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The deep learning technique has been employed in removing foreground contaminants from 21-cm
intensity mapping, but its effectiveness is limited by the large dynamic range of the foreground amplitude.
In this study, we develop a novel foreground removal technique grounded in U-Net networks. The essence of
this technique lies in introducing an innovative data preprocessing step specifically, utilizing the temperature
difference between neighboring frequency bands as input. Combining with the frequency difference, we refer
to our method as the UNet-fd (UNet frequency-difference), where the U-Net structure is the same as that in
Deep21. Based on our tests, we demonstrate that this frequency-difference preprocessing technique can
substantially reduce the dynamic range of foreground amplitudes by approximately two orders of magnitude.
This reduction proves to be highly advantageous for the U-Net foreground removal. We observe that the HI
signal can be reliably recovered, as indicated by the cross-correlation power spectra showing unity agreement
at the scale of k≲ 0.3 hMpc−1 in the absence of instrumental effects. Moreover, accounting for the
systematic beam effects, our reconstruction displays consistent autocorrelation and cross-correlation power
spectrum ratios at the 1σ level across scales k ≲ 0.1 hMpc−1, with only a 10% reduction observed in the
cross-correlation power spectrum at k ≃ 0.2 hMpc−1. The effects of redshift-space distortion are also
reconstructed successfully, as evidenced by the quadrupole power spectra matching with the target truth.
In order to test how thermal noise affects the performance of our method, we simulated various white noise
levels in the map. This shows the mean cross-correlation ratio R̄cross ≳ 0.8when the level of the thermal noise
is smaller than or equal to that of the HI signal. In comparison, our method outperforms the traditional
principal component analysis (PCA) method. The PCA-derived cross-correlation ratios are underestimated by
around 60%. We conclude that the proposed frequency-difference technique can significantly enhance
network performance by reducing the amplitude range of foregrounds and aiding in the prevention of HI loss.
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I. INTRODUCTION

In the next few decades, 21-cm cosmology has the
potential to dramatically improve our knowledge of the
universe, providing a fully three-dimensional mapping of
the HI spectral line from the dark ages [1,2], to the cosmic
dawn [e.g., [3,4]], and the postreionization [e.g., [5–8]].
One promising technique for surveying the low-redshift
large-scale structure (LSS) of the Universe is 21-cm
intensity mapping (IM), which involves measuring the

integrated HI emission lines that originate from unresolved
sources in large-volume portions of the sky [9–14]. While
this is conceptually similar to the traditional galaxy redshift
survey, it differs significantly in that 21-cm IM is sensitive
to all sources of emission rather than just cataloging the
brightest galaxies. This allows for mapping LSS through
the redshift desert and beyond (such as 1≲ z≲ 6), where
optical spectroscopy is challenging [15].
A large number of interferometric and imaging radio

telescopes are currently conducting and will continue to
carry out 21-cm IM observations, such as CHIME (Canadian
Hydrogen Intensity Mapping Experiment) [16,17],*fshi@xidian.edu.cn
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Tianlai [18–21], BINGO (Baryon acoustic oscillations In
Neutral Gas Observations) [22,23], MeerKAT (The South
African Square Kilometer Array Pathfinder) [24,25],
HIRAX (The Hydrogen Intensity and Real-time Analysis
eXperiment) [26], and the SKA (The Square Kilometer
Array) [27]. So far, most studies have focused on 21-cm IM
in cross-correlation with galaxy surveys [28–33]. More
recently, there has been a successful detection of the HI
autocorrelation power spectrum on small scales using
MeerKAT [34].
However, the biggest challenge for upcoming obser-

vational data analysis is the presence of foreground
contaminants, such as the Galactic synchrotron and
free-free emissions and extragalactic radio point sources,
which are about 4 orders of magnitude brighter than the
HI signal [35–38].
Over the years, a variety of signal separation algorithms

have been consistently proposed. These algorithms can be
categorized as either “blind” or “nonblind,” depending on
whether prior knowledge of the signal, foreground, or noise
is required for the separation process. A comprehensive
overview of current techniques for mitigating 21-cm
foreground is provided by [39]. For instance, principal
component analysis (PCA) [40], singular value decom-
position (SVD) [41,42], independent component analysis
(ICA) [43,44], and generalized morphological component
analysis (GMCA) [45] represent blind (or “semiblind”)
methods commonly employed in 21-cm intensity mapping.
Conversely, non-blind methods such as generalized needlet
internal linear combination (GNILC) [46,47], Gaussian
process regression (GPR) [43,48], and the Karhunen-Loeve
transform [49], are also extensively cited in the literature.
Moreover, an approach known as “foreground avoidance”
is utilized, where Fourier modes measured above the
so-called “wedge” region in ðk⊥; kkÞ-space are dominantly
associated with the 21-cm signal [50]. In addition, the
Bayesian framework [51–54] allows for the simultaneous
inference of 21-cm signals and foreground signals under
certain a priori assumptions.
More recently, there has been a growing interest in

exploring deep learning techniques for foreground removal,
such as by using deep neural networks with U-Net
architecture [55,56]. It has been demonstrated that the
U-Net is effective in recovering the HI fluctuation signal,
provided that certain preprocessing steps, such as PCA,
are undertaken. This initial preprocessing aims to firstly
eliminate the dominated foreground components.
Subsequently, the U-Net is applied to further eliminate
any remaining foreground residuals. However, it should be
noted that employing PCA-based preprocessing, which
involves subtracting a specific number of PCA modes, may
result in an undesired loss of the HI signal.
All of these methods essentially assume that the stat-

