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Hubble constant (H0) tension and tension in the matter fluctuation amplitude (s8) are fascinating puzzles
in cosmology nowadays. The phantom dynamical dark energy model (PDDE), also known as the little
sibling of the big rip, is an abrupt event that can happen in the far future evolution of the universe. A recent
analysis of the PDDE model based on cosmic microwave backround radiation data shows that the model is
a potential candidate to alleviate these tension problems. In this work, we study the background evolution
of the universe within the PDDE model. Analysis based on the SNIaþ BAO þ OHD data shows that
the model successfully explains the late-phase acceleration of the universe. Also, the values of the
cosmological parameters computed by the PDDE model are consistent with those obtained by the ΛCDM
model for the same dataset. However, most of the phantom dark energy models do not give a stable solution
in the asymptotic future. In this regard, we address the PDDE model’s dynamical stability and test the
validity of the generalized second law (GSL) of thermodynamics. We show that the model is dynamically
unstable and violates the GSL. The model does not satisfy the convexity condition, so the universe does not
behave as an ordinary macroscopic system within the PDDE model.
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I. INTRODUCTION

Various cosmological observations revealed that the
present expansion of the universe is accelerating [1–9]. The
ΛCDMmodel is the simplestmodel that explains theobserved
acceleration [10,11]. However, the concordance ΛCDM
model faces the difficulties such as fine-tuning [12], cosmic
coincidence [13], and tension observed in the cosmological
parameters computed using the lower [14–16] and higher [3]
redshift datasets. Numerous alternate cosmological models
have been proposed to tackle these issues and explain the late-
phase acceleration. Some of these models modify the curva-
ture term in the Einstein field equation known as modified
gravity models (see Refs. [17–21]). Other favorites include
models that modify the energy-momentum tensor of the field
equations known as modified dark energy models [22–40].
The phantom dynamical dark energy model (PDDE) that

smoothed the big rip singularity was presented in Ref. [41].
In this model, the Hubble parameter and the scale factor
diverge, but the first derivative of the Hubble parameter
does not blow up and hence the name, little sibling of
the big rip; the event happens at an infinite cosmic time.

In addition, the model was studied by Bouali et al., who put
constraints on the model parameters, which are consistent
with the observation [42]. Further extension of this model,
including the interaction, is presented in Ref. [43]. These
models are found to be as competent as the ΛCDM to
explain the evolution of the universe at the background
level. Recently, Dahmani et al. [44] studied the PDDE
model extensively using the latest observational probes
such as the cosmic microwave backround radiation
(CMBR) [3], Type Ia supernovae (SNe Ia) [45], and baryon
acoustic oscillation (BAO) datasets, which showed that the
model is successful in alleviating the tension problems in
cosmology.
While the success of phantom dark energy models

explains the accelerated expansion of the universe, certain
models in this category exhibit dynamical instability. The
dynamics of phantom cosmologies are presented in [46–49].
The phantom dark energy exerts a negative pressure with an
equation of state parameter less than −1. Such values of the
equation of state parameter require the violation of dominant
energycondition ðpþ ρÞ < 0. Theviolationof thedominant
energy condition leads to the instability of the system since
the satisfaction of the dominant energy condition is a
sufficient condition of the Hawking-Ellis conservation
theorem [50,51]. Physically, this conservation theorem
ensures the stability of the classical vacuum. Hence, for
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phantom dark energy models one cannot guarantee the
stability of the vacuum on the classical level. For instance,
the dynamical stability analysis of the phenomenological
emergent dark energy model was performed in [49]. The
analysis based on the dark energy sound speed showed that
the phantom dark energy dominated epoch is unstable. In
addition, the authors of Ref. [46] considered a specific toy
model where a phantom oscillator is coupled to an ordinary
oscillator where themodel violates the null dominant energy
condition, and hence, the resulting spacetime is stable to a
small linear perturbationwhile it is unstable under the higher
order effects. Furthermore, investigation of the phase space
dynamics of a universe filled with bulk viscous matter,
radiation, and phantom dark energy showed that viscous
phantom solutions with a stable behavior are not allowed
[52]. However, phantom models with stable late-time sol-
utions also exist and are discussed in [53–55]. The phase
space analysis of phantom cosmological models with inter-
acting dark sectors presented in [53,54] lead to stable late-
time solutions corresponding to an accelerating universe.
The phase space portrait of the homogeneous and isotropic
universe by takingdifferent coupling functions betweendark
energymodels andbulk viscous darkmatter is shown in [55].
The critical points and respective eigenvalues for different
dynamical quantities shows the existence of a dynamically
stable universe. These studies show that one cannot guar-
antee a stable universe within phantom dark energy models.
Consequently, the primary objective of this study lies in
testing the dynamical stability of the PDDE model.
The method of dynamical systems is a widely used set of

tools in cosmology to check the asymptotic stability of a
cosmological model [56,57]. The stability of the critical
points is examined using the linear stability theorem [58].
The existence of a future attractor solution can also be
investigated by analyzing the phase space plot. However,
both the phase space and stability analysis fail to provide
information on the stability of the critical point when it is
nonhyperbolic [59,60]. In such a case, the center manifold
theory helps us to understand the system’s behavior by
reducing the dimensionality of the system near that non-
hyperbolic point [58,61]. In the PDDE model, one of the
critical points is nonhyperbolic; hence, we use the center
manifold theory to examine the stability of the model at that
point. Our analysis shows that the PDDE model has no
stable fixed point either in the matter dominated or in the
late accelerating phase.
There exist several studies in the literature focused on the

thermodynamics of the expanding universe [62–67]. We
perform thermodynamic analysis similar to the thermody-
namics of a black hole by treating the universe as a closed
system [68,69]. Bekenstein and Hawking showed that the
entropy of black holes is directly proportional to the area of
their event horizon [70–72]. They also showed that black
holes satisfy the generalized second law [71]. It states that
the sum of the entropy of ordinary matter outside the black

