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Many inflationary theories predict a non-Gaussian spectrum of primordial tensor perturbations, sourced
from nonstandard vacuum fluctuations, modified general relativity, or new particles such as gauge fields.
Several such models also predict a chiral spectrum in which one polarization state dominates. In this work,
we place constraints on the non-Gaussianity and parity properties of primordial gravitational waves
utilizing the Planck PR4 temperature and polarization data set. Using recently developed quasioptimal
bispectrum estimators, we compute binned parity-even and parity-odd bispectra for all combinations of
cosmic microwave background (CMB) T-, E-, and B-modes with 2 ≤ l < 500, and perform both blind
tests, sensitive to arbitrary three-point functions, and targeted analyses of a well-motivated equilateral
gravitational-wave template (sourced by gauge fields) with amplitude ftttNL. This is the first time B-modes
have been included in primordial non-Gaussianity analyses; they are found to strengthen constraints on the
parity-even sector by ≃30% and dominate the parity-odd bounds, without inducing bias. We report
no detection of non-Gaussianity (of either parity), with the template amplitude constrained to ftttNL ¼
900� 700 (stable with respect to a number of analysis variations), compared to 1300� 1200 in Planck
2018. The methods applied herein can be reapplied to upcoming CMB data sets such as LiteBIRD, with the
inclusion of B-modes poised to dramatically improve future bounds on tensor non-Gaussianity.
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I. INTRODUCTION

High-precision measurements of the cosmic microwave
background (CMB) have provided fruitful information on
primordial scalar fluctuations, supporting both the ΛCDM
model and an inflationary epoch in the very early Universe.
In contrast, experiments have provided little insight into the
primordial tensor sector due to the nondetection of early-
Universe gravitational waves (GWs), despite numerous
searches [1,2] (see [3] for a review).
Primordial GWs have been widely regarded as a smoking

gun of cosmic inflation since they are naturally generated by
quantum fluctuations of the inflationary vacuum. However,
they may also be sourced by other mechanisms. For
instance, if gauge fields exist and do not decay during
inflation, GWs can be sourced by gravitational interactions
(e.g., [4,5]). Their production becomes more efficient if the
gauge fields couple to axions [5–11] (see also [12,13] for
reviews). Furthermore, GWs could be a signature of, e.g.,
nonstandard primordial vacuum states (such as α vacua)
[14,15], nonattractor phases in inflation [16], additional

scalar-tensor and derivative couplings [17–20], or Chern-
Simons modified gravity [6,21–24] (see [25] and references
therein for other scenarios). Many such contributions can be
efficiently modeled in a UV-physics-agnostic manner with
an effective field theory of inflation, often invoking boot-
strap methods [26–30]. Being able to distinguish between
these contributions and those intrinsic to a simple Bunch-
Davies vacuum is thus an important issue.
Under standard inflationary assumptions,GWs sourcedby

the vacuumhave a statisticallymonotonic spectrum,which is
both parity symmetric and (approximately) Gaussian [31].
More complex models involving, for example, axion-gauge
field interactions can source non-Gaussian and/or parity-
violating distributions, whose particular form encodes the
microphysics of the early Universe [5–11,14,16,24,32–35]
(for example, breaking the tensor consistency relation [36]).
Diagnosing the statistical properties of the tensor sector is
thus a powerful way to probe the GWorigins and shed light
on inflationary physics; furthermore, we note that large GW
bispectra are not a priori ruled out by the current bounds on
tensor power spectra (e.g., [10,11,14,16,23,26–29,35,37]).
Motivated by this, here we perform an analysis to jointly test
the parity and Gaussianity of primordial GWs (or gravitons)
employing three-point correlators (equivalently, bispectra) of
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the CMB temperature and polarization fields. This builds
uponpreviouswork includingboth a rangeof theoreticalGW
bispectrum predictions [10,23,33,35,38,39] and data analy-
ses involving WMAP temperature (T) data [40] and Planck
temperature andE-mode polarization (T andE) data [41,42],
none of which have yet found any significant deviation from
parity invariance and Gaussianity (see [43] for a review).1

In this paper, we, for the first time,2 include the Planck
B-mode polarization (B) field in the data analysis (which
dramatically enhances constraints on the parity-odd sector)
and consider both general tests for non-Gaussianity and
constraints on a specific inflationary template. This is
facilitated by both new data (Planck PR4) with better
control of large-scale polarization systematics and a suite of
new CMB polyspectral estimators [56–58], which allow for
quasioptimal estimation of binned parity-even and parity-
odd T-, E-, and B-mode bispectra, while simultaneously
accounting for observational effects such as mask-induced
leakage between bins and polarizations. These have been
previously used to assess parity violation in the scalar CMB
sector for both temperature and polarization [51,52].
Parity-even and parity-odd information on graviton non-

Gaussianity can be easily distinguished by working in
harmonic space, where, for the CMB bispectrum, there is a
bifurcation into even and odd l1 þ l2 þ l3 [23,54,59].
Using the aforementioned recently developed general bi-
spectrum estimator [56–58] (building on previous binned
estimators [60,61] and numerical tricks [62,63]), we sepa-
rately extract the parity-even and parity-odd information
from CMB bispectrum data sets and perform model-
independent tests of parity violation using the GW three-
point function, essentially asking whether we detect
any signal above the noise. Following this, we place
constraints on the amplitude of a well-examined GW bi-
spectrum template [39,41,43], parametrized by the non-
Gaussianity parameter ftttNL [see (10) for a concrete form].
This template can be defined for both the parity-even and
parity-odd sectors and has a dominant signal for equilateral
momentum configurations k1 ∼ k2 ∼ k3. As such, it can
well describe non-Gaussian chiral GWs sourced by gauge
fields coupled to axions in various ways [9,10,32]. We
place constraints on ftttNL from both parity-even and -odd
information alone as well as the combined (maximally
chiral) limit; our results are consistent with zero apart from
a ≃2.5σ parity-even signal extracted from E-modes or
their combination with B-modes. The most stringent value
is obtained from the full T, E and B data set, with
ftttNL ¼ 900� 700, which represents an improvement over

previous constraints (ftttNL ¼ 1300� 1200 [42]) by a factor
greater than 2, mostly owing to the inclusion of B-modes.3

The remainder of this paper is structured as follows. In
Sec. II we present our theoretical setup and motivations for
testing parity and Gaussianity of the graviton sector.
Section III discusses the Planck data and various aspects
of its analysis, including bispectrum estimation and sim-
ulations. In Sec. IV we present our main result—constraints
on the tensor amplitude parameter ftttNL—before concluding
in Sec. V. Throughout this work, we assume a Planck 2018
fiducial cosmology with the parameter set fωb ¼ 0.022383;
ωcdm ¼ 0.12011;h ¼ 0.6732;τreio ¼ 0.0543; log1010As ¼
3.0448;ns ¼ 0.96605g for a single massive neutrino with
mν ¼ 0.06 eV [1]. To avoid confirmation bias, the bispec-
trum estimation and analysis pipeline was finalized before
the Planck bispectrum was computed.

II. THEORY

We begin by outlining the theoretical fundamentals of
graviton non-Gaussianity, connecting them to CMB sta-
tistics, and discussing the specific CMB template whose
amplitude will be constrained in Sec. IV C. Here and
henceforth, we ignore correlations between the scalar
and tensor sectors; the corresponding mixed non-
Gaussianity represents an interesting extension of the ideas
considered in this work.