istical characteristics of the foreground, as well as the
smoothness characteristics of the foreground emissions

across the frequencies, differ from those of the 21-cm
signal. As a result, they can effectively remove most of
the foreground components [57–59]. However, because
the HI signal vector and individual foreground component
vectors are not perfectly orthogonal, the process of
subtracting the foreground leads to a simultaneous sub-
traction of the signal itself. Meanwhile, achieving a clean
reconstruction of the 21 cm signal is further complicated
by the presence of contamination from nonsmoothed
foreground components [60–63].
In order to avoid signal loss and to more cleanly

eliminate non-smoothed foreground components, we pro-
pose a new method—a technique that utilizes the temper-
ature difference of the sky maps in neighboring frequency
bands. Since the HI and the foreground have different
frequency correlations, this is expected to significantly
reduce the dynamic range of the foreground while avoiding
HI signal loss. Wewill demonstrate that the U-Net performs
more reliably in recovering large-scale HI information
when trained using the frequency-difference map as input.
This paper is organized as follows. In Sec. II we

introduce our simulation. In Sec. III, we present our
foreground removal method, including the U-Net structure
and the frequency-difference preprocessing technique.
We verify our method and present the results in Sec. IV,
and summarize our main findings in Sec. V.

II. DATASETS

This section describes our simulated 21-cm intensity
maps, which are generated using CRIME

1 [64] in HEALPix

pixelization scheme [65]. The code is designed to generate
the main components of the 21-cm intensity mapping
observations, including the cosmological 21-cm signal,
foreground emissions, and instrumental noise. Here, we
briefly introduce the simulation method and refer the reader
to the references for more details.

A. Cosmological HI signal

The observed effective brightness temperature of the HI
signal, THI, is related to the HI overdensity δHI at a given
sky position n̂ and redshift z as follows [e.g. [66]]:

THIðn̂; zÞ ¼ T̄HIðzÞð1þ δHIðn̂; zÞÞ: ð1Þ

Here the mean brightness temperature can be expressed as

T̄HIðzÞ ¼ 190.55
Ωbhð1þ zÞ2xHIðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p mK; ð2Þ

where h represents the reduced Hubble parameter, defined
as h ¼ H0=ð100 km s−1Mpc−1Þ, xHI stands for the neutral
hydrogen mass fraction relative to the total baryons, and

1http://intensitymapping.physics.ox.ac.uk/CRIME.html.
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Ωb, Ωm, and ΩΛ correspond to the present fractions
of baryon, total matter, and dark energy densities,
respectively.
In CRIME, the HI overdensity δHI and velocity perturba-

tions are first generated by employing a log-normal model
on a Gaussian realization of the dark matter density field
within a Cartesian box. The results are then projected onto
spherical sky shells and pixelated to create maps of the
21-cm brightness temperature across various frequency
bands, each corresponding to a specific redshift from the
observer. The relationship between the brightness temper-
ature and the underlying HI overdensity is established
through Eqs. (1) and (2), assuming xHIðzÞ ¼ 0.008ð1þ zÞ.
Meanwhile, the redshift-space distortion (RSD) is imple-

mented by perturbing the cosmological redshift of each cell
with the redshift distortion ΔzRSD ¼ ð1þ zÞvr=c, where vr
is the line-of-sight velocity of each cell, and c denotes the
speed of light.
In this study, we utilize a map with Nside ¼ 256,

corresponding to an angular resolution of 13.73 arcmin.
We consider the frequency range spanning from 1100 to
1164 MHz, which corresponds to a redshift range between
0.29 and 0.22. Subsequently, the simulated full sky is
divided into 192 sky patches, each having dimensions
of 643. These patches cover approximately 214.86 deg2 of
the sky and have a volume equivalent to that of a box with a
length of about 187h−1 Mpc.
The cosmological parameters are set as follows:

Ωm ¼ 0.3,ΩΛ ¼ 0.7,Ωb ¼ 0.049, h ¼ 0.67, and σ8 ¼ 0.8.

B. Foregrounds

In the simulations, we consider four main foreground
components: Galactic synchrotron emission, extragalactic
point sources, Galactic and extragalactic free-free emis-
sions. Given the distinct distribution characteristics of
anisotropy and isotropy, the simulation for generating
the foreground combines two different methods. The
Galactic synchrotron emission originates from the accel-
erated motion of energetic charged particles dispersed in
the Galactic magnetic field. It exhibits a highly anisotropic
angular structure, with a steep increase in brightness
temperature toward the Galactic plane. To produce such
a structure, the Galactic synchrotron emission is then
simulated by extrapolating the brightness temperature
THaslamðn̂Þ from the Haslam map [67] to the relevant
frequencies. This is achieved using a direction-dependent
spectral index βðn̂Þ [68], expressed as

Tsyn;0ðν; n̂Þ ¼ THaslamðn̂Þ
�
408 MHz

ν

�
βðn̂Þ

: ð3Þ

Because of the low resolution of the Haslam map (approx-
imately 0.85°), the subscript 0 here denotes the interpola-
tion results at larger scales. As Galactic synchrotron
anisotropy on small scales cannot be obtained from the

low-resolution Haslam sky map, we simulate the small-
scale synchrotron component by generating the isotropic
structure of synchrotron emission through Gaussian real-
izations of the angular power spectra, as modeled by [37],

Clðv1; v2Þ ¼ A

�
lref

l

�
β
�
v2ref
v1v2

�
α

exp

�
−
log2ðv1=v2Þ

2ξ2

�
;

