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The matter power spectrum PðkÞ is one of the main quantities connecting observational and theoretical
cosmology. Although for a fixed redshift this can be numerically computed very efficiently by Boltzmann
solvers, an analytical description is always desirable. However, accurate fitting functions for PðkÞ are only
available for the concordance model. Taking into account that forthcoming surveys will further constrain
the parameter space of cosmological models, it is also of interest to have analytical formulations for PðkÞ
when alternative models are considered. Here, we use the genetic algorithms, a machine learning technique,
to find a parametric function for PðkÞ considering several possible effects imprinted by modifications of
gravity. Our expression for the PðkÞ of modified gravity shows a mean accuracy of around 1–2% when
compared with numerical data obtained via modified versions of the Boltzmann solver CLASS, and thus it
represents a competitive formulation given the target accuracy of forthcoming surveys.
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I. INTRODUCTION

Since its designation as the standard cosmological model
around two decades ago [1], the model assuming the
existence of the cosmological constant Λ and a cold dark
matter (CDM) component, ΛCDM, has passed many
stringent observational tests [2–16]. However, intriguing
discrepancies have arisen in recent years [17,18]. Arguably,
the most representative among these discrepancies is theH0

tension whose significance is now around 5σ [19–21].
Therefore, the search for a sound theoretical candidate is
still plausible, highlighting modified gravity (MG) theories
as one the most prominent alternatives [22,23].1

The clustering of matter, due to gravitational instabilities,
forming the structure of our Universe constitutes a key
physical process in the expansion history. This process
offers one of the main links between observations and
theoretical models through the so-called matter power
spectrum Pðk; zÞ, which in general is a function of the
wave number k and the redshift z [32–34]. For a given

redshift, PðkÞ can be numerically computed using
Boltzmann solvers, like the codes CAMB [35] or CLASS

[36]. Nonetheless, it is desirable to have an analytical
formulation of PðkÞ in some cases; for instance, when
computing costs are demanding and high accuracy is not
required. WhenΛCDM is the assumed cosmological model,
there are two well-known fitting formulas to determine the
transfer function involved in the computation ofPðkÞ. These
are the Bardeen-Bond-Kaiser-Szalay (BBKS) formula [37]
and the Eisenstein-Hu (EH) formulas [38,39], which are
widely used in the literature [40–47]. However, up to the best
of our knowledge, there are no similar formulations consid-
ering alternative models.
In Ref. [48] two of the authors here used a machine

learning technique known as the genetic algorithms (GAs)
to find an analytical expression for the matter power
spectrum under the ΛCDM framework and neglecting
the representative wiggles of PðkÞ due to the BAOs (baryon
acoustic oscillations). This new formula shows to be as
accurate as its predecessors while being considerably
simpler; and thus, easier to implement in other numerical
computations where the knowledge of the dewiggled PðkÞ
is required. Here, we want to extend that work by
considering some possible effects on PðkÞ introduced by
modifications of gravity. Briefly, using the GAs, we find a
parametric function for the dewiggled PMGðkÞ whose
performance is tested by comparing against numerical data

*john.orjuela@correounivalle.edu.co
†savvas.nesseris@csic.es
‡domenico.sapone@uchile.cl
1We want to stress that modified gravity theories and dark

energy models can be treated on equal footing under some
approaches [24–31], and thus a clear distinction between them is
not necessary.

PHYSICAL REVIEW D 109, 063511 (2024)

2470-0010=2024=109(6)=063511(10) 063511-1 © 2024 American Physical Society

https://orcid.org/0000-0001-5090-2860
https://orcid.org/0000-0002-0567-0324
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.063511&domain=pdf&date_stamp=2024-03-07
https://doi.org/10.1103/PhysRevD.109.063511
https://doi.org/10.1103/PhysRevD.109.063511
https://doi.org/10.1103/PhysRevD.109.063511
https://doi.org/10.1103/PhysRevD.109.063511


obtained from the popular Boltzmann solver CLASS. In
particular, we use the branches hi_class [49,50] and
mgclass [51,52]. Both allow to numerically compute
PðkÞ for MG theories. The former considers the whole
Horndeski theories, while the later uses the slip parameters
framework.
The paper is organized as follows. In the next section we

give some generalities about the GAs. Then, in Sec. III, we
describe the matter power spectrum PðkÞ in general and the
possible effects due to modifications of gravity we take into
account. In Sec. IV, we present the parametric function for
the PðkÞ of MG theories, discuss its applicability and its
accuracy when compared against numerical data. Finally, in
Sec. V, we give our concluding remarks.