A. Primordial tensors

In the synchronous gauge, we may write the metric
perturbation induced by a graviton as hij ≡ δgTij=a

2, where
a is the scale factor and δgTμν is the tensor part of the metric
perturbation (at linear order). This can be decomposed
into helicity-�2 states (equivalent to circular R=L polar-
izations) via

hijðxÞ ¼
Z
k

X
λ¼�2

hðλÞk eðλÞij ðk̂Þeik·x ð1Þ

for transverse-traceless helicity state eðλÞij ðk̂Þ, obeying

eðλÞij ð−k̂Þ¼eð−λÞij ðk̂Þ¼eðλÞ�ij ðk̂Þ; eðλÞij ðk̂Þeðλ0Þ;ijðk̂Þ¼2δλ;−λ
0

K

ð2Þ

[64], with
R
k ≡ð2πÞ−3 R d3k throughout. The mode func-

tions hðλÞk set the statistical properties of the graviton, with
the three-point function given by

1For the scalar sector, parity violation appears first as an imaginary
component of the four-point functions (in the limit of negligible
isotropy violation [44]). See [45–52] for searches for this signal.

2[53] also analyzed theB-mode polarization data, but only in the
context of galactic foregrounds. Furthermore, [36,54,55] presented
a detailed discussion ofB-mode bispectra in the context of template
analyses but did not apply their methodology to data.

3This ftttNL is equivalent to fPNL in [40], ftensNL in [41,42], and
fttt;eqNL in [43].
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ð2πÞ3δDðk1 þk2 þk3ÞBðλ1λ2λ3Þ
h ðk1;k2;k3Þ≡

�Y3
n¼1

hðλnÞkn

�
:

ð3Þ

Under a conjugation, hðλÞk → hðλÞ�k ≡ hðλÞ−k, and thus

Bðλ1λ2λ3Þ�
h ðk1;k2;k3Þ ¼ Bðλ1λ2λ3Þ

h ð−k1;−k2;−k3Þ: ð4Þ

A parity transform sends x → P½x�≡ −x; in this case, the

helicity-state transforms as P½hðλÞk � → hð−λÞ−k , and

P½Bðλ1λ2λ3Þ
h ðk1;k2;k3Þ� ¼ Bð−λ1−λ2−λ3Þ

h ð−k1;−k2;−k3Þ
≡ ½Bð−λ1−λ2−λ3Þ

h ðk1;k2;k3Þ��: ð5Þ

We can further decompose the bispectrum into

parity-even/-odd components as Bðλ1λ2λ3Þ
h ðk1;k2;k3Þ ¼

Bðλ1λ2λ3Þ;þ
h ðk1;k2;k3ÞþBðλ1λ2λ3Þ;−

h ðk1;k2;k3Þ, which satisfy

P½Bðλ1λ2λ3Þ;�
h ðk1;k2;k3Þ� ¼ �Bðλ1λ2λ3Þ;�

h ðk1;k2;k3Þ; ð6Þ

from (5), these have the symmetry Bðλ1λ2λ3Þ;�
h ðk1;k2;k3Þ ¼

�Bð−λ1−λ2−λ3Þ;�
h ð−k1;−k2;−k3Þ.

B. CMB fluctuations

Large-scale tensor modes source both CMB temperature
and polarization fluctuations, which are here denoted by the
harmonic coefficients aXlm, with X∈ fT; E; Bg. At linear
order,

aXlm¼4πil
Z
k
T X

l ðkÞ½hðþ2Þ
k −2Y

�
lmðk̂Þþð−1Þxhð−2Þk þ2Y

�
lmðk̂Þ�

≡4πil
Z
k
T X

l ðkÞ½hðþ2Þ
k þð−1Þxþlhð−2Þ−k �−2Y�

lmðk̂Þ ð7Þ

[64,65], where T X
l is the tensor-mode linear transfer

function, sYlm is a spin-weighted spherical harmonic,
and x encodes the parity of the field with 0 for T, E and 1
for B.
The angular bispectrum follows directly from (7) and (3),

�Y3
n¼1

aXn
lnmn

�
¼

Y3
n¼1

�
4πiln

Z
kn

T Xn
ln
ðknÞ−2Y�

lnmn
ðk̂nÞ

�
ð2πÞ3δDðk1 þ k2 þ k3Þ

×
n
Bð222Þ
h ðk1;k2;k3Þ þ ð−1Þl123þx123Bð−2−2−2Þ

h ð−k1;−k2;−k3Þ

þ ð−1Þx1þl1Bð−222Þ
h ð−k1;k2;k3Þ þ ð−1Þx23þl23Bð2−2−2Þ

h ðk1;−k2;−k3Þ
þ ð−1Þx2þl2Bð2−22Þ

h ðk1;−k2;k3Þ þ ð−1Þx13þl13Bð−22−2Þ
h ð−k1;k2;−k3Þ

þ ð−1Þx3þl3Bð22−2Þ
h ðk1;k2;−k3Þ þ ð−1Þx12þl12Bð−2−22Þ

h ð−k1;−k2;k3Þ
o

ð8Þ

for lab ≡ la þ lb, etc. Splitting into parity-even and -odd graviton bispectra via (6), this simplifies considerably,

�Y3
n¼1

aXn
lnmn

�
¼

X
�
½1� ð−1Þl123þx123 �

Y3
n¼1

�
4πiln

Z
kn

T Xn
ln
ðknÞ−2Y�

lnmn
ðk̂nÞ

�
ð2πÞ3δDðk1 þ k2 þ k3Þ

×
n
Bð222Þ;�
h ðk1;k2;k3Þ þ ð−1Þx1þl1Bð−222Þ;�

h ð−k1;k2;k3Þ

þ ð−1Þx2þl2Bð2−22Þ;�
h ðk1;−k2;k3Þ þ ð−1Þx3þl3Bð22−2Þ;�

h ðk1;k2;−k3Þ
o
: ð9Þ

From the prefactor it is evident that parity-even (-odd)
GW bispectra B�

h source a nonvanishing CMB bispectrum
signal only with l1þl2þl3þx1þx2þx3¼ even (odd)
[23,66]. In other words:
(1) Parity-even GW bispectra Bþ

h source nonzero CMB
bispectra with even l1 þ l2 þ l3 if there are zero or
two B-modes, and odd l1 þ l2 þ l3 otherwise.

(2) Parity-odd GW bispectra B−
h source nonzero

CMB bispectra with odd l1 þ l2 þ l3 if there are

zero or two B-modes, and even l1 þ l2 þ l3

otherwise.
This delineation is slightly more complex than in previous
analyses [40–42] due to the presence of parity-oddB-modes.
In Sec. III we will measure the parity-even and parity-odd
signals separately on the basis of this rule and test the parity
symmetry of the graviton bispectrum. Thus, a nonzero signal
in a parity-odd correlator would give evidence of parity-
violating non-Gaussianity in the graviton sector.
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C. A well-motivated template

To perform model-specific CMB GW analyses, one
needs to specify the form of the graviton three-point

function Bðλ1λ2λ3Þ
h . In this work, we consider a commonly

used phenomenological template specified by

Bðλ1λ2λ3Þ
h ðk1;k2;k3Þ

¼ 16
ffiffiffi
2

p

27
ftttNL × Beq

ζ ðk1; k2; k3Þeð−λ1Þij ðk̂1Þeð−λ2Þjk ðk̂2Þ

× eð−λ3Þki ðk̂3ÞδKλ1;þ2δ
K
λ2;þ2δ

K
λ3;þ2 ð10Þ

[39–43], where Beq
ζ is the standard equilateral-type scalar

bispectrum, defined by

Beq
ζ ðk1;k2;k3Þ≡ 18

5
ð2π2AsÞ2

�
−
�

1

k31k
3
2

þ2 perms

�
−

2

k21k
2
2k

2
3

þ
�

1

k1k22k
3
3

þ5 perms

��
; ð11Þ

assuming scale invariance. The bispectrum template
of (10) contains only positive-helicity modes; as such, it
is maximally chiral, containing both parity-even and parity-
odd components with the same primordial amplitude,

such that Bðλ1λ2λ3Þ;þ
h ðk1;k2;k3Þ¼Bðλ1λ2λ3Þ;−

h ðk1;k2;k3Þ¼
ð1=2ÞBðλ1λ2λ3Þ

h ðk1;k2;k3Þ.4 A dominant signal arises in
the equilateral configurations k1 ≃ k2 ≃ k3. Notably, this
is just one choice of template; one could also choose other
forms such as local-type tensor non-Gaussianity (sourced,
for example, by magnetic fields) or that induced by Weyl
gravity [23,38,43].
The GW bispectra encoded by the above template can be

produced in inflationary models that involve couplings
between axions (χ) and gauge fields (A) through the
Lagrangian