ð4Þ

where A represents the amplitude of the power spectrum,
and ξ denotes the frequency-space correlation length
for a given foreground component. We employ the refer-
ence scale lref ¼ 1000 and the reference frequency
νref ¼ 130 MHz. In order to confine the synchrotron
simulation to small scales, the random realizations are
rescaled to match the resolution scale overlapping with that
of the Haslam map before they are incorporated into the
final Galactic synchrotron map. Additionally, Eq. (4) is
also used to simulate free–free emission and point sources.
The model parameter values are drawn from [37] and are
provided in Table I. Note that, the Haslam map used in the
CRIME contains residual striping and point-source artifacts,
which could lead to inadvertent duplication of point
sources in the simulations. This concern can be alleviated
by the utilization of an improved version of the Haslam
map, which was reprocessed by [69].
We also consider the presence of polarized foregrounds,

where frequency-dependent Faraday rotation affects syn-
chrotron emission, as discussed in references such as [70].
This phenomenon leads to leakage into the unpolarized
signal, which can potentially be a problematic contribution
for foreground removal. In CRIME, the influence of polar-
ized synchrotron emission on foregrounds is characterized
by two parameters: the Faraday-space correlation length
(ξψ ) and the polarization leakage fraction (ϵp). Further
details can be found in [64].
Following the approach in CRIME, we adopt a typical

value of ξψ ¼ 0.5 radm−2 to match simulations obtained
using the Hammurabi code [71]. For simplicity, we choose
ϵp ¼ 0.01, which, importantly, depends entirely on the
level of systematic control within the instrument.
In the left panel of Fig. 1, we display the comparison

of the angular power spectra. For these calculations,

TABLE I. Model parameters for the fiducial foreground
Clðν1; ν2Þ in Eq. (4), adapted from [37], using the reference
values of lref ¼ 1000 and νref ¼ 130 MHz.

Foreground A½mK2� β α ξ

Galactic synchrotron 700 2.4 2.80 4.0
Point sources 57 1.1 2.07 1.0
Galactic free-free 0.088 3.0 2.15 35
Extragalactic free-free 0.014 1.0 2.10 35
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we employed the publicly available code NaMaster
2 [72],

which was used to calculate the spectra among different
components at a frequency of ν ¼ 1110 MHz. Black solid
lines are plotted for the cosmological HI, while other colored
dashed or dotted lines represent different foreground com-
ponents. It is evident that the foregrounds dominate the HI
signal by 4-5 orders of magnitude in terms of

ffiffiffiffiffiffi
Cl

p
.

The right panel of Fig. 1 shows a randomly selected sky
pixel as an example to demonstrate the dependence of
brightness temperature on frequency. The black solid and
blue dashed lines correspond to the cosmological HI and
total foreground, respectively. As expected, the foreground
temperature is smoothly distributed, whereas the HI exhib-
its significantly more fluctuations in temperature.

Figure 2 displays the respective frequency-frequency
correlation matrices of the cosmological HI, the total
unpolarized foreground, and the polarized leakage, pro-
viding statistical evidence regarding the frequency coher-
ence scales of the different components. Notably, the
frequency correlation of the unpolarized foreground is
much stronger than that of the HI signal. However, for the
polarized synchrotron, which arises due to frequency-
dependent Faraday rotation, the correlation lengths are
significantly reduced. This non-smoothed component
substantially increases the presence of foreground resid-
uals in foreground-cleaned maps [73].

C. Instrument effects

To simulate the effect of the beam of a radio telescope,
we employ a Gaussian beam model for simplicity.

FIG. 1. Left: a comparison of the angular power spectrum among different simulated components at a frequency of ν ¼ 1110 MHz.
Results are computed for a randomly selected patch from the full sky, which has been divided into 192 patches. The cosmological HI is
represented by the black solid line, while other components of the foreground are depicted by colored dashed or dotted lines, as
indicated. Right: the brightness temperature as a function of frequency for a randomly selected sky pixel. The black solid line
corresponds to the cosmological HI, while the blue dashed line represents the total foreground. For a clear comparison, note that the
amplitude scales are different for the foreground and HI components.

FIG. 2. Frequency-frequency correlation matrices for cosmological HI (left), total unpolarized foreground (center), and polarization
leakage (right). Please note that the correlation coefficients of the unpolarized foreground are displayed in logarithmic values.

2https://github.com/LSSTDESC/NaMaster.
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This model approximately represents the primary beam
response of a telescope as

Bðν; θÞ ¼ exp

�
−4 ln 2

�
θ

θFWHMðνÞ
�

2
�
; ð5Þ

where θFWHM represents the full width at half maximum
(FWHM) of the primary beam. In Fig. 3, the blue solid line
shows the beam size as a function of frequency across a
total of 64 channels, spanning from 1100 to 1164 MHz.
Ideally, we would anticipate a smooth and gradual change
in the beam size as the frequency varies. We then convolve
our simulated sky maps (as described in previous sections)
with such a beam model to incorporate the beam effect.
However, in real observation, there would be frequency-
dependent fluctuations in the beam size, which is called the
ripple structure, e.g., [74]. We plan to conduct a detailed
analysis of this in a future study.
In the telescope receiver noise model, we solely consider

uncorrelated white noise. We incorporate a Gaussian
random field with a width of σN into our simulated sky
map, given by

