
power law,

K3ζΠðKÞ ¼ K3½1þ ðK=K1Þð3−bÞα1 �−
1
α1

½1þ ðK=K2Þð2þbÞα2 � 1α2
; ð50Þ

where K1;2 are the wave number breaks, b is the inter-
mediate slope, and α1;2 are parameters that determine the
smoothness of the transition between slopes. At low K, we
fix ζΠ ¼ 1, as desired, and at large K, we fix ζ∞Π ∼ K−5. We
note that, in general, K2 is not necessarily equal to KGW.
We show the corresponding values of K1;2, b, and α1;2,
found for the benchmark phase transitions of Fig. 1,
in Table I. We note that some ζΠ are already well-
approximated by a single broken power law since they
do not present a double peak structure, especially for
ξw ≲ 0.5 and ξw ≳ 0.8.
The exact values of the amplitude ðK3ζΠÞpeak, the

frequency breaks K1;2, and the intermediate slopes highly
depend on the specific spectral shape of the velocity power
spectrum ζkin. According to the sound shell model,
Refs. [26,28] proposed that the two peaks are determined
by the inverse mean size of the bubbles, 1=R�, and the
inverse sound shell thickness, 1=ðR�ΔwÞ, where Δw ¼
jξw − csj=cs. Similar dependencies are found in numerical
simulations [24,25,27,29,30]. We explore the relations
between the phase transition parameters and the shape of
the anisotropic stresses, which will ultimately impact the
GW spectrum, in an accompanying paper [85]. In the
following, we study the spectral shape of GWs once we
know the spectral shape of ζΠ, shown in Fig. 2 for a set of
benchmark phase transitions.

IV. LOW WAVE NUMBER TAIL OF THE GW
SPECTRUM FROM SOUND WAVES

In this section, we study the amplitude of the GW
spectrum analytically, by evaluating its low-frequency limit
k → 0. We do not assume flat space-time but consider an
expanding universe. Following the sound shell model [28],
we adopt the stationary assumption of Eq. (39), assuming
its validity down to k → 0 (see discussion in Sec. III B).
The source is assumed to be stationary but still charac-
terized by a finite lifetime, δτfin. Note that this might
introduce a spurious effect in the final GW spectrum due to
the sharp cutoff of the integrals in time [34]. However, we
deem this not important, given the good agreement of the
GW spectrum evaluated semianalytically following the
sound shell model with the one from numerical simulations
[26,28]. The study of the GW spectrum at all k is presented
in Sec. VI.
In Sec. IVA, we start by collecting the results of Sec. III

to evaluate the GW spectrum, and comment on the

FIG. 2. Normalized spectrum of the anisotropic stresses, ζΠ, for
the kinetic spectra of the benchmark phase transitions shown in
Fig. 1, in the case of exponential nucleation, computed numeri-
cally (solid lines) compared to the fit from Eq. (50) (dashed lines).
ζΠ is multiplied by K3 since this is the relevant contribution to the
resulting GW spectrum (see Sec. VI). The stars correspond to
KGW, where K3ζΠ is maximum (see values in Table I).
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consequences of the expansion of the universe. We find in
Sec. IV B that the GW spectrum follows a k3 scaling at low
k; this is expected from previous analyses, both analytical
[60] and numerical [30,91], but it is in contradiction with
the findings of the original sound shell model of Ref. [28],
which obtains instead that, at scales larger than the peak,
the GW spectrum goes as k9. In Sec. IV C, we reproduce
the calculation of Ref. [28] and show that the k9 behavior is
recovered only when one makes an assumption for the
UETC that is, however, only justified under certain con-
ditions that do not hold in the k → 0 limit. We therefore
claim that the k3 scaling is the correct one in the low-k limit.
Moreover, we find in Sec. IV B that the GWamplitude in

the k → 0 limit is proportional to ln2ð1þ δτfinH�Þ. This
factor becomes quadratic in the source duration parameter
δτfinH� when one ignores the expansion of the universe,
i.e., in the limit δτfinH� ≪ 1. A similar quadratic depend-
ence has also been found in the numerical analysis of
Ref. [37] for acoustic turbulence, as well as for (magneto)
hydrodynamical [(M)HD] vortical turbulence, both ana-
lytically [33,34,42] and numerically [37–43]. However, this
result is in contradiction with the linear dependence in the
source duration usually assumed for stationary UETCs
[24,28,31–33,59,92]. In particular, a linear growth is
assumed for sound waves in analytical (see, e.g.,
Refs. [6,28,49,58,80,83,93,94]) and numerical (see, e.g.,
Refs. [24,25,27,29,30,57]) studies. We investigate this
issue in Sec. V. We show that the linear growth of
Ref. [28], and the suppression factor ϒ ¼ 1 − 1=ðτfinH�Þ
of Ref. [59] for an expanding universe, are valid for
stationary processes only under specific assumptions [33],
which are equivalent to those used inRefs. [28,59].We show
that these assumptions do not hold in the k → 0 limit.
Therefore, the causality tail, proportional to k3, is also
proportional to ln2ð1þ δτfinH�Þ.
InSec.V B,we extendour analysis to a stationaryGaussian

UETC (cf. Kraichnan decorrelation [31,32,34,43,95]) to
show, within a general framework, when the aforementioned
assumptions hold. We find that this occurs when kτc ≫ 1,
where τc is a characteristic time of theprocess (e.g.,δτfin in the
sound shell model). Hence, if δτfin=R� ≫ 1, the slope of
the GW spectrum around its spectral peak, kpeakkin ∼ 1=R�, is
well-described under these assumptions. As discussed in
Sec. VI B, this limit corresponds to low fluid velocities and
correspondingly weak first-order phase transitions.
Indeed, in Sec. VI, we extend our analysis to all k and we

show that, even though the causality tail is proportional to
k3 and follows a quadratic growth with δτfin, the amplitude
around the peak can present a steep slope approaching
the k9 scaling, and can follow a linear growth with δτfin,
when δτfin=R� ≫ 1. Hence, at frequencies k ≫ 1=δτfin, and
when δτfin=R� ≫ 1, the GW spectrum can be approxi-
mately described by the calculation of Refs. [28,59],
reproduced in Appendix B. Including the expansion of

the Universe, the quadratic ðδτfinH�Þ2 and linear δτfinH�
dependencies become respectively ln2ð1þ δτfinH�Þ and ϒ.

A. GW spectrum in the sound shell model

We adopt the stationary assumption of Eq. (39) and
combine Eqs. (15) and (21) to find the GW spectrum today.
After averaging over fast oscillations in time, it becomes

ΩGWðδτfin;kÞ¼ 3w̄2k3T GW

Z
1

−1
ð1− z2Þ2dz

×
Z

∞

0

dp
p2

p̃4
EkinðpÞEkinðp̃ÞΔðδτfin;k;p;p̃Þ: ð51Þ

Note that Eq. (51) gives the present-day GW spectrum, i.e.,
the observable we are generally interested in. While the
source is still active, the GW spectrum would depend not
only on the source duration δτfin ≡ τfin − τ�, but also on the
absolute time τ. During the production phase in the early
universe, in fact, the dependence on τ cannot be averaged
out. We present this case in Appendix A, which is
particularly relevant when one compares it with the results
of numerical simulations: depending on the wave number
span and on the duration of the simulation, it is often
required to take into account the residual dependence on τ
of the GW spectrum, instead of on δτfin only.
The function Δ in Eq. (51) contains the integral over

times τ1 and τ2 of the Green’s functions and the time
dependence of the stationary UETC,

Δðδτfin;k;p;p̃Þ≡
Z

τfin

τ�

dτ1
τ1

Z
τfin

τ�

dτ2
τ2

×cosðpcsτ−Þcosðp̃csτ−Þcosðkτ−Þ: ð52Þ

The product of cosines can be expressed as

cosðpcsτ−Þ cosðp̃csτ−Þ cosðkτ−Þ

¼ 1

4

X
m;n¼�1

cosðp̂mnτ−Þ; ð53Þ

where we have defined p̂mn ≡ ðpþmp̃Þcs þ nk. We
separate the time dependencies using

cosðp̂mnτ−Þ ¼ cosðp̂mnτ2Þ cosðp̂mnτ1Þ
þ sinðp̂mnτ2Þ sinðp̂mnτ1Þ; ð54Þ

so that the integrals over τ1 and τ2 yield

Δðδτfin; k; p; p̃Þ ¼
X

m;n¼�1

Δmnðδτfin; p̂mnÞ; ð55Þ

where we have defined the function
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Δmnðδτfin; p̂mnÞ ¼
1