hole and one quarter of the area of the black hole’s event
horizon can never decrease with time [62]. Black hole
thermodynamics can be extended to cosmology by con-
sidering the universe as an isolated thermodynamic system
filled with a cosmic fluid and bounded by some horizon
[68]. In cosmological framework, the apparent horizon is
mostly used instead of the event horizon since the apparent
horizon is a physically significant thermodynamic surface
[68]. As far as the apparent horizon is considered as the
universe’s radius, the generalized second law of thermo-
dynamics is always generally valid [73]. We analyze the
validity of the generalized second law of thermodynamics
within the PDDE model.
The paper is structured as follows. In Sec. II, we present

the phantom dynamical dark energy model. In Sec. III, we
constrain the model parameters using observational data
and discuss the significance of each parameter and its
cosmological implications. In Sec. IV, we study the
evolution of cosmographic parameters. In Sec. V, we
perform the dynamical system analysis to test the dynami-
cal stability of the PDDE model. Further, we study the
entropy evolution and validity of the generalized second
law of thermodynamics (GSL) in Sec. VI. Finally, we
summarize the conclusions of the work in Sec. VII.

II. THE PDDE MODEL

In the standard model of cosmology, we have the cosmo-
logical constant with the equation of state ωΛ ¼ −1. Hence,
the dark energy density ρΛ and the corresponding pressure
satisfy the equation ρΛ þ pΛ ¼ 0. In the PDDE model the
phantom dark energy density ρD and the corresponding
pressure pD satisfies the equation

ρD þ pD ¼ −
α

3
; ð1Þ

where ρD has a specific form given by

ρDðzÞ ¼ ρD0
− α lnð1þ zÞ; ð2Þ

where z is the redshift and ρD0
is the dark energy density at

present [41].Theα is assumed to beapositive constant, and its
nonzero value distinguishes this model from the standard
ΛCDMmodel. Obtaining the equation of state parameter ωD
from Eqs. (1) and (2) is straightforward:

ωD ¼ −
�
1þ α

3ðρD0
− α lnð1þ zÞÞ

�
: ð3Þ

It is evident from Eq. (3) that the present model mimics
quintessence behavior of dark energy (ωD > −1) for α < 0
and reduces to the ΛCDM model when α ¼ 0. In the
following discussion, we focus on the case α > 0, for which
the model shows a phantom behavior (ωD < −1). The non-
relativistic matter is assumed to have its kinetic pressure zero,
and it satisfies the conservation equation
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ρ̇m þ 3Hρm ¼ 0; ð4Þ

where the overdot represents the derivative with respect to
cosmic time, which on solving gives ρm ¼ ρm0

ð1þ zÞ3. In
this work, we mainly focus on the late-phase cosmology.
Hence, we avoid the radiation density as its current value is
negligibly small compared to dark matter and dark energy
densities. Also, the latest CMBR data obtained by the Planck
Collaboration suggest that spatial curvature is consistent with
a flat universe [3]. With these observational constraints, the
first Friedmann equation takes the form

H2ðzÞ ¼ H2
0ðΩm0

ð1þ zÞ3 þ ΩD0
− Ωpdde lnð1þ zÞÞ; ð5Þ

where H0 is the Hubble parameter at present, Ωm0
¼

8πGρm0
=3H2

0 is the present value matter density parameter,
ΩD0

¼ 8πGρD0
=3H2

0 is the dark energy density parameter,
and Ωpdde ¼ 8πGα=3H2

0 is the parameter that signifies the
PDDEmodel. FromEq. (5), when z ¼ 0,H ¼ H0, whereH0

is the Hubble parameter at present. In the extreme past,
z → ∞ð1þ zÞ3 dominated over the lnð1þ zÞ, and hence it is
conclusive that the non-relativistic matter dominated over the
dark energy in the past. In the far future, when z → −1, matter
density tends to zero, anddark energydensity tends to infinity.
Hence, the Hubble rate diverges in this limit while Ḣ is a
finite constant.

III. OBSERVATIONAL CONSTRAINTS
ON MODEL PARAMETERS

The PDDE model has three independent free parameters
H0, Ωm0

, and Ωpdde. The ΩD0
and Ωm0

satisfy the equation
Ωm0

þ ΩD0
¼ 1. Our next aim is to constrain these param-

eters by confronting the model with the observational data.
We adopt the Markov chain Monte Carlo (MCMC) method
for the parameter inference [74]. In this work, we mainly
focus on the late-phase cosmology, and hence, we use
cosmological data obtained at low redshift. The dataset
comprises Type Ia supernovae data taken from the pantheon
sample [45], BAO data [75–78], and observational Hubble
data (OHD) [79]. The fundamental input for calculating the
marginal likelihood of the model parameters is the prior
range for each model parameter. We use a uniform prior
following Ref. [44] for all the parameters. The pantheon
sample consists of 1048 redshift (z) vs apparent magnitude
(m) of Type Ia supernovae in the redshift span 0.01 ≤ z ≤
2.3 [45]. To obtain the apparent magnitude from the theory,
we use the following expression:

mðzÞ ¼ 5log10

�
dLðzÞ
Mpc

�
þM þ 25: ð6Þ

Here, M is the absolute magnitude of the Type Ia super-
novae, and dL is the luminosity distance that can be related to
the expansion rate HðzÞ as

dLðzÞ ¼ cð1þ zÞ
Z

z

0

dz0

Hðz0Þ ; ð7Þ

where c is the speed of light in vacuum expressed in km=s.
The χ2 for the SNe Ia data is computed using the expression

