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We examine the contribution of tensor modes, in addition to the dominant scalar ones, on the
temperature anisotropies of the cosmic microwave background (CMB). To this end, we analyze in detail the
temperature two-point angular correlation function CðθÞ from the Planck 2018 dataset, focusing on large
angles (θ ≳ 120°) corresponding to small l multipoles. A hierarchical set of infrared cutoffs are naturally
introduced to the scalar and tensor power spectra of the CMB by invoking an extra Kaluza-Klein spatial
dimension compactifying at about the grand unified theory scale between the Planck epoch and the start of
inflation. We associate this set of lower scalar and tensor cutoffs with the parity of the multipole expansion
of the CðθÞ function. By fitting the Planck 2018 data we compute the multipole coefficients, thereby
reproducing the well-known odd-parity preference in angular correlations seen by all three satellite
missions: Cosmic Background Explorer, WMAP, and Planck. Our fits improve significantly once tensor
modes are included in the analysis, hence providing a hint of the imprints of primordial gravitational waves
on the temperature correlations observed in the CMB today. To conclude, we suggest a relationship
between, on the one hand, the lack of (positive) large-angle correlations and the odd-parity dominance in
the CMB and, on the other hand, the effect of primordial gravitational waves on the CMB temperature
anisotropies.
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I. INTRODUCTION

In an inflationary scenario, primordial energy density
inhomogeneities, due to the unavoidable quantum fluctua-
tions of the primordial field, are the seed of the primary
temperature CMB anisotropies, as well as the large scale
structure of our observable universe today. Usually, temper-
ature anisotropies are mainly attributed to the scalar modes
of the inflaton field, while tensor modes are expected to be
subdominant, therefore hardly distinguishable from the
former and besides its physical interpretation is not
straightforward [1]. On the other hand, common wisdom
usually states that polarization of the CMB remains as the
main hope to detect primordial gravitational waves (PGWs)
produced in the very early Universe [2], as only tensor—and
not scalar—modes can produce B modes of polarization [3].
Note, however, that disentangling B modes of PGWs from
other noncosmological sources (e.g., gravitational lensing)
renders this method rather cumbersome so far. Nevertheless,
future very-high-precision measurements of the CMB polari-
zation [4–6] could uncover a PGW background in this way.
In this work, we include the expected small but maybe

still observable effect of the tensor modes on the CMB

temperature correlations, especially at large angles (low
multipoles), in spite of the big uncertainties including the
cosmic variance [7]. Use will be made of a parity statistic
[8,9] to highlight the long-standing apparent odd-parity
preference (i.e., power excess in odd multipoles and deficit
in even multipoles) shown by data of all three satellite
missions—Cosmic Background Explorer (COBE) [10],
WMAP [11], and Planck [12,13]—in the multipole analy-
sis of the two-point correlation function. Notice that such a
parity imbalance, even to a small degree, questions the
large-scale isotropy of the observable Universe stemming
from the cosmological principle.
In fact, the standard cosmological model can be viewed

as a phenomenological effective theory of an unknown
underlying more general theory yet to be discovered.
Discrepancies, anomalies, or puzzles, which are emerging
from observations with respect to a standard cosmology
scenario [14–18], may have a systematic origin or can be
due to statistical fluctuations. Their persistence, however,
along different probes, implying uncorrelated errors,
strongly suggest the need for new physics beyond the
minimal Standard Model in cosmology and elementary
particle physics. In this paper we will consider a cosmo-
logical (and common) origin to the lack of large-angle
positive correlation and the dominance of the odd multi-
poles over the even ones at low l.
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A. Angular correlations of the CMB
and the Sachs-Wolfe effect

Two categories of temperature fluctuations observed in
the CMB can be distinguished according to the cosmic time
evolution: (a) primary anisotropies, prior to decoupling,
and (b) secondary anisotropies, developing as photons
propagate from the surface of the last scattering to the
observer (us). The former include temperature fluctuations
due to photon propagation under metric perturbations
originated by inhomogeneities of the matter field at the
time of recombination, the so-called Sachs-Wolfe (SW)
effect. This effect shows up at rather large angles from
directions in the celestial sphere, while secondary anisot-
ropies (as well as baryonic acoustic oscillations) rather
affect quite small angles and have been successfully
accounted for by standard cosmology.
The SWeffect will play an important role in our study to

account for the temperature angular distribution, showing a
lack of (positive) correlations at large angle (i.e., θ ≳ 60°)
together with an apparent parity imbalance. Usually, under
some simplifying assumptions, a plateau is expected from
this effect in the angular power spectrum at low l (≲30),
while a sawtooth shape favoring odd-l peaks is actually
observed, later interpreted in this paper.

