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The source of the tension between local Supernova (SN) Ia based Hubble constant measurements and
those from the cosmic microwave background or (baryon acoustic oscillation+big bang nucleosynthesis)
measurements is one of the most interesting unknowns of modern cosmology. Sample variance forms a key
component of the error on the local measurements, and will dominate the error budget in the future as more
SNe Ia are observed. Many methods have been proposed to estimate sample variance in many contexts, and
we compared results from a number of approximate methods to estimates from N-body simulations in a
previous paper, confirming that sample variance for the Pantheon SNe Ia sample does not solve the Hubble
tension. We now extend this analysis to include the more accurate analytic method based on calculating
correlations between the radial peculiar velocities of SNe Ia, comparing this technique with results from
numerical simulations. We consider the dependence of these errors on the linear power spectrum and how
nonlinear velocities contribute to the error. Using this technique, and matching sample variance errors from
more approximate methods, we can define an effective volume for SNe Ia samples, finding that the
Pantheon sample is equivalent to a top-hat sphere of radius ∼220 h−1 Mpc. We use this link between
sample-variance errors to compute ΔH0 for idealized surveys with particular angular distributions of SNe
Ia. For example, a half-sky survey at the Pantheon depth has the potential to suppress the sample variance of
H0 to ∼0.1 km s−1 Mpc−1, a significant improvement compared with the current result. Finally, we
consider the strength of large-scale velocity power spectrum required to explain the Hubble tension using
sample variance, finding it requires an extreme model well beyond that allowed by other observations.
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I. INTRODUCTION

The determination of the Hubble constant using the local
distance ladder relies on a sample of type Ia Supernovae
(SNe Ia) with high quality [1,2]. Since each SN Ia
observation probes the space-time along the line of sight
(LoS), inhomogeneities between the observer and the SN Ia
alter the value of H0 recovered. For a set of SNe Ia, these
distortions introduce sample variance in the final measure-
ment of H0. This effect can be reduced when we increase
the number of SN Ia observations in different directions.
Instead of considering individual LoS, we can take a
holistic view considering that the SNe Ia cover a patch
in the Universe, and that this patch does not follow the
behavior of the background. By considering density fluc-
tuations on scales larger than the patch, we can calculate the
expected variance of parameters such as H0 between a set

of patches. These methods—looking at perturbations along
each line-of-sight or looking at perturbations in patches of
the universe—were compared in an earlier paper [3] and
shown to give consistent results. When the current compi-
lation of SNe Ia is taken into account, we found that the
sample variance error is around ∼0.4 km s−1 Mpc−1, not
able to explain the tension ofH0 using local distance ladder
and cosmic microwave background, as has been found
previously [4–10].
Although the amplitude of sample variance is not suffi-

cient to explain the Hubble tension, it still contributes a
significant component of the error budget of the H0 deter-
mination, given the fact that the latest measurement has
reached a combined uncertainty level of1 km s−1 Mpc−1. All
methods for calculating sample variance start from the same
step, integrating the linear power spectrum to quantify the
amplitude of density fluctuations. The SNe Ia living in an
overdense area experience an additional attraction due to
local structures and reduce the H0 estimate, while the
opposite can happen in underdense regions and increase
H0. As discussed above, the behavior of these regions can be

*zhongxuzhai@sjtu.edu.cn
†Also at Perimeter Institute for Theoretical Physics, 31

Caroline St. North, Waterloo, ON N2L 2Y5, Canada.

PHYSICAL REVIEW D 109, 063519 (2024)

2470-0010=2024=109(6)=063519(11) 063519-1 © 2024 American Physical Society

https://orcid.org/0000-0001-7984-5476
https://orcid.org/0000-0002-0644-5727
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.063519&domain=pdf&date_stamp=2024-03-14
https://doi.org/10.1103/PhysRevD.109.063519
https://doi.org/10.1103/PhysRevD.109.063519
https://doi.org/10.1103/PhysRevD.109.063519
https://doi.org/10.1103/PhysRevD.109.063519


considered as either giving rise to peculiar velocities of SNe
Iawith respect to thebackground, or changing the cosmology
of the overdense/underdense patches such that there are no
peculiar velocities within the patch, just each patch of space-
time is behaving in a different way.
The first method considered in [3] (hereafter paper I) was

