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We show that a mass-varying neutrino model driven by scalar field dark energy relaxes the existing
upper bound on the current neutrino mass to

P
mν < 0.72 eV. We extend the standard Λ cold dark matter

model by introducing two parameters: the rate of change of the scalar field with the number of e-folds and
the coupling between neutrinos and the field. We investigate how they affect the matter power spectrum,
the cosmic microwave background anisotropies and its lensing potential. The model is tested against
Planck observations of temperature, polarization, and lensing, combined with baryon acoustic oscillation
measurements that constrain the background evolution. The results indicate that small couplings favor a
cosmological constant, while larger couplings favor a dynamical dark energy, weakening the upper bound
on current neutrino masses.
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I. INTRODUCTION

The standard hot big bang model predicts that the
Universe is filled with a background of thermal relic
neutrinos, called the cosmic neutrino background, with a
temperature and density of the order of the cosmic micro-
wave background (CMB) photons [1,2]. Neutrinos are
held in thermal equilibrium with the primordial plasma
by electroweak interactions until the temperature of the
Universe drops to T ≃ 1 MeV. Below this temperature,
they decouple from the thermal bath and flow freely along
geodesics of spacetime. Since the neutrinos are still
ultrarelativistic when they decouple, they retain a relativ-
istic Fermi-Dirac distribution even though they are no
longer in thermal equilibrium. Not being subjected to the
Boltzmann exponential suppression, we have far more
neutrinos than would otherwise be expected. Although
relic neutrinos are very abundant, there is still no direct
evidence for their background because it is hard to detect
at low energy level, given that they have a very small cross
section with matter. There is only indirect evidence for the
cosmic neutrino background, mainly through gravitational
interactions, for which theoretical predictions are in
excellent agreement with observations of the CMB and
large-scale structure.
The existence of a neutrino mass has been demonstrated

on Earth by neutrino flavor oscillation experiments,
which measure the difference between the squares of the
mass eigenstates [3,4]. The experiments can constrain the
minimum neutrino mass in two different scenarios (normal

or inverted hierarchy) for the ordering of the individual
masses. The lowest limit is given by the normal ordering of
the mass eigenstates, where the total sum,

P
mν>0.06 eV,

is provided by one massive neutrino and two massless
neutrinos [5–7]. This in turn implies a lower limit on the
current neutrino energy density in standard cosmology,
using Ωνh2 ≃

P
mν=94 eV, where Ων is the neutrino

density parameter and h is the current value of the
Hubble parameter in units of 100 kms−1Mpc−1. We also
know from the Katrin Laboratory’s β-decay experiment that
the mass eigenvalues are below the eV scale [8]. But the
strongest constraints come from cosmological observations
(see, for example, Refs. [9–13]), which provide an upper
limit on the current neutrino density. This can be translated
into a maximum value for the neutrino mass. Gerstein and
Zeldovich originally derived this limit in the 1960s [14].
They showed that the requirement that neutrinos do not
overclose the Universe, Ωνh2 < 1, suggests a cosmological
constraint below a hundred eV. This limit was stronger
than those of laboratory experiments at the time. Today,
it is the Planck 2018 measurements of the temperature
and polarization of the CMB [15] that provide the most
robust constraints:

P
mν < 0.26 eV at the 95% confi-

dence level (CL), for the standard seven-parameter model
ΛCDMþP

mν (see neutrinos in cosmology [16]).
Alternative cosmological scenarios that extend the

parameter space, including modified gravity theories,
may relax the neutrino mass bounds [17–20]. For example,
fitting a 12-parameter model to Planck and baryon acoustic
oscillation (BAO) data increases the limit from

P
mν <

0.13 eV to
P

mν < 0.52 eV (95% CL) [18]. This exten-
sive scenario includes five additional free parameters: two*vitor.dafonseca@alunos.fc.ul.pt
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for the parametrization of the dark energy equation of
state, one for the running of the spectral index, one for the
effective number of relativistic particles, and one unphys-
ical for the amplitude of the dark matter lensing con-
tribution to the CMB power spectra. In the present work,
we also investigate whether the existing cosmological
upper limit on the neutrino mass can be relaxed. Our
proposed model requires only two extra free parameters
describing a possible interaction between the neutrino
fluid and the dark energy component [21,22] given by a
scalar field.
We consider a mass-varying neutrino (MaVaN) scenario,

where the coupling leads to an effective neutrino mass that
depends on the value of the field [23–31]. We employ a
minimal parametrization where the scalar field depends
linearly on the number of e-folds [32]. It limits the number
of additional parameters with respect to the concordance
model and alleviates the initial conditions problem [33]
thanks to the scaling behavior of the field at early times.
Such parametrization has been used in the context of testing
a coupling between quintessence and the electromagnetic
sector, and scalar-field-dark-matter interactions [34–36],
but never utilized in the context of neutrino interactions. By
testing the model with a particular dataset that combines
observations of the CMB, structure growth, and back-
ground expansion, we show that the constraint on today’s
mass is weakened by neutrinos of growing mass [37,38]
that receive energy from the quintessence component over
cosmic time.
A mechanism that couples the scalar field, as early dark

energy, to the neutrinos has been proposed [39,40] to
alleviate the Hubble tension, i.e., the discrepancy between
the H0 determinations of high and low redshift probes
[15,41–45], but it remains to be tested with cosmological
observations. Nevertheless, the Hubble tension is not the
subject of this paper, since the early dark energy component
in our model is insufficient to affect it.
In the next section, we present the MaVaN theory

we have chosen to study, together with our specific scalar
field parametrization. The phenomenology of the model is
analyzed at the background level. In Sec. III, we assess the
impact of the interaction on the linear perturbations, as well
as the sensitivity of the observables to the coupling. We
numerically compute the power spectra of matter, the CMB
temperature anisotropies, and the lensing potential with
the Einstein-Boltzmann code CLASS [46,47], which we
have modified to compute the theoretical observables of the
varying-mass neutrino model. The model is tested against
observations in Sec. IV. We estimate the cosmological
parameters by performing Bayesian inferences on a dataset
that combines Planck measurements of the CMB with the
detection of baryon acoustic oscillations. We discuss the
results in Sec. V, in particular the constraints we obtain on
the current neutrino mass sum

P
mν with our chosen

dataset in the context of the MaVaN scenario.