4
½ΔCi2ðτfin; p̂mnÞ

þ ΔSi2ðτfin; p̂mnÞ�; ð56Þ

and

ΔCiðτ; pÞ≡ CiðpτÞ − Ciðpτ�Þ; ð57Þ

ΔSiðτ; pÞ≡ SiðpτÞ − Siðpτ�Þ: ð58Þ

Even though Δmn is an intermediate function, which needs
to be integrated over p and z to obtain the GW spectrum
[see Eq. (51)], it is still very useful to study its behavior as a
function of both δτfinH� and p̂mn=H�. In Fig. 3, we show
Δmn as a function of δτfinH� for different fixed values
of p̂mn=H�.
In the limit p̂mn ≪ H�, the functions ΔCi → lnðτfinH�Þ

and ΔSi→0, such that Δ→ ln2ðτfinH�Þ¼ ln2ð1þδτfinH�Þ
(see Fig. 3). This limit is very relevant; we show in
Sec. IV B that, indeed, this logarithmic scaling with the
source duration holds also for the GW spectrum in the
k → 0 limit.
If the duration of the production of GWs from sound

waves is short, δτfinH� ≪ 1, the expansion of the universe
can be neglected. As a consequence, τ ≈ 1=H� in Eq. (4),
and the factor 1=ðτ1τ2Þ in the integrand of Eq. (52) becomes
constant, H2�. In this case, we obtain the solution for a flat
(nonexpanding) universe,

Δflat
mnðδτfin; p̂mnÞ ¼

1 − cos½ðp̂mn=H�ÞðH�δτfinÞ�
2ðp̂mn=H�Þ2

: ð59Þ

Since δτfinH� ≪ 1, one has Δflat → ðδτfinH�Þ2 from
Eq. (59), suggesting that the GW spectrum grows quad-
ratically in δτfin. This quadratic scaling also holds for an
expanding universe, since the same limit can be found
from Eq. (56); for p̂mn ≪ H� and δτfinH� ≪ 1, one has
Δ → ln2ð1þ δτfinH�Þ → ðδτfinH�Þ2. These behaviors for a
flat and an expanding universe are shown in Fig. 3 and are
due to the asymptotic limits of the cosine and sine integral
functions, as pointed out in Refs. [33,42].

B. Low-frequency limit

In the previous section, we have shown that the function
Δmn, given in Eqs. (56) and (59) respectively for an
expanding and a flat universe, depends logarithmically
on the duration of the source, ln2ðτfinH�Þ, for small values
of p̂mn=H�. In this section, we compute explicitly the GW
spectrum in the limit k → 0, and confirm that the GW
spectrum inherits the same logarithmic dependence at large
scales. We also show how the k3 scaling, expected from
causality [90], appears in this limit, instead of the k9 scaling
found in Ref. [28].
In the low-frequency limit k → 0, p̃ → p and

p̂mn → ðpþmp̃Þcs. The latter becomes 0 for m ¼ −1
and 2pcs for m ¼ 1. Therefore, the z-dependence in

FIG. 3. Δmn as a function of the duration of GW production δτfinH� ≡ τfinH� − 1, given in units of the Hubble time τ� ¼ H−1� , for an
expanding [blue, Eq. (56)] and a flat [red, Eq. (59)] universe. The four panels show different values of the combined momenta
p̂mn=H� ∈ f10−2; 10−1; 1; 10g. The dashed lines correspond to the asymptotic limits; ðδτfinH�Þ2 when δτfinH� ≪ 1 (red), and
ln2ðτfinH�Þ when p̂mn ≪ H� for an expanding universe (blue). Both asymptotic limits are equivalent when δτfinH� ≪ 1.
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Eq. (51) is reduced only to the function ð1 − z2Þ2, and the
GW spectrum becomes

lim
k→0

ΩGWðδτfin; kÞ

¼ 3w̄2k3
16

15
T GW

Z
∞

0

E2
kinðpÞ
p2

Δ0ðδτfin; pÞdp: ð60Þ

This expression already shows an important result; the GW
spectrum scales with k3 in the limit k → 0, since the
integral in Eq. (60) does not depend on k. We defer the
comparison of this result to the k9 scaling found in Ref. [28]
to Sec. IV C. There, we demonstrate that a simplifying
approximation of Δ used in Ref. [28] leads to an additional
dependence of Δ0 on k. However, this approximation does
not apply in the k → 0 limit, invalidating the k9 behavior at
large scales. In the following, we rather focus on the
dependence of ΩGW with the source duration δτfin.
The Δ0 function that appears in Eq. (60) corresponds to

Δ, given in Eq. (55), in the k → 0 limit,

Δ0ðδτfin; pÞ ¼ lim
k→0

Δðδτfin; k; p; p̃Þ

¼ 1

2
½ln2ðτfinH�Þ þ ΔCi2ðτfin; 2pcsÞ

þ ΔSi2ðτfin; 2pcsÞ�; ð61Þ
which, for a flat (nonexpanding) universe, reduces to

Δflat
0 ðδτfin; pÞ ¼ lim

k→0
Δflatðδτfin; k; p; p̃Þ

¼ 1

2

�
ðδτfinH�Þ2 þ

sin2ðpcsδτfinÞ
ðpcs=H�Þ2

�
: ð62Þ

We find in Eq. (61) a first term, 1
2
ln2ðτfinH�Þ, indepen-

dent of p, and a second term that depends on p and will
enter the integral over p in Eq. (60). We can parametrize the
dependence of the GW amplitude with δτfin by defining a
weighted average of the function Δ0 with the spectral
function ζkin,

Δ̃0ðδτfin; R�Þ ¼

Z
∞

0

ζ2kinðKÞ
K2

Δ0ðδτfin; K=R�ÞdKZ
∞

0

ζ2kinðKÞ
K2

dK
; ð63Þ

where we have used the normalized quantities ζkinðKÞ ¼
EkinðKÞ=E�

kin and K ≡ k=k� ¼ kR�, defined in Sec. III C.
Introducing Eq. (63) into Eq. (60), and using the normali-
zation of Sec. III C for the UETC of the anisotropic
stresses, we find

lim
K→0

ΩGWðδτfin; KÞ

¼ 3w̄2K3T GW

�
ΩK

K

�
2

CΔ̃0ðδτfin; R�Þ; ð64Þ

where E�
kin ¼ ΩKR�=K [see Eq. (42)]. Since the dimen-

sionless kinetic power spectrum ζkin is peaked at Kpeak
kin ¼

kpeakkin R� ∼Oð1Þ (see Fig. 1), we can approximate it as
ζkinðKÞ ∼ δðK − 1Þ in the integrals of Eq. (63). Under this
assumption, Δ̃0ðδτfin; R�Þ → Δ0ðδτfin; 1=R�Þ, showing that
Δ̃0=Δ0 characterizes the deviations with respect to a delta-
peaked kinetic power spectrum. We can now study the
dependence of Δ̃0 with δτfin under this approximation,

Δ̃0ðδτfin; R�Þ ∼
1

2

�
ln2ðτfinH�Þ

þ
�
Ci

�
2cs
H�R�

þ 2cs
δτfin
R�

�
− Ci

�
2cs
H�R�

��
2

þ
�
Si

�
2cs
H�R�

þ 2cs
δτfin
R�

�
− Si

�
2cs
H�R�

��
2
�
: ð65Þ

If csδτfin=R� ≪ 1, from the expansion of the Ci and Si
functions one gets,

Δ̃0ðcsδτfin=R� ≪ 1Þ ∼ 1

2
fln2ðτfinH�Þ þ ðδτfinH�Þ2g

∼ ðδτfinH�Þ2; ð66Þ

where the last estimate holds when δτfinH� ≪ R�H� ≤ 1.
In the opposite limit csδτfin=R� ≫ 1, the contribution from
the Ci and Si functions is oscillating and decaying, and
therefore subdominant. One then expects,

Δ̃0ðcsδτfin=R� ≫ 1Þ ∼ 1

2
ln2ðτfinH�Þ: ð67Þ

The asymptotic behavior at the extremes of the quantity
csδτfinR� is confirmed by Fig. 4, showing the function Δ̃0,