II. GENETIC ALGORITHMS

The GAs are an unsupervised machine learning tech-
nique in which the extraction of features and patterns from
a given dataset is performed by mimicking biological
evolution processes [53]. In a nutshell, a random initial
population to fit the data is created. Then, GAs improve
their description of the data by implementing a natural
selection scheme based on reproduction and survival of the
fittest individuals. This process, that is stochastic in
essence, is carried out for as many generations as desired
or needed to achieve the expected accuracy of the fitting.
The working principle of the GAs makes them an

excellent tool as a symbolic regression approach. In a
few words, symbolic regression consists in discovering a
fitting function that accurately matches a given dataset.
Now we succinctly describe how to GAs can be used in
symbolic regression problems. Firstly, the initial individ-
uals, corresponding to random mathematical expressions,
are created. Then, the fitness of each individual in this first
generation is measured, which can be done by using a
simple mean-squared error, for example. A portion of the
fittest individuals are selected from a tournament scheme.
The winners of this tournament survive to the next gen-
eration to create offspring through the so-called genetic
operators, usually corresponding to crossover between
individuals and mutation. In the subsequent generations,
consisting of the most capable individuals from the
previous generation and their offspring, the evolutionary
process is repeated until an individual achieves the desired
accuracy for data description. See Refs. [53,54] for more
details about GAs.
Finally, we point out that GAs have been used in several

branches of physics, such as particle physics [55–57],
astrophysics [58], and astronomy [59]. Particularly in
cosmology, they have been used as a symbolic regression
tool [48,60], but also used to perform null tests of
cosmological datasets [61,62], constraints on cosmological
quantities [63–67], and forecasts for upcoming surveys
[68–70]. There are also other approaches to symbolic

regression based on different methodologies as described
in e.g., Refs. [71–76].

III. THE MATTER POWER SPECTRUM
OF MODIFIED GRAVITY

As mentioned in Sec. I, the existence of structure in our
Universe follows from the agglomeration of matter due to
gravitational instabilities. One of the key statistical corre-
lation functions of this process is the matter power
spectrum Pðk; zÞ. It can be shown that, when nonlinear
effects are neglected, the matter power spectrum for a given
redshift can be written as [34]

PðkÞ≡ P0ðkÞT2ðkÞ; ð1Þ

where P0ðkÞ is an initial matter power spectrum and TðkÞ
is the matter transfer function. Now, we firstly comment on
the form of PðkÞ for ΛCDM, and then we discuss some of
the possible alterations to this observable when modifica-
tions of gravity are considered.
In the standard case, the initial matter power spectrum is

approximately given by

P0ðkÞ≡ A0kns ; A0 ≡ 8π2

25

As

Ω2
m0H

4
0

k1−nsp ; ð2Þ

where Ωm0 is the matter density parameter today, H0 is the
Hubble constant, ns and As are the spectral tilt and
amplitude of primordial scalar perturbations, respectively,
and kp is an arbitrary pivot scale [34].2 On the other hand,
the matter transfer function takes into account the effects of
all the interacting species, e.g., acoustic oscillations due to
baryonic pressure, amplitude suppression due to the free
streaming of massive neutrinos, transition from a radiation-
dominated epoch to a matter-dominated epoch, and more.
All these physical details are encompassed by the fitting
functions presented in Refs. [38,39], which achieve an
accuracy of 1–2% while needing around 30 different
expressions in their full formulations. However, in
Ref. [48], two of the authors here shows that the GAs
are able to find much more economical expressions while
achieving the same accuracy range.
To the best of our knowledge, there are currently no

similar analytical formulations available when considering
alternative models. To find derive such a formula, our first
step is to characterize the potential effects that MG theories
introduce in the matter power spectrum compared to the
concordance model. In the following, we undertake this
characterization process. Firstly, a background history
different to that of ΛCDM can change the growth factor,
which in turn modifies the overall amplitude of PðkÞ.

