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We investigate cosmological consequences of a generalized early dark energy (EDE) model where a
scalar field behaves as dark energy at various cosmological epochs for a broad range of parameters such as
the energy scale and the initial field value. We consider power-law and axion-type potentials for such
an EDE field and study how it affects the cosmological evolution. We show that gravitational wave
background can be significantly enhanced to be detected in future observations such as LISA and
DECIGO in some parameter space. Implications of the EDE model are also discussed for a scenario where
a blue-tilted inflationary tensor power spectrum can explain the recent NANOGrav 15-year signal. We
argue that the bounds on the reheating temperature can be relaxed compared to the case of the standard
thermal history.
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I. INTRODUCTION

Scalar fields play an important role in various aspects of
cosmology. A prime example is the inflation where a scalar
field, called inflaton, drives the inflationary expansion and
gives the origin of density fluctuations in the Universe.1

Another one is a quintessence field which can explain dark
energy of the Universe.2 Scalar fields could also affect the
evolution of the Universe not only during inflation and
the current accelerating Universe, but also some time in
between. Indeed, high-energy theories such as superstring
and those with supersymmetry and so on, predict the
existence of scalar fields and hence they are expected to
be ubiquitous in the early Universe. One of such an
example is the moduli field [7–10] which may dominate
the Universe at some epoch between the end of inflation
and big bang nucleosynthesis, and could affect the cos-
mological evolution. Yet another example is an early dark
energy model [see Refs. [11,12] for a recent review and the
references therein, and see, e.g., [13] for possible problems
in the early dark energy (EDE) model] where a scalar field
gives some contribution to the total energy density at
around the radiation-matter equality epoch, which may help
to resolve the so-called Hubble tension (see e.g., [14,15] for

the current status of the tension).3 Actually, a scalar field
could also help to resolve the Hubble tension in a different
manner. For example, there exists a model in which the
time variation of the electron mass can be generated by the
dynamics of a scalar field, a dilaton [18], and such a time-
varying electron mass can significantly reduce the ten-
sion [19]. In any case, scalar fields can play an essential role
during the evolution of the Universe and have been
discussed in various contexts.
A typical behavior of a scalar field is such that it slowly

rolls in the early Universe and then starts to oscillate around
the minimum of its potential at some point. In many
scenarios, the potential of such a scalar field around the
minimum is assumed to be a quadratic form (or at least the
quadratic term dominates around the minimum), and hence
its energy density ρχ dilutes as ρχ ∝ a−3, which is the same
scaling as that of matter. However, the potential around the
minimum can be different from the quadratic one, and
indeed a higher-order polynomial can dominate around its
minimum as in the EDE scenario.4 In such a case, the energy
density of the scalar field dilutes faster than that of matter,
i.e., ρχ ∝ a−q with q > 3 and especially, when q > 4, it
dilutes faster than radiation, in which the scalar field quickly

1Even if a scalar field is subdominant during inflation, such a
scalar field can generate density fluctuations as in the curvaton
scenario [1–3], modulated reheating [4,5] and so on.

2In models with a canonical quintessence, the Hubble constant
tends to be even lower than that in the ΛCDM model when fitted
to cosmological data such as cosmic microwave background and
so on (see, e.g., [6]), and hence it may not be well-motivated from
the viewpoint of the H0 tension.

3Early dark energy may also alleviate another tension, the so-
called helium anomaly where a recent measurement of primordial
abundance of helium-4 by EMPRESS [16] suggests a nonstand-
ard cosmological scenario, which has been discussed in [17].

4Effects of a nonquadratic potential have also been considered
in different contexts. One of such examples is the curvaton model
where it has been shown that the predictions for primordial non-
Gaussianities can be drastically modified from the quadratic
potential case [20–29].
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disappears and becomes irrelevant for the cosmological
evolution after it starts to oscillate. Indeed such a fast-
diluting scalar field (a scalar field whose energy density
dilutes faster than that of matter and/or radiation) is essential
in the EDE model to solve the Hubble tension and has been
rigorously investigated [11,12].
In the context of the Hubble tension, the initial

amplitude and the parameters in the potential for an
EDE field are set such that it starts to oscillate around
the epoch of radiation-matter equality and its energy
density should give some sizable fractional contribution
to the total one, and then quickly dilutes not to affect the
cosmic evolution much, which is required to resolve the
Hubble tension. However, some level of fine-tuning needs
to be done to realize such a situation. From a general
ground, a scalar field can dominate the Universe and start
to oscillate at some epoch depending on the parameter
choice and its initial value. In this spirit, we in this paper
consider an EDE field in a general setting to allow various
possibilities for its evolution. We refer to such an EDE
field as “generalized early dark energy” and investigate its
cosmological consequences.5 To this end, first we identify
what energy scale for the potential and the initial value
for the scalar field affect which epoch in the course of
the history of the Universe. Indeed, in a broad range of the
parameter space, such a scalar field can dominate the
Universe during its slow-rolling phase, which gives rise to
a short period of inflation. After it starts to oscillate, we
assume that its energy density dilutes quickly such that it
becomes irrelevant to the cosmological evolution as in
usual EDE models as a solution to the Hubble tension.
Interestingly, in such a case, gravitational wave (GW)
spectrum can be enhanced and could be detected in the
future experiments. We identify the parameter space where
such an enhancement occurs. We also discuss the impli-
cations of the generalized EDE for the recent result of
NANOGrav 15 year data on GW background [31,32],
particularly in models where the inflationary blue-tilted
tensor power spectrum can explain the NANOGrav signal.
The organization of this paper is as follows. In the next

section, we describe the setup of our scenario of a
generalized early dark energy field and define several
quantities that facilitate our discussion. Its cosmological
evolution will also be discussed in some detailed manner.
Then in Sec. III, we investigate GW spectrum in such a
model, and investigate its detectability in some future
experiments such as LISA and DECIGO. Implications
for the NANOGrav is also discussed. In the final section,
conclusions and a discussion are given.