based on how the inhomogeneity δ along the LoS changes
the luminosity distance in a frame where the redshift
remains constant [11–14]. Relativistic corrections to obser-
vations in such a model were considered in [15]. In the local
universe, the resulting variance in H0 can be approximated
as −fδ=3 where f is the linear growth rate. The second
method considered in paper I was based on methods to
determine super sample covariance (SSC) in sets of
cosmological simulations [16–18]. Due to the finite volume
covered in any simulation, density fluctuations on scales
larger than the simulation box give rise to a “DC-level”
density fluctuations that is different for each box in a set.
This then leads to cosmological parameters that vary
between the simulations [17]. The Hubble constant in each
box (or patch) is different from the background and
measurements within it will give this local value. The
third method borrows ideas from the homogeneous top-hat
model for structure growth. In a small patch of the universe,
the evolution can be governed by the same equations as the
background but with a different initial curvature due to
perturbations in density. Each sphere is governed by a
Friedmann equation with different parameters, leading to a
different scale factor inside the patch than the background
and thus a different H0. The fourth method uses numerical
simulations directly—in N-body simulations, distances are
measured relative to the background, with perturbations
resulting in the peculiar velocities that incorporate the
dynamics of dark matter.
The three analytical methods described above perturb

different parameters in the model: the luminosity distance,
cosmological parameters or spatial curvature, with the level
of perturbation limited by the density power spectrum. The
simulation-based method does not perturb any parameters
in the model explicitly, but the correlation of H0 with the
overdensity in the patch δ can be easily computed from the
peculiar velocities within the simulation. In this paper, we
contrast these methods with a method based on directly
modeling the correlations between the radial peculiar
velocities of different SNe Ia. In a frame where distances
are measured with respect to the background cosmology,
and perturbations affect peculiar velocities, the sample
variance of H0 results from the correlated peculiar veloc-
ities of the SNe Ia. Such a method was introduced in earlier
works [19,20] and has been studied in the constraint on
cosmological parameters, see [14,21–29] and references
therein. Similar to the nonsimulation methods summarized
above and in paper I, the velocity correlation function
method can also be classified as an analytical method.
However, there are crucial differences. First, this method

utilizes the peculiar velocity of the SN Ia directly, which is
the source of the sample variance in the H0 measurement.
For methods that perturb parameters, one has to approxi-
mate the size and shape of the patch being considered.
Instead, by considering the peculiar velocity field directly
as defined within a single background cosmology, this
method uses the exact geometry of the SN Ia survey. Thus,
it provides more accuracy. When originally defined, the
method was used to predict the peculiar velocities of dark
matter halos leading to results for peculiar velocity surveys
and redshift space distortion (RSD) measurements, match-
ing simulation-based analysis. The method gives the effect
of sample variance (or RSD) on SN Ia surveys, but the link
from peculiar velocity errors to errors on H0 is not direct—
the method to go from the velocity errors to errors on the
measurement of H0 requires care, as discussed later, where
we use Monte-Carlo simulations to determine this link.
Each of the five methods used to estimate sample

variance for SNe Ia measurements provides different
insights for the method. By comparing results between
direct measurements that include the 3D distribution of
SNe Ia and those that approximate this as a simple shape,
we can define effective properties of any sample. This
effective volume makes it possible to compare and contrast
surveys. Ideally, we want to use fast analytic methods to
make predictions, but need to do so accurately. The
problem with using the analytic methods in paper I directly
is that they make too many simplifying assumptions to be
accurate. For example, that each SN Ia in the sample has
equal weight, and depending on the exact method, they
make an approximation such as that the region of influence
of every line-of-sight (LOS) to a SN Ia is a sphere entered
on the mid-point on the LOS between SN and the observer.
However, the SNe Ia at higher redshift have a larger
contribution from the Hubble flow than their peculiar
velocity, and therefore in terms of the H0 determination,
they should receive more weight. In addition, the sample
variance of H0 is directly affected by the uncertainty of the
apparent magnitude of each SN Ia, see, e.g., [7] and thus it
is not correct to assume that they are the same given the
noise covariance matrix [30].
We therefore need to consider a more realistic method to

estimate the effective volume of the SNe sample. By
matching the variance ΔH0 of the approximate methods
to a more accurate method, we can achieve this goal and
define an effective volume for any sample of SNe Ia in a
fast, quantitative, and straightforward way. We could do
this calibration using N-body simulations, but this is
computationally very expensive. Instead we now show
that we can calibrate the fast methods of paper I using the
velocity correlation function method. Based on this, we can
quickly forecast the sample variance component ofΔH0 for
future SNe Ia surveys as a function of area and number
density, and balance the breadth of any survey against
density for sample variance errors.
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This paper is organized as follows, Sec. II presents the
formalism of the radial velocity correlation function.
Section III provides the results for the estimate of ΔH0

and the effective volume of the current SNe data.
Section IV includes our discussion and conclusions.