LðAμ; χÞ ⊃ −
1

4
FμνFμν −

χ

4f
FμνF̃μν ð12Þ

[7,8] [displayed for Uð1Þ gauge fields, though higher-order
symmetries are also possible]. Here, Fμν ≡ 2∂½μAν� is the
gauge field strength, F̃μν is its dual, and f is the Chern-
Simons coupling parameter [5,7–11,32,67,68]. In such
models, one of the two gauge field helicity states experi-
ences a tachyonic instability and is explosively produced
for Fourier modes with physical wavelengths comparable
to the horizon. Through the gravitational interaction, the
gauge field quadratically sources metric perturbations (with
h ∼ A2); thus, supposing the Gaussianity of Aμ, the gen-
erated GW becomes chi-squared distributed and hence

highly non-Gaussian. In this process, the chirality of the
gauge field is transmitted to the GW. Without loss of
generality, we identify the growing mode with hðþ2Þ,
allowing us to drop any correlators involving hð−2Þ.
Due to the gauge field production for limited Fourier

modes, the chiral GW bispectrum has a dominant signal
when the three bispectrum wave numbers are approxi-
mately equal, i.e., it peaks in equilateral configurations with
k1 ≃ k2 ≃ k3.

5 Moreover, if the axion rolls slowly down a
not-so-steep potential for a not-so-small period, the GW
bispectrum can be shown to take the nearly scale-invariant
shape of (10).6 In cases where the gauge field has Uð1Þ
symmetry, the tensor nonlinearity parameter is evaluated as

ftttNLjUð1Þ ≃ 6.4 × 1011A3
sϵ

3
e6πξ

ξ9
; ð13Þ

where ϵ is the inflaton slow-roll parameter and
ξ≡ χ̇=ð2fHÞ, with χ̇ being the time derivative of the
axion field and H the Hubble parameter [9,41]. In models
involving an SUð2Þ gauge field, the size of non-Gaussianity
is determined by the energy density fraction of the gauge
field ΩA and the tensor-to-scalar ratio r as [32]

ftttNLjSUð2Þ ≃ 2.5
r2

ΩA
: ð14Þ

In Sec. IV C we estimate ftttNL from Planck T-, E-,
and B-modes by inserting the above template into the
bispectrum relation of (9). We give results for both the
parity-even/-odd signal (denoting the respective ampli-
tudes as fttt;þ=−

NL ) and the combined one (with amplitude
ftttNL ≡ fttt;þNL þ fttt;−NL ). For this purpose, we may restrict
the range of CMB multipoles to l∈ ½2; 500Þ as we
expect no gain in the signal-to-noise ratio when includ-
ing l≳ 500 due to the rapid damping of CMB tensor
modes [39,43].

III. DATA SET AND ANALYSIS PIPELINE

A. Observational data

In this work, we obtain constraints on GW bispectra
using the latest temperature and polarization maps provided
by Planck. Our data set is analogous to that used in [52]; we
use the PR4 data set, consisting of component-separated
temperature and Q=U-mode polarization maps processed
using the NPIPE pipeline in combination with the SEVEM

4This can be split into distinct parity-even and parity-odd
components through (6), which can be analyzed separately.

5If one instead considers a Lagrangian of the form L ⊃
fðχÞð− 1

4
F2 þ γ

4
FF̃Þ and appropriately fine-tunes the time evo-

lution of the coupling function fðχÞ, one can produce a gauge
field that does not decay on superhorizon scales. In this case, a
sizable bispectrum signal can then arise in the squeezed limit:
k1 ∼ k2 ≫ k3, k2 ∼ k3 ≫ k1 and k3 ∼ k1 ≫ k2 [69].

6See [10,11] for cases inducing signals with strong scale
dependence.
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component separation algorithm [70–72].7 These are an
updated version of the Planck 2018 data set (PR3), and
have a number of improvements, in particular with regards
to the treatment of large-scale polarization data and
reduction of systematics. We additionally utilize 600
FFP10 simulations (all processed with NPIPE); 100 are
used to construct the quasioptimal bispectrum estimators
and the remainder are used for validation and to estimate
the variance of the observed statistics [70].
Following [42], high-emission regions of the Galactic

plane are removed via the Planck common component-
separation mask (smoothed at ten arcminute scales), which
preserves ≃80% of the sky [73]. In the analyses below,
we additionally apply the Planck beam, which includes
the PR4 polarization transfer function on large scales
(l < 40), extracted from the FFP10 simulations [70].
Since the GW signatures we consider in this study are
predominantly confined to large angular scales, we restrict
our attention to lmax ¼ 500, choosing a conservative
HEALPix pixelation strategy with Nside ¼ 512 [74] for
all maps.
Before computing bispectra (Sec. III B), all maps are

filtered by a linear operator, S−1 [cf. [62,63]]. As discussed
in [56,57], the choice of S−1 sets the precision of the output
CMB correlators, with optimal variances achieved if S−1 is
equal to the true inverse pixel covariance of the data set. In
practice, such a choice is difficult to implement, and thus
here we adopt a simpler scheme following [52]. Introducing
a mask Wðn̂Þ and a linear inpainting operator Π, the action
of S−1 on some map aXðn̂Þ (for X∈ fT; E; Bg) can be
written as

½S−1a�Xlm ¼
X
Y

S−1;XYl

Z
dn̂Y�

lmðn̂ÞWðn̂ÞΠ½aY �ðn̂Þ; ð15Þ

i.e., we inpaint small holes in the map (cf. [75]), mask the
Galactic plane, transform to harmonic space, and then
normalize by a rotationally invariant filter. Here, we fix
SXYl ¼ CXY

l þ δXYK NX
l with fiducial CMB power spectrum

CXY
l and diagonal noise NX

l , as measured from the high-
resolution Planck half-mission maps. We stress that our
choice of S−1 filter cannot induce bias; it is fully accounted
for in the bispectrum estimator discussed below and any
simplification just leads to a reduction in sensitivity.

B. Bispectrum estimation

In the remainder of this work, we consider only reduced
bispectra bXYZl1l2l3

, which are defined from CMB maps
aXlm via

haXl1m1
aYl2m2

aZl3m3
i
c

¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

m1 m2 m3

���
l1 l2 l3

−1 −1 2

�
þ 2 perms

�
bXYZl1l2l3

≡wl1l2l3
m1m2m3

bXYZl1l2l3
; ð16Þ

where the weights wl1l2l3
m1m2m3

are a generalization of the
Gaunt integral, allowing for odd l1 þ l2 þ l3 [54,57].
This restricts to rotationally invariant bispectra (due to the
first Wigner 3j symbol), reducing the dimensionality from
six to three angular variables. Conjugation symmetries of
aXlm imply that bispectra with even (odd) l1 þ l2 þ l3 are
real (imaginary).
To estimate bispectra, we use the PolyBin code8

described in [56,57] (which builds upon template-based
techniques from e.g., [62,63], the binned estimators of
[60,61], and the three-dimensional estimators of [76,77]).
Rather than computing the full bispectrum [which has
dimensionality Oðl3

maxÞ], this directly estimates the bis-
pectrum in some set of angular bins, b≡ fb1; b2; b3g,
hereafter denoted bXYZχ ðbÞ, where χ ¼ �1 indicates the
parity of the correlator. In more detail:
(1) Parity-even, χ ¼ þ1: this corresponds to even

l1 þ l2 þ l3 and real bispectra for correlators with
zero or two B-modes, and odd l1 þ l2 þ l3 and
imaginary bispectra otherwise.