II. EVOLUTION OF GENERALIZED EARLY
DARK ENERGY

In this section, first we describe the setup of our scenario
and summarize the formalism to investigate cosmological
consequences of a generalized EDE. Then we discuss the
evolution of the EDE field and its effects on the cosmic
expansion. We also investigate possible initial values and
the energy scale of the EDE field from the stochastic
formalism argument.

A. Setup

We follow the cosmic evolution from the time just after
the end of inflation to the present epoch and assume that
there exist a scalar field χ (a generalized EDE field),
radiation and matter components in the Universe.6 The
equation of motion for χ and the Friedmann equation is
given by

χ̈ þ 3Hχ̇ þ V;χðχÞ ¼ 0; ð2:1Þ

H2 ¼ ρtot
3M2

Pl

¼ 1

3M2
Pl

ðρr þ ρm þ ρDE þ ρχÞ; ð2:2Þ

where VðχÞ represents a potential of the scalar field. A dot
denotes a derivative with respect to the cosmic time t and
V;χðχÞ ¼ dVðχÞ=dχ, aðtÞ is the scale factor of the Universe,
normalized to be unity at present, H ≡ ȧ=a is the Hubble
parameter, MPl ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
≃ 2.436 × 1018 GeV is the

reduced Planck mass. ρtot is the total energy density and
ρr, ρm, and ρDE are those of radiation, matter and dark
energy components, respectively. ρχ is the energy density
of χ which is given as

ρχ ¼
χ̇2

2
þ VðχÞ: ð2:3Þ

In this work, we consider the following two potentials for
the EDE field χ:

VðχÞ ¼ V0

�
χ

MPl

�
p

ðpower-lawÞ; ð2:4Þ

VðχÞ ¼ V0

�
1þ cos

χ

fa

�
n

ðaxion-typeÞ; ð2:5Þ

where p and n represent the power-law index, V0 is the
energy scale of the potential, and fa is the decay constant.

5Another possible extension of an EDE model is to assume a
general equation of state for the initial and final EDE fluid, which
has been investigated in [30].

6Although we include a cosmological constant as the late-time
dark energy component to evaluate the evolution of the scale
factor up to the present epoch for completeness, it is irrelevant to
our arguments below. In our calculation, the cosmological
parameters are set to the ones given by Planck observation
2018 [33]: h ¼ 0.6766 and Ωmh2 ¼ 0.1424 when necessary.
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These types of potential, particularly with p ≥ 4 and n ≥ 2
are well investigated in the context of the Hubble tension
[12] since such values of p and n allow the energy density
of EDE dilutes faster than matter and quickly becomes
irrelevant to the cosmic evolution, particularly when the
Universe becomes matter dominated. Moreover, the param-
eters in the potential need to be tuned to affect the evolution
around radiation-matter equality when one tries to resolve
the Hubble tension. Below we investigate what parameter
values influence the evolution of the Universe, when and to
what extent. To this end, we follow the evolution of the
EDE field from the time just after the reheating has been
completed, which is regarded as the initial time in our
calculation. We note that, although we specify the energy

scale of inflation, we do not need to assume an explicit form
for the inflaton potential in the following argument.
In Figs. 1 and 2, we show some examples of the thermal

history in the generalized EDE model with the power-
law potential. Since the energy density of an oscillating
scalar field under the potential of VðχÞ ∝ χp with p > 0
scales as [34]

ρχ ∝ a−6p=ðpþ2Þ: ð2:6Þ

Notice that ρχ for p ¼ 4 scales as the same as that of
radiation, and when p > 4, it dilutes faster than radiation.
In the following argument, we also use the effective

FIG. 1. Evolution of energy densities of EDE, radiation and matter. In this figure, we assume the power-law potential with p ¼ 4 and
take χini ¼ 0.1MPl and V1=4

0 ¼ 1 GeV (left panel), and χini ¼ 6MPl and V1=4
0 ¼ 1 GeV (right panel).

FIG. 2. The same as Fig. 1, but for the power-law potential with p ¼ 6. Here we take χini ¼ 0.1MPl and V
1=4
0 ¼ 1 GeV (left panel) and

χini ¼ 6MPl and V1=4
0 ¼ 1 GeV (right panel).
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equation of state w for the oscillating EDE field which is
related to p as

w ¼ p − 2

pþ 2
: ð2:7Þ

Here we only show the cases with the power-law potential
since the axion-type potential (2.5) around the minimum
has a form VðχÞ ∝ χ2n, and then the evolution of the
axion-type EDE is quite similar to the one for the power-
law type with n ¼ p=2. In Fig. 1, the case for the power-
law potential with p ¼ 4 is shown for ðχini; V1=4