χ2SNIa ¼
X1048
i¼1

½mthðzi; H0;Ωm0
;Ωpdde;MÞ −mobsðziÞ�2
σðziÞ2

; ð8Þ

where mth and mobs are the apparent magnitude computed
using the PDDE model and one obtained by observation,
respectively, and σ is the corresponding error in the
measurement. The BAO measurements include the trans-
verse comoving distance, which is equal to the line of sight
comoving distance for flat space and is expressed as [80]

DMðzÞ ¼ DcðzÞ ¼
c
H0

Z
z

0

dz0

hðz0Þ ; ð9Þ

and the volume averaged angular diameter distance

DVðzÞ ¼
�
cz
H0

D2
MðzÞ
hðzÞ

�
1=3

: ð10Þ

We use BAO data presented in Ref. [80] for the analysis. The
χ2 for the BAO data is obtained using the expression

χ2BAO ¼
XN
i¼1

½Athðzi; H0;Ωm0
;ΩpddeÞ − AobsðziÞ�2
σðziÞ2

; ð11Þ

where Ath and Aobs are the theoretical and observed values of
the physical quantity [DMðziÞ or DVðziÞ] obtained from the
BAO data, respectively, andN is the number of data points in
the BAO measurement. The chi-square degrees of freedom
(χ2d:o:f ) is defined as χ2min=ðn − kÞ, where k is the number of
parameters of the model and n is the total number of data
points [81,82]. The OHD dataset contains 43 redshifts versus
Hubble parameter data in the redshift range 0.07 ≤ z ≤ 2.36
[80,83]. This dataset includes the Hubble parameter obtained
from cosmic chronometers, radial BAO signals in the
distribution of galaxies and BAO signals in the Lyman α
forest distribution. The χ2 for the OHD data can be
computed using the expression

χ2OHD ¼
X43
i¼1

½Hthðzi; H0;Ωm0
;ΩpddeÞ −HobsðziÞ�2
σðziÞ2

; ð12Þ

where Hth and Hobs are the Hubble parameter computed
theoretically using the PDDE model and the corresponding
observed one, respectively. Then the total χ2 is of the form

χ2total ¼ χ2SNIa þ χ2BAO þ χ2OHD: ð13Þ

The parameter set (H0, Ωm0
, Ωpdde, M) that minimizes the

χ2total ¼ −2 lnL, where L is the likelihood, is considered as
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the best-fit parameters. We employed a stable, well tested,
and open source PYTHON implementation of the affine
invariant ensemble sampler for the MCMC, developed by
Goodman and Weare to perform parameter inference. We
also used the multiprocessing module from the PYTHON

standard library to reduce the computation time. For further
details regarding the emcee and its implementation see
Ref. [84]. The best-fit model parameters are presented in
Table I. For the SNIaþ BAOþ OHD dataset, the marginal
likelihood of the model parameters is shown in Fig. 1. The
minimum χ2 obtained is 1064.54 with χ2d:o:f ¼ 0.974. From
Table I, it is clear that the estimated values of H0, Ωm0

, and
M are consistent with the standard values obtained in the
literature [2,3]. The phantom dark energy density Ωpdde that
characterizes the PDDE model is 1 order of magnitude less
than the matter density as expected. We do not expect much
deviation from the ΛCDM predictions. Also, the large value
of the standard deviation, which is comparable to the best-fit

value, indicates that the significance of the nonzero value of
Ωpdde is ∼1σ, which is statistically less significant. At this
juncture, it is important to compare our results with the
results obtained in Ref. [44]. In Ref. [44], the authors
estimated the parameters of the PDDE model using three
different data combinations Planck18, Planck18þ BAO,
and Planck18þ BAOþ Pantheon. The primary focus of
their study was centered around the investigation of the
Hubble tension problem within the PDDE framework.
Hence, they used CMBR data along with the low redshift
datasets. The main results from their analysis is that the
PDDE model can alleviate theH0 and S8 tensions to 3σ and
2.6σ, respectively. On the other hand, our analysis is mainly
focus on the thermodynamic and dynamic stability of the
model. Hence, we estimated the model parameters using low
redshift data since we are interested in the far future stability
of the model. The difference in the cosmological data taken
for the parameter estimation leads to the observed discrep-
ancies between their best-fit results with the present study.
However, the parameter values we found in our analysis are
very similar to the values they found in their study, which
included Type Ia supernovae data.

IV. EVOLUTION OF COSMOGRAPHIC
PARAMETERS

In this section, we examine the evolution of various
cosmographic parameters to understand how well the
PDDE model explains the background evolution of the
universe. The parameter of fundamental importance in
cosmology is the Hubble parameter. The equation for
the Hubble parameter is presented in Eq. (5) and its
evolution against the redshift is depicted in Fig. 2. The
evolution of the Hubble parameter in the PDDE model is
almost similar to the ΛCDM model in the past and at

FIG. 1. The 2D confidence contour for 68% and 95% prob-
abilities and 1D posterior distribution of the model parameters
using the SNIaþ BAOþ OHD dataset. The prior ranges chosen
for model parameters are 40 ≤ H0 ≤ 100, 0 ≤ Ωm0

≤ 1,
0 ≤ Ωpdde ≤ 1, and −20 ≤ M ≤ −18.

TABLE I. The best-fit model parameters of the PDDE model
and its uncertainties within the 1σ confidence limit.

Data SNIaþ BAOþ OHD

H0 68.86� 0.5746
Ωm0

0.291� 0.011
Ωpdde 0.063� 0.059
M −19.39� 0.0157

FIG. 2. The evolution of Hubble parameter (H) with redshift (z)
is plotted for the PDDE model with error band and ΛCDM using
the best-fit model parameters obtained for the SNIaþ BAOþ
OHD data combination.