B. Parity imbalance seen in the CMB

As is well known, nature is parity violating, e.g., in the
electroweak sector of the Standard Model where only left-
handed fermions are active [19]. In this context, it is natural
to ask whether nature would again violate parity through
some gravitational processes, and if this feature could shed
light on the very early Universe itself. In fact, a variety of
sources of gravitational parity violation have been consid-
ered in the literature, see, e.g., Refs. [20–23]. Any of these
could have left an imprint on the net helicity of the gravity
wave background, namely the preferred excitation of one
circular polarization over another.
In the present study we follow the path, started in a

previous paper (see Ref. [24]), where a certain degree of
parity breaking showing up in correlations at large angle in
the CMB radiation was envisaged. To this end, fundamental
fermionic fields (making up a composite scalar inflaton)
were introduced, satisfying periodic and antiperiodic con-
ditions on a Hubble radius in real space. In this way, two
distinct infrared cutoffs, associated with integer and half-
integer Fourier modes of the fluctuating field, emerged
as a source of parity breaking in angular correlations. In
particular, a preference for odd multipoles at large angle
comes out naturally in angular two-point correlations
(see Appendix).
In this paper, however, we will not resort to fermionic

fields as fundamental components of a composite scalar
inflaton field to provide the required periodic and antiperi-
odic conditions, as done in Ref. [24]. Rather, we shall
assume that in the very early Universe a preinflationary

scalar field satisfies certain boundary conditions on an extra
spatial dimension à la Kaluza-Klein (just one for simplic-
ity), to be addressed in more detail in Sec. IV. Thereby,
distinct comoving scales for infrared cutoffs (commonly
related to the inverse radius of an extra dimension com-
pactified as a circle) come into play in temperature angular
correlations, modifying the scalar and tensor power spectra.
The scalar power spectrum is usually parametrized as

PSðkÞ ¼ AS

�
k
k�

�
ns−1

; ð1Þ

where ns is the scalar spectral index and k� is the pivot
scale. The above spectrum, referred exclusively to scalar
modes, would be perfectly scale-free (i.e., ns ¼ 1) if the
Hubble parameter Hinf were strictly constant during infla-
tion. IfHinf evolves slowly, a slight deviation of the spectral
index from unity is expected, and indeed the observations
show that ns ¼ 0.9649� 0.0042 [25].
A near scale-free PSðkÞ would have been generated as

modes with comoving wave numbers k successively
crossed the Hubble radius and classicalized, later reentering
into the Hubble horizon of the observable Universe once
inflation ended. Usually, no lower limit is assumed in the
PSðkÞ spectrum so that in numerical computations of
observables the integration range over Fourier modes is
taken between zero and infinity.
On the other hand, a tensor power spectrum PTðkÞ is

usually parametrized as

PTðkÞ ¼ AT

�
k
k�

�
nT
; ð2Þ

where the tensor spectral index nT is expected to be
negative and small but not vanishing.
From Eqs. (1) and (2), the tensor-to-scalar ratio r is

defined as

r ¼ AT

AS ¼ PTðk�Þ
PSðk�Þ

: ð3Þ

Current limits on r severely constrain many models of
inflation and we will later check that the tensor contribu-
tions computed in this work comply with such constraints.

II. TWO-POINT ANGULAR CORRELATION
FUNCTION OF THE CMB

All three COBE, WMAP, and Planck satellite missions
have observed that the temperature angular distribution of
the CMB is remarkably homogeneous across the sky, with
anisotropies of order 1 part in 105. This observation is, in fact,
one of the main arguments in favor of an inflationary scenario
in cosmology to solve the so-called horizon problem,
together with the flatness and monopole problems [26].
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A powerful test of these fluctuations relies on the two-
point angular correlation function CðθÞ,1 defined as the
ensemble product of the temperature differences with
respect to the average temperature T0 from all pairs of
directions in the sky defined by unitary vectors n⃗1 and n⃗2,

CðθÞ ¼
�
δTðn⃗1Þ
T0

δTðn⃗2Þ
T0

�
; ð4Þ

where θ∈ ½0; π� is the angle defined by the scalar prod-
uct n⃗1 · n⃗2.
The information contained in the angular power spec-

trum of the CMB is basically the same as in the correlation
function, but the latter highlights the behavior at large
angles (small l) where a sizable disagreement between
theoretical expectations and observations has been found
(see, e.g., Refs. [29–32]). In this work, we focus on the
analysis of angular correlations, searching specifically for
imprints from the very early Universe on the temperature
fluctuations.
The temperature two-point correlation function is usu-

ally expanded as

CðθÞ ¼
X
l≥2

ð2lþ 1Þ
4π

ClPlðθÞ; ð5Þ

where PlðθÞ is the order-l Legendre polynomial, and the
sum extends from l ¼ 2 since the monopole and dipole
contributions have been removed from the analysis.
In the following, we will ignore the transfer function and

consider only the SW effect as the main source of primary
anisotropies, as expected on scales larger than ≃1°. Hence,
the multipole coefficients of Eq. (5) can be computed in the
limit of a flat power spectrum PSðkÞ, as