0 Þ ¼
ð0.1MPl; 1 GeVÞ (left panel) and ð6MPl; 1 GeVÞ (right
panel). The case for the power-law potential with p ¼ 6
is also shown in Fig. 2, in which the values of χini and V0 are
taken to be the same as those in Fig. 1. In the left panel
(in both Figs. 1 and 2), we take the parameters such that the
EDE field does not dominate the Universe during the whole
history, on the other hand, the right panel corresponds to the
case where the EDE field dominates the Universe during its
slow-rolling phase and quasi-de Sitter phase appears before
the EDE field starts to oscillate. Since ρχ for the case of
p ¼ 4 decreases as the same as that of radiation, the
Universe is dominated by EDE until matter does. It should
be noted that a cosmological scenario where the oscillating
EDE field dominates the Universe until matter supersedes it
would be excluded by cosmic microwave background
(CMB) observations, the case shown in the right panel of
Fig. 1 is just for illustration purposes.
In the bottom panels of the figures, we also depict the

evolution of fEDE which represents the fraction of ρχ in the
total energy density, defined as

fEDE ≡ ρχ
ρtot

¼ ρχ
ρχ þ ρr þ ρm þ ρDE

: ð2:8Þ

We also define the parameter ac and χc which denote the
scale factor and the value of χ field at which fEDE takes its
maximum value.7 In Fig. 3, the schematic picture is shown
to explain which epoch corresponds to ac.
When the EDE dominates the Universe and quasi-de

Sitter phase appears at some epoch as in the right panel of
Figs. 1 and 2, we define yet another scale factor (or time),
denoted as a1, at which the energy density of EDE super-
sedes that for radiation (see the right panel of Fig. 3). The
scale factor a1 can be evaluated as

a1
aR

≃
�
ρrðTRÞ
VðχiniÞ

�
1=4

; ð2:9Þ

where χini is the initial value of χ field, aR and TR are the
scale factor and the temperature at the time of reheating, and
ρrðTRÞ is radiation energy density at the reheating after
inflation which is given by

ρrðTRÞ ¼
π2

30
g�ðTRÞT4

R; ð2:10Þ

with g�ðTRÞ the degrees of freedom at the time of reheating.
In our numerical calculation, we assume that the inflationary

ρr ρr
ρχρχ

ρ ρ

f E
DE

f E
DE

acac a1 a2

Dominant caseSub-dominant case

Scale factor a Scale factor a

FIG. 3. Schematic figure describing the characteristic scale factor a1; ac, and a2 for the case of p > 4. The right (left) panel
corresponds to the case where the EDE field dominates at some epoch (always subdominant) during the course of the history of the
Universe. Red and blue lines describe energy densities of radiation and the EDE, respectively. The bottom panel shows the evolution of
fEDE. The scale factor ac is defined as the one at which the fEDE takes the maximum value. a1 and a2 correspond to the epoch at which
the EDE energy density supersedes and is overtaken by that of radiation, respectively. Notice that a1 and a2 only appear when the EDE
field dominates the Universe at some time (right panel).

7This epoch roughly corresponds to the time when the EDE
field starts to oscillate and H ∼meff ≡

ffiffiffiffiffiffi
V 00p

holds. However, this
rough estimate fails especially when the quasi-de Sitter phase
appears. Therefore we evaluate ac from the numerical calculation
with the definition described here.
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Hubble scale is Hinf ¼ 1013 GeV and the reheating temper-
ature is TR ¼ 1015 GeV for definiteness unless otherwise
stated although their actual numbers do not affect our
arguments. The above choice of Hinf and TR almost
corresponds to the case of the instantaneous reheating.
For p > 4, the energy density of an oscillating EDE field
dilutes faster than radiation, and hence after the EDE field
starts to oscillate, there appears the second equality when ρχ
is overtaken by ρr, which we denote by a2 (see the right
panel of Fig. 3). We can express a2 by using ac and the
effective equation of state parameter w for an oscillating
EDE field as

a2
ac

≃
��

ac
aR

�
4 VðχcÞ
ρrðTRÞ

�
1=ð3w−1Þ

: ð2:11Þ

The analytic expression for ac is given in the next section.

B. Estimates for fEDEðacÞ and ac
In the context of the Hubble tension, fEDE is an

important parameter since the fraction of energy density
of EDE determines its effects on the CMB power spectrum.
Actually, as many analysis indicates, the EDE should give
some fractional contribution to the total energy density of
the Universe as fEDE ¼ Oð0.01Þ − ð0.1Þ at around the
radiation-matter equality, i.e., ac ∼ aeq, to resolve the
Hubble tension [12]. We note that EDE not only affects
the background dynamics, but also the evolution of the
perturbation, which helps to reduce the tension. The
fraction of EDE fEDE suitable to resolve the Hubble tension
has been obtained including effects of the perturbations,
then fEDE ¼ Oð0.01Þ − ð0.1Þ is preferred (see Ref. [12]
and the references therein).
Here we investigate what values of fEDE;cð≡fEDEðacÞÞ

and ac are obtained in a broad range of the parameter space.
In Fig. 4, we show contours of fEDE;c and ac in the plane of

FIG. 4. Contour plots of fEDE;c (red) and ac (blue) in the χini–V0 plane. The upper and bottom panels show the power-law and the
axion-type potentials with p ¼ 2n ¼ 4 (left panels) and p ¼ 2n ¼ 6 (right panels), respectively. The red and green region correspond to
the case with fEDE;c > 0.5 and fEDE;c < 0.5, respectively. In the blue region, the EDE dominates after the BBN epoch, which would
contradict cosmological observations.
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χini, and V0 for the cases with the power-law (top panels)
and the axion-type (bottom panels) potentials. When the
EDE field dominates the Universe to generate the quasi-de
Sitter phase after the epoch of big bang nucleosynthesis
(BBN), the subsequent thermal history of the Universe is
significantly changed, which would contradict cosmological
observations. On the other hand, when such de Sitter phase
appears before the BBN epoch, various cosmological
constraints would be irrelevant and it can give an interesting
implication for the GW observations which will be dis-
cussed in the next section. From the figure, one can also
easily see what values of χini and V0 can realize fEDE;c ¼
Oð0.01Þ − ð0.1Þ and ac ¼ Oð10−4Þ, which are necessary to
resolve the Hubble tension, where the initial field value is
sub-Planckian for the power-law potential case. On the other
hand, for the case of the axion-type potential, the decay
constant fa and the initial value of the EDE field tend to be
near Planckian to resolve the Hubble tension, which may
raise an issue from the perspective of the weak gravity
conjecture [35,36]. In the parameter space where EDE
dominates to give a quasi-de Sitter phase (e.g., fEDE > 0.5),
the GW spectrum can be enhanced as we will discuss in the
next section, however the initial field value becomes super-
Planckian in the power-law potential case. In such a region,
quantum gravity effects should be considered, which is
phrased by the so-called super-Planckian problem [37,38]
and the trans-Planckian censorship conjecture [39],
although such a super-Planckian field excursion does not
necessarily lead to the problem since it does not always
mean the Planckian energy density.
We can analytically understand the behavior of fEDE;c