2Note that P0ðkÞ is not the primordial power spectrum which is
given by PRðkÞ≡Asðk=kpÞ1−ns [14].

ORJUELA-QUINTANA, NESSERIS, and SAPONE PHYS. REV. D 109, 063511 (2024)

063511-2



Secondly, a variation in the reduced matter density param-
eter ωm implies a variation in the redshift and scale at the
radiation-matter transition, denoted respectively as zeq and
keq. This causes a shift in the position of the maximum of
the matter power spectrum. Before continuing, we want to
mention that it is possible to estimate zeq and keq using the
approximated expressions given in Ref. [38]. Nevertheless,
as shown in the Appendix, the GAs are able to find
expressions with an accuracy improved by two orders of
magnitude while keeping simplicity. As a third effect,
modified gravity can induce a clustering effective dark
energy component when the structure formation process is
occurring. This of course modifies the amplitude of PðkÞ,
[77–79]. Modifications can occur at the largest scales due
to the integrated Sachs-Wolfe effect. Finally, there could be
a variation in the amplitude and location of the acoustic
peaks. However, these effects are principally controlled by
the reduced baryon density parameter ωb which is tightly
constrained by observations [2]. Here, we fix it to its default
value in the popular Boltzmann solver CLASS; i.e.,
ωb ¼ 0.0223828, and neglect the small oscillations in
our formulation.

In Fig. 1 we have plotted the matter power spectra for
four different models varying some of their parameters in
order to exemplify the physical effects introduced by
modifications of gravity, as explained above. These plots
were obtained using the branch hi_class of CLASS. In
the upper-left panel, we consider a wCDM model, with a
constant speed of sound c2s , no anisotropic stress, and the
equation of state of dark energy w varying in the interval
½−1.2;−0.8�. We can see that the overall amplitude of PðkÞ
is modified when w varies. In the upper-right panel, we
consider a ΛCDM model, varying the reduced CDM
density parameter ωc in the range [0.11, 0.13]. We note
small shifts in scale of the maximum of PðkÞ. For the lower
panels, we used one of the implemented models by default
in hi_class; namely, the propto_scale model. In
this model, the effective field theory (EFT) parameters
characterizing the cosmological dynamics of the whole
Horndeski theory are taken as proportional to the scale
factor. For more details about the EFT of Horndeski
theories see Refs. [80,81], and for the code hi_class
see Refs. [49,50]. In particular, for these plots we fixed the
EFT parameters and vary only the proportionality constant

FIG. 1. Typical effects of modified gravity on the theoretical matter power spectrum. In the upper panels, we consider a wCDMmodel
varying the dark energy equation of state w (left), and the reduced CDM density parameter ωc (right). In the lower panels, we consider
the proto_scale models in hi_class, varying the braiding α̂B (left) and the mass running α̂M (right) parameters. In the former
case, the matter power spectrum is suppressed at very large scales while in the later it is enhanced. Then, we see a transition between the
large scale spectrum to an enhanced (left) or suppressed (right) spectrum at smaller scales.
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of the braiding parameter α̂B (lower-left panel), and of the
mass running parameter α̂M (lower-right panel), while the
background evolution matches that of ΛCDM. As it can be
seen, there is a clear distinction between the behavior of
PðkÞ at large scales and at small scales, with a marked
transition occurring before the scale at equality. The matter
power spectrum at the largest scales holds the form of the
initial matter power spectrum proportional to kns while
differences can be attributed to variations in the amplitude
A. Then, at smaller scales, the spectrum can be enhanced
(as in the lower-left panel) or suppressed (as in the lower-
right panel) by modified gravity. In all the cases, we have
depicted the matter power spectrum of ΛCDM to make
notable the differences introduced by MG models.
In the next section, we propose a parametrized function

for the matter power spectrum PðkÞ that incorporates the
aforementioned effects.