K. M., NELLERI, and POONTHOTTATHIL PHYS. REV. D 109, 063528 (2024)

063528-4



present. However, its evolution shows a considerable
difference in the asymptotic future. The ΛCDM model
provides a de Sitter solution in the far future evolution
while there exists a big-rip singularity where the Hubble
parameter blows up for the PDDE model. However, this
event is going to happen in the infinite future.
The age of the universe as a function of the scale factor

can be obtained as follows. The Hubble parameter, by
definition, is HðaÞ ¼ ȧ=a, and on rearranging, we get
dt=da ¼ ðaHðaÞÞ−1. Hence, the age of the universe at any
scale factor a is expressed as

ta − tB ¼
Z

a

0

1

aHðaÞ da: ð14Þ

Here, ta is the age of the universe at scale factor a, and tB is
the age of the universe at the big bang, which is assumed to
be zero. The universe’s age with respect to the redshift is
plotted in Fig. 3. The present age of the universe is the age
at z ¼ 0, and the estimated age is 13.86� 0.27 Gyr. The
age of the universe computed for the ΛCDM model is
13.78 Gyr, and the one that is obtained from the CMB data
assuming the standard ΛCDM model [3] is 13.79 Gyr,
which are within the 1σ error band of the age predicted by
the PDDE model.
Following the individual conservation equation satisfied

by matter and dark energy, the evolution of matter energy
density is similar to that of the ΛCDM model. The
evolution of phantom dynamical dark energy is different
from the ΛCDM model. In the ΛCDM model, the dark
energy is just the cosmological constant, while phantom
dark energy is dynamical. However, the phantom dynami-
cal dark energy density becomes indistinguishable from the
cosmological constant at present. The evolution of matter

energy density and dark energy density for the PDDE
model and ΛCDM model are presented in Fig. 4. The
matter density and dark energy density in theΛCDMmodel
are within the 1σ error band of the PDDEmodel throughout
the late-phase evolution of the universe.
The deceleration parameter (q) characterizes the accel-

erating or decelerating expansion of the Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe. It is
expressed as

q ¼ −1 −
Ḣ
H2

: ð15Þ

It is convenient to express Eq. (15) in terms of dimension-
less Hubble parameter h ¼ H=H0 as

q ¼ −1 −
1

2h2
dh2

dx
; ð16Þ

where x ¼ lnðaÞ. Substituting for h2 from Eq. (5), we
obtain the deceleration parameter that varies with the scale
factor as

q ¼ Ωm0
a−3 − 2ΩD0

−Ωpddeð2 ln aþ 1Þ
2Ωm0

a−3 þ 2ΩD0
þ 2Ωpdde ln a

: ð17Þ

The progress of the deceleration parameter with respect
to the redshift is plotted in Fig. 5. The positive value of q
indicates a decelerating universe, and the universe is
accelerating if the value of q is negative. From Fig. 5, it
is evident that the universe made a decelerating to accel-
erating transition. The transition redshift is computed as
zT ¼ 0.69� 0.03 while the transition redshift computed
for the ΛCDM model using the same dataset combination,
SNIaþ BAOþ OHD is zT ¼ 0.70. It is clear that the value

FIG. 3. The age of the universe at each redshift (z) is plotted for
the PDDE model with error band and ΛCDM using the best-fit
model parameters obtained for the SNIaþ BAOþ OHD data
combination.

FIG. 4. Evolution of matter density and dark energy density
against redshift are plotted for the PDDE model with error band
and ΛCDM using the best-fit model parameters obtained for the
SNIaþ BAOþ OHD data combination.
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obtained for the ΛCDM model is within the 1σ error band
of the value obtained using the PDDE model. The present
value of the deceleration parameter is q0 ¼ −0.59� 0.01,
showing that the universe is accelerating at present. The
PDDE model is successful in explaining the recent decel-
eration to acceleration transition that occurred in the recent
past and also the observed present acceleration of the
universe.
We compute the statefinder diagnostic pair (r, s), where r

is the jerk parameter and s (not the snap parameter) is a
parameter constructed out of the jerk parameter and
the deceleration parameter to characterize different dark
energy models and distinguish between them [85]. The
statefinder parameters r ¼ 1 and s ¼ 0 are a fixed point
for the standard ΛCDM model. The jerk parameter is
defined as

r ¼ 1

aH3

d3a
dt3

: ð18Þ

It is convenient to express the r parameter in terms of
reduced Hubble parameter h ¼ H=H0; we obtain (for a
detailed derivation see Appendix A)

r ¼ 1

2h2
d2h2

dx2
þ 3

2h2
dh2

dx
þ 1; ð19Þ

where we have changed the variable from a to x ¼ ln a.
The s parameter is defined in terms of the r parameter and
the q parameter as

s ¼ r − 1

3ðq − 1
2
Þ : ð20Þ

On expressing s in terms of the reduced Hubble parameter,
we get (for a detailed derivation see Appendix A)

s ¼ −
1
2h2

d2h2

dx2 þ 3
2h2

dh2
dx

3
2h2

dh2
dx þ 9

2

: ð21Þ

On substituting the expression of h2 from Eq. (5) in
Eqs. (19) and (21), we obtained the evolution of the r
and s parameters in the PDDE model as

r ¼ 3Ωpdde

2Ωm0
a−3 þ 2ΩD0

þ 2Ωpdde ln a
þ 1 ð22Þ

and

s ¼ −
Ωpdde

Ωpdde þ 3ΩD0
þ 3Ωpdde ln a

: ð23Þ

From Eqs. (22) and (23), it is clear that the r and s
parameters are dynamical quantities. Also, the parameters
ðr; sÞ ¼ ð1; 0Þ are fixed points when Ωpdde ¼ 0. The r-s
trajectory is shown in Fig. 6. It shows that r > 1 and s < 0
until the trajectory reaches the ΛCDM fixed point that
confirms the phantom nature of dark energy density. The
present values of r and s are computed as ðr; sÞ ¼
ð1.09;−0.22Þ showing that the PDDE model is distinguish-
able from the ΛCDM model at present.