II. COUPLING DARK ENERGY TO NEUTRINOS

Let us consider a flat universe with vanishing curvature,
spatially homogeneous and isotropic, whose expansion is
parametrized by the scale factor a associated with the
Friedmann-Lemaître-Roberson-Walker spacetime metric.
Further considering that the expansion is sourced by
photons (γ), baryons (b), cold dark matter (c), neutrinos
(ν), and a scalar field dark energy (ϕ) responsible for the
current acceleration, the Friedmann equation reads

H2

H2
0

¼ Ωγa−4 þ ðΩb þΩcÞa−3 þ
ρνðaÞ þ ρϕðaÞ

ρ0
; ð2:1Þ

where H ≡ ȧ=a is the Hubble parameter, the dot denoting
derivation with respect to cosmic time t. H0 is the current
expansion rate, Ωi ¼ κ2ρi;0=3H2

0 are the present-day den-
sity parameters, ρi being the energy density of species i and
ρ0 ¼ 3H2

0=κ
2 the critical density (κ2 ≡ 8πG ¼ c ¼ ℏ ¼

kB ¼ 1 by convention). We use ρν for the neutrino energy
density summed over the mass eigenstates, and we choose a
dynamical parametrization for the scalar energy density ρϕ
in the following [32].
In this study, we want to test a possible interaction

between neutrino species and dark energy, in a mass-
varying neutrino model where active neutrinos are coupled
to the scalar field [23–30]. Because to leading order
cosmological data are only sensitive to the total neutrino
mass [48,49], we assume for practical purposes [50] two
massless neutrinos and a massive neutrino nonminimally
coupled to the quintessence component. The coupled
neutrino has a varying effective mass, which depends on
the value of the scalar field and on a dimensionless and
constant parameter β,

mνðϕÞ ¼ mν;0eβðϕ−ϕ0Þ; ð2:2Þ

where mν;0 ¼
P

mν is the current neutrino mass and ϕ0 is
the current field value. This coupling can be interpreted as a
conformal transformation in the Einstein frame [51]. The
massive neutrinos are free falling along the geodesics given

by a different metric, g̃ðνÞμϵ , which is specific to the neutrino
sector only, and is related to the gravitational metric, gμϵ,
by a conformal transformation,

g̃ðνÞμϵ ¼ m2
νðϕÞgμϵ: ð2:3Þ

The stress energy tensors of the neutrino fluid and the scalar
field are not conserved separately. We have

∇μTðνÞ
μϵ ¼ −βðρν − 3pνÞ∇ϵϕ; ð2:4Þ

∇μTðϕÞ
μϵ ¼ βðρν − 3pνÞ∇ϵϕ; ð2:5Þ
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where the subscript (ν) stands for the stress-energy tensor
of the massive neutrino component and ðϕÞ for that of dark
energy, and pν is the pressure in the interacting neutrinos.
The time component of Eqs. (2.4) and (2.5) give the
neutrino and scalar field continuity equations, respectively,

ρ̇ν þ 3Hðρν þ pνÞ ¼ βðρν − 3pνÞϕ̇; ð2:6Þ

ρ̇ϕ þ 3Hðρϕ þ pϕÞ ¼ −βðρν − 3pνÞϕ̇; ð2:7Þ

where pϕ is the pressure in the field. The extra source terms
vanish without interaction, β ¼ 0, or, if the massive
neutrino particles are ultrarelativistic, behaving as traceless
radiation.
Regarding the interacting scalar field, we assume that it

is homogeneous and canonical with a potential VðϕÞ such
that ρϕ ¼ −1=2gμν∂μϕ∂νϕþ V, and the quintessence pres-
sure is pϕ ¼ ρϕ − 2V. Equation (2.7) can also be written as
a modified Klein-Gordon equation, which governs the
motion of the scalar field, with an additional term due to
the neutrino coupling,

ϕ̈þ 3Hϕ̇þ dV
dϕ

¼ −βðρν − 3pνÞ: ð2:8Þ

To test the model with observations, we adopt a known
phenomenological parametrization, first proposed in
Ref. [32], where the scalar field depends linearly on the
number of e-folds, N ≡ ln a, throughout the cosmological
evolution. We introduce a dimensionless constant λ for the
slope of the scaling:

ϕ − ϕ0 ¼ λ ln a: ð2:9Þ

Given the symmetry ðϕ; λÞ ↦ ð−ϕ;−λÞ, we will limit the
present analysis to λ > 0. Also, without loss of generality,
we choose to set ϕ0 ¼ 0, which implies ϕ < 0.
Accordingly, we illustrate in Fig. 1 the cases β > 0 (green
dashed line) and β < 0 (orange dash-dotted line) which
correspond to a growing and to a shrinking neutrino mass,
respectively, using Eq. (2.2), while the mass is constant for
β ¼ 0 (blue solid line).
This simple approach is a powerful alternative to the

popular Chevallier–Polarski–Linder (CPL) parametrization
[52,53], since a large variety of dark energy equation of
state evolutions can be captured by just one additional
parameter [54], thereby limiting the degeneracies in
Bayesian inferences. The background evolution of the dark
energy component allows for an early dark energy com-
ponent at high redshift, something that is not present in
the CPL option. Our scalar parametrization manages to
represent a vast class of dark energy models that rely on
scaling or tracking solution. It does not, however, allow
phantom models, where the scalar field equation of state is
below −1. These are known to provide weaker constraints

on the neutrino mass [50]. It also does not allow an
oscillatory evolution of the field around the minimum of
an effective potential, such as the model in Ref. [37].
An additional advantage is that the scalar field

potential can be reconstructed analytically following
Refs. [32,34–36]. This is done by solving the first-order
differential equation (2.7) to find ρϕ using the constraint
equation (2.1) and noting that ϕ̇ ¼ λH according to
Eq. (2.9). The potential happens to be a sum of expo-
nential terms,