FIG. 4. The function Δ̃0 compensated by its short-duration limit
ln2ðτfinH�Þ. Δ̃0 is shown as a function of δτfincsk

peak
kin , where

kpeakkin ∼Oð1=R�Þ is the spectral peak of the kinetic spectra shown
in Fig. 1 (see dashed lines and values in Table I). The blue dashed
line corresponds to the empirical fit in Eq. (68).
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compensated by the logarithmic dependence ln2ðτfinH�Þ,
for the benchmark phase transitions of Fig. 1. One can
appreciate that almost all curves collapse into one, apart
from small deviations, which are due to the specific spectral
shape of the kinetic spectra ζkinðkÞ around their peak kpeakkin
(see Fig. 1). In all the cases considered, the dependence of
the GW amplitude with δτfin given in Eq. (64) can be
expressed as A ln2ðτfinH�Þ, where A monotonically
decreases around δτfin ∼ ðcskpeakkin Þ−1 between its asymptotic
values, i.e., from 1 to 0.5, as it can be derived approx-
imately from Eqs. (65)–(67). The exact variation of the
function A at intermediate δτfin requires numerical compu-
tation of Eq. (63) for the specific spectral shape ζkin.
However, we show in Fig. 4 that the empirical fit,

A ≈
1

2

�
1þ expð−0.35½δτfincskpeakkin �1.5Þ

�
; ð68Þ

gives an accurate estimate for the evaluated phase transitions.
By taking the low-frequency limit k → 0 of the GW

spectrum, we have found that its amplitude depends quad-
ratically on the duration of theGWsourcewhen δτfin is short,
compared to the Hubble time, and it is proportional to
ln2ðτfinH�Þ in general (see Fig. 4). As previously discussed,
this result is in contradiction with the linear dependence on
the source duration usually assumed for the GW spectrum
from soundwaves, and from stationary processes in general.
We come back to this aspect in Sec. V and extend the
discussion to a generic class of stationary UETC. In the next
Sec. IV C, we instead analyze the k-dependence of the GW
spectrum at large scales, and provide insight on the reasons
why a k9 behavior is found in Refs. [28,59], as opposed to
the usual causal k3 scaling given in Eq. (64).

C. k3 vs k9 tilt in the low-frequency limit

In Sec. IV B, we have found that the GW spectrum scales
proportional to k3 when k → 0 [see Eq. (64)]. The causal k3

branch is, in general,8 in agreement with numerical sim-
ulations of sound waves [24,25,29,30,91] and the recent
analytical derivation of Ref. [60]. However, as mentioned
above, it is in contradiction with the k9 scaling reported in
the sound shell model [26,28,59]. To understand the k3 vs
k9 discrepancy of the GW spectrum, we reproduce in this
section the calculation of Refs. [28,59]. Since Ref. [28]
considers that the duration of the phase transition is short
and hence ignores the expansion of the universe,9 we will

consider the limit δτfinH� ≪ 1 when comparing our results
to theirs.
In order to reproduce the calculations of Ref. [28], we

need to compute the growth rate of ΩGW with the duration
of GW production, δτfin. Note that in Ref. [28], the growth
rate Δ̇ [see their Eq. (3.38)] is defined instead as the
derivative of Δ with respect to cosmic time t. We consider
this interpretation to be misleading since Δ, see Eq. (52),
has been defined after averaging over time and it is
valid only in the free propagation regime at late times
τ ≫ τfin, e.g., at present time τ0 [see Eqs. (11) and (15)].
We show in Appendix A the correct time-dependence
of Δ with conformal time during the phase of GW
production, τ < τfin. We note that using Eq. (55) during
the sourcing could lead to wrong results when comparing,
for example, to the results from numerical simulations
[24,25,27,29,30].
As a present-day observable, we are then interested in the

dependence of the GW spectrum with the source duration
δτfin, so we define Δ0 ≡ ∂τfinΔ. Note that in the current
work, we distinguish Δ0 from Δ̇≡ ∂tfinΔ since we take into
account the expansion of the universe.
We start by performing the change of variables fτ1;2g →

fτ�g in the integral of Eq. (52), with τþ ≡ ðτ1 þ τ2Þ=2 and
τ− ≡ τ2 − τ1. The limits of integration can be found in the
following way. Since τ1; τ2 ∈ ½τ�; τfin�, one has that
τþ ∈ ½τ�; τfin�, and

τ− ¼ 2ðτþ − τ1Þ ¼ 2ðτ2 − τþÞ; ð69Þ

which, since τ1; τ2 ∈ ½τ�; τfin�, leads to the limits

τ− ∈ 2½−δτfinþ ; δτþ�∨ τ− ∈ 2½−δτþ; δτfinþ �; ð70Þ

where we have defined δτþ ≡ τþ − τ� and δτfinþ ≡ τfin − τþ.
Combining both limits we see that, when τþ ≤ τm ≡
1
2
ðτ� þ τfinÞ, the limits of integration for τ− are τ− ∈

2½−δτþ; δτþ�, and when τþ>τm, then τ− ∈2½−δτfinþ ;δτfinþ �
(see Fig. 5). Hence, the change of variables fτ1;2g → fτ�g
in Eq. (52) yields

Δmnðδτfin; p̂mnÞ¼
Z

τfin

τ�

dτ1
2τ1

Z
τfin

τ�

dτ2
2τ2

cosðp̂mnτ−Þ

¼
Z

τm

τ�
dτþ

Z
2δτþ

−2δτþ

cosðp̂mnτ−Þ
4τ2þ− τ2−

dτ−

þ
Z

τfin

τm

dτþ

Z
2δτfinþ

−2δτfinþ

cosðp̂mnτ−Þ
4τ2þ− τ2−

dτ−: ð71Þ

In particular, if we ignore the expansion of the universe,
we can set τ� → 0 and take τ1τ2 ≈ 1=H2� in Eq. (71), such
that Δmn becomes

8This agreement is not always completely clear, since the
numerical studies of the IR regime of the GW spectrum are
computationally challenging (see discussion in Refs. [30,42]).

9We note, however, that even if the duration of the phase
transition β−1 is short with respect to the Hubble time, the
duration of the GW sourcing from sound waves can last longer,
until the plasma develops nonlinearities or until the sound waves
are completely dissipated [6,96].
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4Δflat
mnðδτfin; p̂mnÞ ¼ H2�

Z 1
2
τfin

0

dτþ

Z
2τþ

−2τþ
cosðp̂mnτ−Þdτ−

þH2�

Z
τfin

1
2
τfin

dτþ

Z
2δτfinþ

−2δτfinþ
cosðp̂mnτ−Þdτ−: ð72Þ

Figure 5 shows the values of the integrand in Eqs. (71)
and (72) as a function of τ�. Ignoring the expansion of the
universe, the integrand is constant in τþ and only depends
on τ− as cosðp̂mnτ−Þ.
If we compare this integral with the one computed in

Ref. [28] [see their Eq. (3.36)], we find that the limits of the
integral are taken to be τþ ∈ ½0; τfin� and τ− ∈ ½−2τþ; 2τþ�.
This corresponds to integrating over τ− according to the
blue limits in Fig. 5 in all the range τþ ∈ ½0; τfin�, hence
including the areas of integration that are not allowed,
limited by the red lines. The inclusion of the upper and
lower right triangles, out of the limits denoted by the red
lines, leads to τ2 > τfin and τ1 > τfin, respectively. Using
these limits of integration, the explicit dependence of the
limits of the integral over τ− on the source duration τfin is

ignored, leading to the wrong value of Δ0, as we
show below.
We now compute the growth rate Δ0 from Eq. (71),10

Δ0
mnðδτfin; p̂mnÞ ¼

1

2τfin
½cosðp̂mnτfinÞΔCiðτfin; p̂mnÞ

þ sinðp̂mnτfinÞΔSiðτfin; p̂mnÞ�; ð73Þ

which can also be directly found from Eq. (56). Ignoring
the expansion of the universe we get, from either Eq. (59) or
Eq. (72),

Δflat0
mn ðδτfin; p̂mnÞ ¼ H�

sinðp̂mnδτfinÞ
2ðp̂mn=H�Þ

: ð74Þ

If one omits the dependence on τfin in the integration limits
over τ− in Eq. (72), the solution to Eq. (3.38) of Ref. [28] is
found, which is equivalent to Eq. (74) with an extra factor
of 2 in the sin function, sinð2p̂mnδτfinÞ.
Figure 6 shows the dependence of the growth rate Δ0

mn,
given in Eqs. (73) and (74), on the combined momenta p̂mn
for different values of the GW source duration δτfin. We
observe that, as δτfin increases, Δ0

mn becomes more con-
fined around p̂mn → 0. Taking into account the relation
between the sinc and the Dirac δ function,