IV. RESULTS

A. Parametrization of PðkÞ
Summarizing our discussion in the last section, we

consider the following modified gravity effects on the PðkÞ:
(1) Variations in the amplitude A of the initial matter

power spectrum P0ðkÞ at large scales.
(2) Overall enhancement or suppression of the amplitude.
(3) Shift of the equality scale keq.

In order to encompass these three effects in one single
expression, we assume that the total matter power spectrum
considers the contribution of two different spectra. At large
scales, the most relevant contribution to PðkÞ comes from
the following expression

Plargeðk; s; nsÞ≡ AðsÞ
�

k
h=Mpc

�
nshðMpc=hÞ3

i
; ð3Þ

where

AðsÞ≡ ð1þ sÞ PΛCDMðkiÞ
knsi T

2
ΛCDMðkiÞ

; ð4Þ

is a dimensional constant. The matter power spectrum
PΛCDM and the matter transfer function TΛCDM for ΛCDM
can be retrieved from e.g. CLASS, and thus ki corresponds to
the smallest value of k considered by the Boltzmann solver.
Notice that this parameter is basically a modification of A0

defined in Eq. (2). However, we do not use A0 directly in
the definition of AðsÞ, i.e., we do not define this parameter
as AðsÞ≡ A0ð1þ sÞ, since the expression for A0 is an
approximation only valid for subhorizon modes [34]. The
parameter s takes on negatives values when the matter power
spectrum is suppressed (as shown in the lower-left panel of
Fig. 1), andpositivevalueswhen the primordialmatter power
spectrum is enhanced (as depicted in the lower-right panel of
Fig. 1) at large scales. The additional effects, such as an
overall modification of the amplitude and the shift of the
maximum, are incorporated into the matter power spectrum
(referred to as Psmall), which primarily manifest at smaller
scales. In the upper-right panel of Fig. 1, it is evident that a
change in the parameter w in the wCDMmodel can result in
an overall enhancement or suppression of the amplitude of
the matter power spectrum. Hence, we adopt this model as a
reference to develop a formula for Psmall utilizing the GAs.
The accuracy of such a formula is measured by the following
fitness function:

Acc%≡
�jPCLASS − Panalyticalj

PCLASS

�
× 100; ð5Þ

where PCLASS is the matter power spectrum numerically
computed using CLASS, and Panalytical is the expression
obtained from the GAs. In particular, we consider a constant
sound speed given by c2s ¼ 0.001, fix the spectral tiltns to the
default value in CLASS, and varyw in the range ½−1.2;−0.8�.
The GAs runs give the following expression3:

Psmallðk; α;ωmÞ ¼
2.52395 × 106

�
k

h=Mpc

�
0.96452ð1þ 0.710636α3 þ 1.88019α4 þ 0.939217α5Þ

ð1þ 59.0998x1.49177 þ 4658.01x4.02755 þ 3170.79x6.06 þ 150.089x7.28478Þ1=2 ½ðMpc=hÞ3�; ð6Þ

whose accuracy is 1.72%. In the last equation, we
have defined the dimensionless variable x≡ k=ðωm−
ωbÞ Mpc=h, since k is given in units ½h=Mpc�, and we
promoted w to a general parameter α in order to avoid
possible confusions with the notation. The parameter α, in
general, measures the overall modifications in the ampli-
tude of PðkÞ and it is not restricted to assume values in the
range ½−1.2;−0.8�. However, this parameter has the lower
bound α > −1.68492 since Psmall is positive for all k. It is
important to emphasize that the wCDM model is used
purely as a template in our study, as the variation of w
specifically generates the effect we aim to capture, which is

an overall modification of the amplitude of the matter
power spectrum.
Finally, we assume that the spectra in Eqs. (3) and (6) are

smoothly connected by a transition function given by

σðk; k0; βÞ ¼ ½1þ e−ðln k−ln k0Þ=β�−1; ð7Þ

3For details about the specific structure of the GAs, e.g., the
genome arrangement and avoidance of overfitting problems,
please refer to Ref. [48].
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where the transition is centered at k0 and β determines its
width.4 It is noteworthy that the limits of this function are
σ → 0 when k ≪ k0, and σ → 1 when k ≫ k0, and that we
have defined σ using logarithms since usually PðkÞ is
depicted in log space. The transition between these limits
occurs around k ∼ k0 with a smoothing level determined by
β. Consequently, a small β corresponds to a rapid transition,
while a large β results in a slower transition. Combining
these considerations, the parametrized expression for PðkÞ
in the context of modified gravity is given by