VðϕÞ ¼ Ae−
4
λϕ þ Be−

3
λϕ þ Ceð−

3
λþβÞϕ þDe−λϕ; ð2:10Þ

where the mass scales are given by the following
analytical expressions:

A ¼ λ2

4 − λ2
ΩrH2

0; ð2:11Þ

B ¼ 3

2

λ2

3 − λ2
ðΩb þΩcÞH2

0; ð2:12Þ

C ¼ 3

2

λ2 þ 2βλ

3 − λ2 − βλ
ΩνH2

0; ð2:13Þ

D ¼ 3

�
1 −

λ2

6

�
H2

0

�
1þ 4

λ2 − 4
Ωr þ

3

λ2 − 3
ðΩb þ ΩcÞ

þ 3

λ2 − 3þ βλ
Ων

�
; ð2:14Þ

Ωr includes both photons and ultrarelativist neutrinos.
As for the density parameter Ων, it corresponds to those
neutrinos that are nonrelativistic, and we can write [55]

Ωνh2 ¼
mν;0

93.14 eV
: ð2:15Þ

FIG. 1. Neutrino mass evolution in growing (β > 0) and
shrinking (β < 0) scenarios for mν;0 ¼ 0.06 eV.
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We specifically modify the CLASS code to evolve the
scalar field with the potential (2.10) and the equation
of motion (2.8). The field parametrization is not imple-
mented as such. Independently of the initial conditions, the
potential leads to two successive scaling regimes [56],
where the field equation of state, shown in the left panel of
Fig. 2, first tracks radiation (wϕ ∼ 1=3) and then matter
(wϕ ∼ 0), before being attracted to the late-time acceler-
ation stage (wϕ ∼ −1), always present when λ2 < 2. At this
point, the energy density of the field freezes, mimicking
a cosmological constant at late time, as shown in the
right panel.
We can see from Fig. 2 that the coupling with neutrinos

changes wϕ during the matter-dominated era. For growing
masses (β > 0, dotted line), the field equation of state is
smaller compared to the uncoupled case (β ¼ 0, solid line).
On the contrary, wϕ is larger when the energy transfer
occurs in the opposite direction, i.e., from neutrinos of

shrinking mass (β < 0, dash-dotted line). Correspondingly,
Fig. 3 shows that the nonrelativistic neutrinos which
receive energy from the scalar field (β > 0) have lower
fractional energy density to reach the same present mass
than when they give energy (β < 0).
In the early Universe, neutrinos are held in equilibrium

in the primordial plasma by electroweak interactions with
charged leptons tightly coupled to photons by electromag-
netic processes. As the temperature of the Universe
decreases, the interaction rate drops much faster than
the Hubble expansion rate. Around 1 MeV, at redshift
z ¼ 1=a − 1 ∼ 1010, neutrinos cease to interact with the
cosmological plasma and flow freely along geodesics.
Unlike other particles, the neutrinos are hot relics that
decouple while still ultrarelativistic. Therefore their unper-
turbed phase-space-distribution function maintains to a
good approximation the Fermi-Dirac shape for an ultra-
relativistic fermion in thermal equilibrium,

f0ðqÞ ¼
1

eq þ 1
; ð2:16Þ

neglecting the chemical potential for neutrinos and anti-
neutrinos (i.e., assuming vanishing lepton asymmetry).
q ¼ ap=Tν;0 is their normalized comoving momentum,
p being the physical momentum, and Tν;0 their current
temperature. The unperturbed energy density and pressure
of the massive neutrino species are thus given by

ρν ¼
1

π2

�
Tν;0

a

�
4
Z

∞

0

f0ðqÞdqq2ϵ; ð2:17Þ

pν ¼
1

3π2

�
Tν;0

a

�
4
Z

∞

0

f0ðqÞdq
q4

ϵ
; ð2:18Þ

FIG. 2. Left panel: evolution of the equations of state of dark energy (wϕ) and of massive neutrinos (wν) for mν;0 ¼ 0.06 eV and three
illustrative values of β. Right panel: evolution of energy densities formν;0 ¼ 0.06 eV. The radiation energy density (ρr) includes photons
and ultrarelatistic neutrinos.

FIG. 3. Evolution of the abundances of massive neutrinos and
dark energy for mν;0 ¼ 0.06 eV.
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with

ϵ2 ¼ q2 þ a2m2
νðϕÞ

T2
ν;0

; ð2:19Þ

where ϵ is the neutrino comoving energy.
The massive neutrinos in the ultrarelativistic regime, that

is up to the nonrelativistic transition, behave as standard
radiation with their energy density scaling as a−4 and
pν ¼ ρν=3. In the nonrelativistic regime, the coupling term
sources the evolution of both the scalar field and the
neutrino fluid, the latter behaving as pressureless matter,
pν ¼ 0, with its energy density scaling as a−3eβϕ. Deep in
this regime, the direct integration of Eq. (2.6) gives

ρν ¼ 3H2
0Ωνe−3Nþβϕ; ð2:20Þ

¼ 3H2
0Ωνa−3þβλ; ð2:21Þ

given that ϕ ≃ λN ≃ λ ln a in the parametrization.
From the evolution of their equation of state,

wν ¼ pν=ρν, in the left panel of Fig. 2, we see that neutrinos
with shrinking mass (β < 0, dash-dotted line) become
nonrelativistic earlier than those with growing mass
(β > 0, dotted line), since the latter are lighter in the past
and the transition between the two regimes occurs when
the average momentum becomes of the order of the mass,
hpi ¼ 3.15Tν ¼ mν [2]. The redshift znr at which the
coupled neutrinos become nonrelativistic is given by [2]

1þ znr ≃ 1900

�
mν;0

eV

�
eβϕnr : ð2:22Þ

According to our choice for the parametrization, ϕnr ≃
−λ ln ð1þ znrÞ, we get eβϕnr ≃ ð1þ znrÞ−βλ, and thus

1þ znr ≃
�
1900

�
mν;0

eV

�� 1
1þβλ

; ð2:23Þ

where the transition between the two regimes depends on
the two extra parameters β and λ and, as usual, on the
current neutrino mass mν;0.