II. VELOCITY CORRELATION FUNCTION

In this section, we briefly review the formalism of the
velocity correlation function method developed in the
literature, and describe how we apply it to estimate the H0

variance.
For a set of SNe Ia, the sample variance depends on the

relative position of the LoS through the radial velocity
correlations, e.g., [14,19,24,28,31]. For example, probing
similar LoS multiple times does not reduce the sample
variance as much as probing widely separated LoS. In a
frame where perturbations manifest as peculiar velocities,
the radial velocity correlation function shows how corre-
lated the sample variance errors are between any two
SNe Ia.
For multiple SNe Ia we can construct a n × n matrix,

where n is the number of SNe Ia, and each element is the
covariance between the radial velocities of two SNe Ia.
Given such a matrix, and assuming that the velocities are
drawn from a Gaussian distribution, we can easily create
Monte-Carlo samples of sets of peculiar velocities. These
can then be attached to measured SNe Ia positions and H0

can be measured for each realization, using the same
methodology applied to data. The distribution of H0

recovered then leads to the sample variance error on H0.
This method can be considered an approximation to
N-body simulations, with the simulations evolving the
field in order to get the correct nonlinear velocities for the
distribution of SNe Ia positions, while the matrix uses a
known form for the covariance within a Gaussian ran-
dom field.
The method starts from the velocity correlation function,

which is defined as

Ψi;jðrÞ≡ hviðraÞvjðrbÞi; ð1Þ

where r ¼ rb − ra is the separation vector of two host
galaxies labeled as “a” and “b”, i and j denote the
Cartesian components of the velocity and the average is
over all the galaxy pairs. In practice, the SN Iameasurements
only depend on the radial component of the velocity, and
it is convenient to define ua ¼ r̂aua ¼ r̂aðr̂a · vaÞ and
ub ¼ r̂bub ¼ r̂bðr̂b · vbÞ, where r̂ is the unit direction vector
for r.
For a statistically isotropic and homogeneous random

vector field, [19] showed that the above velocity correlation
tensor can be written as a function of the amplitude of the
separation vector r ¼ jrj

Ψi;jðrÞ ¼ ΨkðrÞr̂ir̂j þΨ⊥ðrÞðδij − r̂ir̂jÞ; ð2Þ

the two new functions Ψk, Ψ⊥ are the radial and transverse
components of the velocity correlation function, respec-
tively. For the radial peculiar velocities, we can write the
correlation function as

huaubi ¼ r̂air̂bjhvivji ¼ ΨkðrÞðr̂a · r̂Þðr̂b · r̂Þ ð3Þ

þΨ⊥ðrÞ½r̂a · r̂b − ðr̂a · r̂Þðr̂b · r̂Þ�: ð4Þ

This expression can be further simplified in terms of the
angles θ1 and θ2 between the separation vector r and the
galaxy position vectors ra and rb, cos θa ¼ r̂a · r̂,
cos θb ¼ r̂b · r̂, and ½r̂a · r̂b− ðr̂a · r̂Þðr̂b · r̂Þ� ¼ sinθa sinθb.
In this case, the velocity correlation function is fully
determined by the functions Ψk and Ψ⊥. In linear theory,
Ref. [22] shows that they can be computed through the power
spectrum of the density fluctuation PðkÞ as follows:

Ψk ¼
ðfH0Þ2
2π2

Z
PðkÞ

�
j0ðkrÞ − 2

j1ðkrÞ
kr

�
dk; ð5Þ

Ψ⊥ ¼ ðfH0Þ2
2π2

Z
PðkÞ j1ðkrÞ

kr
dk; ð6Þ

where f is the logarithmic derivative of the linear growth
factor with respect to the scale factor and can be approxi-
mated as f ≈Ωγ

m with γ as the growth index [32,33], and jn is
the spherical Bessel functions of order n. The power
spectrum PðkÞ can be easily computed using models like
the parametrization of [34]. The above equations can
determine the velocity correlation function of galaxy pairs.
In the limit where r → 0, Eqs. (5) and (6) reduce to the same
form, which gives the diagonal elements in the covariance
matrix,

σ2vi ¼ hu2i ¼ ðfH0Þ2
6π2

Z
PðkÞdk; ð7Þ

where σvi is the dispersion in the peculiar velocities [14].
Thus we have completed the construction of the velocity
correlation function for the SNe Ia sample. Note that
Eqs. (5)–(7) are only valid for linear scales, where the
density-velocity relationship is simple. To extend this into
the nonlinear regime, we would need to use the nonlinear
velocity power spectrum, rather than scaling the nonlinear
density power. For instance, [35] explores the theoretical
descriptions for modelling the nonlinear effect on the
velocity correlation function in redshift space. Although
our linearmodel is clearly too simple, the results given below
show good agreement with the simulation-based analysis.
The velocity correlation function method has been previ-
ously used to predict errors for a SN Ia sample. For instance,
[36] adopt a likelihood analysis to search the significance of
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the bulk velocity using the JLA sample at low redshift. And
[37] uses the same SNe Ia sample to retrieve constraint on the
growth-related cosmological parameters using SN peculiar
velocitywith andwithout combining theweak lensing signal.
We extend this work, comparing the correlation function
method to approximate methods and simulations, and using
the comparison to define the effective volume of a SN
sample. Using this effective volume we can easily make
predictions for future projects that would otherwise be
computationally prohibitive.