δðxÞ ¼ lim
a→0

sinðπx=aÞ
πx

; ð75Þ

Ref. [28] approximates Eq. (74) in the 1=δτfin → 0 limit,
i.e., for large GW duration,11

lim
δτfinH�→∞

Δflat0
mn ðp̂mnÞ ¼ H�

π

2
δðp̂mn=H�Þ: ð76Þ

This approximation is used in Refs. [28,59] to simplify
the calculation of the integral in Eq. (51). However, it is not
required to compute the GWamplitude, as we have done in
Sec. IV B in the k → 0 limit and we extend in Sec. VI to all
k. We show in the following that it is precisely this
assumption the one that leads to the linear growth with
the source duration and the k9 scaling of the GW spectrum

FIG. 5. The limits of integration for the change of variables
fτ1;2g → fτ�g, with τþ ≡ ðτ1 þ τ2Þ=2 and τ− ≡ τ2 − τ1 in the
τ1;2 ∈ ½τ�; τfin� range corresponds to the region bounded by the
blue and red lines. The extension of the blue lines up to τfin
indicates the region considered for the same integration in
Ref. [28], which thus ignores the bounds given by the red lines.
For illustration, we show contour values of the integrand
multiplied by H2� for an expanding [Eq. (71), upper panel]
and a flat [Eq. (72), lower panel] universe, with p̂mn=H� ¼ 5.

10The derivative can be taken from the integral over τ1;2 or
from the integral over τ�. The dependence of the integration
limits on τfin is simpler in the former case after using the correct
limits (see Fig. 5) but both computations lead to the same result.

11Equation (76) is equivalent to Eq. (3.39) in Ref. [28] after
taking into account the extra factor of 2 [see text below Eq. (74)]
and that their Δ is defined with an extra 1

2
factor [see their

Eq. (3.36) compared to Eq. (52)].
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when k → 0. We also show in Sec. V that this assumption is
equivalent to the one usually taken for stationary processes
that decay very quickly with the time difference τ−
[31–35,43,95]. However, the UETC found in the sound
shell model is a periodic function in τ− [see Eq. (39)] so this
assumption is, in general, not justified.
On the other hand, when k is large and oscillations over

τ− become very rapid, this assumption might become
justified. In such circumstances, as we show in Sec. VI,
the expression computed in Appendix B, based on this
approximation, can describe the GW spectrum in the
regime k ≫ 1=δτfin and, in particular, around the spectral
peak if δτfin=R� ≫ 1. One can understand this by noting
that the limit leading to Eq. (76) is equivalent to
considering p̂mnδτfin → ∞. At low and moderate k, in
general, this limit does not hold, since p and p̃ are
integrated from 0 to ∞. However, when kδτfin → ∞, this
assumption is valid, since Δmn is symmetric in p̂mn and
then p̂mnδτfin → ∞.
We note that this approximation is only valid when kδτfin

becomes sufficiently large, not when τ is large, since Δ0 is
the growth with respect to δτfin. The assumption of
asymptotically large δτfin is not justified for GW production
from sound waves and it is in contradiction with the
assumption that the expansion of the universe can be
ignored, so expansion becomes relevant in this regime.
In general, we find that Δ0

mn is widely spread along a
broad range of p̂mn ≠ 0 for short and moderate (around one
Hubble time) duration (see Fig. 6). Its maximum value at
p̂mn ¼ 0 is 1

2
δτfinH�, as can be inferred from Eq. (74). For

longer sourcing duration, one can no longer ignore the

expansion of the universe and we find that the growth rate
at p̂mn ¼ 0 decreases to 1

2
lnðτfinH�Þ=τfin (see blue and red

dots in Fig. 6). Therefore, the integral over p and z in
Eq. (51) includes non-negligible contributions from
p̂mn ≠ 0 that are being ignored if one uses Eq. (76).
We now explicitly show how this approximation affects

the limit k → 0 of the GW spectrum, computed in
Sec. IV B. Denoting Ω0

GW ≡ ∂τfinΩGW as the growth rate
of the GW spectrum and using Eqs. (64) and (76),
we find,

lim
K→0

Ω0
GWðδτfin; KÞ ¼

8π

5
R�w̄2K3T GW

�
ΩK

K

�
2

×
Z

∞

0

ζ2kinðPÞ
P2

δðK − 2PcsÞdP; ð77Þ

where, following Ref. [28], we have further assumed that
p̂mn only cancels when m ¼ 1 and n ¼ −1, and Δ0

0 →
1
2
H�π δð2csp − kÞ ¼ 1

2
ðH�R�Þπ δð2csP − KÞ. We note

that this additional assumption does not take into account
the case m ¼ −1, such that pþmp̃ ¼ 0, which always
holds when k → 0. From Eq. (62), one can see that the
m ¼ −1 case would include in Ω0

GW a linear term in δτfin
that would lead to the quadratic scaling and a function
proportional to k3 when k → 0 that would dominate over
the k9 term. Therefore, the k9 scaling appears due to the
inclusion of a k dependence in the integral over p of
Eq. (77) and due to neglecting the leading-order term when
k → 0. The extension of Eq. (77) to all values of k is shown
in Appendix B.

FIG. 6. Function jΔ0
mnj=H� for an expanding [blue, Eq. (73)] and a flat [red, Eq. (74)] universe as a function of p̂mn=H� for different

GW sourcing duration δτfinH� ∈ f10−2; 10−1; 1; 10g.
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The integral in Eq. (77) is directly computed by sub-
stituting P ¼ K=ð2csÞ,

lim
K→0

Ω0
GWðδτfin; KÞ ¼

32π

5
c2sR�w̄2

× KT GW

�
ΩK

K

�
2

ζ2kinðKÞ: ð78Þ

Therefore, we find that the GW spectrum in the k → 0

regime is proportional to Kζ2kinðKÞ. For irrotational fields,
ζkin ∼ Ka with a ≥ 4 (see Sec. III B) and, for the kinetic
spectra of the benchmark phase transitions of Fig. 1, we
find a ¼ 4. Therefore, one finds that the GW spectrum is
proportional to K2aþ1 ¼ K9 in this case, as argued in
Ref. [28]. As discussed above, this result is a consequence
of the assumption that the growth rate Δ0 can be approxi-
mated as a Dirac δ function [see Eq. (76)]. The calculation
using the stationary UETC found in the sound shell model
[see Eq. (39)] in the k → 0 limit has been presented in
Sec. IV B, where we recover the low frequency scaling with
k3 as expected by causality [see Eq. (64)]. We note that this
result also holds when one takes into account the expansion
of the universe.

V. GW PRODUCTION FROM
STATIONARY PROCESSES

In Secs. IVA and IV B, we have shown that the
dependence of the GW amplitude in the k → 0 limit with
the source duration is ln2ðτfinH�Þ, which becomes quad-
ratic when the duration is short. In addition, we have shown
in Sec. IV C that the approximation of the growth rate Δ0,
given in Eqs. (73) and (74), as a Dirac δ function [see
Eq. (76)], taken in Refs. [28,59], leads to the conclusion
that the GW spectrum is proportional to k9 in the k → 0

limit. We have found that this scaling is actually k3 as
expected from causality and found in numerical studies. In
addition, from Eq. (78) we directly find that since Ω0

GW
does not depend on τfin, then ΩGW ¼ δτfinΩGW, which
corresponds to the assumed linear growth with the source
duration. Hence, this result is also a consequence of the
aforementioned assumption, which does not hold in the
k → 0 limit. We note that this is not necessarily the case at
all k, however, as we show in Sec. VI, it can give an
accurate estimate of the GW amplitude at k ≫ 1=δτfin.
To understand the transition from the quadratic to the

linear growth of ΩGW with δτfin as k increases, let us now
generalize our study to a velocity UETC described by an
arbitrary stationary process, Ekinðτ1;τ2;kÞ¼EkinðkÞfðτ−;kÞ,
where fðτ−; kÞ ¼ cosðkcsτ−Þ in the sound shell model. In
the general case, the function Δ in Eq. (52) is