III. IMPACT OF THE COUPLING ON
PERTURBATIONS AND OBSERVABLES

A. Perturbation equations

We apply the theory of linear perturbations [57] in the
synchronous gauge, adopting the usual conventions of
Ref. [58]. In particular, in this section, the scalars h and
η represent the metric perturbations, and the energy density
fluctuation of the cosmological species i is described by
the density contrast δi ≡ δρi=ρ̄i. The overbar denotes the
background quantities. The perturbed energy density and
pressure of a given species i are δρi ≡ ρðx; τÞ − ρ̄iðτÞ

and δpi ≡ pðx; τÞ − ρ̄iðτÞ, respectively. In this section,
the dot denotes derivation with respect to conformal time
dτ≡ dt=a.
The perturbed energy density and pressure of the

interacting neutrinos have been derived in previous studies
(see, e.g., [26,29,30]):

δρν ¼ 4π

�
Tν;0

a

�
4
Z

∞

0

f0ðqÞdq q2
�
ϵΨþ βδϕ

m2
νa2

ϵ

�
;

ð3:1Þ

δpν ¼
4π

3

�
Tν;0

a

�
4
Z

∞

0

f0ðqÞdq
q4

ϵ

�
Ψ − βδϕ

m2
νa2

ϵ2

�
;

ð3:2Þ

where δϕ≡ ϕðx; tÞ − ϕ̄ðtÞ denotes the fluctuations of the
coupled scalar field, and jΨj ≪ 1 is the relative perturba-
tion to the neutrino phase-space distribution,

Ψðxi; q; nj; τÞ ¼
fðxi; q; nj; τÞ

f0ðqÞ
− 1; ð3:3Þ

at first order in the perturbations, f being the perturbed
distribution function, and nini ¼ 1. The dipole equation for
the neutrino hierarchy is affected by the interaction, and the
corresponding system of infinite equations becomes the
following in Fourier space:

Ψ̇0 ¼ −
qk
ϵ
Ψ1 þ

ḣ
6

d ln f0
d ln q

; ð3:4Þ

Ψ̇1 ¼
qk
3ϵ

ðΨ0 − 2Ψ2Þ −
qk
3ϵ

βδϕ
a2m2

ν

q2
d ln f0
d ln q

; ð3:5Þ

Ψ̇2 ¼
qk
5ϵ

ð2Ψ1 − 3Ψ3Þ −
�
ḣ
15

þ 2η̇

5

�
d ln f0
d ln q

; ð3:6Þ

Ψ̇l≥3 ¼
qk

ð2lþ 1Þϵ ½lΨl−1 − ðlþ 1ÞΨlþ1�; ð3:7Þ

where Ψl is the lth Legendre component of the series
expansion in multipole space of the perturbation Ψ. We
modified the noncold dark matter part of the CLASS code [59]
to evolve the perturbation equations of the MaVaN model.
In the fluid approximation, on sub-Hubble scales,

the Boltzmann hierarchy in the momentum grid is cut at
lmax ¼ 2 and the continuity equation reads

δ̇ν ¼ 3ðaH þ βϕ̇Þ
�
wν −

δpν

δρν

�
δν

− ð1þ wνÞ
�
θν þ

ḣ
2

�
þ βð1 − 3wνÞδϕ̇; ð3:8Þ
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where θν is the neutrino flux divergence. Moreover, the
Euler equation is

θ̇ν ¼ −aHð1 − 3wνÞθν −
ẇν

1þ wν
θν þ

δpν=δρν
1þ wν

k2δν

þ β
1 − 3wν

1þ wν
k2δϕ − βð1 − 3wνÞϕ̇θν − k2σν; ð3:9Þ

where the neutrino anisotropic stress σν [58] is not changed
by the coupling. We have adjusted the fluid approximation
equations of the noncold dark matter in the CLASS code
accordingly.
Deep in the nonrelativistic regime, when wν ¼ 0, the

ratio q=ϵ vanishes asymptotically and the pressure pertur-
bations in the neutrino fluid, as well as the shear stress,
become negligible with respect to density perturbations.
The continuity and Euler equations are analogous to those
of the coupled cold dark matter model [36,60],

δ̇ν þ θν þ
ḣ
2
¼ βδϕ̇; ð3:10Þ

θ̇ν þ aHθν ¼ βðk2δϕ − ϕ̇θνÞ: ð3:11Þ

For the coupled scalar field, the equation of motion of the
fluctuations is the following:

δϕ̈þ 2aHδϕ̇þ
�
k2 þ a2

d2V
dϕ2

�
δϕþ 1

2
ḣ ϕ̇

¼ −a2βðδρν − 3δpνÞ: ð3:12Þ

As in the background, we evolve the field perturbations
with the potential through the above equation in our version
of the CLASS code.