III. RESULTS

In this section, we use the velocity correlation function
method to estimate the sample variance of H0 from the
current SNe Ia dataset, and investigate extensions including
nonlinear corrections to the power spectrum and veloc-
ity bias.

A. Estimating the variance of H0

We compare results from the velocity correlation method
against those from numerical simulations calculated using
method D in paper I. Our numerical simulation based
estimate of the H0 sample variance relies on a large-scale
N-body simulation from UNIT1 [38]. We use the halo
catalog from the simulation, and randomly choose a halo
with a mass of ∼1012−15 h−1M⊙ as the position of the
observer. Then we consider the Pantheon compilation [30]
of the SNe Ia sample within the redshift range 0.023 <
z < zmax where zmax is the maximum redshift in the local
distance ladder measurement and the fiducial analysis in [2]
adopts zmax ¼ 0.15. We assign each SN to the nearest dark
matter halo and in this case, the peculiar velocity of the dark
matter halo is inherited by the SNe Ia. We can measure H0

through

logH0 ¼ 0.2M0
B þ aB þ 5; ð8Þ

whereM0
B is the fiducial luminosity of SNe Ia and aB is the

expansion parameter describing luminosity distance and
redshift relation. The H0 uncertainty contributed from SNe
Ia peculiar velocity is via the uncertainty of

ΔaB ¼ 1

N

XN
i¼1

1

ln 10
vi

riH0

; ð9Þ

where vi is the peculiar velocity in the radial direction of
the ith SN Ia, and N is the total number of SNe Ia used in
the analysis [7]. We estimate the final variance ΔH0 by
repeating the process 104 times to get a distribution, i.e.,
each iteration has a different observer in the simulation box

and we randomly rotate the SNe Ia sample as a whole into
different directions.
For our new method based on the velocity correlation

matrix, we can use the observed SN Ia positions as the
starting point to estimate the velocity covariance matrix.
However, in order to utilise the existing routines for
analysing simulations, and to compare more closely to
the results fromN-body simulations, we modify this slightly
and apply the same procedure to assign SNe Ia to darkmatter
halos and then we construct a covariance matrix for peculiar
velocities using the formula in Sec. II integrating over the
expected power spectrum.2 The covariance matrix only
depends on the relative positions of the SNe Ia (or halos).
We then use this covariance matrix to produce a mock data
vector for peculiar velocities sampling from a multivariate
Gaussian distribution, and assign them to the halos. We
repeat this process 104 times to estimate ΔH0.
In Fig. 1, we present ΔH0 as a function of zmax. We can

see that our new method of modeling peculiar velocity
(solid blue) produces results in excellent agreement with
our previous purely simulation-based method (solid red).
The relative difference between the two method is no
higher than a few percent. They both show a clear

FIG. 1. Variance of H0 measurements estimated using purely
simulation-based method (solid red) and new method based on
velocity correlation function (solid blue). For comparison, the
dashed red line shows result when the SNe Ia are matched to dark
matter particles instead of halos, and the solid green line
represents result when the power spectrum for the calculation
of velocity correlation function considers nonlinear correction to
the density power using halofit, coupled with a linear relationship
between density and velocity power spectra.

1http://www.unitsims.org/.

2If, instead, we had used the angular position and redshift of
the SNe Ia sample to construct the velocity correlation matrix,
this would be kept fixed for all realizations. When we match SNe
Ia to the halo catalog, it causes slight variations of the positions in
each iteration. Our test shows that the difference of these two
methods is less than 5%. We fit to the simulations for both in
order to have a cleaner match between the two methods.
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monotonic dependence on zmax, i.e., higher zmax means
more and distant SNe Ia are added in the analysis of
distance ladder. For the current fiducial analysis with
zmax ¼ 0.15, the sample variance of H0 measurement is
lower than ∼0.4 km s−1Mpc−1. The new method further
approves the robustness of this estimate and shows that the
sample variance itself is not able to fully resolve the tension
with Planck.