σN ¼ Tsys

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πfsky

ΩbeamNdishtobsΔν

s
; ð6Þ

where Tsys is the total system temperature, which is the sum
of the sky and receiver noise; Ωbeam ≈ 1.133θ2FWHM is the
solid angle of the primary beam; fsky is the fraction of sky
coverage; Ndish denotes the number of dishes in the
observation; tobs indicates the integration time and Δν is
the bandwidth of each frequency channel.
In this study, to test the performance of our signal

recovery method on thermal noise of varying amplitude,
we rescale this white noise model by introducing a free
parameter βN, given by

βN ¼ σN
σHI

; ð7Þ

where σHI denotes the standard deviation of the HI signal
over the simulation cube. Thus, βN is inversely propor-
tional to the signal-to-noise ratio (S/N). In our analysis,
we varied βN in the range of 0.0 < βN < 1.0, which is
consistent with the noise amplitude desired from potential
present and future intensity mapping configurations,
e.g., [55]. In Fig. 3, the red dashed line represents the
noise as a function of frequency, specifically for the case
of βN ¼ 1.

III. FOREGROUND REMOVAL METHOD

In this section, we will introduce our novel foreground
removal method. By implementing the designed frequency-
difference technique and utilizing the existing U-Net
convolutional neural network (CNN) [75], we find that
this strategy can efficiently recover cosmological HI signals
with high fidelity by removing both smooth and nonsmooth
foregrounds.

A. Frequency-difference technique

One of the key ingredients of our method is to reduce the
dynamic range of foreground amplitudes before feeding
them into U-Net. Based on the characterization of the
frequency correlation discussed in Sec. II B, we use the
difference in the sky map temperature between two neigh-
boring frequency bands as the input, which we call the
frequency-difference technique. In this case, the foreground
temperatures of the neighboring bands can largely cancel
each other out due to the strong correlation in frequency.
Conversely, The HI signal can be preserved in the fre-
quency-difference map because the HI signal becomes
uncorrelated between adjacent frequency bands when the
bandwidth Δν≳ 2 MHz (as indicted in Fig. 5).
Figure 4 presents a visual comparison of temperature

maps and their differences between neighboring frequency
bands. The first and second panel correspond to the pure-HI
temperature map, THIðν0Þ, and the HI plus foreground map,
THI;fgðν0Þ respectively, where ν0 ¼ 1110 MHz. The third
one shows the temperature difference between neighboring
bands, THI;fgðν0Þ − THI;fgðν1Þ, where ν1 ¼ 1111 MHz. It is
clear that due to the strong correlation of the foreground in
frequency, the amplitude range is significantly reduced by
2–3 orders of magnitude by means of this frequency-
difference technique. Furthermore, the last panel shows
the frequency-difference map while considering the beam.
In this regard, it is important to consider that the size of
the beam (θFWHM) varies with frequency. To ensure
consistency in the beam size level, we have smoothed
each adjacent-band map to match their relatively lower
angular resolution. This was done by convolving the
higher frequency map with a Gaussian beam characterized
by a beam size of ΔθFWHM, denoted as,

FIG. 3. Beam size (blue solid) and thermal noise (red dashed) as
a function of frequency, which includes 64 channels. The noise is
plotted for the case with βN ¼ 1 according to Eq. (7).
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ΔθFWHM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2FWHM;low − θ2FWHM;high

q
: ð8Þ

Here θFWHM;low and θFWHM;high correspond to the beam
size of low and high frequency, respectively. It reveals
that the frequency-difference map yields a similar
outcome, with a significant reduction in the range of
amplitude.
In the left panel of Fig. 5, we show the angular cross-

correlation power spectrum, Cν0×ðν0þΔνÞ between the pure
HI at ν0 and that at ν0 þ Δν, which is normalized to the
autocorrelation power spectrum of the pure HI at ν0.
Different lines correspond to the results of different Δν,
as indicated. We can see a clear positive correlation signal
at Δν ¼ 1. This is due to the fact that this bandwidth
corresponds to Δz ≃ 0.0012, and hence the comoving
distance is Δr ≃ 4.5 h−1Mpc. Thus, the presence of HI
large-scale structures (e.g., filaments, voids, and sheets)
allows the maps between the two frequencies to remain
correlated. Therefore, temperature differences between
neighboring bands (Δν ¼ 1) might also lead to a loss of

the HI signal. However, when Δν ≥ 2 MHz, there is no
longer a correlation of the HI signals between the sky maps,
resulting in the corresponding cross-correlation signals
decaying rapidly to zero.
In the second panel of Fig. 5, which aims to demonstrate

the correlation of the frequency-difference map with the
pure HI signal for different Δν values, we present the ratios
obtained by varying Δν. Here, the ratio is defined as

RTHI×ΔTHI;fg
¼ C

THI×ΔTHI;fg

l =CTHI
l , where C

THI×ΔTHI;fg

l is the
angular cross-correlation power spectra between THIðν0Þ
and ΔTHI;fg ¼ THI;fgðν0Þ − THI;fgðν0 þ Δν0Þ, and CTHI

l is
the angular autocorrelation power spectra of THIðν0Þ. The
blue solid, red dashed, and green dashed-dot lines corre-
spond to Δν ¼ 1; 2, and 6 MHz, respectively. The error
bars represent the standard deviation estimated across the
192 sky patches, as mentioned in Sec. II.
In the cases of Δν ¼ 2 and 6 MHz, the ratios are positive

and close to unity, proving that the frequency-difference
helps to reduce the foreground contamination and keep the
HI signal visible.