Δðδτfin; k; p; p̃Þ ¼
Z

τfin

τ�

dτ1
τ1

Z
τfin

τ�

dτ2
τ2

× fðτ−; pÞfðτ−; p̃Þ cosðkτ−Þ: ð79Þ

Following Ref. [33], we take the change of variable
τ2 → τ−,

Δðδτfin; k; p; p̃Þ ¼
Z

τfin

τ�

dτ1
τ1

Z
τfin−τ1

τ�−τ1

dτ−
τ− þ τ1

× fðτ−; pÞfðτ−; p̃Þ cosðkτ−Þ: ð80Þ

The characteristic linear growth of stationary processes
[24,28,31,32,59] is found when inverting the order of
integration in Eq. (80) is allowed [33]. This is justified
if the function fðτ; kÞ becomes negligibly small in the range
τ < τ� − τ1 and τ > τfin − τ1 for all τ1 ∈ ðτ�; τfinÞ, such that
the integral over τ− can be extended to τ− ∈ ð−∞;∞Þ and
the limits of integration do not depend any longer on τ1
[33]. This condition can be justified, for example, when the
UETC decays as a Gaussian function (e.g., Kraichan
decorrelation [95]) as we show in Sec. V B. On the other
hand, when fðτ; kÞ is a periodic function (e.g., the UETC
found in the sound shell model) this condition is, in general,
unjustified, unless f becomes sufficiently oscillatory in τ−.
This is the case in the kτ− → ∞ limit, where the limits of
integration already include several oscillations, so that
extending the limits to �∞ does not affect drastically
the result of the integral. This approximation holds in the
regime assumed in Ref. [28], kδτfin → ∞ (see discussion in
Sec. IV C). Under this assumption, we find

Δðδτfin; k; p; p̃Þ ¼
Z

τfin

τ�

dτ1
τ1

Z
∞

−∞

dτ−
τ− þ τ1

× fðτ−; pÞfðτ−; p̃Þ cosðkτ−Þ: ð81Þ

In particular, if one ignores the expansion of the universe,
the integral over τ1 directly yields the linear dependence
with δτfin,

Δflatðδτfin; k; p; p̃Þ

¼ H2�δτfin

Z
∞

−∞
dτ−fðτ−; pÞfðτ−; p̃Þ cosðkτ−Þ: ð82Þ

A. Sound-shell model UETC

When we use the UETC found in the sound shell model
[see Eq. (39)], the solution to Eq. (82) is

Δflat
mnðδτfin; p̂mnÞ ¼

H2�δτfin
4

Z
∞

−∞
cosðp̂mnτ−Þdτ−

¼ π

2
δτfinH�δðp̂mn=H�Þ; ð83Þ

which is equivalent to Eq. (76). Therefore, we find that, as
mentioned above, the assumption to find Eq. (82) and the
one used in Ref. [28] to find Eq. (76) lead to the same
result.
Including the expansion of the Universe, there is still a

dependence on τ1 in the integral over τ− in Eq. (81). With
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the change of variables fτ1;2g → fτ�g, the term due to the
Universe expansion is τ1τ2 ¼ τ2þ − 1

4
τ2− [see Eq. (71)]. In

Ref. [59], the term τ1τ2 is approximated as τ1τ2 ∼ τ2þ [see
their Eq. (5.22)]. This is equivalent12 to the omission of the
dependence on τ− in the term 1=ðτ− þ τ1Þ of Eq. (81),
yielding

Δðδτfin;k;p;p̃Þ

¼H�ϒðδτfinÞ
Z

∞

−∞
dτ−fðτ−;pÞfðτ−; p̃Þcosðkτ−Þ; ð84Þ

where ϒ is the suppression factor defined in Ref. [59] and
used in recent literature to account for the expansion of
the universe in the GW production from sound waves
[80,83,94],

ϒðδτfinÞ ¼
Z

τfin

τ�

dτ1
H�τ21

¼ 1 −
1

τfinH�
: ð85Þ

This function reduces to the linear growth ϒ → δτfinH� in
the limit δτfinH� ≪ 1, yielding Eq. (82) in the case of a flat
(nonexpanding) universe. Again, substituting the UETC of
Eq. (39) in Eq. (84), one finds

Δmnðδτfin; p̂mnÞ ¼
π

2
ϒðδτfinÞδðp̂mn=H�Þ: ð86Þ

The results presented above are justified only in the
asymptotic limit kδτfin → ∞, since this is the limit of
validity of the assumptions introduced to invert the order of
integration over τ1 and τ− (or over τþ and τ−). In particular,
these assumptions imply that the dependence of Δ on δτfin
is encoded solely in the suppression factorϒ [see Eq. (84)],
which, in the limit of a short GW source, is linear,
ϒ ∼ δτfinH�.
The calculation of the integral over τ1 and τ2, performed

in Sec. IV B in the k → 0 limit without any simplifying
assumptions, leads, instead to a dependence with τfin
characterized by Δ̃. This function is given in Eq. (63) in
the k → 0 limit and even though it depends on the spectral
shape, it is found to always be

Δ̃0ðδτfinÞ ≃ A ln2ðτfinH�Þ; ð87Þ

where A∈ ½0.5; 1� [see Fig. 4 and Eq. (68)]. Moreover,
Eq. (87) reduces to ðδτfinH�Þ2 when δτfin is short. Its
extension to all k is studied in Sec. VI, where we find that,
when k ≫ 1=δτfin, the suppression factor ϒ can be found
and if, in addition, the peak is in this regime (δτfin=R� ≫ 1),
then it is relevant to describe the GW spectrum around
its peak.

B. Kraichnan decorrelation

Let us consider a stationary process, described by a
function fðτ−; kÞ, that does not decay fast enough in τ− out
of the integration limits in Eq. (80), and does not include
many periodic oscillations within the integration limits. We
have argued that, in this case, the GW amplitude grows
quadratically with δτfin. To understand this result, we study
the Kraichan decorrelation [95], usually applied to the
study of turbulence [31,32,34,35,43], where f is a Gaussian
function of τ−,

fðτ−; kÞ ¼ exp

�
−
1

2
k2v2swτ2−

�
; ð88Þ

where vswðτ1; τ2; kÞ is the sweeping velocity [95]. We note
that this function is a positive definite kernel only if vsw is a
function of τ1;2, breaking the stationary assumption [43],
and otherwise it is not an adequate description of the
velocity field UETC [34]. However, since we want to
address the importance of the aforementioned assumptions
for a generic stationary process qualitatively in the current
work, we use Eq. (88) with a time-independent vsw for
simplicity.
Using this UETC for the velocity field and taking the

k → 0 limit (such that p̃ → p), Eq. (79) becomes

Δ0ðδτfin; pÞ ¼
Z

τfin

τ�

dτ1
τ1

Z
τfin

τ�

dτ2
τ2

e−p
2v2swτ2− : ð89Þ

The integrand is shown in Fig. 7.
We observe that for large p2v2sw ∼Oð102Þ, it is a good

approximation to extend the integration limits to
τ− ∈ ð−∞;∞Þ, while the same is not true at smaller
p2v2sw ∼Oð1Þ. In this case we find two limiting cases:

(i) if δτfin ≪ 1=ðpvswÞ, we expand e−p
2v2swτ2− ∼ 1, since

τ− ∈ ½0; δτfin� (see footnote 12). Then Eq. (89) yields
the duration dependence found for the UETC of the
sound shell model in the k → 0 limit: ln2ðτfinH�Þ;

(ii) if δτfin ≫ 1=ðpvswÞ, the approximation leading to
Eq. (84) is justified, and we find the suppression
factor ϒ in the k → 0 limit. As discussed above, this
regime can also appear in the sound shell model
when kδτfin ≫ 1.