B. Effects on the matter power spectrum

There are three main stages of the evolution of the
neutrino density contrast affected by the coupling. During
the radiation-dominated era, when the neutrinos are
decoupled from the thermal bath but still relativistic, their
perturbations grow as radiation. Later, the neutrinos become
nonrelativistic and cluster in the gravitational potential wells
of cold dark matter, which is the dominant cosmological
component. However, below their free-streaming scale,
they do not cluster like cold dark matter [1]. Neutrino free
streaming dampens the neutrino fluctuations up to a critical
scale depending on the neutrino mass, and giving the
oscillatory pattern seen in the left panel of Fig. 4. The
free-streaming wave number of Fourier mode reaches a
minimum at the nonrelativistic transition, given by [2]

kfs ≃ 0.018Ω1=2
m

�
mν;0

eV

�
1=2

eβϕnr=2h Mpc−1; ð3:13Þ

during matter or dark energy domination. Or equivalently,
using Eqs. (2.22) and (2.23), we get

kfs ≃ 4.1 × 10−4Ω1=2
m

�
1900

mν;0

eV

� 1
2ð1þβλÞ

h Mpc−1; ð3:14Þ

for our particular scalar field parametrization. Above the
free-streaming length, the neutrino fluctuations grow
unhindered. For growing neutrino masses (β > 0, green
dashed line) the free-streaming scale in Eq. (3.14) is
larger and the growth of the fluctuations is delayed with
respect to shrinking neutrino masses (β < 0, orange dash-
dotted line).
Furthermore, the dependence of the neutrino mass on β

changes the fraction of matter whose fluctuations do not
grow like cold dark matter at a given scale. The neutrinos

FIG. 4. Left panel: evolution of the massive neutrino perturbations at the scale k ¼ 0.1h=Mpc for λ ¼ 0.1 and mν;0 ¼ 0.06 eV.
Right panel: suppression of the linear matter power spectrum at z ¼ 0 with respect to the ΛCDM model.
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do not contribute to the creation of potential wells below
the free streaming scale, and all structure formation is
damped because the gravitational wells are not as deep as
they would be in the presence of only nonrelativistic matter.
The effect of the coupling on the linear matter power

spectrum, which is proportional to the variance of the
density fluctuations (which tells how large they are at a
given scale), can be seen on small scales, at large wave
numbers k. The right panel of Fig. 4 shows the residual
plot between the MaVaN scenario and the standard Λ cold
dark matter (CDM) model with massless neutrinos,
normalized to the power spectrum of the latter. At scales
smaller than the critical scale (k≳ 10−3), below which
neutrinos do not cluster, the perturbations in the neutrino
fluid are completely damped by free streaming and do not
contribute to matter perturbations. In this respect, we see
with the gray solid line that the νΛCDM model1 sup-
presses power at these scales compared to the ΛCDM
model with massless neutrinos.
Moreover, the non-negligible fraction of dark energy

itself (λ ≠ 0 and β ¼ 0, blue solid line) further reduces the
growth of the fluctuations during matter dominance, lead-
ing to more power suppression. On the other hand, the
matter power spectrum at small scales also depends on how
large the neutrino mass was in the past. Growing neutrino
masses (β > 0, green dashed line) reduce the power
suppression caused by the scalar field, while shrinking
neutrino masses increase the suppression (β < 0, orange
dash-dotted line).
On the contrary, it can be seen that β has little influence

at large scales (k≲ 10−3), since the neutrinos cluster
independently of their mass.

C. Effects on the CMB anisotropies power spectrum

The temperature power spectrum of the unlensed CMB
is also affected by the coupling through background and
perturbation effects. After their nonrelativistic transition,
the massive neutrinos modify the evolution of the cosmo-
logical background and the redshift of the matter-dark
energy equality, with respect to an uncoupled neutrino
universe, affecting the late time integrated Sachs-Wolfe
effect. As shown in the left panel of Fig. 5, at large angular
scales (lower multipoles l≲ 20) reminiscent of the scale-
invariant primordial spectrum of the inflationary perturba-
tions, the additional power produced by the time evolution
of the gravitational potentials, as dark energy begins to
dominate, decreases with negative couplings (orange dash-
dotted line).
On the intermediate scales (20≲ l≲ 500), dominated

by the imprints of the acoustic oscillations in the baryon-
photon fluid, it is again the effect of the coupling on
the evolution of the gravitational potential that affects the
first peak. In particular, β alters the time required for the
gravitational potential to stabilize at a nearly constant value
after photon decoupling. Keeping the present value of the
Hubble parameter h unchanged, a higher neutrino mass at
the time of recombination (β < 0, orange dash-dotted line)
increases the height of the first peak given by the early
integrated Sachs-Wolfe effect compared to the ΛCDM
cases. Conversely, the amplitude decreases for a lower
neutrino mass at recombination (β > 0, green dashed line).
The amplitude of the first peak is also affected by the

uncoupled scalar field alone (β ¼ 0, blue solid line). It
gives a non-negligible contribution to early dark energy,
which reduces the fractional energy density of matter at the
time of decoupling [34,36]. The amplitude increases with
the value of λ.
Moreover, for a given physical density of cold dark

matter and baryons, the angle subtended by the sound

FIG. 5. Left panel: comparison of the power spectra of the CMB anisotropies with respect to ΛCDM, for λ ¼ 0.1 andmν;0 ¼ 0.06 eV,
on large and intermediate scales. Right panel: same as left, on medium and small scales.

1We use νΛCDM to refer to the flat and uncoupled ΛCDM
model with two massless neutrino species and one constant mass
neutrino species.
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horizon at recombination, θs, which determines the spacing
between the peaks and in particular the position of the first
one, is larger for growing neutrino masses (β > 0). The
corresponding shift of the position of the CMB peaks
towards larger scales can be compensated by the Hubble
constant. Indeed, decreasing H0 increases the comoving
angular diameter distance from the CMB surface and shifts
the peaks towards smaller scales.
At small scales (l≳ 500), in the right panel of Fig. 5,

of the order of the photon mean free path at the time of
recombination, a positive coupling (orange dash-dotted
line) has the opposite effect of λ (β ¼ 0, blue solid curve)
on the exponential damping of the CMB peak structure.