FIG. 4. Visualization of the temperature difference between neighboring frequency bands. The first and second panels correspond to
the pure HI temperature map THIðν0Þ and the foreground added map THI;fgðν0Þ, at ν0 ¼ 1110 MHz, respectively. The third panel
displays the frequency-difference map ΔT ¼ THI;fgðν0Þ − THI;fgðν1Þ, where ν1 ¼ 1111 MHz. The last panel shows the same frequency-
difference map, but taking into account the beam effect, i.e., ΔTbeam ¼ Bðν0Þ ⊗ THI;fgðν0Þ − Bðν1Þ ⊗ THI;fgðν1Þ.

FIG. 5. First: angular cross-correlation power spectrum between the pure HI at ν0 and that at ν0 þ Δν,Cν0×ðν0þΔνÞ, which is normalized
to the autocorrelation power spectrum of the pure HI at ν0. Different lines correspond to the results of different Δν, as indicated. Second:
ratios of the angular power spectra for different Δν, RTHI×ΔTHI;fg

¼ C
THI×ΔTHI;fg

l =CTHI
l , where CTHI×ΔTHI;fg is the cross-correlation power

spectrum between HI map, THIðν0Þ, and frequency-difference map, ΔTHI;fg ¼ THI;fgðν0Þ − THI;fgðν0 þ Δν0Þ, and CTHI denotes the
autocorrelation power spectrum of THIðν0Þ. The blue solid, red dashed, and green dashed-dot lines correspond toΔν ¼ 1; 2, and 6 MHz,
respectively. Here, the error bars correspond to the 1σ statistical uncertainty estimated from among the all 192 sky patches. Third: mean
ratio (averaged over all sky patches for the Cl values in the range of l ¼ 200 to 800), R̄THI×ΔTHI;fg

(blue line, and its value is related to the
left y-axis), and the RMS error, σTHI×ΔTHI;fg

(red line, and its value is related to the right y-axis), as a function of Δν. Fourth: S/N as a
function of Δν according to Eq. (9).
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When Δν ¼ 1 MHz, however, the ratios are slightly
underestimated. This indicates a loss of the HI signal due to
large-scale HI correlations.3 On the other hand, the error
bars for Δν ¼ 6 are considerably larger than those for
Δν ¼ 2. This is due to the reduced correlation between the
foreground sky maps at wider frequency intervals, leading
to more substantial residual foregrounds on the frequency-
difference maps.
In the third panel of Fig. 5, by varying Δν from 2 to

17 MHz, we present the mean ratios averaged over all
sky patches, R̄THI×ΔTHI;fg

(blue line), and the RMS error,
σTHI×ΔTHI;fg

(red line). The results are computed based on Cl

values within the range of l ¼ 200 to 800. The ratios
quickly converge to unity when Δν > 1 MHz. However,
the uncertainties first reach their minimum at Δν ¼ 2 MHz
and then rapidly increase beyond that. Therefore, the width
Δν needs to be optimized to minimize the HI correlation
while maximizing the foreground correlation between two
frequency bands. To do so, we then compute the signal-to-
noise ratios (S/N) as a function of Δν by,

S=NðΔνÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̄THI×ΔTHI;fg

σTHI×ΔTHI;fg

s
: ð9Þ

The S/N result are depicted on the right panel of Fig. 5.
When Δν ¼ 2, a peak occurs, indicating the potential
increase in sensitivity for detecting HI signals.
So, the frequency-difference technique has the potential

to significantly reduce foreground contamination. By
selecting an appropriate bandwidth, it becomes possible
to efficiently diminish foreground residuals in the resulting
maps while enhancing the S/N ratio. Additionally, when
considering the effect of beam smoothing, the frequency-
difference maps at small-scales are smeared out (as seen in
the last panel of Fig. 4), which can lead to a challenge in
recovering the HI signal.

B. U-Net network

To further mitigate foreground contamination while
recovering the HI signal, we employ a deep neural network
based on the U-Net architecture [75]. We will demonstrate
that the combination of the frequency-difference technique
and U-Net can yield an outperformed performance in
recovering HI signals. U-Net is a versatile model for
image-to-image translation, which incorporates structural
modifications into the convolutional neural network (CNN)
framework. These modifications enable U-Net to operate
effectively even with limited training images, resulting in
more accurate translations.

Figure 6 provides a visualization of our model archi-
tecture, which we refer to as “UNet-fd” (UNet frequency-
difference). The input and output cubes, both containing
643 grids, represent the frequency-difference maps and
the reconstructed HI temperature maps, respectively. The
U-Net maps the input cube to the output cube through a
symmetric encoder-decoder convolution scheme. The
encoder part, which is comprised of 6 convolutional layers,
downsamples the input to the bottleneck, where the spatial
information is reduced and feature information is increased.
Skip connections are used to connect layers in the encoder
with corresponding layers in the decoder, allowing to
preserve the spatial information during downsampling.
The decoder part then upsamples the bottleneck to the
required output size by using 6 transposed convolutional
layers. Following [55], we perform 3 convolutions at each
layer, and apply batch normalization and ReLU activation
between convolutional layers, except for the final convolu-
tional block on the output side.
To train the networks, we use the Logcosh loss function,