PMGðk; α; β; k0; s;ωm; nsÞ≡ ½1 − σðk; k0; βÞ�Plargeðk; s; nsÞ
þ σðk; k0; βÞPsmallðk; α;ωmÞ:

ð8Þ

The new expression requires six parameters as input; the
spectral tilt ns, the shift s at large scales, the overall
enhancement (or suppression) parameter α, the reduced
matter density parameter ωm, the transition center k0, and
the transition width β switching between Plarge and Psmall.
With the exception of ns and ωm, which are determined
through observations, the remaining four parameters are free.
We want to emphasize that the expression obtained through
GAs was Psmall in Eq. (6), while Plarge in Eq. (3) and σ in
Eq. (7) are assumed and motivated by physical intuitions.
In the following section, we will evaluate the effective-

ness of Eq. (8) by estimating the best-fit values of
parameters to accurately reproduce the numerical matter
power spectra obtained from various MG theories using the
hi_class and mgclass codes.

B. Performance

Here, we numerically computematter power spectra using
the codes hi_class and mgclass considering several
models. Subsequently, we find the best-fit values of the

parameters α, k0, β, and s by minimizing the fitness function
in Eq. (5). This procedure will yield to the best match of
PMGðkÞ in Eq. (8) with respect to the data from CLASS.
There are several models already implemented in

hi_class, and we make use of two specific ones;
proto_scale and propto_omega. In the propto_
scalemodel, the EFT parameters of the Horndeski theory
are proportional to the scale factor a, i.e. to αi ≡ α̂ia, where
i ¼ K, B, M, T denotes the kineticity, braiding, mass
running, and tensor speed excess parameters, respectively.
On the other hand, in the propto_omegamodel, the EFT
parameters are proportional to the dark energy density
parameterΩDE, i.e., αi ≡ α̃iΩDE.We also add to hi_class
the designer Horndeski model (HDES) introduced in
Ref. [25]. The HDES model has two parameters; namely,
J̃c and n. We fix n ¼ 1, and consider a small value for J̃c. In
all these models, it is assumed that the background evolution
exactlymatches that ofΛCDM. Inmgclass, we also use an
already implementedmodel calledplk_late, in which the
slip parameters are parametrized in terms of ΩDE (see
Ref. [52]). This model in particular has been used by
observational collaborations such as Planck [82] and
DES [4].
In Table I, we show the best-fit values of the parameter

set fα; k0; β; sg along with the associated mean accuracy,
achieved by selecting a specific parameter value from each
model. It is important to mention that we have explored
multiple parameter values for each model. However, for the
sake of simplicity in the presentation, we report only one
value. The details of the analysis and the parameter
exploration for each model can be found in the provided
codes (see the Numerical Codes statement). Table I shows
that the mean accuracy for the considered models is
approximately 1–2%.5 In Fig. 2, we plot three examples

TABLE I. Best-fit parameters α, k0, β, and s for several models in the codes hi_class and mgclass. Just one value of the
parameters of each model is shown to keep our presentation simple. We can see that the mean accuracy in each example is around 1–2%.

Model Parameter α k0 × 10−3 β s Accuracy (%)

propto_scale α̂B ¼ 0.5 0.68153 1.16918 0.42243 −0.21975 1.53
propto_scale α̂M ¼ 0.5 0.36380 0.73084 0.45974 0.53958 1.62
propto_scale α̂T ¼ −1 0.53444 0.40205 0.39972 −0.47066 1.52
propto_omega α̃B ¼ 0.625 0.54866 0.76693 0.45681 −0.07756 1.46
propto_omega α̃M ¼ 3.0 0.59006 0.39858 0.46187 1.57924 1.48
propto_omega α̃T ¼ −0.25 0.53215 1.16323 0.42635 0.02292 1.47
plk_late E11 ¼ 0.5, E22 ¼ 0.5 0.54762 0.76681 0.49599 −0.62532 1.43

E11 ¼ −0.5, E22 ¼ −0.5 0.42644 0.28607 0.51071 2.99343 1.92
HDES J̃c ¼ 0.005 0.56331 2.24347 0.443931 0.05417 1.39

4This transition function is not unique. Another common
option for a “smooth step function” which would be valid is
σðk; k0; βÞ≡ ð1þ tanh ½ðln k − ln k0Þ=β�Þ=2.