B. Nonlinear correction

Our model of the velocity correlation function is built
upon the linear perturbation theory. A fully nonlinear
description requires a model for the nonlinear velocity
power spectrum, which may in turn require a detailed
analysis using high resolution simulations. However, it is
possible to perform a simple approximate analysis using the
nonlinear density power spectrum and assuming a linear
relationship between density and velocity (such a relation-
ship is often assumed in an analysis of cosmic voids [39]).
To do this, we apply the halofit model [40] for nonlinear
power spectrum PðkÞ and redo the estimate of ΔH0. The
result is shown as solid green line in Fig. 1. Since the
nonlinear correction can boost the power spectrum at small
scales, the immediate impact is to increase the velocity
dispersion [Eq. (7)], i.e., the diagonal elements for the
covariance matrix, which increases the estimate ΔH0.
However, the comparison with the linear model shows
that the impact is quite small and the overall agreement
with other methods remains. In addition, one can use
models like [35] to describe the nonlinear correction in a
more realistic manner, however the agreement between our
approach and the simulation-based method seems to show
that this effect is negligible for the resulting H0 variance.

C. Velocity bias

As a byproduct of our analysis for peculiar velocity, we
can investigate the large-scale velocity bias—the link
between the halo and matter velocity fields—using numeri-
cal simulations. Earlier studies have shown that this param-
eter is close to unity, i.e., the galaxy/halo has a velocity field
close to the underlying dark matter field [41–43]. These
analyses compare the two-point statistics for galaxies/halos
with dark matter particles and explored any dependence of
velocity bias on halo mass or redshift.
Our estimate of sample variance for H0 using numerical

simulations can be easily extended to study velocity bias.
We replace halos by dark matter particles in the assignment
of SNe Ia to halos. In Fig. 1, the dashed red line displays
this result. It shows that the two velocity field are exactly
the same in terms of ΔH0, indicating that the velocity bias
of dark matter halos is close to unity, similar to the results
from literature. The work in [42] shows some deviation of
velocity bias from unity at z ¼ 0 for small scale, but the
deviation is no higher than 5%. Therefore our result is not

in significant conflict with theirs, but can serve as an
independent measurement of velocity bias.

D. Reanalysis with the Pantheon+ compilation

The results discussed above were based on the Pantheon
data, and we note that this catalog was recently updated to
Pantheon+, as described in [44], and used to remeasureH0 in
[2]. We now compare the two samples and the sample
variance in the new H0 measurement for Pantheonþ. We
estimate the sample variance error using the velocity corre-
lation function method, and present the results in Fig. 1,
shown as the dotted lines. The first feature is the agreement
between the velocity correlation function method and the
simulation based method, which matches the agreement
found using the Pantheon data. This provides further
evidence of the method used in this work. However, there
is substantial offset between Pantheon and Pantheonþ at
higher zmax. This is counter-intuitive since Pantheonþ has
more SNe Ia than Pantheon. The reason is that Pantheonþ is
not a simple extension toPantheon. The selections and cuts in
the new compilation rearrange the catalog significantly, see,
e.g., the discussions in [44] and [45]. In the redshift range
0.023 < z < 0.15 for the H0 measurement, the overlap
between Pantheon and Pantheonþ is less than 50%. More
importantly, Pantheonþ has more SNe Ia at low redshift, but
fewer at high redshift as shown in Figure 2. The Hubble flow
is more significant for individual SN Ia compared with the
contribution from peculiar velocity, therefore the high red-
shift SNe Ia gain more weight in the H0 determination. At
z > 0.1, the results from two compilations differ by a factor
of two. Although the Pantheonþ has more data, the sample
variance in theH0 measurement is not suppressed. From this
point of view, the selection is not optimized, implying that
future improvement of the variance could be possible.

FIG. 2. The redshift distribution of Pantheon and Pantheonþ
SNe Ia samples that have been used to measureH0, in the redshift
range 0.023 < z < 0.15.
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E. Effective volume of SNe Ia sample