V. DYNAMICAL SYSTEM ANALYSIS

Dynamical system analysis is a useful tool in cosmology
to extract asymptotic stability of a cosmological model
[56,57,86,87]. Fundamental input in dynamical system
analysis is the choice of appropriate dynamical variables.

FIG. 6. The statefinder trajectory is plotted for the PDDEmodel
with the model parameters obtained using the SNIaþ BAOþ
OHD data combination. The blue dot represents the ΛCDM
fixed point.

FIG. 5. The progress of deceleration parameter (q) of the
universe with respect to redshift (z) is plotted for the PDDE
model with error band and ΛCDM using the best-fit model
parameters obtained for the SNIaþ BAOþ OHD data combi-
nation. The intersection of the green line represents the present
value of the deceleration parameter (q0).
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In this study, we consider two dimensionless dynamical
variables u and v, defined as

u ¼ ρm
3H2

; v ¼ pD

3H2
: ð24Þ

A system of autonomous differential equations can be
formulated by taking the derivatives of u and v with respect
to the cosmic variable x, and we obtain (for a detailed
derivation see Appendix B)

du
dx

¼ 3uv ¼ fðu; vÞ; ð25Þ

dv
dx

¼ 3 − 3uþ 6vþ 3v2 ¼ gðu; vÞ: ð26Þ

The critical points ðuc; vcÞ are obtained by solving the
equations du=dx ¼ 0 and dv=dx ¼ 0, and we get

ðuc; vcÞ ¼ ð1; 0Þ;
ðuc; vcÞ ¼ ð0;−1Þ: ð27Þ

The stability of the dynamical system near the critical
points can be understood by linearizing the system by
considering a small variation around the critical points

u → uc þ δu; v → vc þ δv ð28Þ

that satisfy the matrix equation

�
δu0

δv0

�
¼

0
BBB@

�
∂f
∂u

�
uc;vc

�
∂f
∂v

�
uc;vc�

∂g
∂u

�
uc;vc

�
∂g
∂v

�
uc;vc

1
CCCA
�
δu

δv

�
: ð29Þ

The Jacobian matrix given in Eq. (29) evaluated at the
critical points (1, 0) and ð0;−1Þ, respectively, are

Jð1;0Þ ¼
�

0 3

−3 6

�
; Jð0;−1Þ ¼

�−3 0

−3 0

�
: ð30Þ

The stability of the critical points is determined by the
eigenvalues of the matrix J. If both of the eigenvalues are
negative, the critical point is a future attractor that is
asymptotically stable. All the trajectories near the critical
point approach that point. If both the eigenvalues are
positive, the critical point is a past-time attractor or an
unstable equilibrium point. All the trajectories near the
critical point will be repelled from the point. If one
eigenvalue is positive and the other negative, the critical
point is a saddle point. Some trajectories will be attracted to
the critical point while others will repel. If one of the
eigenvalue is positive and the other zero, the critical point is
unstable. The positive eigenvalue guarantees that there exist

at least one unstable direction. If one of the eigenvalue is
zero and the other is negative, the linear stability theory
cannot explain the stability of the critical point. If both
eigenvalues are complex numbers of the form β þ iγ and
β − iγ with β > 0 and γ ≠ 0, the critical point is an unstable
spiral. If β < 0 and γ ≠ 0, the critical point is a stable spiral.
If β ¼ 0, the critical point is called a center and the
solutions are oscillatory [58]. Diagonalizing Jð1;0Þ and
Jð0;−1Þ, we obtained the eigenvalues that correspond to
the critical points (1, 0) and (0;−1) as (3, 3) and ð−3; 0Þ,
respectively. The critical point ðρm=3H2; pD=3H2Þ ¼ ð1; 0Þ
corresponds to a fixed point in the matter dominated phase.
Since both the eigenvalues are positive, it represents an
unstable equilibrium point. The critical point ðρm=3H2;
pD=3H2Þ ¼ ð0;−1Þ corresponds to a fixed point in the
far future where matter density is zero and the universe is
completely occupied with vacuum energy. The stability of
this critical point cannot be determined by analyzing the
eigenvalue as the point is nonhyperbolic. The phase space
portrait of the dynamical system is shown in Fig. 7. From
Fig. 7, it is evident that the critical point (1, 0) is an unstable
equilibrium point so that all the trajectories in the neighbor-
hood of this point are repelled out from the point. However,
the stability of the critical point ð0;−1Þ cannot be inferred
from the phase space plot. Here, the linear stability analysis
fails to explain the stability of the critical point. Hence, we
use the center manifold theory to simplify the system by
reducing the dimensionality [58,61,88].
The model has a critical point at ð0;−1Þwith eigenvalues

ð−3; 0Þ. To use the central manifold theory, we shift the
point to the origin or equivalently transform Eqs. (25) and
(B13) into a set of new variables given by

U ¼ u; V ¼ vþ 1: ð31Þ

FIG. 7. The phase space trajectory in the ðρm=3H2Þ-ðpD=3H2Þ
plane for the PDDE model. The red dots represent the critical
points.
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Then, Eqs. (25) and (B13) can be rewritten as

dU
dx

¼ 3UV − 3U; ð32Þ

dV
dx

¼ 3V2 − 3U: ð33Þ

The Jacobian matrix for the system can be expressed as

J ¼
�
3V − 3 3U

−3 6V

�
: ð34Þ

The Jacobian matrix for the critical point (0, 0) is

JjU¼0;V¼0 ¼
�−3 0

−3 0

�
: ð35Þ

Now, we construct another set of variables ðX; YÞ
defined as

�
X

Y

�
¼ S−1

�
U

V

�
; ð36Þ

where S is the inverse of the diagonalizing matrix con-
structed out of the eigenvectors of the matrix JjU¼0;V¼0.
The matrix S obtained is

S ¼
�
0 1

1 1

�
: ð37Þ

Now, it is possible to express U and V in terms of new
dynamical variables X and Y as