LðTp; T tÞ ¼ E½log coshðTp − T tÞ�; ð10Þ

where Tp denotes the predicted temperature and T t denotes
target truth. The Logcosh loss function has been tested to be
more robust and less sensitive to outliers [55]. We train the
network from scratch and use the AdamW [76] optimizer,
which provides weight decay regularization. The hyper-
parameters are fine-tuned to optimize the network, follow-
ing the configuration of Deep21 [55]. The network processes
140 training samples each epoch, followed by 12 validation
samples used solely for model evaluation during training.
Finally, we save our best model based on the minimum
validation-set loss function.
In the training phase, the UNet model is tasked with

extracting the targeted HI signal at a given frequency when
provided with the frequency-difference map as input. This
map combines the signals from two neighboring frequency
bands into a single channel. To understand how the UNet
model process in extracting the targeted single-band HI
from the difference map, a detailed explanation is provided
in the Appendix.
On the other hand, we found that without the frequency-

difference preprocessing, directly using the U-Net performs
poorly in recovering the HI signal. To demonstrate the
threshold limit for foreground cleaning by the U-Net, we
ran the network by feeding the HI cubes with different-level
foregrounds added. To do so, we vary the CRIME-simulated
foreground temperature (which is the original output fore-
ground of CRIME as described in Sec. II B) to the desired
amplitude level, which is parametrized by

βfg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðTfg − T̄fgÞ2i
hðTHI − T̄HIÞ2i

s
; ð11Þ

3The HI correlation is expected to be enhanced by the small-
scale redshift space distortion (RSD) effect (the so-called finger of
god effect.). However, in this paper, we do not consider the impact
of this effect when using the linear velocity simulations in CRIME.
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representing the square root of the ratio between the
foreground temperature variance and the HI signal variance
averaged over pixels.
We then rescale the foreground to the 17 levels of βfg: 1,

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096. By
adding the rescaled foregrounds on the pure HI map, we run
U-Net repeatedly for each of the 17 cases and obtain the
best-fitting models based on the training samples described
above. We then apply the resulted models on the 40 test
samples and compare the recovered temperatures with
the target HI. In the left panel of Fig. 7, we show the
temperature distribution as a function of T. The back solid
line represents the target HI. The red dashed and blue dash-
dotted lines are shown for the U-Net-reconstructed results
of βfg ¼ 32 and βfg ¼ 1600, respectively. The results are
averaged over the test samples. As can be seen, the target
truth and the reconstructed result of βfg ¼ 32 coincide
nicely, however, the result of βfg ¼ 1600 is systematically
underestimated. Figure 7 shows the mean ratios of temper-
ature distribution, hNðTrecÞ=NðTHIÞi, between the U-Net-
reconstructedNðTrecÞ and the targetNðTHIÞ. The red dotted
solid line represents the U-Net-reconstructed results as a

function of βfg. The blue and green vertical dashed lines
are shown for the βfg level of the frequency-difference
(Δν ¼ 2) case and the CRIME-simulated foreground case
respectively, where the former has βfg ∼ 30 and the latter
has βfg ∼ 5700. It is evident that the ratios keep values
consistent to unity for βfg < 100 and 10% reduction at
βfg ¼ 1000; however, for βfg > 1000, the ratios systemati-
cally decreases. Therefore, it is virtually impossible to
remove the CRIME-simulated foreground contamination
using U-Net alone. This is primarily due to the large
dynamic range of the map amplitude [35,38,77], which
makes extracting correct information with the U-Net
network difficult [55,56]. Fortunately, the frequency-
difference βfg value falls within the U-Net’s working range.
We then expect to have a recovered HI temperature that was
close to the target truth by applying the U-Net on the
frequency-difference map.

IV. RESULTS

In this section, we present our results of the foreground
removal. In order to verify the impact of various

FIG. 6. Visualization of the UNet-fd architecture. The input and output cubes, each containing grids of size 643, correspond to the
frequency-difference maps, where the difference between two frequencies is denoted as Δν, and the target HI temperature maps,
respectively. The architecture comprises a total of 13 layers, depicted by the orange box. These layers consist of 6 in the encoder and
decoder each, with an additional layer for the bottleneck. Each layer consists of 3 convolutional operations, incorporating batch
normalization and activation functions (except for the final convolutional block on the output side). The dark red box and the dark blue
box indicate the input and output of each layer. The bottom of each box illustrates the number of channels and the size of the output. The
down, right, and up arrows indicate maximum pooling, skip connection, and transpose convolutions, respectively. This visualization is
made with the PlotNeuralNet library.
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contaminations, we implement the tests considering the
following three cases:

(i) Case I: add the cosmological HI signal and the
foregrounds without the presence of the beam effect
and thermal noise. In other words, the observed data
(d) is simply the sum of the foreground (f) and HI
signal (s), such that d ¼ sþ f.

(ii) Case II: in comparison to Case I, we further consider
the beam (A) convolution effect, which can be
expressed as d ¼ A ⊗ ðsþ fÞ.

(iii) Case III: to mimic a realistic observation, we
introduce white noise (n) into the data. In this case,
the data can be represented as d ¼ A ⊗ ðsþ fÞ þ n.

For each case, we run the U-Net training independently. We
also compare our results with those from the PCA method.
In our analysis, we subtract the first two and three modes
for Case I and Case II, separately. Hence, the notation
PCA-N corresponds to the reconstruction for which the
first N principal components have been removed.