12Reference [59] uses an integral equivalent to Eq. (71) with an
inverted order of integration,

Δðδτfin; k; p; p̃Þ

¼ 2

Z
δτfin

0

dτ−

Z
τfin− 1

2
τ−

τ�þ1
2
τ−

fðτ−; pÞfðτ−; p̃Þ cosðkτ−Þ
τ2þ − 1

4
τ2−

dτþ;

where the limits of integration are shown in Fig. 5, and we have
used the change of variable τ− → −τ− in the range
τ− ∈ ð−δτfin; 0Þ to find the same integral as the one in the range
ð0; δτfinÞ. We find Eq. (84) by taking the limits over τþ to
ð−∞;∞Þ and neglecting τ2− compared to 4τ2þ.
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Therefore, the resulting dependence of the GW amplitude
with δτfin will change for different vsw and it might be a
combination of the different modes since one needs to
integrate Eq. (63) over p for the general time dependence.
In addition, as mentioned above, vsw is also a function
of τ1 and τ2, to ensure the positivity of the UETC
kernel [43].
We recover the previous result analytically when neglect-

ing the expansion of the universe,13

Δflat
0 ðδτfin; pÞ=H2� ¼

ffiffiffi
π

p
pvsw

δτfinErfðpvswδτfinÞ

−
1 − e−p

2v2swδτ2fin

p2v2sw
; ð90Þ

where ErfðxÞ is the error function. Taking the limits δτfin ≪
1=ðpvswÞ and δτfin ≫ 1=ðpvswÞ, we find the two asymp-
totic behaviors mentioned above,

Δflat
0 ðδτfinpvsw ≪ 1Þ ¼ ðδτfinH�Þ2;

Δflat
0 ðδτfinpvsw ≫ 1Þ ¼

ffiffiffi
π

p
δτfinH�

pvsw=H�
: ð91Þ

Including the effect of the expansion of the universe leads
to the same short-duration regime, and the limit at large
δτfinpvsw becomes

Δðδτfinpvsw ≫ 1Þ ¼
ffiffiffi
π

p
pvsw=H�

ϒðδτfinÞ: ð92Þ

The two asymptotic limits are shown in Fig. 8, compared to
Eq. (89) evaluated numerically. These results show how we
can, in general, find both the quadratic and linear growth
rates, depending on vsw, the specific value of k (even in the
k → 0 limit), and the integrals over p and p̃ performed to
find the GW spectrum sourced by a stationary process.

VI. GW SPECTRUM FROM SOUND WAVES:
RESULTS AND TEMPLATE

In Secs. IV and V, we have studied the GW spectrum in
the low-frequency limit k → 0, aiming to understand
two characteristic features; the k3 scaling, and the ampli-
tude evolution with respect to the duration of the source.

FIG. 7. Integrand leading to the value of Δ0 assuming
Kraichnan decorrelation for p2v2sw ¼ 1 (upper panel), 10
(middle), and 100 (lower), in the k → 0 limit.

FIG. 8. Dependence of the GW amplitude in the k → 0 limit
with the duration of the GW sourcing δτfin for a Kraichnan
decorrelation with pvsw ¼ 12 for a flat (red) and an expanding
(blue) universe. The two asymptotic limits are separated at
δτfin ¼ 1=ðpvswÞ, showing the ðδτfinH�Þ2 scaling below this
limit, and the suppression factor ϒ above the limit.

13In this case, one can find an analytical expression for any
wave number k, here avoided for the sake of brevity.
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The present section is dedicated to the study of the shape of
the GW spectrum at all frequencies.
For a direct comparison of our results for sound waves to

those for other sources, e.g., decaying vortical turbulence,
we adopt a similar normalization as in Ref. [42] (see also
Sec. III C).

A. GW spectral shape

With Eq. (64) the GW spectrum can be expressed in
terms of a normalized spectrum, ζGW,

ΩGWðδτfin;R�;KÞ¼ 3w̄2K3T GWC
�
ΩK

K

�
2

× Δ̃0ðδτfin;R�ÞζGWðδτfin;K;R�Þ: ð93Þ
In order to describe the spectral modifications of ζGW with
respect to ζΠ, we introduce the function Δ̃≡ ζGW=ζΠ. Then
Eq. (93) becomes

ΩGWðδτfin; R�; KÞ ¼ 3w̄2K3T GW C
�
ΩK

K

�
2

× ζΠðKÞΔ̃0ðδτfin; R�ÞΔ̃ðδτfin; R�; KÞ: ð94Þ
Δ̃ generalizes Eq. (63) to all values of k and δτfin,

Δ̃ðδτfin; R�; KÞ

¼ 1

C ζΠðKÞΔ̃0ðδτfin; R�Þ
Z

∞

0

dPP2ζkinðPÞ

×
Z

1

−1
ð1 − z2Þ2 ζkinðP̃Þ

P̃4
Δðδτfin; k; p; p̃Þdz: ð95Þ

By construction we find that Δ̃ → 1, when Δ does not
depend on p nor k, i.e., in the short-duration regime, or in
the k → 0 limit.
Hence, the parameters that determine the modifications

of ζGW with respect to ζΠ are the source duration δτfin, and
the characteristic scale R� ¼ 1=k�.
Depending on how k compares with the inverse

source duration 1=δτfin, the GW spectrum presents different
behaviors.
In the regime where k≲ 1=δτfin, studied in Sec. IV,

Δ̃ → 1. The dependence of the GW spectrum on the source
duration δτfin is then fully encoded in Δ̃0 ¼ A ln2ðτfinH�Þ,
with A∈ ½0.5; 1� [see Eq. (68)]. The amplitude in this
regime does not depend on R�, whose dependence only
appears through the self-similar K ≡ kR�. At the same
time, the dependence on K survives in K3ζΠ, which, as
shown in Fig. 2, follows a broken-power law that can be fit
using Eq. (50).14 The amplitude of the GW spectrum
depends on the specific spectral shape of the kinetic

spectrum via the constants K and C [see Eqs. (43) and
(46)]. Table I presents values for the benchmark phase
transitions considered here.
At wave numbers k > 1=δτfin, the approximation leading

to Δ̃ ∼ 1 is no longer valid, and the function Δ̃ðKÞ depends
on both δτfin and R�. As a consequence, in this range, the
GW spectrum shows a complex dependence on K and δτfin
that deviates with respect to the simpleK3ζΠ causal growth.
We expect the GW spectrum to transition from the
causal branch at kδτfin ≪ 1, toward the spectrum found
in Refs. [28,59] (see Appendix B), which is valid for
kδτfin ≫ 1, as discussed in Secs. IV and V. This transition
among the two asymptotic limits is, a priori, unknown and
requires a numerical evaluation of Eq. (95).
Numerical examples of the resulting normalized GW

spectra,K3ζGW, are shown in Fig. 9 for the benchmark phase
transitions of Fig. 1, and at different values of δτfin and R�.
We find the predicted K3ζΠ scaling when k < 1=δτfin, with
the amplitude exactly given by Eq. (94) when setting Δ̃ ¼ 1.
A more complex structure appears at k > 1=δτfin, where

Δ̃≡ ζGW=ζΠ plays a major role. To underline some generic
features, we show Δ̃ in Fig. 10 at different δτfin and R�.
In the range 1=δτfin ≲ k < 1=R�, we find Δ̃ ∼ K−2,

leading to the development of a linear GW spectrum in k.
A similar transition from a K3 to K slope in the GW
spectrum is also found for vortical (M)HD turbulence
[37–43], and is analytically described by the constant-in-
time approximation [42].
At larger k, a steep growth,ΩGW ∼ K7, appears just below

the peak of the spectrum.This result is close to theK9 growth
found inRef. [28]. In fact, in this range,1=δτfin ≪ k≲ 1=R�,
motivating the assumption kδτfin → ∞, required to obtain
the K9 spectrum (see discussion in Sec. V). Note however
that, when the source duration becomes a non-negligible
fraction of aHubble time, δτfinH� ≳Oð10−1Þ, the expansion
of the universe starts playing a significant role. In particular,
it modifies not only the dependence of the GW spectrum on
δτfin but also its spectral shape through Δ in Eq. (95).
The peak amplitude of the GW spectrum, which we have

previously estimated to be located at KGW, where K3ζΠ is
maximum, is modified by Δ̃ when the k≲ 1=δτfin limit
does not hold. We find that Δ̃ modifies the position of the
GW peak roughly to K ≈ 0.8KGW (see Fig. 9 and values in
Table I). In addition, Δ̃ adds a dependence of the GW
amplitude on δτfin=R�, shown in Fig. 11. This modification
at the peak is well-approximated by the function
ð1þ δτfin=R�Þ−1. For the benchmark phase transitions,
and the values of δτfin and R� shown in Fig. 10, we find
that the ratio of the numerical values to the fit is between
0.2 and 5 (see dashed lines in Fig. 11).
Around the peak, Δ̃0Δ̃ depends linearly on the suppres-

sion factor, ϒ, and R�H�. This result agrees with the one
derived in Appendix B, following the approximation of
Refs. [28,59], when δτfin=R� ≫ 1, such that the peak 1=R�

14The peak structure in the sound shell model is simple or
double, depending on the specific value of the wall velocity (see
Fig. 1 and Table I).
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is within the kδτfin ≫ 1 regime. For an accurate prediction
of the amplitude at the peak, we thus take this value into
account and multiply it by the value where the function
K3ζΠ is maximal (see Table I).
Finally, at large K > 1, we find that the GW spectrum

decreases as 1=K when compared to K3ζΠ. Since the latter
scales as K−2 (see Fig. 2), the GW spectrum decays as K−3

at large values of k, which agrees with Refs. [28–30].