In paper I, we applied a region of influence method and
estimated that the SNe Ia sample for the distance ladder
measurement only probes a much smaller volume than the
maximum redshift zmax ¼ 0.15. By comparing techniques
for estimating sample variance errors, we can now adopt a
straightforward calculation to find the effective region of
influence for a SN Ia sample: to do this, we can use all the
halos within radius R and estimate ΔH0 as a function of R.
Then we find the scale where the result is the same ΔH0 as
that calculated by the velocity correlation function method.
The resultant scale can be considered as the radius of the
effective volume that the SNe Ia sample probes.
In Fig. 3, we present the result for the Pantheon sample

of SNe Ia. The solid and dashed red lines are the same as
Fig. 1, i.e., ΔH0 from the current Pantheon sample using
dark matter halos or particles respectively. The dotted lines
stand for the results when we use all halos within some
radius. For comparison, we present results with different
lower limits of the halo mass. We can see that the result has
no dependence on the mass range, matching our previous
finding about the velocity bias of dark matter halos. We
search the effective volume of the SNe Ia data by matching
ΔH0 of the two measurements, i.e., the horizontal gray
lines. For zmax ¼ 0.15, we find that the effective volume
corresponds to a scale of about 220 h−1 Mpc. This is larger
than our earlier estimate in [3], meaning that in terms of
ΔH0, the current distance ladder measurement is equivalent
to a set of SNe Ia with the same number, within a spherical
patch out to redshift ∼0.075. If we look at the Pantheonþ
sample, we estimate that the effective volume matches that
of a spherical patch out to redshift ∼0.05, smaller than the

Pantheon sample since the data is more concentrated at low
redshift.

F. Implications for future SNe Ia survey: Ideal case

Although the current error contribution from SNe Ia in
the measurement of H0 is around ∼0.4 km s−1Mpc−1,
subdominant in the total error budget, the accuracy will
soon be improved with the LSST and Roman surveys
[46–48]. Using numerical simulations, we are able to
explore the impact of survey designs on the sample
variance of the H0 measurement.
Without any prior knowledge about the survey shape and

coverage, we simply assume that the survey is a spherical
cap on the sky and the halos are homogeneously distributed
within this volume. With this approximation, there are three
parameters to define the sample: the survey area A, radius R
(sometimes defined using zmax), and halo number density
nsn. Since the analysis is based on the UNIT simulation, the
halo catalog implies an upper limit on the number of
objects we can use. For reference, this value is 2.38 × 10−3

½Mpc�−3 for dark matter halos within a mass range of
1012–15h−1M⊙. We explore the range of nsn that can be as
small as 0.1% of this reference number density. For a given
R, we define a 2D grid for A and nsn, then we computeΔH0

for each A and nsn using halos that can be selected.
As an example, in Fig. 4 we present results for R ¼ 350

and 450h−1 Mpc. The left panel shows the distribution for a
range of A and nsn, while the middle and right panels show
the dependence on individual parameters. We can see that
the overall shape of the curves is similar for different values
of R, as well as the change as a function of the parameters.
Since the area is proportional to the volume sampled, the
decrease of ΔH0 with A is reasonable. On the other hand,
the number density impacts the total number of SNe Ia in a
similar manner as the area/volume. Given this dependence,
we can perform a simple 2D polynomial fit on the
parameters:

ΔH0 ¼ a00 þ a10
1

A
þ a01

1

nsn
þ a20

1

A2

þ a11
1

Ansn
þ a02

1

n2sn
ð10Þ

using the Scikit-learn package [49] and the result is shown
as the dotted line in the middle and right-hand side panel of
Fig. 4. We can see that the fit is quite a good match to the
calculations. In Table I, we summarize the fitting param-
eters for a few values of R. We note that there is a caveat for
the fitting result since, formally, the constant term should
vanish when the survey area approaches infinity for any
fixed density of SN Ia, but it does not in our fit. The
problem is the data we use for the fit is based on noisy
measurements, and that we only have data for a physical
range of A (less than the full sky). Given the current fitting

FIG. 3. Estimate of the effective volume of the SNe Ia sample.
The solid and dashed red lines represent ΔH0 when we match
SNe Ia to dark matter halos or particles in the UNIT simulation.
The dotted lines denote results when we use all halos above some
mass cut within some radius to estimate ΔH0. The interception
between the horizontal gray lines and the dotted lines give the
effective scale of the SNe Ia sample up to zmax.
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accuracy and the fact that the survey area can never exceed
that of the full sky, the current result can be used as a
reasonable approximation for practical applications. For an
ideal isotropic survey with isotropic coverage in the angular
direction, the result can be used to provide a quick estimate
for ΔH0. We note that the coefficients for the second order
term are much smaller compared with the first order terms,
indicating that a simple volume scaling may already be
sufficient for an approximation.

G. Implications for future SN Ia survey: Realistic case

As another example, we can forecast ΔH0 from future
SN observations such as LSST [50], using the distance
ladder method. Following [51], we predict the expectation

assuming a 5-year LSST SQ survey, which can observe
110k SN events within an angular coverage of 18000 deg2

and a maximum redshift of 0.35. Since higher redshift may
confront redshift evolution and model dependency, the
distance ladder usually truncates at, e.g., z < 0.15, we also
restrict the analysis below this limit. In Fig. 5, we present
the expectedΔH0 as a function of zmax. For comparison, we
also display the current result from Pantheon compilation.
The result shows that a 5 year complete survey may reduce
the sample variance of H0 to ∼0.1 km s−1 Mpc−1, a quarter
of the current estimate. In addition, we also fit the LSST
result with a simple scaling relation ΔH0 ¼ 0.052=zmax −
0.27 as shown as the red line in the figure. Note that this
fitting relation only uses measurements with redshift below
0.15 and should not extend to higher redshift regimes.