and ac in the χini–V0 plane as follows. First of all, VðχcÞ
and fEDE;c at a ¼ ac are related as

VðχcÞ ≃
fEDE;c

1 − fEDE;c
ρrðacÞ; ð2:12Þ

where we consider the case where the Universe is radiation
dominated at a ¼ ac, and we approximate the EDE energy
density as ρχðacÞ ≃ VðχcÞ. For the power-law potential
(2.4), by taking the logarithm of both sides of Eq. (2.12),
one obtains

log10

�
V1=4
0

MPl

�
þp
4
log10

χc
MPl

¼ 1

4
log10

fEDE;c
1−fEDE;c

þ log10

�
ρrðacÞ1=4

MPl

�
: ð2:13Þ

Actually ρrðacÞ can be written with χini and V0. Until the
time when a ≃ ac, the slow-roll approximation can be
adopted for the equation of motion for the EDE field. By
integrating Eq. (2.1) from aR to ac under this approxima-
tion, one obtains

−
Z

χc

χini

dχ
V 0 ≃M2

Pl

Z
ac

aR

d ln a
ρtotðaÞ

: ð2:14Þ

where the left-hand side of the above equation can be
integrated as

−
Z

χc

χini

dχ
V 0ðχÞ ≃

1

pðp − 2Þ
M2

Pl

V0

��
χc
MPl

�
−ðp−2Þ

−
�
χini
MPl

�
−ðp−2Þ�

: ð2:15Þ

The evaluation of the right-hand side of (2.14) depends on
whether the EDE dominates the Universe at a ¼ ac or not,
we discuss each case separately below.

1. Case with EDE subdominant at ac
We first consider the case where the EDE is subdominant

at a ¼ ac. In this case, the Universe is radiation dominated
between aR and ac, and hence, by replacing ρtot with ρr in
the right-hand side of (2.14), we obtain

1

pðp − 2Þ
M2

Pl

V0

��
χc
MPl

�
−ðp−2Þ

−
�
χini
MPl

�
−ðp−2Þ�

≃
M2

Pl

4ρrðacÞ
;

ð2:16Þ

where we have used the approximation that ρrðaRÞ ≫
ρrðacÞ. Putting the above expression into Eq. (2.13),
we have

fEDE;c
1 − fEDE;c

¼ 4

pðp − 2ÞC
2ð1 − Cp−2Þ

�
χini
MPl

�
2

; ð2:17Þ

where we used χc ¼ Cχini with C being constant which
holds for χini ≤ Oð1Þ, and our numerical analysis indicates
that C ≃ 0.65. From Eq. (2.17), we can see that fEDE does
not depend on V0 when the EDE is subdominant at a ¼ ac,
i.e., fEDE;c < 0.5 and ac < aeq. From Eq. (2.16), we can
express ac by using V0 and χini as

ac
aR

≃
�
pðp − 2Þ

4

V0

ρrðTRÞ
�
χini
MPl

�
p−2

�
−1=4

: ð2:18Þ

We can also consider the case where fEDE takes its
maximum value during the matter-dominated epoch,
namely aeq < ac. In this case, by replacing ρrðacÞ by
ρmðacÞ in Eq. (2.12) and ρtotðaÞ by ρrðaÞ þ ρmðaÞ in
Eq. (2.14), and then and integrating from aR to ac, we
can find that the fEDE;c depends on both V0 and χini,
contrary to Eq. (2.17) where a ¼ ac occurs during radia-
tion-dominated epoch. The dependence on V0 and χini can
be found in Fig. 4.

KODAMA, SHINOHARA, and TAKAHASHI PHYS. REV. D 109, 063518 (2024)

063518-6



2. Case with EDE dominant at ac
In this case, we can integrate the right-hand side of

(2.14), for ac ≪ aeq, as

M2
Pl

Z
ac

aR

d ln a
ρrðaÞ þ ρχ

≃M2
Pl

�Z
a1

aR

d ln a
ρrðaÞ

þ
Z

ac

a1

d ln a
ρχ

�

≃M2
Pl

�
1

4ρrða1Þ
þ 1

VðχcÞ
ln
ac
a1

�
:

Thus, the scale factor ac is roughly estimated by

ac
a1

≃ exp

�
pp−1

2p=2ðp − 2Þ
�
χini
MPl

�
−p
��

χini
MPl

�
2

−
pðp − 2Þ

4

��
;

ð2:19Þ

where we have expressed χc with χini by using the
same procedure as done for the standard inflation case
(see, e.g., [40]). The above expression can be inserted to
Eq. (2.11) to obtain a2.
From the above argument, one can see that fEDE;c only

depends on χini when ac < aeq, which explains the behav-
ior of the contours of fEDE;c in most region of Fig. 4.
Although we have considered the power-law potential case
in the above argument, the same also applies to the axion-
type potential (2.5), which explains the behavior of fEDE;c
in the bottom panels of Fig. 4.