V ¼ X þ Y; U ¼ Y: ð38Þ

Then, Eqs. (32) and (33) can be expressed in terms of the
new variables X and Y as

Ẋ ¼ 3X2 þ 3XY; ð39Þ

Ẏ ¼ 3XY þ 3Y2 − 3Y; ð40Þ

which according to central manifold theory can be repre-
sented as

Ẋ ¼ AX þ FðX; YÞ; ð41Þ

Ẏ ¼ BY þGðX; YÞ: ð42Þ

Comparing Eqs. (39) and (41), we obtain A ¼ 0 and
FðX; YÞ ¼ 3X2 þ 3XY. Similarly, from Eqs. (40) and
(42) we obtain B ¼ −3 and GðX; YÞ ¼ 3XY þ 3Y2.
Assuming Y ¼ pðXÞ, for pðXÞ to be the center manifold,
it satisfies the quasilinear partial differential equation

dpðXÞ
dX

½AX þ FðX; pðXÞÞ� − BpðXÞ −GðX; pðXÞÞ ¼ 0:

ð43Þ

The above equation is difficult to solve using the standard
method. Therefore, we Taylor expand the center manifold
pðXÞ around X ¼ 0 [89]. The major limitations to this
power series expansion is that the series often diverge.
However, an exact knowledge of the center manifold p is
not required for this equilibrium analysis, since it is
frequently sufficient to compute only the low degree terms
of the Taylor series expansion of p around X ¼ 0 [90]. This
allows us to determine the stability of the system. To
proceed with determining the center manifold, it is custom-
ary to suppose the expansion for pðXÞ of the form

pðXÞ ¼ a2X2 þ a3X3 þOðX4Þ: ð44Þ

Substituting Eq. (44) into Eq. (43), we obtain

ð2a2X þ 3a3X2Þð3X2 þ 3Xða2X2 þ a3X3ÞÞ − 3Xða2X2 þ a3X3Þ − 3ða2X2 þ a3X3Þ2 þ 3ða2X2 þ a3X3Þ ¼ 0: ð45Þ

For Eq. (45) to hold, the coefficient of each powers of X
must be zero. Then, we get the coefficients a2 ¼ 0, a3 ¼ 0,
and hence pðXÞ ¼ OðX4Þ. Then, the dynamical system
restricted to the center manifold is expressed as

Ẋ ¼ 3X2 þOðX5Þ: ð46Þ

From Eq. (46), it can be concluded that for sufficiently
small X, X → 0, the system is unstable. Hence, the critical
point (0, 0) is unstable. The analysis shows that there is no
stable equilibrium point existing in any evolutionary stage
of the universe. Hence, we conclude that the universe is
dynamically unstable within the PDDE model. It should be

noted that the universe is dynamically stable and will
attain a de Sitter evolution in the far future within the
ΛCDM model. Hence, we conclude that, even though the
present model alleviates the Hubble tension to some
extent, the model is not dynamically stable and hence
may not be considered as a potential alternate to the ΛCDM
model.

VI. EVOLUTION OF HORIZON
ENTROPY AND GSL

It was Bekenstein and Hawking who showed that the
entropy of black holes is directly proportional to the area of

K.M., NELLERI, and POONTHOTTATHIL PHYS. REV. D 109, 063528 (2024)

063528-8



their event horizon [70,71,91]. The event horizon entropy
(SEH) is given by

SEH ¼ AEH

4l2p
kB; ð47Þ

where AEH is the area of the event horizon, lp is the Planck
length, and kB is the Boltzmann constant. Later, Gibbons
and Hawking showed that the cosmological horizon also
possesses entropy proportional to the area [72,92]. Instead
of the event horizon, the Hubble horizon is mostly used to
estimate horizon entropy because it provides the observable
boundary at present. Hence, the area-entropy relation for
the observable universe can be expressed as

SH ¼ AH

4l2p
kB; ð48Þ

where AH ¼ 4πc2=H2 is the area of the Hubble horizon.
According to the generalized second law of thermodynam-
ics (GSL), the entropy of the universe (horizon entropyþ
entropy of its interior) must be a never decreasing function
of time [71,93],

Ṡ ¼ ṠH þ Ṡm ≥ 0; ð49Þ

where Sm is the entropy contribution from anything present
inside the Hubble horizon and the overdot denotes the

derivative with respect to the cosmic time. In general, the Sm
include entropy contributions from baryon matter
(Sb ∼ 1081kB), dark matter (Sdm ∼ 1088�1kB), photons
(Srad ∼ 1089kB), relic neutrinos (Sν ∼ 1089kB), relic gravitons
(Sgrav ∼ 1087kB), stellar black holes (SSBH ∼ 1097kB), and
supermassive black holes (SSMBH ∼ 10104kB). However, the
horizon entropy (SH ∼ 10122kB) is very much higher than
that of the entropy contribution due to any of the cosmic
components mentioned above [94]. Hence, we consider only
the horizon entropy for the following discussions. The
horizon entropy is obtained by substituting the expression
of the horizon area into Eq. (48), and we obtain

SH ¼ πc2

l2pH2
kB; ð50Þ

where the evolution of the Hubble parameter is given by
Eq. (5). The derivative of the horizon entropy with respect to
the scale factor is obtained as

S0H ¼ πc2kB
l2pH2

0

�
3Ωm0

a−4 − Ωpddea−1

h4

�
: ð51Þ

To check the convexity condition of entropy, we also
obtained the expression for the second derivative of entropy
with respect to the scale factor,