(2) Parity-odd, χ ¼ −1: this corresponds to odd
l1 þ l2 þ l3 and imaginary bispectra for correla-
tors with zero or two B-modes, and even l1þl2þl3

and real bispectra otherwise.
Viz., the discussion in Sec. II C, parity-even (parity-odd)
inflationary templates such as fttt;þNL (fttt;−NL ) will correspond
to χ ¼ þ1 (χ ¼ −1).
Schematically, PolyBin estimates bispectra using two

components: 1) a numerator, ½F b̂�, involving three copies
of the data and 2) a data-independent normalization matrix,
F (often called the Fisher matrix).9 As discussed in [56,57],
this is an unbiased estimator for any choice of weighting
scheme, implying that the output spectra can be compared
to theory without the need to account for window-function
convolution or leakage between different bins, parities, and
fields. Furthermore, in the ideal limit, where S−1 is equal to
the inverse pixel covariance and aXlm is Gaussian, the
estimator is optimal and has covariance F−1 (e.g., [78]).

7Publicly available at portal.nersc.gov/project/cmb/planck2020.

8Available at github.com/OliverPhilcox/PolyBin [58].
9When forming the estimator, one has freedom in where to

include the mask, Wðn̂Þ. Following [51,52], here we include it in
the S−1 weights rather than directly in the estimator (as in [56,57])
since this (empirically) reduces bin-to-bin leakage without induc-
ing bias.
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Given beam BX
l and a triplet of fields u≡ fXYZg

containing nB B-modes, the estimator numerator takes
the schematic form

½F b̂�uχðbÞ∼
X
li∈bi

X
mi

½1þχð−1Þl1þl2þl3þnB �

×Bu1
l1
Bu2
l2
Bu3
l3
wl1l2l3
m1m2m3

× ½au1l1m1
au1l1m1

au1l1m1
−3hau1l1m1

au2l2m2
iau3l3m3

�; ð17Þ

summing over all l modes in the bin of interest. This
involves both a cubic and a linear term; the latter does not
change the mean of the estimator but can considerably
reduce the variance on large scales. The normalization
matrix has a more complex form, which is set by demand-
ing that the estimator be unbiased [such that E½b̂uχðbÞ� ¼
buχðbÞ for expectation operator E]. In practice, PolyBin
does not compute the Oðl6

maxÞ summations in the above
expressions directly: efficient use of spherical-harmonic
transforms and Monte Carlo summation allows both the
numerator and denominator to be efficiently computed with
Oðl3

maxÞ complexity. All computations are done in
PYTHON, with spherical harmonic transforms performed
using Libsharp [79].
In this work, we compute bispectra for each of the ten

nontrivial combinations of the T, E, B fields:

fTTT; TTE; TTB; TEE; TEB; TBB;
EEE;EEB;EBB;BBBg; ð18Þ

with χ ∈ f�1g. Based on the discussion in Sec. II C, we
restrict to lmax ¼ 500; noting that the computation time of
the estimator denominator is cubic in the number of l bins,
Nl (but linear in the total number of bins, Nbins), we use
Nl ¼ 13l bins roughly equally spaced in l2=3 (ensuring
roughly equal signal-to-noise per bin), with bin edges

f2; 3; 4; 22; 49; 82; 121; 164; 211; 262; 317; 375; 436; 500g.
This gives a total of Nbins ¼ 5972 bispectrum bins (drop-
ping any empty bins and removing degeneracies by
restricting to b1 ≤ b2 ≤ b3 for TTT, etc.).10 To form the
linear term of the bispectrum estimator (17), we require the
expectation hau1l1m1

au2l2m2
i; rather than computing this ana-

lytically (which is expensive, since the mask breaks rota-
tional invariance), we estimate the entire linear term as a
Monte Carlo average of the data and Nsim ¼ 100 FFP10
simulations [requiring OðNsimNlÞ computational costs, if
harmonic transforms are rate limiting], as discussed in [57].
Furthermore, the normalization matrix is also computed as
a Monte Carlo average; due to the efficient numerical
schemes introduced in [62], we are able to estimate the
matrix to percent-level precision using only Nmc ¼ 10
realizations [with OðNmcNbinÞ computational cost].
Using the above hyperparameters, computing the

bispectrum numerator of a single data set requires
30 CPU-hours and around 8000 harmonic transforms (with
25 GB memory). This is dominated by the linear term; if
this is removed (which we will later show yields only a
minor inflation in our constraints), the computation time
decreases to only 5 CPU-minutes with 80 transforms. The
normalization matrix (which is independent of the data)
requires 30 CPU-hours and 60 000 harmonic transforms
per realization on a (partially utilized) high-performance
node with 3 TB memory. In total, the full computation of
the bispectra of 500 FFP10 simulations and the Planck data
requires around 20 000 CPU-hours.

C. Binning the theoretical templates

To compare the data with bispectrum templates [such as
(10)], one must recast the theory into the same form as the
data. As discussed in [57], we can relate unbinned and
binned correlators via the expectation of the idealized
bispectrum estimator; this yields

½Fb�th;uχ ðbÞ ∝ 1

ΔuðbÞ
X
l1 ∈ b1

X
l2 ∈ b2

X
l3 ∈ b3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r
1

3

��
l1 l2 l3

−1 −1 2

�
þ 2 perm

�

×
X
u0
S−1;u1u1

0
l1

S−1;u2u2
0

l2
S−1;u3u3

0
l3

Bu1 0u2 0u3 0
l1l2l3

j
th
;

F th;u0u
χ0χ ðb0;bÞ ∝ 1

ΔuðbÞΔu0 ðb0Þ
X
l1 ∈ b1

X
l2 ∈ b2

X
l3 ∈ b3

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
4π

1

9

��
l1 l2 l3

−1 −1 2

�
þ 2 perms

�
2

× ½S−1;u1 0u1l1
S−1;u2

0u2
l2

S−1;u3
0u3

l3
δKb1 0b1δ

K
b2 0b2

δKb3 0b3 þ 5 perms�; ð19Þ

where we use weighting matrices SXYl and assume that the theoretical bispectrum was specified by the isotropic form [which
can be extracted from (9), noting that the Dirac delta can be recast as a 3j symbol, after angular integration]

10In the analysis of Sec. IV, we drop five of these bins, since their variance is both extremely large and poorly measured.
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haXl1m1
aYl2m2

aZl3m3
ij
th
¼

�
l1 l2 l3

m1 m2 m3

�
BXYZ
l1l2l3

				
th
: ð20Þ

Here, the u0 summations in ½Fb�th extend over all 27 triplets
of fields [not just those in (18)] and ΔuðbÞ gives the
degeneracy of the bin: 6 if u1 ¼ u2 ¼ u3 and b1 ¼
b2 ¼ b3, 2 if u1 ¼ u2 and b1 ¼ b2, 2 if u2 ¼ u3 and
b2 ¼ b3, and 1 otherwise. Finally, we implicitly restrict
to ð−1Þl1þl2þl3þnB ¼ χ in each case and note that terms
with χ ≠ χ0 are independent, i.e., bispectra sourced by
parity-even and parity-odd physics are independent. Here,
the complexity of the normalization appears due to the
nonzero TE cross spectra; if this vanishes, F th is diagonal,
and the action of the above is just to appropriately average
the theory across each l bin. Note that one could alter-
natively drop the S−1 terms in both the estimator and the
binned theory, computing an unweighted average over all
modes in the bin; from a Fisher forecast, this was found to
increase the error bar on T-mode parameter constraints by
up to 45% (or 5% for B-modes), showing the utility of our
weighting scheme.