C. Estimate of χ ini from stochastic argument

The EDE field χ considered in this paper can be regarded
as a spectator field whose contribution to the energy density
is negligible during the inflationary era. When a spectator
field is light enough, the quantum diffusion drives the
distribution of its field value to reach an equilibrium one,
which can be discussed based on the stochastic formalism
[41–44] and a typical value of χini can be inferred given the
inflationary energy scale Hinf and the parameter in the
potential of χ. Here we briefly discuss such a typical value
of χini.

The field value of χ follows the Langevin equation:

dχðNÞ
dN

¼ −
V;χðχÞ
3H2

þ H
2π

ξðNÞ; ð2:20Þ

where we take the number of e-folds N ≡ ln a as a time
variable and ξðNÞ is a Gaussian white noise. The first and
second terms on the right-hand side correspond to classical
motion and quantum fluctuations, respectively.
From the above equation, we can get the Fokker-Planck

equation as [42]

∂PðN; χÞ
∂N

¼ ∂

∂χ

�
∂VðχÞ
∂χ

PðN; χÞ
3H2

þ H2

8π2
∂PðN; χÞ

∂χ

�
; ð2:21Þ

where PðN; χÞ is the probability distribution function (PDF)
of the field value of a spectator field χ. An equilibrium
solution for PðN; χÞ can be found as [43,44]

PstatðχÞ ∝ exp

�
−
8π2VðχÞ
3H4

inf

�
: ð2:22Þ

Here, we assume that the PDF relaxes to an equilibrium
stationary solution by the end of inflation. We can obtain a
typical value of the spectator field by setting the absolute
value of the exponent approximately equal to unity.
Based on the argument above, we can estimate the

values of χini and V0, which are depicted in Fig. 5 for a
given Hinf . From the figure, one can see that when the
inflationary Hubble scale is Hinf ¼ 1013 GeVð106 GeVÞ,
the scale factor at which the EDE takes its maximum
contribution to the total energy density is ac ¼ Oð10−26Þ −
Oð10−25Þ½Oð10−19Þ −Oð10−18Þ� for the power-law poten-
tial, which is much earlier than the CMB and even BBN
epoch. As already mentioned, to resolve the Hubble tension
in the framework of the EDE model, one needs to have
ac ¼ Oð10−4Þ. Figure 4 indicates that this can be realized
when V1=4

0 ≃ 10−9 GeV, which corresponds to a relatively

FIG. 5. Contours ofHinf suggested from the stochastic argument in the χini–V0 plane for the power-law (left) and the axion-type (right)
potentials with p ¼ 2n ¼ 6.
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low inflationary scale of Hinf ¼ Oð10−9Þ GeV as seen
from Fig. 5.
From the discussion here, one can notice that a low-scale

inflation is suggested to resolve the Hubble tension, based
the stochastic argument when the equilibrium distribution
is reached during inflation.8 For the axion-type potential,
we can also draw almost the same conclusion.

III. GRAVITATIONAL WAVES SPECTRUM

In this section, we discuss the consequences of the
generalized EDE to the GW spectrum, particularly for the
case where the EDE dominates the Universe at some point
and, then subsequently its energy density dilutes faster than
radiation, i.e., n > 4 and p > 2 for the power-law and
axion-type potentials, respectively.9

A. Gravitational waves spectrum

First we briefly describe how the GW spectrum is
calculated following the standard procedure. The equation
of motion for tensor perturbation in the transverse-traceless
gauge in the Fourier space hλk for the polarization λ ¼
ðþ;×Þ is written by

ḧλk þ 3Hḣλk þ k2

a2
hλk ¼ 0: ð3:1Þ

The GW spectrum, which is the energy density of GWs
normalized by the critical energy density per logarithmic
interval, is given by

ΩGWðkÞ ¼
1

12

�
k
aH

�
PTðkÞT2

TðkÞ: ð3:2Þ

Here TTðkÞ is the transfer function and PTðkÞ is the
primordial tensor power spectrum, which is assumed to
have the power-law form expressed by

PTðkÞ ¼ AT

�
k
k�

�
nT
; ð3:3Þ

whereAT is the amplitude of the primordial GWs at the pivot
scale k� and nT is the tensor spectral index. Here we choose
the pivot scale as k� ¼ 0.05 Mpc−1. The amplitude of the
tensor power spectrum can be determined by the inflationary
energy scale, namely PT ¼ ð8=M2

PlÞðHinf=2πÞ2. To describe
the size of primordial GW spectrum, we usually use the
tensor-to-scalar ratio which is defined by

r ¼ AT

AS
; ð3:4Þ

where AS is the amplitude of the scalar primordial
spectrum at the pivot scale k�. In the following calculation,
we take r ¼ 10−3 which is well inside the 2σ bound given
by the Planck observation 2018 [33] and the BICEP/Keck
Collaboration 2018 [46] for illustration. Since the ampli-
tude of the scalar power spectrum is given as AS ¼ 2.1 ×
10−9 [33], the above value of r gives the energy scale of
inflation as Hinf ≈ 1013 GeV.10 Once r is given, for the
single-field inflation models, the tensor spectral index
nT can be determined from the so-called consistency
relation nT ¼ −r=8.
We numerically solve the equation of motion for hλk to

obtain the transfer function in models with the generalized
EDE. The transfer function depends on the background
equation of state [47–50], and the behavior of the GW
spectrum can be easily captured by noticing that ΩGW
scales as

ΩGW ∝ k2ð3w−1Þ=ð3wþ1Þ ∝ f2ð3w−1Þ=ð3wþ1Þ; ð3:5Þ

where w is the equation of state parameter of the dominant
component during the time when the mode k enters the
horizon and f is the frequency corresponding to the mode k.
Since the effective equation of state parameter for an
oscillating scalar field is given by w ¼ ðp − 2Þ=ðpþ 2Þ
for a power-law potential VðχÞ ∝ χp, the GW spectrum is
enhanced during when the oscillating EDE dominates the
Universe when p > 4 (n > 2 for the axion-type potential).11

We summarized the scaling of the energy density of the
oscillating EDE and the GW spectrum in Table I.