S00H ¼ πc2kB
l2pH2

0

�
−

1

h4
ð12Ωm0

a−5 −Ωpddea−2Þ þ
2

h6
ð3Ωm0

a−4 −Ωpddea−1Þ2
�
: ð52Þ

The evolution of SH (blue curve), S0H (green curve), and S00H
(red curve) are depicted in Fig. 8. From Fig. 8, it is

conclusive that entropy decreases with respect to the scale
factor in the far future evolution. However, it is not evident
from the S0H and S00H curves. To show this behavior more
explicitly, we zoomed the individual curve in the region
between z ¼ −1 and z ¼ −0.5, and the plots are shown in
Figs. 9 and 10. From Fig. 9, it is clear that dSH=da has
positive and negative values. But, according to GSL,
dSH=da ≥ 0 throughout the evolution. A negative value
of dSH=da in the later stage of evolution is a clear violation
of GSL. Furthermore, it is well-known that any isolated
system evolves toward a state of maximum entropy. In
other words, the entropy should be a convex function of the
scale factor, that is,

S00H < 0; ð53Þ

at least in the later stage of evolution. Figure 10 shows that
the convexity condition for a redshift range in the late
accelerating phase is not satisfied. In this region, the second
S00H attains a maximum positive value and then approaches
zero from above. The entropy is not bounded from below.

FIG. 8. Evolution of horizon entropy (SH) and first and second
derivatives (S0H and S00H) of horizon entropy against redshift.
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This implies that the entropy evolution of the universe
within the PDDE model does not behave as an ordinary
macroscopic system. In conclusion, the PDDE model
violates the generalized second law of thermodynamics
and is inconsistent with entropy maximization.

VII. CONCLUSION

In the present work, we examine the dynamical stability
of the PDDE model and its thermodynamic consistency.
The PDDE model, also termed the little sibling of the big
rip, is a new event smoother than the existing big rip
singularities within the phantom dark energy models. This
event happens at a → ∞ when the scalar curvature explo-
des. When this event is reached, the scale factor and the

Hubble parameter diverge while the derivative of the Hubble
parameter remains finite. The model behaves like ΛCDM at
present. However, the universe would not be asymptotic de
Sitter as in the ΛCDM model [41]. We performed parameter
inference of the model based on MCMC using a string of
observations SNIaþ BAOþ OHD. Our analysis shows that
the model agrees with the observational data. The best-fit
values of the model parameters obtained are H0 ¼
68.86� 0.5746 km s−1Mpc−1, Ωm0

¼ 0.291� 0.011, and
Ωpdde ¼ 0.063� 0.059. These values are consistent with
those reported by Bouali et al. [42]. It should be noted that
the standard deviation obtained for the parameter Ωpdde is
almost equal to the best-fit value. This implies that the data
prefer the nonzero value of Ωpdde at a significance of ∼1σ,
which is statistically less significant.
The universe’s age is computed as 13.86� 0.27 Gyr,

consistent with the standard model prediction. The evolu-
tion of matter density in the PDDE model is the same as
that in the ΛCDM model. In contrast, the dark energy
density is not just a cosmological constant but instead
varies with time. The present value of the deceleration
parameter is negative, showing that the universe is accel-
erating at present. The decelerating universe recently
transitioned into the accelerating phase at a redshift
zT ¼ 0.69� 0.03. The statefinder parameter distinguished
the PDDE model from the ΛCDM model, and the r − s
trajectory reveals the phantom nature of dark energy
density.
We performed the dynamical system analysis to test the

dynamical stability of the PDDE model. We obtained two
critical points on solving autonomous coupled differential
equations that are satisfied by the dynamical variables,
ρm=3H2 and pD=3H2, and we obtained two critical points
(1, 0) and (0;−1). The point (1, 0) is a fixed point in the
matter dominated phase and (0;−1) is a fixed point in the
late accelerating phase. The eigenvalues obtained by
diagonalizing the Jacobian matrices are (3, 3) and
(−3; 0) for the critical points (1, 0) and (0;−1), respectively.
The fixed point (1, 0) is an unstable equilibrium point and
(0;−1) is a saddle point that is also unstable. In conclusion,
the universe is dynamically unstable in the matter domi-
nated epoch and late accelerating epoch within the PDDE
model.
We assessed the validity of GSL in the PDDE model by

prioritizing the horizon entropy over other cosmic compo-
nents [94]. Our study, by considering the Hubble horizon as
the thermodynamic boundary shows that the horizon
entropy is a nonincreasing function of cosmic time for
the PDDE dominated universe. Further, our result shows
that the entropy is not bounded from below for a range of
redshift in the future evolution; hence, the model does not
satisfy the entropy maximization. The universe does not
behave as an ordinary macroscopic system within the
PDDE model. However, the conditions for validity of
GSL in a universe dominated with phantom energy is

FIG. 10. The second derivative of entropy with respect to the
scale factor (S00H) is plotted against the redshift and zoomed to
explicitly show that the PDDE model does not satisfy the
convexity condition.

FIG. 9. The change in horizon entropy (S0H) is plotted against
the redshift and zoomed to explicitly show the violation of the
generalized second law of thermodynamics.
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discussed in Refs. [73,95,96]. In phantom cosmologies, the
violation of dominant energy condition ðpþ ρÞ < 0 and
assuming Euler’s relation Ts ¼ pþ ρ leads to either
negative entropy of the universe or negative temperature.
However, the use of negative temperature and positive
entropy leads to violation of GSL within the phantom
universe, which is discussed in Ref. [95]. Assuming the
accelerated universe that is filled with a perfect fluid
satisfying the first law of thermodynamics and considering
the temperature proportional to the de Sitter temperature,
they have shown that the positivity of the temperature is the
necessary condition to satisfy GSL.
In summary, the model is dynamically unstable and

thermodynamically inconsistent despite the present model
being in good agreement with the observational data and a
potential candidate to smoothen the Hubble tension. Our
analysis shows that the PDDE model may not be consid-
ered a possible alternative to the standard model of
cosmology, the ΛCDM.
In this study, we assumed no interaction between dark

matter and dark energy. However, by introducing a poten-
tial energy exchange term between these dark sectors, we
can assess the model’s dynamical stability. It has been
shown in Refs. [53,54,97] that the phantom dark energy
model with interaction between dark sectors exhibits
dynamical stability. Furthermore, the phantom field model
presented in [55] also exhibits dynamical stability in the
presence of bulk viscous dark matter where dark matter and
dark energy are interacting, provided the temperature of the
fluid is less than or equal to the de Sitter temperature.
Hence, the present study can be extended by incorporating
the interaction term and bulk viscosity in the matter sector,
and one can check the possibility of a stable fixed point in
the far future evolution of the universe and also the validity
of GSL.
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APPENDIX A: DETAILED CALCULATION OF q,
r, AND s PARAMETERS IN TERMS OF
REDUCED HUBBLE PARAMETER (h)