D. Effects on the CMB lensing potential

Because the free-streaming neutrinos erase the density
perturbations, they affect the CMB light that is distorted by
the gravitational lensing caused by the intervening matter
distribution between us and the last scattering surface [61].
The neutrinos reduce the CMB lensing potential, which is a
measure of the integral of the gravitational potentials along
the line of sight between the recombination time and the
present time. The effect of the weak lensing is to smooth
the power spectrum of the CMB temperature anisotropies
on small scales. Note in Fig. 6 that since the effect is
proportional to the energy density of the neutrinos, it can
constrain their mass, whose cosmological evolution is
controlled by the two parameters λ and β. For example,
if the neutrino mass had been too high in the recent past,
we would have had less lensing than we observe. The
suppression already caused by the scalar field (β ¼ 0,

blue solid curve) is either enhanced by shrinking neutrino
masses (β < 0, orange dash-dotted line) or compensated by
growing neutrino masses (β > 0, green dashed line).
It is worth noting that, in contrast to the model-

independent parametrization for the neutrino mass variation
studied in Ref. [30], we do not find instabilities on large
scales in our model [62], which would be triggered by large
coupling values causing the neutrino perturbations to grow
rapidly on the largest scales observable.

IV. PARAMETER ESTIMATION

A. Methodology

We choose to test the model with the 2018 Planck
satellite [63] temperature and polarization measurements
of the CMB at the time of last scattering, combined with
the CMB lensing potential as a probe of the distribution
and evolution of large-scale structure in the late Universe.
We also add BAO distance and expansion rate measure-
ments in galaxy clusters [64,65] covering different red-
shift ranges. They constrain the model at the background
level [66] to help break the geometric degeneracy between
H0 and

P
mν.

With respect to the Planck observations, the Bayesian
inference is performed using the CMB lensing potential
power spectrum [67], as well as the cross-correlation
likelihoods of the temperature and polarization anisotro-
pies, TT, EE, and TE, respectively [68]. We reduce the
dimensional parameter space by using the lite version of
the Planck likelihood on the smaller angular scales, which
marginalizes the foreground and instrumental effects,
leaving the absolute calibration Aplanck as the only nuisance
parameter. As for the background probe, we use a compi-
lation of measurements that have detected the BAO peak
at different angular separations with galaxy samples at
different redshifts. The three data points are from the Sloan
Digital Sky Survey DR7 Main Galaxy Sample [69], the
Sloan Digital Sky Survey DR9 release [70], and the 6dF
Galaxy Survey [71], respectively. We will refer to our
dataset as Plk18þ BAO in the rest of the document.
Our dedicated version of the CLASS code is used to

compute the observables confronting the actual data, on
the basis of the sampled parameters fλ; β;Pmνg along
with the six standard minimal baseline parameters fΩbh2;
Ωch2; θs; As; ns; τreiog. We use θs instead of h because it is
the quantity measured in the CMB observations. As is the
power of the primordial curvature perturbations normalized
at the pivot scale k ¼ 0.05 Mpc−1, and ns is the power-law
index of the scalar spectrum. τreio is the optical depth to
reionization, which gives the fraction of photons rescattered
by the new population of free electrons from the ionization
of neutral hydrogen produced by the light of the first stars.
The settings in CLASS are such that the effective number of
neutrino families is Neff ¼ 3.044 [72–74], and the neutrino
fractional energy density satisfies Eq. (2.17).

FIG. 6. Upper panel: power spectra of the CMB lensing
potential of the ΛCDM and νΛCDM models, and the coupled
scenario with λ ¼ 0.1 and

P
mν ¼ 0.06 eV. Lower panel:

percentage deviation between models with respect to ΛCDM.
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The likelihoods are minimized by the Monte Carlo
code of the MONTEPYTHON parameter estimation package
[75,76], which samples the parameter space and the
posterior probability distributions using a Metropolis-
Hastings algorithm with the flat priors specified in
Table I. The size of the prior intervals is sufficient for
the corresponding posteriors to fall exponentially within
them, except for the parameter β as we will discuss later.
We use the GETDIST analyzer [77] to obtain the

constraints from the Markov chains, and plot the con-
fidence contours and the marginalized posterior distri-
butions. In addition to the sampled parameters, we also
infer constraints on derived late-Universe parameters:
H0, Ωm, σ8 (which measures the amplitude of matter
fluctuation on 8h−1 Mpc comoving scale) and the degen-
eracy parameter S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
.

B. Main results

The results of the likelihood analysis are summarized in
Table II, which lists the constraints on the cosmological
parameters obtained with the Plk18þ BAO dataset for
both the uncoupled (β ¼ 0) scalar field model and the
coupled MaVaN model. They lead to several remarkable
conclusions.
First, in the uncoupled scalar field model (β ¼ 0), the

dynamical dark energy component is constrained to be
close to a cosmological constant, λ < 0.05 (68% CL) and
λ < 0.09 (95% CL), with a clear preference for a vanishing
scalar field parameter. This is the result of the extreme
constraining power of the CMB data on the fraction of
early dark energy at the last scattering surface [78,79].
In our scalar field parametrization, the fraction of dark
energy (during the scaling regime with matter) is given by
Ωϕ ¼ λ2=3 [36], which implies Ωϕ < 0.27% (95% CL) at
recombination. It is therefore not surprising that the
corresponding upper limit

P
mν < 0.127 eV (95% CL)

that we find is in agreement with recent literature findings
for the concordance model based on comparable datasets.
For example, including the latest release of BAO eBOSS

data in combination with Planck temperature, polarization,
and lensing measurements gives an upper limit of 0.129 eV
(95% CL) for the uncoupled νΛCDM model [17].
Second, we find that the parameter β of the MaVaN

model, with our choice of scalar field parametrization,
is not constrained by the cosmological observations
Plk18þ BAO, as shown in Fig. 7 (and the Appendix for
additional contour and probability distribution plots).
However, the interaction does relax the upper bound on
the current neutrino mass sum, raising it significantly by

TABLE I. Flat priors for the sampled model and cosmological
parameters.