5We want to mention that since we fix ns to find Psmall using
the GAs, this could yield to errors when different values of ns are
considered. Although, the effect of ns on PðkÞ is small, we
verified that the mean accuracy of our formula PMG is still around
1% when ns is varied in the interval [0.96, 0.97] which is 1σ away
from the value measured by Planck [2].
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of the matter power spectra from MG theories to visually
show the excellent fit provided by our formula with respect
to numerical data. In this plot, we use the models
propto_scale of hi_class varying the braiding
constant α̂B and the mass running constant α̂M. From
mgclass, we used the plk_late model assuming the
parameters E11 ¼ E22 ¼ −1.0. We also plot the ΛCDM
matter power spectrum to highlight the modifications
introduced by these alternative theories. In the subplot,
we depict the accuracy as a function of k, which can be
measure as

Acc%ðkÞ≡
�
PCLASS − Panalytical

PCLASS

�
× 100; ð9Þ

where no mean value is taken, as in Eq. (5). This shows
that most of values are in the 2% region defined by the
black dotted lines. Remarkably, our formula is able to
capture the substantial deviation at large scales observed
in the spectrum of the plk_late model (depicted in
blue) and the significant enhancement around keq in the
propto_scale braiding model (depicted in pink). It is
also noteworthy that although the expression of Psmall in
Eq. (6) does not consider the wiggles introduced by BAOs
in the matter power spectrum, the error of neglecting this
oscillatory behavior is around 5% in the most inaccurate
cases. The amplitude of the acoustic peaks depends

mainly on the amount of baryonic matter, which translate
to the parameter ωb. However, observations indicate that
ωb ≈ 0.022 implying small peaks. Therefore, a line pass-
ing through these oscillations seems to be a good
approximation.6

V. CONCLUSIONS

Accurate fitting formulations for the matter transfer
function allow to compute the matter power spectrumwithin
the context of theΛCDMmodel [37–39,48]. However, there
is no any formulation available when modifications of
gravity are considered. In this work, we have put forward
a parametric function for PðkÞ considering several effects
introducedbymodified gravity theories. The new formula for
PMGðkÞ was presented in Eq. (8) and it is composed by two
main parts. A matter power spectrum Plarge encompassing
modifications at large scales, and the spectrum Psmall which
manifest at smaller scales. The former is proportional to kns
with amplitude AðsÞ ≈ A0ð1þ sÞ, where s is a parameter
measuring the shift of the initial amplitude A0 which in the
case of ΛCDM is approximately given in Eq. (2). The other
spectrum; namely Psmall, was obtained through the machine
learning technique of the genetic algorithms using a wCDM
model as template. The expression for Psmall in Eq. (6)
involves two parameters; a parameter α measuring overall
modifications (enhancement or suppression) in the ampli-
tude of the spectrum, and ωm which controls the value of the
scale at equality keq. These two spectra; Plarge and Psmall, are
smoothly connected by the transition function σ defined in
Eq. (7). This function marks the transition center at the scale
k0 with a smoothness measured by the parameter β.
Therefore, our formulation requires six input parameters;
the spectral tilt ns, the shift s of A0 at large scales, the
enhancement (suppression) factor α measuring modifica-
tions in the amplitude ofPsmallðkÞ, the reducedmatter density
parameter ωm, and two parameters, k0 and β, that determine
the center and width of the transition region between the
matter power spectra Plarge and Psmall [see Eq. (8)].
The performance of our formulation was compared

against numerical results obtained from the codes
hi_class and mgclass for several models. The rela-
tively simple expression in Eq. (8) showed a mean accuracy
of about 1–2% (see Table I). In Fig. 2, we showed three
examples of the fitting of our formula with respect to some
MG models. In the subplot, the accuracy of the formulas as
a function of k using Eq. (9) was measured. This showed
that most of values predicted by our formula lies in the 2%
region. Furthermore, although our expression does not
consider baryonic acoustic oscillations, neglecting these