CS
l ¼ 2NS

π

Z
∞

0

du
j2lðuÞ
u

¼ NS

πlðlþ 1Þ ; ð6Þ

where jl is the spherical l-Bessel function and NS stands
for a normalization factor [related to the amplitude AS in
Eq. (1)] to be determined from the fit to observational data.
An overall agreement between the behavior of CðθÞ and

observational points can be achieved if the Cl coefficients
comply with the SW plateau condition [Cl ∼ 1=lðlþ 1Þ at
small l]. However, the χ2d:o:f:

2 resulting from the fit turns
out to be quite unsatisfactory (see Fig. 1) as, e.g., positive

correlations arise at large angle, in contrast to the observed
lack of large-angle correlations for θ ≳ 60°–70° [14],
among other anomalies [33].

III. SINGLE INFRARED CUTOFF
IN THE SCALAR POWER SPECTRA

In order to improve the above-mentioned unsatisfactory
fit, an infrared cutoff kmin was introduced ad hoc to the
CMB power scalar spectrum in Ref. [34], implying a lower
limit umin in the integral of the multipole Cl coefficients
in Eq. (6),

CS
l ¼ 2NS

π

Z
∞

umin

du
j2lðuÞ
u

; ð7Þ

where kmin ¼ umin=rd and rd denotes the comoving dis-
tance to the last scattering surface. The authors of Ref. [34]
introduced the infrared cutoff essentially in a heuristic
way, whose purpose was removing the unseen (positive)
correlations at large scale expected in standard cosmology.
Later, a theoretical interpretation of kmin was given as the
first oscillation mode to leave the Planck domain [35]
within a linearly expanding (without inflation) universe
(see [36]).
In Ref. [37], this study was consistently extended,

focusing on the low-l region of the power spectrum itself,
providing an infrared cutoff value compatible with [34].
Furthermore, in Ref. [38] a suggestive connection between
the lack of correlation at large angles provided by kmin and
the odd-parity preference was shown. Indeed, the observed
downward tail of the CðθÞ function at large angles
(θ ≳ 120°) was nicely reproduced while keeping the good
behavior of CðθÞ over the whole examined angular range,
i.e., 4° < θ ≤ 180°.

FIG. 1. Temperature two-point angular correlation function as a
function of θ from the fit to Planck 2018 data, for the four
different assumptions discussed in the text. The shadowed area
represents one σ error bar.

1See also Refs. [27,28] for a discussion on higher-order
correlation functions.

2Here we apply the statistical test χ2d:o:f:, which is used very
often in particle physics analyses; see, e.g., the Particle Data
Group review [25] for more details. Note that a good description
of the data would correspond to a Pearson χ2 distribution with a
mean close to the number of degrees of freedom (d.o.f.), namely
we aim for χ2d:o:f: ≃ 1, together with a good p-value.
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Notice, however, that a heuristic tuning of the multipole
coefficients (l≲ 10) was required in Ref. [38] in order to
reach a good agreement with data. In a following work [24],
two infrared cutoffs (instead of one) were set in the scalar
power spectrum, providing the observed odd-parity pref-
erence of CðθÞ but avoiding so many fit parameters.
Indeed, based on causality arguments, two maximum

correlation lengths (λevenmax and λoddmax affecting even- and odd-
parity multipoles, respectively) were put forward in
Ref. [24] in correspondence with two different boundary
conditions. Then two comoving wave numbers (kevenmin and
koddmin) were defined accordingly for even- and odd-parity
modes. The existence of such a doublet of (periodic and
antiperiodic) boundary conditions was attributed to funda-
mental fermionic fields making up a composite inflaton [39].
Although following essentially this idea, no fermionic

fields will be invoked in the present paper to get two
different energy scales for the cutoffs. Rather, we will rely
on a Kaluza-Klein (KK) model with an extra spatial
dimension, so that appropriate boundary conditions of a
scalar field (at the very early Universe) would yield even
and odd fields (regarding their Fourier expansion in k
modes) in the observable four-dimensional universe.
Moreover, a similar pattern will be assumed for tensor
fluctuations contributing to the angular correlation func-
tion, to be incorporated to our analysis as a second step.
First, let us examine a simple extra dimension model

providing a theoretical framework and motivation for the
phenomenological assumptions made so far, to be further
developed in the subsequent sections.