Parameter Prior

λ [0, 1.4]
β [0, 100]P

mν [0, 2]

Ωbh2 [0.005, 0.1]
Ωch2 [0.01, 0.99]
100θs [1, 2]
ln 1010As [2.7, 4]
ns [0.5, 1.5]
τreio [0.04, 0.8]

TABLE II. Cosmological constraints (95% limits for
P

mν,
mean and 68% limits for the others) for the uncoupled (β ¼ 0)
and MaVaN (β free) models.

Parameter β ¼ 0 β free

λ <0.0472 0.059þ0.029
−0.037P

mν <0.127 <0.724

Ωbh2 0.02241� 0.00014 0.02242� 0.00014
Ωch2 0.1199� 0.0011 0.1200� 0.0011
100θs 1.04186� 0.00030 1.04179� 0.00031
ln 1010As 3.050þ0.014

−0.016 3.049þ0.014
−0.016

ns 0.9667� 0.0039 0.9669� 0.0039
τreio 0.0568þ0.0068

−0.0082 0.0564þ0.0068
−0.0080

H0 67.59þ0.69
−0.57 67.61þ0.65

−0.56
Ωm 0.3127þ0.0074

−0.0091 0.3176þ0.0084
−0.012

σ8 0.813þ0.012
−0.0079 0.804þ0.019

−0.010
S8 0.830� 0.012 0.827� 0.015

Aplanck 1.0008� 0.0025 1.0007� 0.0025

FIG. 7. Constraints obtained with the Plk18þ BAO dataset on
the additional parameters. Probability distributions and 2D
marginalized contours (68% and 95% CL).
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almost a factor of six to
P

mν < 0.724 eV (95% CL).
Positive couplings allow for the possibility of heavier
neutrinos today. Despite their current higher mass, the
influence of neutrinos with growing mass on the cosmo-
logical expansion and perturbations over time is tempered
by the fact that they were lighter in the past and gradually
gained energy from the scalar field. Moreover, for
the MaVaN model, the data favor a nonvanishing scalar
field parameter, λ ¼ 0.059þ0.029

−0.037 (68% CL), at the one-
sigma level.
Third, with respect to the standard cosmological param-

eters, the main differences between the MaVaN model and
the uncoupled one are in the matter fluctuation amplitude,
σ8, and the matter density parameter, Ωm. Including the
coupling parameter degrades the error bars while virtually
preserving the central values, which are consistent with

TABLE III. Constraints on present neutrino mass in eV and on
the dark energy parameter λ, for different coupling values β.

β
P

mν ð95% CLÞ λ ð68% CLÞ
−1 <0.102 <0.0497
0 <0.127 <0.0472
1 <0.147 <0.0493
5 <0.355 0.046þ0.016

−0.043
10 <0.580 0.050þ0.022

−0.038
20 <0.542 0.052þ0.024

−0.038
30 <0.513 0.053þ0.025

−0.039
50 <0.598 0.059þ0.028

−0.037
75 <0.822 0.064þ0.031

−0.035
100 <1.130 0.067� 0.030

free <0.724 0.059þ0.029
−0.037

FIG. 8. Constraints obtained for fixed coupling parameters. Probability distributions and 2D marginalized contours (68% and
95% CL).
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the best fit of the base-ΛCDM cosmology predicted by the
2018 Planck data [15]. This is particularly the case for the
derived parameter σ8, whose precision decreases by about
50%, from 0.813þ0.012

−0.0079 to 0.804þ0.019
−0.010 (68% CL), mainly

towards lower values, which could tend to reduce the
tension with late cosmological probes [80–82]. However,
the confidence interval of Ωm increases by 22% in the
opposite direction due to the added fractional energy
density of heavier neutrinos, from 0.3126þ0.0074

−0.0090 to
0.3176þ0.0084

−0.012 (68% CL). As shown in the Appendix, the
posterior distribution for the degeneracy parameter S8 is
only slightly changed by the coupling parameter. As forH0,
its posterior distribution is hardly modified by the inter-
action, confirming the inability of the model to resolve the
Hubble tension. The fractional dark energy in the early
times is far less than the minimum 10% required by
neutrino-assisted early dark energy models to improve
the H0 tension [83,84].
Finally, to assess the influence of the coupling on the

posterior
P

mν, we repeat the statistical analysis fixing
different values for β. The results are summarized in
Table III and Fig. 8. For a mass-shrinking neutrino scenario
(β ¼ −1), the constraint on today’s mass is tighter
(
P

mν < 0.102 eV) than without interaction. Large masses
in the past are disfavored by the cosmological data. On the
contrary, the limit on today’s neutrino masses relaxes as the
value of the positive coupling increases. The highest limit is
for β ¼ 100, i.e., for the edge of the prior, with

P
mν <

1.130 eV already exceeding the limit obtained by local
experiments [8]. Moreover, there seems to be a plateau
around β ¼ 20 where the present mass stabilizes in the
(β;

P
mν) plane of the parameter space (see also Fig. 7). In

addition, as seen earlier, the energy transferred by the scalar
field causes the model to deviate slightly from a constant
dark energy component. Dark energy moves away from a
cosmological constant as the strength of the coupling
increases. However, the value of the scalar field parameter
is tightly constrained by the CMB data, which does not
allow λ to be too large, while it could theoretically be as
large as

ffiffiffi
2

p
.

We note in Fig. 8 that the
P

mν positive and negative
correlations with Ωm and σ8, respectively, are preserved
by the coupling. The errors on S8 are degraded to lower
values as the strength of the interaction increases. It is
also worth noting that the degeneracy in the (

P
mν; H0)

plane, along which the position of the first CMB peak
is held unchanged, decreases significantly with increas-
ing value of the parameter β, weakening the otherwise
strong correlation between the neutrino mass and the
Hubble constant. This is probably due to the fact that
the posterior for λ becomes larger with increasing β. The
corresponding non-negligible fraction of dark energy at
the time of recombination reduces the sound horizon at
decoupling, thus competing with the geometric degen-
eracy

P
mν −H0.