A. Case I: Adding HI and foreground

We start with the test for Case I. Figure 8 shows the
comparisons in a HEALPix pixel slice randomly drawn from
the test set at frequency channel ν ¼ 1130 MHz. Different
panels correspond to the target HI, the UNet-fd
reconstruction, and the PCA-2 reconstruction, as indicated
at the top of each panel. The UNet-fd reconstruction
exhibits recognizable structures that are in excellent agree-
ment with the target signals over a range of temperature
regions. In contrast, PCA underperforms and over-subtracts
the signal, especially in low-temperature regions.
Figure 9 exhibits quantitative comparisons. The left

panel shows the temperature distributions. The error bars
reflect the �1σ variance among the 40 test slices. Black
solid, red dashed, and blue dash-dotted lines correspond to
the results of the target, UNet-fd, and PCA-2, respectively.
As we can see, the UNet-fd reconstruction consistently
agrees with the target, but the PCA reconstruction shows a

FIG. 7. Testing UNet-fd cleaning in different-level foreground cases. Left: comparisons of temperature distribution as a function of T.
The back solid line represents the target HI. The red dashed (blue dash-dotted) line is shown for the U-Net-reconstructed results of
βfg ¼ 32 (βfg ¼ 1600), where βfg is the foreground strength parameter as defined in Eq. (11). Right: mean ratios of temperature
distribution, hNðTrecÞ=NðTHIÞi, between the U-Net-reconstructed NðTrecÞ and the targetNðTHIÞ. The red dotted solid line represents the
U-Net-reconstructed results as a function of βfg. The blue and green vertical dashed lines are shown for the βfg level of the frequency-
difference (Δν ¼ 2) case and the CRIME-simulated foreground case (which is the original output foreground of CRIME as described in
Sec. II B), respectively.

FIG. 8. Comparison of UNet-fd and PCA reconstructed HI maps for Case I. From left to right, we show the target HI, the UNet-fd
reconstruction, and the PCA reconstruction, respectively. The data cube is randomly selected from the test set, and the slice shown here
corresponds to a frequency of ν ¼ 1130 MHz.
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systematical underestimation and reproduces nearly
half of the negative-temperature values due to over-
subtraction. The middle panel shows the temperature
relation between the reconstructed and the target grid
cells. The results from UNet-fd and PCA-2 are respec-
tively shown with red solid and blue dashed contours,
which encompass about 95% grid cells. The UNet-fd
reconstruction is linearly correlated with the true field and
does not exhibit any significant bias, while the PCA result
shows a highly biased relation.
To compare the reconstructed HI distribution at each

frequency, we estimate the ratio of the angular power
spectra between the cross-correlation, CHI;rec

l , and the
autocorrelation, CHI;HI

l as a function of the frequency
channel in the right panel of Fig. 9. Red solid and blue
dashed lines correspond to the results of UNet-fd and
PCA-2 respectively, which are averaged from Cl within

the range of 0 < l < 760. Error bars indicate the �1σ
variance among the test sets. The UNet-fd ratios agree
very well with the unity over middle-frequency channels,
proving that the HI signal was successfully recovered
overall. The cross-correlations are underestimated at the
boundary-frequency channels, showing the existence of
the boundary effect in our method. As a comparison, the
PCA results have cross-correlations with about 13%
reduction over all frequencies.
To further verify the clustering of the reconstructed

signal in 3D space, we measure the power spectra PðkÞ,
2D power spectra Pðk⊥; kkÞ, and quadrupole P2ðkÞ in the
cubes of test sets, where we used the PYLIANS

4 code [78]
for calculating. Figure 10 shows the ratios of auto and

FIG. 9. The results for Case I. Left: the comparison of the temperature distributions among the truth (black), PCA (blue) and UNet-fd
(red). Middle: the reconstructed Trec versus the true T true. The results from UNet-fd and PCA are respectively shown with red solid and
blue dashed contours, which include about 95% grid cells. Right: the mean ratio of angular power spectrum betweenCHI;rec

l andCHI;HI
l as

a function of the frequency channel. Red solid and blue dashed lines correspond to the results of UNet-fd and PCA, respectively. Error
bars correspond to 1σ statistical uncertainty, estimated from the test sets.

FIG. 10. For Case I, ratios of autocorrelation (left panel) and cross-correlation (right panel) PðkÞ between the reconstruction and the
true HI as defined in Eqs. (12) and (13). Red solid and blue dashed lines correspond to UNet-fd and PCA results reconstructed from the
map of THI þ Tfg. Green dash-dotted lines show the results obtained by subtracting PCA modes on the pure HI map. Error bars indicate
the � sigma variance among the 40 test sets.

4https://github.com/franciscovillaescusa/Pylians3/blob/masterz
/docs/source/citation.rst.
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cross-correlation PðkÞ between the reconstruction and the
target HI, which are respectively defined as,

RautoðkÞ ¼
Prec;recðkÞ
PHI;HIðkÞ

; ð12Þ

and,

RcrossðkÞ ¼
Prec;HIðkÞ
PHI;HIðkÞ

: ð13Þ

Here PHI;HIðkÞ and Prec;recðkÞ are the autocorrelation power
spectrum of the target HI and the reconstructed HI
respectively, and Prec;HIðkÞ is their cross-correlation power
spectrum. Red solid and blue dashed lines correspond to the
UNet-fd and the PCA-2 reconstructions, respectively. Error
bars indicate the 1-σ uncertainty among the 40 test sets.
Both autocorrelation and cross-correlation ratios of UNet-
fd agree excellently with unity over the ranges of scales
k < 0.3 hMpc−1, indicating a successful recovery of the HI
clustering and remarkable concordance between the recon-
structed and the true HI temperature field. It is significant