IV. MODEL SETUP IN EXTRA DIMENSIONS

In this section we provide a specific scenario where those
cutoffs would arise naturally. We will build a model in five
dimensions (5D) of spacetime, which would lead to a 4D
low-energy theory when the fifth dimension is compacti-
fied. This compactification would lead to the appearance of
4D Kaluza-Klein modes whose spectrum would dictate the
cutoffs we mentioned.
Let us assume that nature at some high scale is five

dimensional (5D). For simplicity, let us also assume for the
moment that there is no curvature and those 5D are flat.
This situation would be described by a 5D Minkowski
metric

ds2 ¼ dt2 − dxidxi − dz2; ð8Þ

where i ¼ 1, 2, and 3, and we denote with z the fifth
dimension. The Universe appears to be 4D, though, and
very precise tabletop experiments do confirm that the
gravitational attraction between two objects of masses
m1 and m2 is the one expected from Newton’s gravity in
4D, namely VðrÞ ∝ m=r.
However, if gravity acted over a larger number of space-

time dimensions (d ¼ 4þ n), the law would be modified to

VðrÞ ¼ GNm
r1þn ;

where GN would be Newton’s strength in nþ 4 dimen-
sions. Assuming the n extra dimensions get compactified,
the previous expression would change into a 4D Newton
law modified by a volume factor that depends on the shape
and size of the n extra dimensions. Current experiments
place a limit on the size of flat compactified extra
dimensions of a few tenths of micrometers, see Ref. [40]
for a recent and most precise limit.
Tiny extra dimensions can arise through a process called

compactification. There are various options to realize the
compactification mechanism, including the presence of
fluxes in Calabi-Yau manifolds. Depending on the con-
figuration of the geometry and the fluxes, one can end up
with different possibilities for a compact extra dimension.
For simplicity, let us assume that the extra dimension is

simply a segment of size L. Fields propagating in this
geometry could be factorized in the so-called KK decom-
position. For any field, one can write their expression as
follows:

Φðxμ; zÞ ¼ ϕðxμÞfðzÞ;

where xμ, with μ ¼ 0…3, are the 4D coordinates and z is
the fifth dimension, z∈ ½0; L�.
For a scalar/fermion field in extra dimensions, their 4D

fields ϕðxμÞ would satisfy the Klein-Gordon/Dirac equa-
tion of motion and the fifth component fðzÞ would satisfy a
wave function equation, which depends on the geometry
and boundary conditions at the two extremes of the interval.
For example, the field Φ could have Neumann or Dirichlet
boundary conditions, namely

∂zΦjz¼z0 ¼ 0 ðNeumann; or þÞ;
Φðz0Þ ¼ 0 ðDirichlet; or −Þ: ð9Þ

Those boundary conditions can be imposed in both
extremes of the interval, at z0 ¼ l0 and z0 ¼ l1, leading to
different options for fields in the extra dimension. From the
4D standpoint, these fields would appear as an infinite
tower of 4D fields (KK tower) with masses determined by
the boundary conditions.
Fields with Neumann boundary conditions at both ends

(z ¼ l0, z ¼ l1) would be called ðþ;þÞ and would exhibit a
massless zero mode. Fields with other boundary conditions,
ð�;∓Þ and ð−;−Þ, would have a KK spectrum with a
lowest KK state (n ¼ 0) with a nonzero mass, providing
an IR cutoff in their spectrum. Those four options for
boundary conditions at z ¼ l0 and l1 have different proper-
ties under the parity z → −z. Indeed,

SANCHIS-LOZANO and SANZ PHYS. REV. D 109, 063529 (2024)

063529-4



ðþ;þÞ and ð−;−Þ are even; and ðþ;−Þ and
ð−;þÞ are odd: ð10Þ

In flat geometries like the one described by the metric in
Eq. (8), the mass spectrum of fields with boundary
conditions ðþ;−Þ and ð−;−Þ would be related as follows:
mð−;−Þ

n

mðþ;−Þ
n

¼ 2nþ2
2nþ1

, where n ¼ 0; 1…. For these 5D fields, the

lowest mass in their spectrum (n ¼ 0) provides a natural IR
cutoff for their physical behavior. The IR cutoffs could be
represented by a letter kS and related by a simple factor 2,

kevenS

koddS

¼ 2; ð11Þ

precisely the factor we would consider when evaluating
their impact on the scalar two-point correlation in the CMB.
Here we have labeled the field with ð−;−Þ as even and
ðþ;−Þ as odd, following the convention in the next
sections. We have also added the subscript S to indicate
the field we consider is scalar.
In addition to scalar or fermion fields, spin-two fields are

unavoidably present in any spacetime geometry. From the
4D standpoint, the KK tower of the graviton spin-two field
must contain a massless state, responsible for 4D gravity,
and a tower of massive fields (KK gravitons) with the same
quantum numbers as the massless graviton.
The condition of a massless state implies that the tensor

field satisfies ðþ;þÞ boundary conditions. This choice
determines the rest of the graviton spectrum. The massive
spin-two fields would follow a 4D Fierz-Pauli Lagrangian
(describing a massive spin-two state) and their interactions
with other species would be driven by the coupling to the
stress tensor [41].
This construction can be generalized to metrics with