D. Covariances and likelihoods

Finally, we consider how to constrain theoretical models
(and non-Gaussianity amplitudes) from the data. As dis-
cussed in [52], it is necessary to make a theoretical ansatz
for the covariance of the data set, b̂uχðbÞ, since the full
covariance has ≃60002 elements and cannot be robustly
estimated from the 500 simulations. As in previous works,
we assume that the correlation structure of Covðb̂; b̂0Þ is
well described by the inverse normalization matrix, F−1;
theoretically, this is appropriate since F−1 is the covariance
if the estimator is optimal and, empirically, it is found to be
an excellent approximation, as demonstrated in Sec. III. In
this approach, we first (reversibly) project the data and
theory onto the Cholesky factorization of F (e.g., [78]),
defining

βuχðbÞ≡ ½FT=2b�uχðbÞ ð21Þ

and assume the following (diagonal) likelihood:

Lðb̂jbthÞ ∝ exp

�
−
1

2
χ2ðb̂jbthÞ

�
;

χ2ðb̂jbthÞ ¼
X
u;χ;b

½β̂uχðbÞ − βth;uχ ðbÞ�2
var½βuχðbÞ�

; ð22Þ

where bth is some theoretical model and the variance is
estimated from the FFP10 realizations. If one works with
only a subset of the data, it is important to take this subset
before the rotation is applied (i.e., to excise bins from F
and b̂ rather than from β̂); otherwise, the results may incur
bias. In the limit of an ideal estimator applied to Gaussian

data, var½βuχðbÞ� ¼ 1; thus, deviations from unity will
encode non-Gaussianity from residual foregrounds and
suboptimality in the treatment of the mask.
The above likelihood allows for two tests of the data.

First, we can perform blind tests to assess whether there is
any evidence for a nonzero bispectrum of a given parity
(cf. [48,51,52]). In this case, one sets bth ¼ 0 and compares
the value of χ2ðb̂j0Þ in the data (dropping bins of the wrong
parity before projection) to the empirical distribution from
simulations (or the theoretical expectation: a χ2 distribution
with Nbins degrees of freedom). Second, we can constrain
individual theoretical models, such as the gauge-field
template given in Sec. II C. Writing bth;uχ ¼ ftttNLb

template;u
χ

for template btemplate and amplitude ftttNL, constraints are
obtained by sampling from the following posterior:

PðftttNLjb̂Þ ∝ exp

�
−
1

2
χ2ðb̂jftttNLbtemplateÞ

�
: ð23Þ

Often, one restricts to models of a given parity �1, which
can be achieved by replacing ftttNL → fttt;�1

NL and nulling bins
in btemplate with χ ¼ ∓1.11 We note that constraints obtained
from a full theory model will generically be stronger than
those from a blind test, since it allows for optimal model
projection.

IV. RESULTS

We now present the main results of this paper: estimates
of the Planck T-, E-, and B-mode bispectra and constraints
on the tensor-mode non-Gaussianity. We first examine
the data itself in Sec. IVA, before showing the model-
independent blind-test constraints in Sec. IV B and the
constraints on ftttNL in Sec. IV C.

A. Data

In Fig. 1, we display the measured Planck and FFP10
bispectra, projected as in (21). Since this data set contains
almost 6000 bins, visual assessment is difficult; however,
the Planck results do not appear to deviate wildly from the
simulations, which themselves have averages highly con-
sistent with zero (indicating that our pipeline does not
contain significant additive bias). As mentioned above, if
the data is Gaussian and the estimator is optimal, we would
expect the variance of β to be unity; here, we find some
departure from this, which depends strongly on the tri-
angle configuration (leading to the spikes in the figure). In
general, we find slightly enhanced variances for trian-
gles containing polarized low-l modes; this indicates that
our polarization estimators are somewhat suboptimal,
for example, due to residual non-Gaussian foregrounds

11Since the rotation matrix can mix parities through the mask,
this is not equivalent to restricting the summation of (22) to the
relevant value of χ.
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(as discussed below). Furthermore, we find that the large-
scale variances are increased further if one drops the linear
term in the bispectrum estimators [pink, cf. (17)]; this is as
expected, and we consider its effects on the ftttNL constraints
in Sec. IV C. We stress that σðβÞ > 1 does not imply that
our estimator is biased, just that the variances will be
slightly larger than would be obtained from an ideal
analysis.
To more thoroughly assess the covariance of our data set,

we turn to the correlation matrix of the (unprojected)
bispectrum, defined as

Corrðb̂i; b̂jÞ ¼
Covðb̂i; b̂jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb̂iÞVarðb̂jÞ

q ; ð24Þ

where i, j jointly indexes the angular bin, field, and parity.
This is shown in the left panel of Fig. 2, for both the theory
(inverting the PolyBin normalization matrix F ) and the
FFP10 numerical covariance. In both cases, we find a
roughly diagonal structure, but with nontrivial correlations
at the ≃2% level between different fields, resulting from the

nonzero TE power spectrum. If one zooms in, smaller
correlations (at the ∼0.5% level) can be observed within the
configuration of a given field (e.g., bTTT); these arise from
mask-induced leakage across l bins. Although these effects
are small (due to the broad bins used herein), they could
lead to biases in our bispectrum estimates if uncorrected; in
our case, the PolyBin normalization takes care of such
complexities, returning an unbiased estimate of the binned
spectrum.
In Sec. III D, we claimed that the inverse normalization

matrix, F−1, could be used to decorrelate the bins in the
bispectrum data vector, such that the projected statistic, β,
would have diagonal covariance. From the left panel of
Fig. 2, this assumption appears excellent, with the theo-
retical correlation structure appearing to be highly consis-
tent with that of the mocks. This is quantified in the right
panel of Fig. 2, where we instead plot the correlation
structure of β̂. As required, this is highly diagonal, with
deviations fully consistent with noise,12 implying that our

FIG. 1. Large-scale binned bispectrum measurements from Planck PR4 (blue points) compared to 500 FFP10 simulations (red bands)
with 2 ≤ l < 500, computed with the PolyBin code. We show the data (top) and error (bottom) for 20 combinations of bins and parities,
separated by dashed lines and indicated in green. Spectra markedþ are parity symmetric, while those marked − are parity antisymmetric
(with þ indicating even l1 þ l2 þ l3 þ nB and − indicating the opposite, for nB B-modes in the statistic). In each subpanel, all
bispectrum bins are stacked, with the smallest scales on the left-hand side, and we take the imaginary part of any spectra with odd
l1 þ l2 þ l3. We plot the rotated bispectrum defined in (21); if the estimator is optimal and the data is Gaussian, this should be a unit
normal variable. Here, we find slight enhancements in the variance (bottom panel), particularly for l ¼ 2 modes and polarization,
indicating the effects of large-scale non-Gaussianity and foreground contamination. This slightly enhances the variances of the
parameter constraints, but does not lead to bias. Finally, the pink lines in the bottom panel show the effect of removing the linear term in
the bispectrum estimator; we see a slight enhancement of the variance at low l.

12The mean pixel value is −5.3 × 10−6 with a standard
deviation of 0.045, against an expected value of 0.000� 0.045.
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FIG. 2. Left: diagonal-subtracted correlation matrix of the binned bispectrum, buχ ðbÞ, obtained from theory (inverting F , top left), and
from 500 FFP10 simulations (bottom right), organizing components as in Fig. 1. (Small) off-diagonal contributions arise from mask-
induced leakage between different bins and parities and intrinsic correlations between T- and E-modes. Right: correlation matrix for the
projected βuχ ðbÞ statistic (21), with the (symmetric) lower half removed. We find excellent agreement between the theory and mock
buχ ðbÞ covariance, indicating that the normalization matrix (which includes the mask and weighting scheme) captures the structure of the
covariance well; this is evidenced by the covariance of τ, which appears entirely diagonal.