TABLE I. The effective equation of state parameter for an
oscillating scalar field w, the indices β and γ for the scaling of the
oscillating EDE energy density ρEDE ∝ aβ and the GW spectrum
ΩGW ∝ kγ , respectively, for p (power-law potential) or n (axion-
type potential).

n, p=2 1 2 3 4 � � � ∞

w 0 1=3 1=2 3=5 � � � 1
β −3 −4 −9=2 −24=5 � � � −6
γ −2 0 2=5 4=7 � � � 1

8Whether the equilibrium distribution is realized or not
depends on the potential of the inflaton [44].

9Actually resonant amplification of EDE field fluctuations can
give sizable GW background in these kind of potentials [45]. The
frequency range is somewhat different from the one discussed
here, but such GW background could be another signature of the
generalized EDE.

10Using the definition of PT , (3.4), and the Planck normali-
zation AS ¼ 2.1 × 10−9, we can estimate the energy scale during
inflation as

Hinf ¼ 7.84 × 1012
ffiffiffiffiffiffiffiffiffiffi
r

10−3

r
GeV:

11Actually, when fEDE;c ∼ 0.5, the motion of an EDE field can
induce an oscillation in the Hubble parameter, which can make
some peaks/dips in the GW spectrum [51]. However, in the case
of fEDE;c > 0.5, the enhancement discussed here hides such an
effect.
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In Fig. 6, we show the GW spectra for the power-law
potential with several values of χini and V0. We show the
case with p ¼ 6 (left) and p ¼ 8 (right). For comparison,
we also depict the power-law integrated sensitivity curves
(PLISCs) [52] for future interferometer observations such
as LISA [53] and DECIGO [54]. As seen from the figure,
some range of the parameters can predict the GW signal
detectable at LISA and DECIGO. Since the effective
equation of state parameter w for an oscillating EDE field
is w ¼ 1=2 for p ¼ 6 and w ¼ 3=5 for p ¼ 8, which
indicates that the GW spectrum for the frequency mode
which reenter the horizon during the oscillating EDE-
dominated phase scales as ΩGW ∝ k2=5 and ΩGW ∝ k4=7

for p ¼ 6 and 8, respectively as shown in Table I. A larger
p gives a steeper slope for the increase of the GW
spectrum, and hence the case of a larger p allows more
parameter space for the detection of GWs. In particular,
the case with p ¼ 2n ¼ ∞ gives ΩGW ∝ k, which is the
same as that for the kination one. GWs in models with
kination have been studied in various context, for recent
works, see e.g., [55,56].
Here we only show the GW spectrum for the power-law

potential case, however, the case of the axion-type potential
gives almost the same spectrum as that for the power-law
one by identifying n ¼ p=2. Therefore we do not show the
axion-type potential case here.

B. Detectable region in LISA and DECIGO

In this section, we investigate what values of χini and V0

can predict the stochastic GWs detectable in future obser-
vations such as LISA and DECIGO. To quantify the
detectability over a wide range of the parameter space,
we introduce the signal-to-noise ratio (SNR) written by

ϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tobs

Z
fmax

fmin

df

�
ΩGWðfÞ
ΩnoiseðfÞ

�
2

s
; ð3:6Þ

where tobs is observing time and we set it as tobs ¼ 1 yr,
fmax and fmin represent the upper and lower bounds of the
frequency range corresponding observations [52,57]. Here
the noise spectrum is denoted by Ωnoise. If the SNR exceeds
a threshold ρthr ¼ 1 for a parameter set ðχini; V0Þ, we regard
that future observations would detect the GWs enhanced by
the generalized EDE model.
As shown in Fig. 6, with some parameter choice, the GW

spectrum in the generalized EDE model can be well above
the PLISCs for LISA and DECIGO. The PLISCs corre-
sponds to the spectrum giving ϱthr ¼ 1, which means that
the SNR is evaluated as ϱ < ϱthr ¼ 1 when the ΩGW always
stay below the PLISCs (for the details of the PLISCs, see
Appendix A of [52]). For example, the GW spectrum for the
case with ðχini; V1=4

0 Þ ¼ ð6MPl; 106 GeVÞ (red line in the
left panel of Fig. 6) gives ϱDECIGO ¼ 229; ϱLISA ¼ 0.172.
In Fig. 7, we depict the parameter region where the GW

spectrum can be detected in LISA (magenta region) and
DECIGO (blue region), i.e., the spectrum can exceed the
PLISC for LISA and DECIGO, in the χini–V0 plane for the
power-law potential with p ¼ 6 and 8 (top panels), and
the axion-type potential with n ¼ 3 and 4 (bottom panels).
In the figure, we also show the parameter space where
T2 < TBBN ∼ 1 MeV, in which the success of BBN would
be spoiled since the Universe experiences a quasi-de Sitter
phase during/after BBN in such a case. Although, in Fig. 7
where the tensor-to-scalar ratio is set to be r ¼ 10−3, there
exists the parameter space where the GW spectrum can be
detected for both LISA and DECIGO, such a region
disappears when we take a smaller value of r. We checked
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FIG. 6. The GW spectrum for the case of the power-law potential with several values of V0 and χini for the cases with p ¼ 6 (left) and
8 (right). In the left panel,we take the parameters as ðχini; V1=4