curvature in the extra dimension. Those geometries, which
we will call “warped,” have been employed in various
applications, including the AdS/CFT correspondence [42],
in holographic approaches for QCD [43], for superconduc-
tivity [44], and for electroweak interactions [45,46]. Also,
let us mention that successful inflation could be achieved
in these kinds of scenarios by assuming the inflaton is a
pseudo-Goldstone boson and its potential is generated by the
KK contributions of fields in the extra dimension [47].
Warped geometries can be parametrized in terms of a

warp factor wðzÞ to represent classes of geometries given
by a factorizable metric,

ds2 ¼ wðzÞ2ðdt2 − dxidxi − dz2Þ; ð12Þ

where the case wðzÞ ¼ 1=ðkzÞ would correspond to the
anti–de Sitter (AdS) case, but other metrics like the Sakai-
Sugimoto [48], wðzÞ ¼ 1=z3, Hirn-Sanz [43,49], wðzÞ ¼
e−cdðz=l1Þd=z, or the AdS-dilaton [50], wðzÞ ¼ e−z

2=2=z,
have been employed in different physical situations.

In those cases, exact analytic expressions of the KK
spectrum cannot be obtained, but in Ref. [51] closed
expressions for the overall IR behavior of the spectrum
(sum rules) were derived. In particular, a useful sum rule
allows us to obtain the behavior of the even and odd KK
towers in warped extra dimensions,

kevenS

koddS

≃

R l1
l0
wðzÞαðzÞdz R l1

z dz0=wðz0ÞR l1
l0
wðzÞαðzÞdz R z

l0
dz0=wðz0Þ ; ð13Þ

where αðzÞ ¼
R

l1
z

dz0=wðz0ÞR
l1
l0

dz0=wðz0Þ, see [51] for more details. Using

this sum rule, we recover the relation in Eq. (11) for the flat
metric case, wðzÞ ¼ 1.
Moreover, the relation (11) is more general and approx-

imately holds for warped metrics. For example, in the AdS
metric, the KK spectrum will be given by the zeros of
complicated combinations of Bessel functions, see, e.g.,
Ref. [52]. Nonetheless, one can examine the asymptotic
behavior of these relations when mn ≫ ke−πkl1 , where the
Bessel functions approximate to sine and cosine and many
terms drop out. In this approximation, the KK spectrum can
be understood by a simple set of relations,

cos

�
mn

ke−kπl1

�
≈ 0 for odd boundary conditions; and

sin

�
mn

ke−kπl1

�
≈ 0 for even boundary conditions; ð14Þ

which leads to the same approximate behavior of the lowest
modes (n ¼ 0) as in the flat extra-dimensional case, namely

kevenS

koddS

≃ 2 for warped metrics: ð15Þ

Moreover, one can relate the KK tower of spin-two
fields, KK gravitons, to other fields (fermions or scalars)
propagating in the extra dimension. In flat geometries, the
first KK graviton [coming from a ðþ;þÞ field] would have
its mass at the same value as the ðþ;−Þ lowest mode of a
scalar or fermion field, although this relation can be
modified in the presence of curvature, typically leading
to kT > koddS , as explained in Refs. [41,53].
The second KK-graviton state could also contribute to

the tensor correlations. The mass would be double the first
KK graviton, leading to a relation for the first two states in
the KK-graviton spectrum k0T ≃ 2kT .
To summarize, fields propagating in an extra dimension

exhibit a 4D spectrum that depends on the geometry and
the boundary conditions. The impact of these fields on 4D
observables can be computed as a sum over contributions
of 4D Kaluza-Klein fields. Below the compactification
scale, those contributions would be dominated by the
lowest KK modes, whose masses provide a natural IR
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cutoff. In the analysis of the CMB spectrum, we will consider that the cutoffs coming from the extra-dimensional scenario
would be as follows:

Scalar cutoffs∶ kevenS ¼ 2koddS ; ð16Þ

Tensor cutoffs ðfrom KK gravitonsÞ∶ kT ≳ koddS and k0T ¼ 2kT: ð17Þ

The scale hierarchy derived from these (infrared) cutoffs
will be taken into account in the next sections when
computing the respective correlation functions for scalar
and tensor perturbations.