To compare the resulting spectral shape of GWs to that of
Ref. [28], where the function Δ is approximated by a Dirac
delta function, we show in Fig. 12 the resulting GW
spectra, obtained for a specific benchmark phase transition

FIG. 10. Ratio Δ̃≡ ζGW=ζΠ for the benchmark phase transi-
tions and parameters of Fig. 9. Line colors and styles are the same
as those in Fig. 9.

FIG. 11. Dependence of the GW peak amplitude with δτfin=R�,
normalized to the value in the δτfin → 0 limit. Each dot corre-
sponds to a specific line in Fig. 10. The amplitude shows a
universal trend with the product δτfin=R� that can be approx-
imately fit empirically by the function ð1þ δτfin=R�Þ−1, inter-
mediate black dashed line.

FIG. 9. Normalized GW spectral shape K3ζGW [see Eq. (93)] for the benchmark phase transitions shown in Fig. 1 in the case of
exponential nucleation. For comparison we show K3ζΠ (in black), expected in the range k < 1=δτfin. The modifications with respect to
K3ζΠ occur at k > 1=δτfin, and different colors correspond to different values of δτfin=R�. The exact modifications depend separately on
both R� and δτfin, especially when δτfin=R� ≫ 1. Dotted, dashed, solid, and dash-dotted lines correspond to values δτfinH� of 10−2, 10−1,
1, and 10, respectively. The vertical lines indicate the estimated position of the GW peak, at K ≈ 0.8KGW, where KGW is the position
where K3ζΠ is maximum (see values in Table I). The second peak of ζΠ appears also in ζGW, and is related to the inverse sound shell
thickness 1=ΔR� ≡ ξw=ðR�jξw − csjÞ [26]. Hence, when ξw is closer to cs, the second peak appears far from 1=R�, yielding a broad
plateau around the peak. When ξw diverges from cs, the second peak becomes closer to the first one atK ∼ 1, and the plateau disappears.
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with α ¼ 0.1 and ξw ¼ 0.3, for a range of R� and δτfin. The
calculation of the GW spectra under the assumption of
Refs. [28,59] is given in Appendix B.
We show that the GW spectrum found in Ref. [28] is a

correct description for the bump around and above the peak
when δτfin=R� is sufficiently large (as described above),
after taking into account the correction due to the expansion
of the universe [59]. The transition toward the GW
spectrum in the “infinite duration” limit (given in
Appendix B) is related to the one from the quadratic to
linear growth that we have found in Sec. V B, since the
approximation used to extend the limits of integration over
τ− to �∞ in Eq. (80) is based on the assumption that
kδτfin → ∞. However, additional linear and cubic regimes
appear in ΩGW at frequencies below the peak that were not
found in Refs. [28,59] since the kδτfin ≫ 1 assumption
does not hold in this range of frequencies. Moreover, when
δτfin=R� < 1, the peak is in the regime k� < 1=δτfin, so that
significant modifications of the GW spectrum may appear
around the peak.

B. Estimation of the source duration

Let us now discuss why the variables δτfin and R� are not
completely independent. The characteristic scale R� is
determined by the mean bubble separation, which depends
on the characteristics of the phase transition via β and ξw
[see relation below Eq. (33)].
The evaluation of δτfin requires further numerical studies

to simulate the decay of the sound waves, as well as the
development of turbulence. A first estimation of δτfin is the
eddy turnover time, i.e., the time that it takes the plasma
to develop non-linearities, δτnl ∼ R�=

ffiffiffiffiffiffiffi
ΩK

p
[6], and it

directly depends on R�. Setting δτfin∼δτnl and ΩK∼10−2

for the benchmark phase transitions with α ¼ 0.1 (see
Table I), we find δτfin=R� ∼ 10. For this estimate, the
condition δτfin=R� ≫ 1 is valid, and the prescription of
Refs. [28,59] gives a correct estimate of the amplitude
around the peak. However, it fails at frequencies below the
peak, as expected.
We show in Fig. 13 the GW spectrum found in the

current work and compare it to the one given by Eq. (B3),
based on the assumptions of Refs. [28,59], when we set
δτfin ∼ 10R�. We find that, in this case, the suppression
factor ϒ is justified to describe the growth rate with τfin at
the peak. At frequencies below the peak, we find, in this
case, that the linear growth with k is almost completely
absent and the causality tail, proportional to k3, appears
close to the peak, similar to the results of numerical
simulations [30] and other analytical estimates [60].
However, for the exact dependence with δτfin of the full
spectral shape, we need to use the prescription developed in
the current work. In particular, we find that the causality tail
grows proportional to ln2ðτfinH�Þ.

C. Present-time spectral amplitude

The present-time GW energy density spectrum today
is directly found using Eq. (94) with the transfer func-
tion T GW given in Eq. (13) taking into account the value
of g� at the time of GW generation. We note that the
numerical values in Figs. 12 and 13 are computed using
T GW ¼ 1, so those need to be multiplied by the corre-
sponding value of T GW to produce the GW spectrum at
present time.
Frequencies can be obtained from k using the dispersion

relation of GWs, 2πf ¼ k, and redshifting the mean-size of
the bubbles R� to the present day,

R−1
0 ¼ H�

R�H�

a�
a0

¼ H�
R�H�

T0

T�

�
g0
g�

�1
3

≃
1.65 × 10−5 Hz

R�H�

T�
100 GeV

�
g�
100

�1
6

; ð96Þ

where we have used g0 ¼ 3.91 and T0 ¼ 2.725 K [86,87].

FIG. 12. GW spectrum as a function of kR� for a benchmark
phase transition with α ¼ 0.1 and ξw ¼ 0.3, assuming exponen-
tial nucleation. The results are shown for different values of
R�H�, and δτfinH� ¼ 0.01 (upper panel) and 1 (lower panel). For
comparison, the gray lines correspond to the GW spectrum using
the approximation of Refs. [28,59] [see Eq. (B3)]. The values of
ΩGW are computed using T GW ¼ 1 so they should be multiplied
by Eq. (13), choosing the specific time of generation, to find the
GW spectrum today.
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VII. CONCLUSIONS

We have studied the GW production from sound waves
in a first-order phase transition during radiation domina-
tion. Sound waves are expected to be the dominant
contribution to the SGWB, unless the bubbles run away,
the phase transition is supercooled,15 or the efficiency in
generating turbulence from bubble collisions is large.
We adopt the framework of the sound shell model to

estimate the UETC of the velocity field [26]. For the single-
bubble velocity and energy density profiles, we follow the
description of Ref. [46] and present the details of our
calculation in an accompanying paper [85]. The sound shell
model predicted a k9 growth of the spectrum at small
frequencies k, and a linear dependence on the source
duration δτfin in Ref. [28] that can be generalized to the
suppression factor ϒ ¼ 1 − 1=ð1þ δτfinH�Þ when includ-
ing the effect of the expansion of the universe [59]. With
this work, we have found that their prescription holds only
in the regime k ≫ 1=δτfin. We have addressed this issue and
generalized their results to all frequencies.
Our results show that at small frequencies k → 0, the

GW spectrum presents a causal tail, proportional to k3. The
amplitude of this tail has a universal dependence on
the physical parameters that describe the source. In par-
ticular, it is independent of R�, and it grows with the

duration of the source as ln2ð1þ δτfinH�Þ, which yields
a quadratic dependence when the source duration is short.
Around k≳ 1=δτfin, an intermediate linear spectrum,

ΩGW ∼ k, may appear, extending until a steep slope just
below the peak takes over, which leads to the formation of a
bump around the peak. When we estimate the duration of
the GW sourcing as the time scale for the production
of non-linearities in the plasma, we find that, for the
benchmark phase transitions considered in this work with
α ¼ 0.1, δτfin=R� ∼ 10. In this case, the linear regime in
ΩGW is almost absent, and the GW spectrum soon devel-
ops the causal k3 tail at frequencies below the peak. When
δτfin=R� becomes larger, the intermediate linear regime
extends between the peak and the causal tail. This bump is
a characteristic sign of a GW spectrum sourced by sound
waves, since this distinctive feature does not appear in the
GW spectrum sourced by vortical turbulence [37–43].
A similar bump was previously found numerically for
acoustic turbulence in Ref. [37] and confirmed in Ref. [91].
As long as the source duration is sufficiently large,
δτfin=R� ≫ 1, we find that the amplitude around the peak
is well-described by the approach of Refs. [28,59].
Our results reconcile the predictions of the sound shell

model with the numerical simulations of Ref. [30], where a
cubic dependence of the GW spectrum at low k is also
found. Furthermore, they are in agreement with the findings
of Ref. [91], where numerical simulations are also per-
formed, supporting the theoretical results of the sound
shell model.