FIG. 4. Dependence ofΔH0 on the parameters A and nsn assuming an isotropic SNe Ia survey on the sky with an angular coverage of a
spherical cap. The left hand panel shows the dependence on the 2D plane, while the middle and right hand panel show the dependence
on individual parameters. The different colors in the middle (right) panel shows different values of nsn (A). The dotted lines are the best-
fit result with a second polynomial fit [Eq. (10)].

TABLE I. Fitting parameters for the dependence ofΔH0 on parameters A and nsn using Eq. (10). Parameter A is in
unit of deg2, while nsn is the number density of dark matter halos used in the analysis with a unit of ½Mpc�−3.
R½h−1 Mpc� a00 a10 a01 a20 a11 a02

250 0.27 673 6.15 × 10−8 −5.72 × 105 4.87 × 10−4 −7.16 × 10−14
350 0.15 332 1.86 × 10−8 −2.74 × 105 2 × 10−4 −2.36 × 10−14
450 0.098 174 7.88 × 10−9 −1.33 × 105 8.44 × 10−5 −1.14 × 10−14
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H. Large scale modulation

In the velocity correlation function method, as in all of
the methods to calculate the sample variance, the matter
power spectrum is of critical importance. In particular,
increasing the large-scale velocity power spectrum will
increase the sample variance. Primordial non-Gaussianity
of density perturbations affects the halo mass function and
bias on large scale, leaving a k−2 divergent signal in the

large-scale power spectrum [52–55]. This does not, how-
ever, affect the velocity power spectrum as biased objects
are expected to still trace the matter velocity field. Another
examples of such effect is the curvaton model of the
inflationary theory [56,57], which is proposed to explain
the hemispherical power asymmetry from cosmic micro-
wave background (CMB) observations [58]. This model
introduces a large-amplitude superhorizon perturbation. It
is possible that additional models may lead to excess power
in the velocity power spectrum, increasing the sample
variance.
In order to explore how much extra power is required to

increase the sample variance and explain the current
Hubble tension, we introduce a toy model to modulate
the velocity power spectrum on large scales and inves-
tigate the implications on the H0 sample variance. We
multiply the matter power spectrum by a simple function
f ¼ A

k þ 1, where A is a parameter that determines the
amplitude of the modulation. The left panel of Fig. 6
shows the power spectrum when we change the value of
parameter A. Then we use this modulated power spectrum
and redo the calculation of ΔH0 using the velocity
correlation function method as described in previous
sections. The resultant ΔH0 is shown in the right panel
of Fig. 6. For comparison, the unmodulated result (A ¼ 0)
is also shown. Increasing A increases the variance of H0,
as expected given the calculation of velocity correlation
function in Sec. II. The horizontal line shows the current
H0 offset of ∼5.6 km=s=Mpc between distance ladder and
CMB measurements. For mild levels of modulation, ΔH0

does not increase significantly. For an extreme model with
A ¼ 0.1 at zmax ¼ 0.15, the sample variance ΔH0 is up to
1.4 km=s=Mpc, comparable and slightly larger than the
total error budget using distance ladder. This uncertainty
can reduce the H0 tension below 4σ. However, we should
note that such an extreme model is not only modulating

FIG. 5. ΔH0 forecast based on the LSST SN Ia observations
using the UNIT simulation (red solid). We choose a LSST SQ
case as detailed in [51] and present the result as a function of zmax,
the maximum of redshift in the H0 measurement using the
distance ladder. The current result from the Pantheon compilation
is also shown (blue solid). The red dashed line shows a simple
dependence on 1=zmax.