The Hubble parameter (H), the deceleration parameter
(q), and the jerk parameter (r) are defined as

HðtÞ ¼ 1

a
da
dt

; ðA1Þ

qðtÞ ¼ −
1

a
d2a
dt2

�
1

a
da
dt

�
−2
; ðA2Þ

rðtÞ ¼ 1

a
d3a
dt3

�
1

a
da
dt

�
−3
: ðA3Þ

Equation (A2) is rewritten as

qðtÞ ¼ −
1

a
dȧ
dt

½H�−2; ðA4Þ

and substituting for ȧ ¼ aH, we obtain

qðtÞ ¼ −
1

a
dðaHÞ
dt

½H�−2: ðA5Þ

Using the product rule of differentiation, we obtain

qðtÞ ¼ −
1

a
ðHȧþ aḢÞ½H�−2; ðA6Þ

which can be further reduced to

q ¼ −
�
1þ 1

H2

dH
dt

�
: ðA7Þ

On changing the variable from t to x, where x ¼ ln a, we
obtain

q ¼ −1 −
1

2H2

dH2

dx
: ðA8Þ

The Hubble parameter H can be expressed in terms of
reduced Hubble parameter h as H ¼ H0h, and then we
obtain

q ¼ −1 −
1

2h2
dh2

dx
: ðA9Þ

Similar calculation is done to obtain the r parameter in
terms of h as follows. Equation (A3) can be written as

rðtÞ ¼ 1

a
d2ȧ
dt2

½H�−3: ðA10Þ

Substituting for ȧ ¼ aH and using the product rule of
differentiation, we obtain

r ¼ 1þ 3

H2

dH
dt

þ 1

H3

d
dt

dH
dt

: ðA11Þ

On changing the variable from t to x, we obtain

r ¼ 1þ 3

2H2

dH2

dx
þ 1

2H2

d2H2

dx2
: ðA12Þ
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We can further express Eq. (A12) in terms of h as

r ¼ 1þ 3

2h2
dh2

dx
þ 1

2h2
d2h2

dx2
: ðA13Þ

By definition, the s parameter is [85]

s ¼ r − 1

3ðq − 1
2
Þ : ðA14Þ

Substituting the expression of r from Eq. (A12) and q from
Eq. (A9), we obtain

s ¼ −
3
2h2

dh2
dx þ 1

2h2
d2h2

dx2

3
2h2

dh2
dx þ 9

2

: ðA15Þ

APPENDIX B: DETAILED DERIVATION OF
AUTONOMOUS DIFFERENTIAL EQUATIONS
FOR THE DYNAMICAL SYSTEM ANALYSIS

We define two dimensionless dynamical variables u and
v as

u ¼ ρm
3H2

; v ¼ pD

3H2
: ðB1Þ

On taking the derivative of u with respect to x, where
x ¼ ln a, we obtain

du
dx

¼ 3H2 dρm
dx − ρm

3H2

dx

ð3H2Þ2 : ðB2Þ

Using the Friedmann equation,

3H2 ¼ ρm þ ρD; ðB3Þ
where we assumed 8πG ¼ 1, we can express Eq. (B2) as

du
dx

¼ 3H2 dρm
dx − ρm

dðρmþρDÞ
dx

ð3H2Þ2 : ðB4Þ

The conservation equation for pressureless matter (ωm) is

ρ̇m þ 3Hρm ¼ 0: ðB5Þ
On changing the variable from t to x, where x ¼ ln a,
we obtain

dρm
dx

¼ −3ρm: ðB6Þ

In the PDDE model, the dark energy density has the form

ρDðaÞ ¼ ρD;0 þ α ln a: ðB7Þ

The conservation equation satisfied by the PDDE is

ρ̇D þ 3HðρD þ pDÞ ¼ 0: ðB8Þ

Hence, the dark energy density and the corresponding
pressure are related through the expression

ρD þ pD ¼ −
α

3
: ðB9Þ

From Eq. (B7), it is evident that

dρD
dx

¼ dðρD;0 þ α ln aÞ
dx

¼ α: ðB10Þ

Substituting Eqs. (B6) and (B10) in Eq. (B4), we get

du
dx

¼ 3H2ð−3ρmÞ − ρmð−3ρm þ αÞ
ð3H2Þ2 : ðB11Þ

Using Eqs. (B3) and (B9), we can express the parameter α
in terms of matter density and dark energy density as

α ¼ −3pD − 9H2 þ 3ρm: ðB12Þ

Substituting the value of α in Eq. (B11) and simplifying
we get

du
dx

¼ 3uv: ðB13Þ

Similarly,

dv
dx

¼ d
dx

�
pD

3H2

�
; ðB14Þ

i.e.,

dv
dx

¼ 3H2 dpD
dx − pD

dðρmþρDÞ
dx

ð3H2Þ2 : ðB15Þ

However,

dpD

dx
¼ −

dρD
dx

¼ −α: ðB16Þ

Substituting Eqs. (B6), (B10), and (B16) in Eq. (B15),
we get

dv
dx

¼ 3 − 3uþ 6vþ 3v2: ðB17Þ
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