V. DOUBLE INFRARED CUTOFF IN THE SCALAR
POWER SPECTRUM

Once provided a theoretical support to the appearance of
a set of infrared cutoffs in the power spectra, let us employ
the same notation as in Ref. [24] for the scalar case,

kodd=evenmin ¼ uodd=evenmin

rd
; ð18Þ

corresponding to two lower cutoffs (instead of one)
applying to the integral of Eq. (17), yielding

CS
lodd=even

¼ 2NS

π

Z
∞

uodd=evenmin

du
j2lðuÞ
u

; ð19Þ

where the lower limit of the integral is now uodd=evenmin ¼
kodd=evenmin =rd, thereby affecting differently the numerical
values of the odd and even coefficients (actually only
for low l), therefore altering the shape of CðθÞ.
From a best fit of CðθÞ to the Planck 2018 data, the

following values for the lower cutoffs were obtained in
Ref. [24]: uoddmin ¼ 2.67� 0.31 and uevenmin ¼ 5.34� 0.62.
In this work, we will recompute these lower cutoffs but
incorporating tensor modes in our analysis, also imposing
the relations from the compact extra dimension in Eq. (16).
The new numerical values for the lower cutoffs do not differ
greatly from the previous ones, but tensor fluctuations will
certainly contribute to angular correlations, as we shall
see soon.
Let us remark by now that the improvement regarding

the parity dominance [affecting the downward tail in CðθÞ
at large angles] resulting from the introduction of two
infrared cutoffs with respect to a single one is rather limited
because the net effect is restricted to the first few multi-
poles: l≲ umin. Let us mention in this regard the so-called
ellipsoidal universe [54–56], where only the quadrupole
term is actually modified, however, yielding a noticeable
effect at large angular scale.
To overcome this drawback and extend the influence of

the lower cutoff(s) on the multipole expansion of CðθÞ, we

will next include the contribution of tensor modes, thereby
modifying further and reaching higher Cl coefficients.

VI. TENSOR MODES AND EXTRA
INFRARED CUTOFFS

In this section we address the effect of primordial gravity
waves generated during inflation on the CMB temperature
anisotropies due to tensor modes, which constitutes the
main goal of this paper. To this end, and taking into account
that we are examining angular correlations, the following
expression will be used to compute the tensor coefficient of
the l multipole according to Ref. [57]:

CT
l ¼ NTðl − 1Þlðlþ 1Þðlþ 2Þ

2π

Z
∞

0

du
j2lðuÞ
u5

¼ NT

15π

1

ðlþ 3Þðl − 2Þ ; l > 2; ð20Þ

in an analogous way as CS
l in Eq. (6), where the normali-

zation factor NT is now related to the amplitude AT in
Eq. (2), analogously as NS for the scalar modes.
Similarly, and following the arguments given in Sec. IV,

we will assume that two lower cutoffs equally apply to the
integral in Eq. (20) such that

CT
lodd=even

¼ NT ðl − 1Þlðlþ 1Þðlþ 2Þ
2π

×
Z

∞

uodd=evenmin ðtensorÞ
du

j2lðuÞ
u5

; ð21Þ

again distinguishing odd from even modes with dif-
ferent lower cutoffs satisfying the ratio uevenmin ðtensorÞ ¼
2uoddminðtensorÞ.

VII. PARITY STATISTIC ANALYSIS

As mentioned in the Introduction, a possible connection
between an “odd universe” (i.e., parity breaking) and the
lack for large-angle correlations has been contemplated in
the literature, though without a clear theoretical explanation
yet (see, e.g., Refs. [29–32]). The deviation from an even-
odd parity balance in angular correlations can be studied by
means of the parity statistic defined in Refs. [8,9],

SANCHIS-LOZANO and SANZ PHYS. REV. D 109, 063529 (2024)

063529-6



Qðlodd
maxÞ ¼

2

lodd
max − 1

Xlodd
max

l¼3

Dl−1

Dl
; lodd

max ≥ 3; ð22Þ

where lodd
max stands for the maximum odd multipole up to

which the statistic is computed. Any deviation from unity
of Qðlodd

maxÞ as a function of lodd
max points to an even-odd

parity imbalance: below unity, it implies odd-parity domi-
nance and a downward tail at large angle in the CðθÞ plot;
above 1, it implies even-parity preference and an upward
tail. As we shall see soon, the parity statistic Qðlodd

maxÞ
plays a crucial role in our work assessing the different
contributions of scalar and tensor modes to the angular
correlations.

A. Physical scale of the infrared cutoffs

From our previous fits to Planck 2018 data in Secs. III
and IV, the resulting scalar infrared cutoffs (as comoving
wave numbers) turned out to be of order

kmin ≃
few
rd

≈ few × 10−4 Mpc−1

→ kmin ≃ few × 10−42 GeV; ð23Þ

where the last figure is expressed in GeV units, which
amounts to a very low value indeed. However, physical
cutoffs have to be obtained by dividing them by the scale
factor, in particular, at the time when compactification
of the extra dimension took place (textra), likely at the
very early Universe. Therefore, the corresponding physi-
cal wave number, basically set by the inverse radius of
the (circular) extra dimension, has to be computed
as kmin=aðtextraÞ.
Assuming that the time of compactification happened at

some time between the end of the Planck epoch tPlanck and
the beginning of inflation tinit, the respective scale factors
aðtPlanckÞ ≃ 10−61 and aðtinitÞ ≃ 10−56 given in [58] lead to
the following physical cutoff range:

kmin

aðtextraÞ
∈ 1019 − 1014 GeV; tPlanck < textra < tinit;

ð24Þ

which contains the grand unified theory scale.
Thus, the existence of an infrared cutoff in the CMB

temperature correlations is consistent with the assump-
tion of an extra dimension with a high compactifica-
tion scale.