0 Þ ¼ ð6MPl; 106 GeVÞ (red), ð6.7MPl; 106 GeVÞ (blue), and ð6MPl; 104 GeVÞ
(dashed green). In the right panel, ðχini; V1=4

0 Þ ¼ ð8MPl; 106 GeVÞ (red), ð9.7MPl; 106 GeVÞ (blue), and ð9MPl; 104 GeVÞ (dashed green).
The black solid and dashed lines represent the PLISCs for DECIGO and LISA, respectively.
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that, when r ¼ 10−4 (r ¼ 10−5), the region with ϱLISA ≥ 1
lies inside the region of T2 < TBBN for p ¼ 6 (p ¼ 8), and
hence the detectable region for LISA does not show up.
We expect that the SNR for both observations would not
exceed ϱthr as the tensor-to-scalar ration r gets smaller, but
we do not consider such cases.
Furthermore, we only consider the case where the

generalized EDE field is subdominant at the time of
reheating, i.e., ρχðaRÞ < ρrðaRÞ. In the figure, the gray
region corresponds to the one where this condition is not
satisfied. Since a larger p (n) gives a steeper increase in the
GW spectrum, the case of p ¼ 8 ðn ¼ 4Þ shows more
parameter space for the detection of GWs in the power-
law (axion-type) potential.
We also show the predicted values of χini and V0 from the

argument of the stochastic approach given in Sec. II C for
Hinf ¼ 1013 GeV. From the figure, we can see that when
the equilibrium distribution for χ field is reached during

inflation, a large (small) value of χini can give detectable
GWs for the power-law (axion-type) potential with an
appropriate choice of V0.

C. Implications for recent NANOGrav results

Recently the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) reported evidence of
the stochastic GW background from observations of the
pulsar timing for 15 years [31], whose signal corresponds

to ΩðNANOGravÞ
GW ≈ 2.5 × 10−8 at f ≈ 3.2 × 10−8 Hz. If the

signal is generated from an inflationary stochastic GW
background, one can interpret it with the primordial tensor
power spectrum to be extremely blue-tilted, namely nT ≃
1.8� 0.3 [58]. Actually such a blue-tilted spectrum requires
a low reheating temperature TR in order not to violate the
BBN constraint [59], and TR < 10 GeV is demanded [58]
from the recent NANOGrav signal. Indeed the existence of

FIG. 7. Detectable region in the χini–V0 plane. The above panels show the case of the power-law potential with p ¼ 6 (top left) and
p ¼ 8 (top right), while the bottom ones show the case of the axion-type potential with n ¼ 3 (bottom left) and n ¼ 4 (bottom right).
The magenta and blue regions correspond to the parameter space where GWs can be detected in LISA and DECIGO, i.e., ϱLISA ≥ 1 and
ϱDECIGO ≥ 1, respectively. The red region corresponds to T2 < 1 MeV, which are prohibited by BBN. The gray region does not satisfy
our assumption that the generalized EDE field is subdominant at the time of reheating. The green line shows the prediction of V0 and χini
by the stochastic argument in Sec. II C.
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the generalized EDE can loosen the limit on TR and slightly
lower nT to explain the NANOGrav signal. Here we briefly
investigate to the implications of the generalized EDE for a
blue-tilted spectrum provided that the inflationary GWs
explain the NANOGrav signal.
In Fig. 8, we show the GW spectra for the cases with

and without the generalized EDE, both of which are
assumed to have a blue-tilted tensor spectral index. In
every case, the value of nT is taken such that the scale
dependence of the GW spectrum at around NANOGrav
frequency is ΩGW ∝ f2 [31,58]. We also assume the
tensor-to-scalar ratio to be r ≃ 5 × 10−11 as in [58], and
consider the power-law potential with p ¼ 6 (red)
and p ¼ 8 (blue). Here we take the parameters as
ðV1=4

0 ; χini; nTÞ ¼ ð10−0.7 GeV; 4.3MPl; 1.69Þ for p ¼ 6

and ð10−1.25 GeV; 6.2MPl; 1.62Þ for p ¼ 8, respectively.
These parameter sets satisfy the requirement that T2 >
TBBN ≃ 1 MeV to avoid the quasi-de Sitter phase after
BBN. We also depict the GW spectrum for the case
corresponding to p → ∞ in which the scaling of the
energy density during its oscillating phase is the same as
that for the kination-dominated case. For the sake of
numerical calculation, we include the case with p → ∞ by
adding an energy component which behaves as

ρkinðaÞ ¼
8<
:

Ckin ða ≤ acÞ;
Ckin

	
ac
a



6 ða > acÞ;

ð3:7Þ

where Ckin is a constant and ac is the scale factor at which
the kination phase starts. Here we take Ckin ¼ 101.6 GeV4,
ac ¼ 10−12, and nT ¼ 1.59. For the argument involving
the kination epoch to explain the NANOGrav results in
different frameworks, see e.g., [60,61].
It should be noticed that, with the existence of gener-

alized EDE, the GW spectrum can be enhanced to on top
of the blue-tilted primordial GWs. The GW spectrum
without the EDE, which is depicted by the dashed
magenta line in Fig. 8, assumes nT ≃ 1.82. On the other
hand, in the generalized EDE model, the value of nT can
be slightly lowered as shown in Fig. 8. Moreover, the
bound on the reheating temperature is relaxed as
TR < 150 GeV; 400 GeV, and 5 × 103 GeV for the cases
with p ¼ 6, 8, and ∞, respectively. This comes from the
fact that the GW amplitude of the modes which enter the
horizon during the quasi-de Sitter phase is abruptly
suppressed, as shown in Fig. 6. This is a unique feature
of the generalized EDE scenario and does not occur in
models with a simple kination phase.