FIG. 2. Three examples showing the fitting of our formula in
Eq. (8) (dots) with respect to numerical results (solid lines). The
matter power spectrum of ΛCDM (black line) is plotted to
highlight the effects introduced by MG theories. The subplot
shows the accuracy of the formulas as a function of k. We can see
that most of points are in the 5% region defined by the black
dotted lines.

6However, the formula for PMGðkÞ should not be used when an
accurate description of these wiggles is required. The introduc-
tion of these oscillations in PMGðkÞ is a further improvement
which we leave for a future work.
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wiggles introduces an error not greater than 5%. Given
that ongoing surveys, like Euclid, expect to reach an
observational accuracy of around 1% for some cosmologi-
cal parameters which are obtained using the matter power
spectrum, and that they already use the Eisenstein-Hu
formula in their analysis [83], our formula could extend
these analysis to model beyond ΛCDM without loosing
accuracy. Therefore, the function PMGðkÞ in Eq. (8) rep-
resents a compelling fitting formula for the matter power
spectrum of alternative models to ΛCDM.
While this solution does not possess the baryonic

wiggles necessary for inferring cosmological parameters
from the BAO signal, it can still be used for parameter
inference. To illustrate this, let us consider the approach
used to forecast cosmological parameters for the Euclid
survey [83]. The observed galaxy power spectrum relies on
the de-wiggled matter power spectrum, which is the sum of
two components; the linear matter power spectrum
obtained from a Boltzmann code and the linear matter
power spectrum without wiggles but exhibiting the same
broad band as the linear matter power spectrum. Both
components are modulated by a function that controls the
nonlinear damping of the BAO signal in all directions. The
no-wiggles power spectrum is often computed using the a
fitting formula (for instance, for the ΛCDM models, the
EH). It is clear that, when exploring cosmological models
beyond the standard framework, it becomes crucial to
appropriately parametrize the no-wiggles matter power
spectrum in order to accurately capture the amplitude
and shape of the observed galaxy power spectrum.

Numerical codes. The genetic algorithm code used here
can be found in the GitHub repository [84] of BOQ. This
code is based on the GA code by S. N. which can be found
at [85].
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APPENDIX: GENETIC ALGORITHM
EXPRESSIONS FOR keq AND zeq

Variations in the parameter ωm implies in general a shift
of the radiation-matter transition. In Ref. [38], the scale and
redshift at this transition were given by

zeqðωmÞ ¼ 2.5 × 104Θ−4
2.7ωm; ðA1Þ

keqðωmÞ ¼ 7.46 × 10−2Θ−2
2.7ωm; ðA2Þ

where Θ2.7 defines the cosmic microwave background
(CMB) temperature through the relation TCMB≡
2.7Θ2.7 K. Taking TCMB ¼ 2.7255 K we have the approxi-
mated expressions,

keq ¼ 0.0732106ωm; ðA3Þ

zeq ¼ 24077.4ωm: ðA4Þ

In the case of ΛCDM, we used CLASS to get data for keq
and zeq varying ωm in the range [0.13, 0.15], which is
around 10σ from the Planck best-fit. Comparing these
datasets with the above formulas, we find that the accuracy
of keq is around 0.37%, while for zeq we get 0.74%.
Although these formulas are accurate, the GA was able to
find even better analytical formulations. The GAs ended up
with the following expressions:

keqðωmÞ ¼ 0.07222ωm þ 0.00151ω1.3775
m ; ðA5Þ

zeqðωmÞ ¼ 23896.7ωm þ 11.6353ω1.41595
m ; ðA6Þ

The accuracy of keq is 0.023%, while for zeq the GAs
achieve an accuracy of 0.0025%, representing an improve-
ment of 1 and 2 orders of magnitude, respectively.
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