VIII. FINAL ANALYSIS

Under the arguments given in Sec. IV based on a KK
model, the following hierarchy for scalar and tensor lower
cutoffs is assumed:

uoddminðtensorÞ ¼ 2uoddminðscalarÞ ¼ uevenmin ðscalarÞ
¼ uevenmin ðtensorÞ=2: ð25Þ

Thus, incorporating the tensor contribution in our analysis
actually does not mean increasing the number of free fit
parameters, except for the extra normalization factor NT,
in Eq. (21). A caveat must be stated: all our following
conclusions depend on this closure relation. Let us stress,
however, that, from our scan of all other possible values of
the lower cutoffs, we can conclude that this particular
hierarchy provides the best fits (within the big uncertainties
of course) to data points analyzed in this work.
To this end, let us first summarize the successive steps

made in this work concerning the set of infrared cutoffs
affecting the scalar and tensor power spectra in order to
improve the χ2d:o:f: of the fits to the Planck 2018 data points.
(a) No infrared cutoff is introduced to the scalar power

spectrum, and the multipole coefficients satisfy the
SW plateau, i.e., Cl ∼ 1=lðlþ 1Þ, l≲ 30.

(b) A single infrared cutoff kmin is introduced to the scalar
power spectrum corresponding to umin ¼ 4.5 in the
integral in Eq. (7).

(c) Two infrared cutoffs kodd=evenmin are introduced to the
scalar power spectrum yielding two lower cutoffs
uevenmin ¼ 2uoddmin ≃ 5.4 in the integral in Eq. (19).

(d) A set of infrared cutoffs kodd=evenmin ðtensorÞ are further
applied to the tensor power spectrum, in addition
to the scalar modes, according to the pattern:
uevenmin ðtensorÞ ¼ 2uoddminðtensorÞ, as theoretically moti-
vated in Sec. IV.

From the above fits the value of the lower cutoff
uoddminðscalarÞ ¼ 2.5� 0.3 is extracted, while all the other
(both scalar and tensor) lower cutoffs are determined by the
pattern associated with the compact extra dimension,
i.e., multiplicative factors 2 relating successive both scaler
and tensor uoddmin and uevenmin following Eq. (25). Note that the
value of uoddminðscalarÞ is slightly smaller (but compatible
within errors) than the value obtained in Ref. [24] without
tensor modes.
Notice that, in addition to the rather modest improve-

ment of the χ2d:o:f: of the fits in Fig. 1 as new cutoffs are
incorporated, the downward tail at large angles is only
reproduced in cases (c) and (d), where the odd-parity
preference can be traced back to the set of infrared cutoffs.
More clearly, Fig. 2 shows the increasing improvement of
the fits as extra cutoffs are successively incorporated to the
fit, reaching χ2d:o:f: ≃ 0.7 in case (d), corresponding to a
p-value ≃0.9. It is also interesting to note that the inclusion
of tensor modes improves the agreement of the expecta-
tion curve and Qlmax points, especially in the interval
10≲ l ≲ 30. This remark constitutes a nontrivial result
with possible consequences, e.g., for effects on CMB
polarization not addressed in this work.
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IX. SUMMARY AND DISCUSSION

We have examined angular temperature correlations of
the CMB, following the trail of previous works [24,34,38].
We first introduced a couple of infrared cutoffs into the
scalar power spectrum, thereby modifying the behavior of
the two-point correlation function CðθÞ and the parity
statistic QðlmaxÞ. In this way we were able to bring the
model expectations closer to the Planck 2018 data points.
However, the effect on correlations and parity balance is
limited to rather low multipoles as l≲ 6 and the improve-
ment finally achieved is rather modest.
Thus, in order to further improve the fits of both CðθÞ

and QðlmaxÞ, tensor modes contributing to the CMB
temperature fluctuations were included in the analysis.
Let us note that the possibility of unraveling the influence
of the cosmological gravitational background on the
observed lack of large-angle temperature correlations in
the CMB has been envisaged elsewhere, e.g., [59].
On the other hand, motivated by an extra dimension KK

model, two sets of infrared cutoffs satisfying kevenmin ¼ 2koddmin
were introduced to both the scalar and tensor power spectra.
The resulting lower cutoffs uodd=evenmin affect differently the
CS;T
lodd=even