FIG. 6. Left: modulated matter power spectrum with different values of A. This toy model is designed to affect large scale more than
small scale. Right: the resultant estimate ofΔH0 as a function of zmax for different values of A. The horizontal line denotes the currentH0

discrepancy.
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the velocity power spectrum at large scale, but changing
the whole shape of the velocity power spectrum. Solving
the full H0 tension relying on sample variance and an
excess of large-scale power does not look feasible given
how much the velocity power spectrum would have to
increase, and would produce a tension with other measure-
ments, such as the CMB dipole or RSD for example [59].
We can explicitly test this effect by looking at the velocity
dispersion. Given our simple toy model, a large enough
ΔH0 of a few km=s=Mpc to bring the tension within 1σ
requires the parameter A ∼Oð1Þ. Compared with the
unmodulated power spectrum, this boosted model can
increase the average amplitude of the peculiar velocity
using Eq. (7) from ∼300 km=s to a few thousands km=s,
i.e., a boost of roughly a factor of ten. In linear regime, we
know that the velocity field is related to the density field via

vr ¼ −β
∂

∂r
∇2

rδ; ð11Þ

where ∇2
r is the inverse Laplacian and the subscript “r”

denotes the radial direction. If we assume that the under-
lying density field does not change, the boost of velocity
field may purely and linearly come from the structure
growth through parameter β. This leads to an increase of the
linear growth rate by an order of magnitude, which
significantly violates the current observations.

IV. DISCUSSION AND SUMMARY

We have extended our previous (paper I) comparison of
methods to estimate the sample variance ofH0 by including
an additional method based on the velocity correlation
function. In this method, perturbation theory is used to
construct a covariance matrix for the radial peculiar
velocities of SNe Ia, and realizations are drawn from a
mutivariate Gaussian using this matrix. We compare this
with a method based on N-body simulations, and find that
the replacement of the analytic peculiar velocity correla-
tions with the nonlinear simulation based correlations did
not significantly change the estimate ofΔH0, indicating the
robustness of the velocity correlation function using per-
turbation theory and the dominance of linear scales in the
calculation. Given the extra k2 dependence of the velocity
power spectrum compared to that of the density, this is
expected. This method allows the sample variance ΔH0 to
be determined without the need for simulations or approx-
imations about the geometry of the survey, such as that it is
consistent with a spherical region.
Our analysis using numerical simulations also serves as

an independent test for the importance of velocity bias. By
selecting halos above some mass scale and compare the
results using dark matter particles, we find consistent
results showing that velocity bias is very close to unity
and not important for such analyses. In addition, we test
contributions from nonlinear scale by simply applying a

nonlinear correction to the matter power spectrum while
keeping the linear relation between density field and
velocity field. This is not a full description of nonlinear
velocity field, but does show that the nonlinear correction is
not significant for the estimate of ΔH0.
One of the key findings of this paper is to provide a

method to determine an effective volume for a set of SNe Ia
data, and we apply this to determine the effective volume of
the Pantheon SN 1a sample. It is obvious that the volume
must be smaller than the maximum redshift of SNe Ia in the
sample, since the SN observation only probes the space-
time along the LoS and the density inhomogeneity is not
representative of the whole spherical volume defined by the
redshift. By comparing methods, we can quantitatively
estimate this effective volume by comparing the error
contribution to H0 from the current Pantheon data with
a spherical volume of different radii. Our result shows that
the current distance ladder measurement is equivalent to a
spherical volume with a radius of about 220 h−1Mpc,
roughly half the distance to z ¼ 0.15. When we investigate
the locally perturbed background within a cosmological
model such as the Lemaitre-Tolman-Bondi (LTB) model,
one needs to be careful about the volume or scales that the
SNe Ia data can actually sample. In terms of the H0

uncertainty itself, our estimate of the sample variance is
consistent with the LTB or void-based analysis that they are
not able to resolve the tension, see, e.g., [60,61].
Given the estimate of ΔH0 made using the velocity

correlation function method, we can anticipate how the
uncertainty of H0 is affected by the volume covered, total
number, or distribution of the SNe Ia. Using the simulated
halo catalog, we study the dependence of ΔH0 on the
volume and number density of SNe Ia. In this case, the
sample variance is purely from peculiar velocity and we
find a clear dependence on the volume and number density.
We consider a possible future SNe Ia survey with isotropic
distribution and fit the dependence on volume and number
density with a second order polynomial model allowing fast
calculations. We find that ΔH0 is more sensitive to the total
area than number density: as SNe Ia surveys become sample
variance limited covering awide angular regionswill become
important.With a half-sky survey, or LSST-like survey in the
future, we can expect that the sample variance of H0 will
decrease to 0.1 km s−1Mpc−1, a significant improvement
compared with the latest measurement.
Within the framework of the velocity correlation func-

tion method, we can additionally investigate the impact of
boosting the velocity power spectrum at large scales. We
apply a simple toy model to modulate the power spectrum
at large scales. As expected, the boost of large scale power
can increase the final estimate of the H0 sample variance.
However, to mitigate or solve the tension, it requires an
extreme model which may beyond the parameter space
allowed by the current observational data. This analysis
further demonstrates the severity of the current H0 tension.
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