FIG. 3. Ratio of true to ideal inverse bispectrum variances (denotedΨ≡ diag½C−1�, assuming fsky ¼ 0.78). The points show the ratios
obtained from the FFP10 inverse variances, while the lines show those predicted by the inverse normalization matrix, F−1. Red and
green points indicate triangles containing modes with l ¼ 2 or l ¼ 3, respectively. Nonuniformities in the mask strongly reduce the
precision of squeezed bispectrum measurements, as shown by the theory curves (which include the window); such triangles, and
B-mode spectra, are further significantly impacted by non-Gaussian foreground residuals present in the FFP10 covariance.
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assumption of a diagonal likelihood (22) is robust, even in
the presence of residual foregrounds found within FFP10.
Finally, we turn to the (unprojected) bispectrum varian-

ces. In Fig. 5 we plot the variance obtained from theory
and simulations, finding excellent agreement between
theory and simulations across many orders of magnitudes
(as discussed above). Furthermore, we can assess the
behavior of varðb̂Þ for various bispectrum parameters:
the behavior is broadly similar between the parity-even
and -odd configurations, particularly at large l, though a
few bins have (almost) vanishingly small covariance, since
very few modes can populate them while obeying the
restrictions on the sign of l1 þ l2 þ l3. Different fields
also have different variance structures: this occurs due to
the very different signal-plus-noise power spectra, with,
for example, the B-modes being dominated by almost

scale-invariant noise. To assess the impact of masks and
non-Gaussianity on this covariance, we show the ratio of
the inverse covariance diagonal to that predicted from
idealized theory (from the diagonal of the idealizedF given
in (19) in Fig. 3. The PolyBin estimate for the covariance
encodes the distortions induced by the mask, but assumes
Gaussianity; here, we find that such distortions have a
scale-dependent effect on the inverse variances, which lead
to considerable degradation in the constraints on triangles
containing small l (at a similar level for each correlator).
The FFP10 results also include non-Gaussian contributions
from noise and foregrounds; these are seen to significantly
inflate the covariance of B-modes and large-scale triangles.
Such effects are difficult to remove, but will be lessened in
the future by higher experimental sensitivity and better
foreground deprojection schemes.

FIG. 4. Blind tests for bispectra from the Planck PR4 data set. The left and right panels show the constraints on parity-even and parity-
odd bispectra, respectively, with the bottom panels displaying the results without B-modes. In all cases, we compute the χ2 statistic (22),
assuming zero signal, and assign a rank to the Planck data set (blue) based on the distribution of values from 500 FFP10 simulations
(red), i.e., we perform a rank test. The Planck data is consistent with noise within 1.1σ; we find no evidence for non-Gaussianity in this
model-independent test.
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B. Blind tests

Armed with the Planck data set and the FFP10 simu-
lations, we may ask a more generic question: does our
data set contain “any” evidence for bispectrum non-
Gaussianity? To answer this, we perform blind tests similar
to those used tcparity violation in the CMB and large-scale
structure four-point functions [48,51,52]. This follows the
methodology summarized in Sec. III D; in brief, we
compute a χ2 parameter from the Planck data, relative to
null assumptions, and compare its value to the empirical
distribution extracted from simulations. For this purpose,
we consider the parity-even and parity-odd sectors sepa-
rately, and perform the test for a variety of data cuts,
primarily focusing on T þ Eþ B and T þ E correlators
(with the latter used in [42]).
The corresponding results are shown in Fig. 4 and

Table I. When B-modes are included in the analysis, the
empirical χ2 distribution clearly departs from the (ideal) χ2

distribution; for this reason, we do not compare the Planck
data to a theoretical noise distribution. This likely arises
from non-Gaussian residual foregrounds at low l and is
significantly reduced by removing B-modes or increasing
lmax to 4. For the parity-even sector, the Planck data is
consistent with the simulations at 0.8σ; the result is similar
[ð−Þ0.9σ] if B-modes are removed. This is an indirect
constraint on both scalar and tensor non-Gaussianity, both
of which can source parity-conserving physics. For parity-
odd bispectra, we find consistency at 1.1σ (0.2σ) with
(without) B-modes. This scenario is not sensitive to scalar
physics; as argued in [80] (and many other works), parity-
odd bispectra can be sourced only by vector and tensor-
mode physics. These conclusions are stable across an array
of analysis choices (though the precise significances vary
due to differing noise realizations): we detect no signal in

any combination of T-, E-, and B-modes and the results are
broadly insensitive to scale cuts, with a maximum detection
significance of 2.3σ. As such, we find no compelling
evidence for tensor non-Gaussianity or parity violation.
Whilst we do not detect any signal in this study, we

should make clear that this is not an optimal test for specific
models of non-Gaussianity; a better constraint can always
be obtained in a model-specific analysis, as we perform
below for the template given in (10). However, since the
current work is the first to consider generic B-mode
bispectra from observational data, it is pertinent to perform
a general study in addition to model-specific constraints.

C. Model constraints

1. Theoretical spectra

Finally, we obtain constraints on the graviton bispec-
trum template specified in (10). Before constraining the
amplitude parameter ftttNL, we briefly discuss the form of the
binned spectra. As shown in Fig. 5, both parity-even and
parity-odd components of the theory source real and
imaginary parts; this is due to the presence of B-modes
and follows the logic described in Sec. III B. We find strong
scale dependence of the bispectrum signal, with the largest
amplitudes observed for the lowest l modes. There is some
dependence on field, with B-modes having a lower ampli-
tude; however, B-mode spectra do not suffer from cosmic
variance, and thus their inclusion is expected to consid-
erably sharpen constraints on fttt;�NL . Finally, we note similar
forms for the parity-odd and parity-even physics; this is as
expected, since the total number of modes with odd and
even l1 þ l2 þ l3 are similar. In contrast the variance of
modes with even and odd l1 þ l2 þ l3 can differ consid-
erably (e.g., EEEþ has much lower variance than EEE−,
with the opposite behavior for BBBþ and BBB−); this is
due to the Wigner 3j factors (which cancel in the theory
model, but not in the bispectrum variance), which asymp-
totically vanish for l1 þ l2 þ l3, i.e., any signal is even-
tually washed out by projection effects.

2. Main constraints

In Fig. 6 and Table II, we present constraints on the
tensor non-Gaussianity amplitudes fttt;�NL from Planck T, E
and (optionally) B-mode data. In our fiducial analysis,
including all polarization types, we find fttt;þNL ¼ ð11�
8Þ × 102 and fttt;−NL ¼ ð0� 14Þ × 102, both of which are
consistent with zero at 1.4σ. As such, we report no
detection of equilateral tensor non-Gaussianity, in both
the parity-even and parity-odd sectors. The two constraints
are almost entirely uncorrelated; this is as expected, since
the parity-odd and parity-even sectors do not mix in an
ideal bispectrum estimator [57] and the mask-induced
leakage between different parities is seen to be small in
Fig. 2. Assuming fttt;þNL ¼ fttt;−NL (which is true for a

TABLE I. Model-independent constraints on tensor non-
Gaussianity and parity violation using Planck PR4 bispectrum
data with various analysis choices. In each case, we compare the
Planck χ2 value [specified in (22)] to the empirical distribution
obtained from 500 FFP10 simulations, performing a rank test.
Results are given in equivalent Gaussian σ, noting that only
positive detections are physical. The fiducial analysis assumes
lmin ¼ 2 and lmax ¼ 500. All detection significances are below
2.3σ, indicating no compelling evidence for new physics.

Analysis Parity-even Parity-odd

Fiducial (T þ Eþ B) 0.8σ 1.1σ
T only −0.4σ −1.2σ
E only −1.2σ 0.4σ
B only 1.7σ 1.5σ
T þ E −0.9σ 0.2σ
T þ B 0.4σ 1.0σ
Eþ B 1.2σ 1.3σ

lmin ¼ 4 1.8σ 2.3σ
lmax ¼ 375 0.8σ 1.3σ
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FIG. 5. Comparison of theoretical tensor-mode non-Gaussianities (blue and orange) to the empirical and theoretical bispectrum
variances (green and red), plotting as in Fig. 1. The theoretical curves are computed with fttt;�NL ¼ 1 and we separate real (blue) and
imaginary (orange) contributions. Here, modes generated by parity-even physics are shown on the left (“XYZþ” components), while
those from parity-odd physics are on the right (“XYZ−”). We find excellent agreement between simulated (red) and predicted (green)
variances across a wide range of scales, with the (projected) ratio plotted in Fig. 1.