IV. CONCLUSION

We have studied the consequences of a scalar field whose
energy density can give a non-negligible contribution at
some point during the course of the history of the Universe.
Such kind of scalar field has recently been discussed as a
potential solution to the Hubble tension and is called EDE.
In such a EDE model, its energy density gives some
contribution at around recombination, and then it quickly
dilutes to become a negligible component in later time to be
consistent with cosmological observations such as CMB.
To realize this situation, the parameters in the scalar-field
potential need to be fine-tuned. However, on general
grounds, one can take a broad parameter range unless such
a parameter choice is motivated by some arguments, and
furthermore other cosmological aspects can be affected. We
dubbed such an EDE field which can take broad parameter
range as “generalized EDE.”
In this paper, two different types of potentials for the

scalar field χ have been considered: power-law and axion-
type ones, in which there are three free parameters; the
power index p (or n), the energy scale V0, and the initial
value χini of the scalar field. We have assumed that the
energy density of the scalar field is less than that of
radiation at the time of reheating.
First, we have investigated to what extent and when the

energy density of the generalized EDE field can be sizable
as a function of χini and V0, which was shown in Fig. 4.
As discussed in Sec. II, the EDE field can give a non-
negligible contribution to the total energy density in a broad

FIG. 8. GW spectra for the power-law potential EDE with p ¼ 6
(red line), p ¼ 8 (blue line) and p ¼ ∞ (green line) for
r ¼ 5.4 × 10−11. The values of V0; χini and nT are assumed such
that the spectra can explain the recent NANOGrav signal:
ðV1=4

0 ; χini; nTÞ ¼ ð10−0.7 GeV; 4.3MPl; 1.69Þ for p ¼ 6 and
ð10−1.25 GeV; 6.2MPl; 1.62Þ for p ¼ 8. For the case of p ¼ ∞,
we include such a generalized EDE as a fluid described in the text
for the sake of numerical calculation. For comparison, the case
without EDE with nT ¼ 1.82 (magenta dashed) is also shown. The
gray region corresponds to the recent NANOGrav 15-year signal
[32]. The cyan point represents the best-fit value at f ¼ 1 yr−1

reported by [31]. The black solid and dashed lines represent the
PLISCs for DECIGO and LISA, respectively.
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parameter range, particularly when χini > Oð0.1ÞMpl ½χini <
Oð0.1Þπfa� for the power-law (axion-type) potential. Then
we studied what values of χini and V0 are suggested from the
argument of the stochastic formalism given the inflationary
energy scaleHinf . In order that the EDE can act as a possible
solution to the Hubble tension, one needs fEDE;c ¼ Oð0.01Þ
and ac ¼ Oð10−4Þ, which can be realized when χini ¼
Oð0.1ÞMPl and V1=4

0 ∼ 10−9 GeV for the power-law poten-

tial and χini=fa ∼ 0.9π and V1=4
0 ∼ 10−8 GeV for the axion-

type potential. To realize these values, from Fig. 5, one can
see that a low inflationary scale as Hinf ¼ Oð10−9Þ GeV is
suggested from the stochastic formalism argument.
We have also investigated the spectrum of the GW

background with the existence of the generalized EDE. We
have shown that the GW spectrum is amplified as seen in
Fig. 6 if the EDE becomes dominant at some epoch, i.e.,
fEDE > 0.5. The enhancement of the spectrum almost
depends on the initial value χini which controls the duration
of the quasi-de Sitter phase. We studied the parameter
ranges for χini and V0 where the GW can be detected by
future observations such as LISA and DECIGO, which is
shown in Fig. 7.
Finally, we have briefly discussed the implications of the

generalized EDE for the NANOGrav 15-year signal, which

indicates that ΩðNANOGravÞ
GW ≈2.5×10−8 at f≈3.2×10−8Hz.

Assuming that the inflationary GWs can explain the signal,
one needs a very blue-tilted primordial tensor power
spectrum. In the standard case (i.e., without the generalized
EDE), the tensor spectral index nT should be as large as
nT ≃ 1.8 for r ≃ 5 × 10−11 to be well fitted to the signal as
in [58]. It should also be noted that, with such a blue-tilted
spectrum, the reheating temperature needs to be lowered not
to contradict with the BBN constraint and TR < 10 GeV is
required [58]. However, with the existence of the EDE and
appropriate parameter choices, we found that nT can be
reduced to nT ¼ 1.69 for p ¼ 6, nT ¼ 1.62 for p ¼ 8, and
nT ¼ 1.59 for p ¼ ∞. Besides, we also found that the EDE
can relax the bound on the reheating temperature to TR ¼
150 GeV for p ¼ 6, TR ¼ 400 GeV for p ¼ 8, and TR ¼
1.59 for p ¼ ∞, which can be compared to the case of the
standard thermal history TR < 10 GeV [58].
Scalar fields are predicted to ubiquitously exist in the

early Universe in the light of high energy theories. The
results of this work would help to consider the effects of
such a scalar field on the evolution of the Universe.
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