V. DISCUSSION

In this study, we investigated a model of mass-varying
neutrinos in which the mass depends on the value of a
scalar field representing the dark energy component. The
originality of our work lies in the choice of the quintessence
parametrization, which limits the number of free parame-
ters with respect to other approaches such as the CPL
parametrization or arbitrary choices of scalar field poten-
tials. While the parametrization is purely phenomenologi-
cal, it leads to the analytical reconstruction of the potential
as a sum of exponential terms, which conveniently endows
dark energy with scaling properties. We have introduced
two additional free parameters with respect toΛCDM, β for
the coupling strength between the two sectors in Eq. (2.2)
and λ for the linear evolution of the field in Eq. (2.9).
We confirmed the conjecture that a growing neutrino

mass scenario relaxes the upper bound on the current
neutrino mass derived in the framework of the baseline
νΛCDM model. This is a result that we expect can be
replicated for any quintessence model that manifests
scaling or tracking behavior. Our goal was to complement
previous work, such as the study in Ref. [26]. In the latter,
one of the models considered is a mass-varying neutrino
theory with an identical coupling to the scalar field,
which is a classical choice made throughout the literature,
and a different potential in the form of a single expo-
nential. In contrast to our case, their quintessence model
shows no tracking behavior and allows only shrinking
mass scenarios. The authors also found that astronomical
observations do not provide strong constraints on the
coupling parameter. To constrain the coupling, they fixed
the neutrino mass to values higher than 0.1 eV, assuming
that such a significant mass could be independently
confirmed. Alternately, in our likelihood analysis, we
set different values of the coupling to constrain the
current neutrino mass.
Following the analysis of the model at background level,

we evaluated the sensitivity of several observables (matter
and CMB power spectra, and CMB lensing potential) to
the coupling, using a version of the Boltzmann code CLASS

that we adapted to the considered model. We found that
growing neutrino masses lead to less matter power sup-
pression than predicted by the presence of a noninteracting
scalar field. The coupling also affects the shape of the CMB
power spectrum at different scales, in particular through the
integrated Sachs-Wolfe effect, in parallel with the effect of
the scalar field parameter itself. The CMB lensing potential
is sensitive to the interaction. Growing neutrino masses can
compensate for the reduction in lensing potential caused by
the quintessence fluid. It is therefore theoretically possible
to obtain constraints on a putative interaction between the
neutrino sector and a dynamical dark energy component.
We performed Bayesian inferences to estimate the

parameters of the model using observations of CMB
temperature and polarization anisotropies and lensing from
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the Planck satellite, together with BAO measurements.
This dataset allows us to combine cosmological probes
covering the early Universe at the time of the last scattering,
the formation of large-scale structures in the late universe,
and the cosmic expansion history. The Markov chains
were generated by the MONTEPYTHON package using a
Metropolis-Hastings algorithm to explore the parameter
space, which contains nine free parameters, fλ; β;Pmν;
Ωbh2;Ωch2; θs; As; ns; τreiog, plus one nuisance parameter
Aplanck. We also derived constraints on four late Universe
parameters: H0, σ8, Ωm, and S8.
The main conclusion is that the model relaxes the upper

bound on the neutrino mass, from
P

mν < 0.13 eV in
νΛCDM to

P
mν < 0.72 eV in our model (95% CL). The

dynamical property of dark energy is enhanced because the
scalar field looses energy to the neutrino, whose mass
grows with time. With a nonvanishing scalar field param-
eter, λ ¼ 0.059þ0.028

−0.036 (68% CL), the data disfavors a static
field. This is in contrast with previous work where CMB
data constraining a scalar field interacting with dark matter
model favors ΛCDM [36]. The coupling β is, however,
poorly constrained by the observations of the selected
dataset. As for the cosmological parameters of the standard
model, it is mostly the confidence intervals for σ8 and Ωm
that are broadened by the interaction, but in a way that
weakly affects the posterior distribution of the degeneracy
parameter S8. The posterior distribution ofH0 is also almost
unchanged, as expected. The scalar field parameter is
extremely constrained and the fraction of dark energy at
the last scattering is too small to make any impact in
resolving the Hubble tension.
As regards forthcoming work, it would be worthwhile to

complement the CMB constraints that the Planck data place
on the parameters of our model with precise measurements
of the anisotropies at larger multipoles (l≳ 3000). These
small angular scales measured with sufficient accuracy can
reveal coupling signatures, especially when the strength of
the interaction is small [85]. For example, an indication of
nonvanishing coupling between neutrinos and dark matter

at the one-sigma level has been found using the Atacama
Cosmology Telescope’s high-multipole observations of
CMB temperature and polarization anisotropies [86]. In
addition, alternative CMB data on the lensing power
spectrum could also be used to further constrain the
neutrino-scalar field interaction scenario affecting structure
growth [87]. As for the late-time Universe probes of large-
scale structure, it would be adequate to use the Kilo-Degree
Survey (KiDS) weak lensing observations [88] to test the
MaVaN model, like in the coupled dark matter case [36].
In the future, combinations of CMB experiments

(such as Simons Observatory [89], CMB-S4 [90], or
LiteBird [91]) with large-scale structure experiments [for
example Dark Energy Spectroscopic Instrument (DESI)
[92], Euclid [93], Large Synoptic Survey Telescope (LSST)
[94], or Square Kilometre Array (SKA) [95]] are expected
to significantly improve the robustness of the cosmological
neutrino mass measurements [96,97], possibly allowing us
to discriminate between models of interacting dark energy.
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APPENDIX: PARAMETER CONSTRAINTS
FOR THE MAVAN AND THE UNCOUPLED

SCALAR FIELD MODELS

In this appendix we provide the triangular plots (Fig. 9)
of the analysis made with the Plk18þ BAO data for the
MaVaN model (β free) and the uncoupled case (β ¼ 0),
i.e., no interaction between the quintessence component
and the neutrino fluid.
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