FIG. 6. Constraints on parity-even and parity-odd GW bispec-
tra from the Planck PR4 temperature and polarization data set
(blue), as well as the mean of 500 FFP10 simulations (red). We
show results using both T þ E (dashed lines, similar to [42]), and
with the inclusion of B-modes (full lines), which is new to this
work. B-modes improve the parity-even bounds by ≃30% and
source the bulk of the parity-odd constraints. We find fttt;�NL
consistent with zero within the 95% confidence level in all cases.
Numerical constraints are given in Tables II and III and all results
are obtained by sampling the posterior (23) using emcee [81].

TABLE II. Planck PR4 constraints on the equilateral tensor-
mode non-Gaussianity parameter, ftttNL. For each analysis, we
analyze parity-even (first column) and parity-odd (second col-
umn) bispectra separately, and additionally provide a combined
constraint (third column), assuming maximal chirality. The
fiducial analysis assumes lmin ¼ 2 and lmax ¼ 500, and we
show the results from Planck 2018 [42] in the bottom panel
(assuming the SEVEM component-separation pipeline). Most
detection significances are small, with the largest signals seen for
E-modes or Eþ B-modes (up to 2.4σ), though this is severely
washed out when T-modes are included.

Analysis 10−2fttt;þNL 10−2fttt;−NL 10−2ftttNL

Fiducial (T þ Eþ B) 11� 8 −0� 14 9� 7
T only −2� 20 149� 136 5� 20
E only 67� 30 −384� 439 65� 30
B only 55� 68 −59� 59 −10� 44
T þ E 10� 11 2� 32 10� 10
T þ B 4� 14 −8� 18 −0� 11
Eþ B 40� 17 −20� 40 37� 15

lmin ¼ 4 13� 9 −6� 15 8� 8
lmax ¼ 375 12� 8 0� 14 9� 7
No linear term 12� 8 −1� 14 9� 7

T only (Planck 2018) 4� 17 90� 100 6� 16
E only (Planck 2018) 75� 75 −790� 830 70� 75
T þ E (Planck 2018) 16� 14 2� 20 13� 12
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maximally chiral GW sector), we obtain the combined
constraint ftttNL ¼ ð9� 7Þ × 102, which is dominated by the
parity-even sector.
Excluding B-modes from the analysis is found to inflate

the parity-even constraints by ≃30% while increasing
the error bar on fttt;−NL by a factor ≃2.4. In the absence of
B-modes, parity-odd physics can be probed only through
modes with odd l1 þ l2 þ l3 which, by intermediate l,
are limited by projection effects. In contrast, TTB, TEB,
EEB, and BBB spectra probe parity violation with even
l1 þ l2 þ l3, avoiding such a suppression, and sharpening
the constraints. If we consider only T-modes, the con-
straints degrade significantly; this implies that much of the
signal-to-noise comes from polarization and its cross-
correlation with temperature (noting that the full data set
contains ten spectra). A similar story holds for analyses
involving just E- or B-modes, with the lack of cross spectra
significantly reducing the signal to noise. For E-only or
Eþ B-modes, we find that fttt;þNL is nonzero at up to 2.4σ
(possibly indicating residual systematic contamination);
however, this is strongly inconsistent with the full-data-
set result.
To robustly assess the contributions of each field to the

overall constraint, we perform a likelihood analysis using
each bXYZ bispectrum in turn and plot the fractional
contributions to σ−2ðfttt;�NL Þ (i.e., the Fisher information)
in Fig. 7. For the parity-even sector, we find that constraints
are split across a wide variety of channels; T þ E-mode
correlators make up ≃60% of the Fisher matrix, with the
remainder sourced by B-mode spectra (particularly those

with two B-modes, following the above projection argu-
ments). This is quite different to the ratios found for
equilateral scalar non-Gaussianity in [42], reflecting the
utility of spin-2E-modes in graviton constraints. Parity-odd
constraints are instead strongly dominated by the TTB
correlator. This matches our expectation, since it is the
lowest-noise correlator with even l1 þ l2 þ l3; in this
case, the utility of B-modes is abundantly clear, with
T-only constraints making up only 1% of the Fisher
information.
Finally, it is interesting to ask to what extent these

constraints could be obtained from the model-independent
analysis of Sec. IV B. In this case once can ask: how large
would fttt;�NL need to be to induce a 1σ deviation in the
Planck χ2 value relative to the empirical distribution from
FFP10? This is straightforward to compute and leads to the
error bars σðfttt;þNL Þ ¼ 1.3 × 104, σðfttt;−NL Þ ¼ 1.9 × 104 from
the fiducial analysis including T-, E-, and B-modes. These
constraints are much weaker than those given in Table II,
reemphasizing our earlier statement that model-specific
tests always obtain tighter parameter constraints than blind
challenges.

3. Consistency checks

Next, we consider the dependence of our constraints on
various hyperparameters (with results given in Table II).
First, we consider excising modes with l ≤ 4; this inflates
the error bars by ≃10% but does not significantly shift the
mean, implying that any bias induced by large-scale
residual foregrounds is small. Second, we explore the

FIG. 7. Fractional contribution of each bispectrum to the fttt;�NL constraints, here parametrized by the Fisher information σ−2XYZðfttt;�NL Þ.
We show results for the parity-even and parity-odd sectors in the left and right panels, respectively, and perform all analyses using
fiducial hyperparameters, with l∈ ½2; 500Þ. We find that T- and E-modes dominate the parity-even sector (with non-negligible TBB
contributions), but the parity-odd sector is primarily influenced by TTB (since it sources spectra with even l1 þ l2 þ l3).
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dependence of the constraints on lmax in Fig. 8. Constraints
from both the T þ E and T þ Eþ B data sets degrade
significantly if we restrict only to very low l; this occurs
due to the form of the tensor transfer functions. Beyond
lmax ≃ 200, the constraints appear to stabilize; indeed, we
find negligible changes when the analysis is repeated
without the highest-two l bins (Table II). This matches
the forecasts of [39,43] and is expected to be similar even
for future low-noise experiments, due to the lensing
B-mode floor. Different scalings are found for futuristic
experiments when invoking delensing, however, as well as
for mixed scalar-scalar-tensor [36,43,82,83] and scalar-
tensor-tensor [35,82] bispectra. These scalings motivate
our choice of lmax (and Nside) used throughout this work
and indicates that one could perform faster (or more
optimally binned) analyses with lower lmax in the future.
Furthermore, the bispectrum estimation could be optimized
by a factor ≃100; as seen in Table II, the linear term in the
bispectrum estimator makes essentially no difference to the
fttt;�NL constraints and could be dropped.13

Last, we have performed extensive verification of our
pipeline using the FFP10 simulation suite, leading to the
constraints shown in Fig. 6 and Table III. In every analysis,
analyzing the mean of 500 simulations returns a result
consistent with zero to within 0.2σ. This indicates that the
systematic error of our pipeline is under control, at least for

the systematics included in the FFP10 simulation suite, and
gives us confidence in the robustness of the above results.
We further note that non-Gaussian contributions to the
CMB bispectrum, namely, integrated Sachs-Wolfe lensing
and polarization-lensing contributions, peak in squeezed
regimes and at larger l, and are thus not expected to bias
our (large-scale and equilateral) constraints [84–86].

4. Interpretation

The T þ E constraints on fttt;�NL can be directly compared
to those of the Planck 2018 non-Gaussianity analysis [42]
(shown in Table II); the SEVEM pipeline (which is
also used in NPIPE) found fttt;þNL ¼ ð16� 14Þ × 102 with

FIG. 8. Constraints on the parity-even (left), parity-odd (center), and combined (right) tensor non-Gaussianity parameters as a function
of the maximum scale used in the analysis, lmax. Results from Planck PR4 are shown as red data points (or pink, dropping B-modes),
while the blue bands indicate results obtained from analyzing the mean of 500 FFP10 simulations. As expected, the constraining power
saturates by lmax ≃ 200.