FIG. 13. GW spectrum as a function of kR� for the benchmark phase transitions shown in Fig. 1. The results are shown for different
values of R�H� ¼ f0.001; 0.01; 0.1; 1g and taking δτfin ¼ 10R�, corresponding to the time expected to develop nonlinearities for
ΩK ∼ 10−2. For comparison, the gray lines correspond to the GW spectrum using the approximation of Refs. [28,59] [see Eq. (B3)]. The
values of ΩGW are computed using T GW ¼ 1 so they should be multiplied by Eq. (13), choosing the specific time of generation, to find
the GW spectrum today.

15In this case bubble collisions may represent the dominant
contribution to the GW signal [49].
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We have presented a theoretical description of the origin
of the linear and quadratic growth with δτfin that can appear
when GWs are sourced by a general stationary process as,
in the sound shell model, by a stationary UETC of the
velocity field given by Eq. (39).
The resulting GW spectrum has been presented in a

semianalytical framework by separating each of the differ-
ent contributions that can affect its final spectral shape and
amplitude. Understanding each of the different contribu-
tions separately is important to test the validity of each of
the underlying assumptions in future work. This framework
allows for direct extensions of our results to include
different models or assumptions.
We present the detailed calculation of the anisotropic

stresses of the velocity field, following the sound shell
model, in an accompanying paper [85]. We have also
addressed the issue of causality that motivated the choice of
initial conditions for sound waves in Ref. [28], but we defer
a detailed discussion of this issue to Ref. [85].
Our work has consequences on the interpretation of

current observations of pulsar timing arrays under the
assumption that the QCD phase transition is of first
order. There are several analyses in the literature that have
used the k9 spectrum and the inclusion of a k3 tail could
lead to significantly different constraints on the phase
transition parameters. This is especially important if one
considers the smallest frequency bins reported by the PTA
Collaborations, which are below the characteristic fre-
quency of the QCD phase transition where the signal is
expected to be dominated by the k3 tail or by the
intermediate linear growth, k. Even at frequencies right
below the peak, we expect the k9 behavior to be shallower.
Especially with the improvement of the PTA data in this
range of frequencies expected in the next years, the study of
the GW spectrum from sound waves with the presented
modifications will become completely relevant.
Similarly, our model has implications for current esti-

mations of the phase transition parameters that can be
probed by LISA when one considers a first-order electro-
weak phase transition, since several analyses are currently
using the k9 model for the GW signal.
At larger frequencies, our model can be used to test

the potential observability of higher-energy phase transi-
tions with next-generation ground-based detectors, like
Einstein Telescope or Cosmic Explorer, and to put con-
straints on the current and forthcoming observing runs
by the LIGO-Virgo-KAGRA Collaborations, especially in
view of the advent of improvements in their sensitivities.

The calculations and routines to compute the radial fluid
profiles and the resulting spectra of the velocity field, the
anisotropic stresses, and the GWs presented in this work
will be publicly available on GitHub [97], alongside those
used in the accompanying paper [85].
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APPENDIX A: FULL TIME EVOLUTION
OF THE GW SPECTRUM

In this section, we compute the time evolution of the GW
spectrum while the source is active, according to the sound
shell model. The GW spectrum is usually averaged over
oscillations in time, as we are interested in its present time
observable, i.e., at very late times τ0 ≫ τfin. However, if the
GW spectrum is compared with the results from simula-
tions to, for example, test the validity of the sound shell
model, it is required to compute its exact time evolution
while the source is active at τ < τfin. The average over
oscillations is then not well-motivated and it could lead to
wrong results. We note that one has to pay particular
attention to this aspect when using Weinberg’s formula as,
for example, in Refs. [29,30], since this approach already
assumes that the GWs have reached their free propagation
regime at all k, which can potentially lead to wrong results
in the IR tail of the GW spectrum, and it does not allow to
study their evolution with time.
We start with the GW spectrum, given by Eq. (11), and

use the UETC of the anisotropic stresses of Eq. (23) with
the stationary assumption for the velocity field UETC, see
Eq. (39). We then find an expression analogous to that of
Eq. (51) but in this case, the function Δ is a time-dependent
expression given as

Δðτ;k;p;p̃Þ≡2

Z
τ

τ�

dτ1
τ1

Z
τ

τ�

dτ2
τ2

cosðcspτ−Þcosðcsp̃τ−Þ

×coskðτ−τ1Þcoskðτ−τ2Þ: ðA1Þ

We can express the product of cos as

cosðcspτ−Þ cosðcsp̃τ−Þ ¼
1

2

X
m¼�1

cosðp̂mτ−Þ; ðA2Þ

with p̂m ¼ csðpþmp̃Þ. Then, using cos kðτ − τiÞ ¼
cos kτ cos kτi þ sin kτ sin kτi for i ¼ 1; 2, one gets,
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Δðτ; k; p; p̃Þ ¼
X
m¼�1

��Z
τ

τ�

dτ1
τ1

½cos kτ cos kτ1 þ sin kτ sin kτ1� cosðp̂mτ1Þ
�

2

þ
�Z

τ

τ�

dτ1
τ1

½cos kτ cos kτ1 þ sin kτ sin kτ1� sinðp̂mτ1Þ
�

2
�

¼ 1

4

X
m;n¼�1

½ΔCi2ðτ; p̂mnÞ þ ΔSi2ðτ; p̂mnÞ þ cos 2kτðΔCiðτ; p̂mnÞΔCiðτ; p̂m;−nÞ

þ ΔSiðτ; p̂mnÞΔSiðτ; p̂m;−nÞÞ�; ðA3Þ

where the functions ΔCimn and ΔSimn have been defined in
Eqs. (57) and (58). We note that if one uses Eq. (56)
substituting τfin → τ, Eq. (A3) is not recovered, since the
latter presents an additional term that is relevant during the
phase of GW production. Hence, when comparing to
numerical simulations, one should use Eq. (A3) to study
the validity of the stationary assumption for the UETC
found in the sound shell model.

APPENDIX B: GW SPECTRUM IN THE
INFINITE DURATION APPROXIMATION

In this section, we take the approximation ofΔ as a Dirac
delta function [see Eq. (86)] that has been used in
Refs. [28,59] to find the GW spectrum from sound waves
in the sound-shell model approximation. We have shown in
Secs. IVand V that this assumption is not valid in the k → 0
limit and have presented the resulting GW spectrum in
Sec. VI, so we compare here what are the differences in the
resulting spectral shape.
The GW spectrum, which we denote as HH19 (for

Hindmarsh and Hijazi 2019 [28]), is found substituting
Eq. (86) into Eq. (51),

ΩHH19
GW ðKÞ ¼ 3π

2
K2ϒðτfinÞ

H�R�
cs

w̄2T GW

�
ΩK

K

�
2

×
Z

∞

0

PζkinðPÞdP
Z

PþK

jP−Kj
ð1 − z2Þ2 dP̃

P̃3

× ζkinðP̃ÞδðPþ P̃ − K=csÞ: ðB1Þ

Under this assumption, one can perform the integral in
Eq. (B1) over P̃ by substituting P̃ ¼ K=cs − P when
jK − Pj ≤ K=cs − P ≤ K þ P, which yields the condition
P∈ ½P−; Pþ� being P� ¼ 1

2
Kð1� csÞ=cs, and

z ¼ 1

cs
−
Kð1 − c2s Þ
2Pc2s

: ðB2Þ

Then the GW spectrum becomes

ΩHH19
GW ðKÞ ¼ 3π

2
K2ϒðτfinÞ

H�R�
cs

w̄2T GW

�
ΩK

K

�
2

×
Z

Pþ

P−

PζkinðPÞð1 − z2Þ2

×
ζkinðK=cs − PÞ
ðK=cs − PÞ3 dP: ðB3Þ

The resulting GW spectrum is shown in Figs. 12
and 13, compared with the full calculation. We find
that Eq. (B3) provides a good approximation when
k ≫ 1=δτfin.
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