coefficients in the Legendre polynomial expansion

of CðθÞ, consequently modifying the fits to angular dis-
tributions. The value of χ2d:o:f: for the CðθÞ fit goes from
2.5 [case (a)] to 0.95 [case(b)], a substantial improvement
with respect to the initial assumption of no cutoff at all.
Furthermore, the accordance of the parity statistic QðlmaxÞ
to data largely improves, as can be seen in Fig. 2, reach-
ing χ2d:o:f: ≃ 0.7.
Finally, from our analysis we estimate the value of the

tensor-to-scalar ratio r defined in Eq. (3). To do so, we

employed the ratio CT
l=C

S
l for different (low) l’s computed

from our fits of the correlation function CðθÞ. The follow-
ing expression (from [57]) was used:

r ≈ 0.68 ×
CT
l

CS
l

: ð26Þ

Inserting now the average value hCT
l=C

S
li ≃ 0.04 com-

puted from our fits over the 10 ≤ l ≤ 20 interval (where
the SW plateau should arise for both scalar and tensor
modes), we get the estimate

r ≃ 0.027� 0.003; ð27Þ

which lies under current limits [25]. Let us point out that
the above error bar has been estimated exclusively from
the dispersion of the CT

l=C
S
l values obtained from our

fits, while other no less important uncertainties, like the
theoretical approximations and modeling dependence used
throughout this paper, have not been taken into account.
Therefore, the above r value is intended as a consistency
test of our results and not a precise determination in this
study. We can also cast the above result into usual slow-roll
inflation parameters. For example, using r ¼ 16ϵ, we get
ϵ ≃ 0.0017, within the slow-roll regime.
As a final remark, uncertainties including the cosmic

variance (not considered in this paper), a possible statistical
fluke at large angles, contamination or noncosmological
effects [33,60], or even alternative theoretical explana-
tions [61] must certainly be kept in mind. Nevertheless,
the suggestive accordance achieved between the observed
points and fits, when successive sets of infrared cutoffs are
incorporated into the scalar and tensor power spectra, is
remarkable enough to stress this way of unraveling tensor
modes (from PGWs produced during inflation) showing
up in CMB temperature correlations, besides the usual
search based on the B-mode polarization. In particular, let
us point out that the study of cross-power spectra between,
e.g., temperature and B modes would provide a crucial
information [62]: a non-null signal (contrary to what is
expected from the cosmological principle [63,64]) would
imply a certain degree of parity breaking (such as odd-
parity dominance), which plays a fundamental role in
this paper.
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FIG. 2. Parity statistic QðlmaxÞ versus lmax under the same
conditions as in the caption of Fig. 1, and the measured points by
Planck (red and blue) under application of two different Spectral
Matching Independent Component Analysis (SMICA) masks to
suppress undesired foreground.
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APPENDIX: EVEN VERSUS ODD POLYNOMIALS
AND CHEBYSHEV POLYNOMIALS

The following relations between Legendre poly-
nomials and the square of cosine functions with entire

and half-entire (2π) periods are satisfied, playing a funda-
mental role in the assignments of the infrared cutoffs to
even and odd multipoles in the Legendre expansion of the
correlation function CðθÞ [24]:

P1ðcos θÞ ¼ −1þ 2cos2ðθ=2Þ;
P2ðcos θÞ ¼ −0.5þ 1.5cos2ðθÞ;
P3ðcos θÞ ¼ −1þ 0.75cos2ðθ=2Þ þ 1.25cos2ð3θ=2Þ;
P4ðcos θÞ ¼ −0.7184þ 0.6249cos2ðθÞ þ 1.0937cos2ð2θÞ;
P5ðcos θÞ ¼ −1þ 0.4687cos2ðθ=2Þ þ 0.5469cos2ð3θ=2Þ þ 0.9844cos2ð5θ=2Þ � � � : ðA1Þ

Higher-order Legendre polynomials replicate the same
pattern: even and odd Legendre polynomials either contain
cos2 ½nθ� or cos2 ½ðnþ 1=2Þθ� terms, to be put in corre-
spondence with the integer and half-integer modes in the
Fourier decomposition of the fluctuating field under cyclic
conditions.
Alternatively, the above relations can be written in terms

of Chebyshev polynomials TnðcosðθÞÞ ¼ cos ðnθÞ [65],
showing again the relationship between the parity of

Legendre polynomials and the even/odd cutoffs to compute
the coefficients Cleven=odd ,

P1ðcos θÞ ¼ T1;

P2ðcos θÞ ¼ 0.25þ 0.75T2;

P3ðcos θÞ ¼ 0.375T1 þ 0.625T3;

P4ðcos θÞ ¼ 0.1409þ 0.3124T2 þ 0.5468T4 � � � : ðA2Þ
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