TABLE III. As in Table II, but for the mean of 500 FFP10
mocks. Results are consistent with zero, indicating that our
pipeline is unbiased.

Analysis fttt;þNL fttt;−NL ftttNL

Fiducial (T þ Eþ B) 0� 8 −0� 14 0� 7
T only 1� 20 −1� 135 1� 20
E only 0� 30 −20� 436 0� 30
B only −0� 68 −6� 60 −3� 44
T þ E −0� 11 −2� 32 −0� 10
T þ B 0� 14 −0� 18 0� 11
Eþ B −0� 17 −2� 40 −1� 16

lmin ¼ 4 0� 9 −0� 15 0� 8
lmax ¼ 375 0� 8 −0� 14 0� 7
No linear term −1� 8 −0� 14 0� 7

13This point is not generic; theoretical models whose signa-
tures are concentrated at the lowest l modes (such as flocNL) would
strongly benefit from this term.
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fttt;−NL ¼ ð2� 20Þ × 102; our parity-even constraint is
≈30% tighter, though our parity-odd error bar is degraded
by a factor of 1.6. To rationalize this, we note a number of
key differences in the analysis. First, our work utilizes an
updated Planck data set with better treatment of fore-
grounds and low-l polarization data. Second, we use a
lower lmin (2 rather than 4, which gives a ≃10% improve-
ment). Finally, our analysis utilizes binned bispectra, in
contrast to the modal approach [54,55] used in [42]. Our l
bins are relatively broad (using only 13l bins across a wide
range of scales), which will lead to some degradation in
constraining power. This is not necessarily a limitation of
the approach, however; if our analysis was repeated at
lower lmax (justified by Fig. 8) and without the costly linear
term (justified by Table II), one could easily use thinner l
bins and thus capture this lost signal to noise; Fisher
forecasts using 23l bins indicate that the constraint on
fttt;þNL (fttt;−NL ) could be improved by 10–15%. We note,
however, that by the inclusion of B-modes, our constraints
already represent a significant enhancement over those
presented previously, and thus this discussion simply
indicates that further improvements are possible.
Finally, it is interesting to compare our constraints to

those expected from simplified Fisher forecasts. This is
shown in Fig. 9, where we plot the single-field Fisher
information,

FXYZ ¼
X
b;b0

∂bXYZðbÞ
∂fttt;�NL

½CXYZ�−1ðb;b0Þ ∂b
XYZðb0Þ
∂fttt;�NL

; ð25Þ

for X; Y; Z∈ fT; E; Bg and bins b;b0, relative to that
expected from an ideal binned analysis with fsky ¼ 0.78
[using the covariance of (19), as shown in Fig. 3]. We
consider three Fisher forecasts: (a) using the covariance
extracted from PolyBin (inverting the normalization, F ),
which fully encapsulates geometric distortions; (b) using
the covariance extracted from FFP10 simulations, which
further accounts for non-Gaussian contributions to the
covariance; and (c) replacing FXYZ with the error bars
extracted from the actual analysis of Planck data. For TTT
bispectra, all ratios are close to unity, indicating that our
methodology is optimal (given our binning) and that
Planck temperature is fully cosmic-variance limited.
When polarization is included, the PolyBin constraints
degrade by ≃10–40%, particularly with the inclusion of
B-modes or the parity-odd sector. This indicates that the
nonuniform mask significantly complicates our analysis
due to its strong scale dependence at low l (given that the
expected B-mode signal is small). The FFP10 result (which
agrees with Planck bounds, as expected for a Gaussian
posterior) shows that there is some impact of non-Gaussian
covariance (i.e., contributions to the covariance that are not
sourced by the two-point function); this reduces the
constraining power by ≃10%. These results are in accor-
dance with our discussion of the covariances themselves in
Sec. IVA.

V. DISCUSSION

Primordial GWs represent a unique probe of the early
Universe, shedding light on both the inflationary vacuum

FIG. 9. Ratio of the expected to idealized (inverse) error bars on the non-Gaussianity parameter fttt;�NL computed from the Fisher matrix
of (25) with differing choices of covariance matrix. We show results with the expected covariance including the mask (red), that
extracted from 500 FFP10 simulations (blue), and the true error bars obtained from the likelihood analysis of Planck (green). We
conclude that the nonuniform window function degrades the constraints by ∼30%, particularly for polarization and parity-odd models,
and there is a further ∼10% reduction from non-Gaussian contributions to the polarization covariance, encoded within FFP10.
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and interactions within multifield paradigms. There exist
many sources of tensor fluctuations; to distinguish between
them, one may consider their statistical properties, in
particular their non-Gaussianity and parity. In this work,
we have used the full Planck temperature and polarization
data to place novel constraints on graviton bispectra,
considering both parity-even and parity-odd scenarios.
Such correlators can be sourced by a number of mecha-
nisms, including nonstandard inflationary vacua, gravita-
tional interactions of gauge fields, scalar-tensor theories of
general relativity, nonattractor phases of inflation, Chern-
Simons modified gravity, and beyond, and could, in
principle be large compared to the two-point function
(e.g., [10,11,14,16,23,26–29,35,37]).
Utilizing recently developed binned bispectrum estima-

tors [56–58], we have measured the binned Planck T-, E-,
and B-mode bispectra across a range of scales, and used
these to perform model-agnostic tests of graviton parity
violation and non-Gaussianity. Furthermore, we have
placed constraints on a popular model of equilateral tensor
non-Gaussianity (encoding the gravitational interactions of
gauge fields), considering both the parity-even and parity-
odd sectors. This work represents the first use of B-modes
to probe non-Gaussian inflationary physics; we found that
their inclusion enhances constraints on the parity-even
sector by ≃30% and dominates parity-odd constraints,
particularly through TTB bispectra. Throughout our tests,
we found no significant detections; as such, we report no
compelling evidence for GW bispectra, in both the parity-
even and parity-odd sectors.
Comparing to theWMAP, Planck 2015, and Planck 2018

analysis [40–42], we found significantly enhanced con-
straints on the tensor non-Gaussianity parameter ftttNL,
primarily due to our inclusion of B-modes. Without
B-modes, our parity-odd constraints are somewhat worse
(thoughour parity-even constraints improve over the former,
due to the lower lmin). This is attributed to the wide l bins
used in our bispectrum estimator, and could be mollified by
reducing the bin width; we forecast that constraints could be
improved by 10–15%by doubling the number of linear bins.
As noted above, our estimator could be significantly
expedited by dropping the linear term (which increases

computation by ≃100× and is of little use for equilateral
templates) and by reducing the maximum scale, noting that
our constraints saturate by lmax ≃ 200. We have also
compared our results to idealized Fisher forecasts; here,
we found that the scale dependence of themask considerably
reduces the precision ofB-mode analyses, and there is some
non-Gaussian contribution to the covariance, which is well
captured by the FFP10 simulations. Such effects will be
reduced in the future by better foreground subtraction and
understanding of the Galactic mask.
Our constraints on tensor non-Gaussianity will improve

considerably in the future. While the large-scale T- and
E-modes are quickly becoming cosmic-variance limited,
our work has shown that B-modes can significantly
enhance both parity-even and parity-odd constraints.
Future experiments such as the Simons Observatory,
CMB-S4, and LiteBIRD will see such modes measured
with much higher precision, and improvements in dele-
nsing techniques are poised to reduce their remaining
cosmic variance, allowing information to also be extracted
from smaller scales. For example, the LiteBIRD survey is
expected to reach an ftttNL error bar of Oð1Þ from (lensed)
B-modes alone (representing a 70× improvement over the
current constraint) [43]. Furthermore, the techniques con-
sidered herein can be simply extended to other scenarios,
such as local-type tensor non-Gaussianity or mixed tensor-
scalar-scalar non-Gaussianity, which will result in tighter
bounds on the corresponding amplitudes. By including the
full set of T þ Eþ B-mode correlators, we can strengthen
the bounds on a wide variety of primordial tensor phenom-
ena, which will be of paramount importance in future
constraints on inflation.
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