that UNet-fd outperforms PCA, which, especially at large
scale, suffers from residual foregrounds and signal loss.
On the other hand, the method of Makinen et al. [55] uses
PCA to subtract a few modes before feeding to the UNet.
Although the method can potentially improve performance,
the reduced HI signal that is eliminated by PCA is virtually
impossible to be recovered. To show the level of signal loss
subtracted by PCA, the green dash-dotted lines show the
results obtained by subtracting the first two modes on the
pure HI map. There are both underestimations of RautoðkÞ
and RcrossðkÞ due to signal loss, which is unexpected to be
avoided by the PCA-UNet strategy. As a comparison, it is
reassuring that our UNet-fd method is immune to the signal
loss issue.
In order to gauge the accuracy of the reconstruction

of the redshift-space distortions (RSD), we now compare
Pðk⊥; kkÞ, as shown in the upper panels of Fig. 11. The left
and right panels correspond to the autocorrelation and
cross-correlation power spectrum, respectively. Black
solid, red dashed, and blue dotted contours correspond
to the true HI, the UNet-fd reconstruction, and the PCA-2
reconstruction, respectively. Note that the results are

FIG. 11. Same as in Fig. 10, but for the 2D power spectra for Case I. Upper: comparison of Pðk⊥; kkÞ, where black solid, red dashed,
and blue dotted contours correspond to the true HI, the UNet-fd reconstruction, and the PCA reconstruction, respectively. The contour
level corresponds to PðkÞ ¼ 900, 300, and 180 h−3Mpc3. The results are averaged from the 40 test sets. Lower: comparison of P2ðkÞ.
Black solid, red dashed, and blue dotted contours correspond to the true HI, the UNet-fd reconstruction, and the PCA reconstruction,
respectively. Error bars indicate the �1 variance among the 40 test sets. The lower-left and lower-right panels correspond to
autocorrelation and cross-correlation power spectrum, respectively.
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averaged from the 40 test cubes. In the case of UNet-fd,
both autocorrelation and cross-correlation Pðk⊥; kkÞ are
clearly anisotropic with the “elongated” feature in the
central region, revealing the impact of the Kaiser effect
on large scales (small k values). A comparison with the
true Pðk⊥; kkÞ shows that the UNet-fd reconstructed
RSDs are overall very successful. In contrast, the PCA
reconstruction shows significant signal reduction at small
jkkj, which is always removed during the PCA foreground
subtraction [60]. However, such signal reduction is
negligible in our method.
The Kaiser effect cause the quadrupole P2ðkÞ to deviate

significantly from zero, which is usually used to constrain
the growth rate of the cosmic structure. The lower panels of
Fig. 11 compare P2ðkÞ for both autocorrelation (left panel)
and cross-correlation (right panel). Black solid, red dashed,
and blue dotted lines correspond to the true HI, the UNet-fd
reconstruction, and the PCA-2 reconstruction, respec-
tively. Error bars indicate the �1 variance among the
40 test sets. As shown, the UNet-fd reconstructed P2ðkÞ
has deviations from zero, which is consistent with the
target truth. Although there is a large uncertainty due to
the cosmic variance in our small-volume samples, we can

still observe a discrepancy between the PCA reconstructed
and the true P2ðkÞ.
As a result, while just taking into account the fore-

ground-contaminated 21-cm signal, our UNet-fd method
can reliably remove the foreground and consistently recon-
struct the redshift-space brightness temperature field of the
cosmic HI.

B. Case II: Considering beam effect

It is shown that the foreground contamination can be
removed efficiently depending on the feature of frequency
correlation. However, the systematic beam effect reduces
the correlation feature and causes nonsmooth foreground
residual, which challenges the detection of the HI signal.
In this subsection, we validate our method for Case II.
Figure 12 shows the visual comparison of the brightness

temperature field. From left to right, the first panel shows
the target HI field, which is the same as the one in Fig. 8. To
demonstrate the effectiveness of the deconvolution, the
second panel presents the target HI map convolved with the
same beam as the corresponding foreground-contaminated
map according to Eq. (5). For UNet-fd, the recovered
temperature fluctuations nicely match the correspondence

FIG. 12. Comparison of the brightness temperature field for Case II (considering the beam effect). From left to right, we show the
target HI, the target HI convolved with the beam [according to Eq. (5)], the UNet-fd reconstruction, and the PCA reconstruction,
respectively. The target HI is selected to be same as the one in Fig. 8. As shown, our neural network not only removes strong foregrounds
but also automatically performs beam deconvolution with high accuracy.

FIG. 13. Same as in Fig. 9, but for testing the beam effect for Case II. In the middle panel, the two contours of each case encompass
90% and 95% of the grid cells, respectively.
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in the target field. Additionally, a noticeable deconvolution
effect can be observed when comparing it to the second
panel, indicating that the U-Net has learned to remove
the beam effect. However, it has limited performance in
predicting the detailed shape, suggesting that the beam
effect is not perfectly eliminated. Comparatively, the PCA
performs substantially worse, which always results in the
signal being subtracted, especially in the beam case.
Figure 13 shows the temperature distribution (left panel),

pixel-to-pixel temperature comparison (middle panel), and

the angular cross-correlation ratio as a function frequency
channel (right panel). All panels are the same as those in
Fig. 9 but for testing the additional beam effect. In the
middle panel, the two contours of each case encompass
90% and 95% of the grid cells, respectively. The UNet-fd
recovered temperature distribution still follows consistently
with the target and shows an unbiased pixel-to-pixel
relation. However, the beam effect causes a larger scattering
in pixel-to-pixel relationships and a 30% reduction in
angular cross-correlation ratios. The PCA reconstruction,

FIG. 14. Same as in Fig. 10, but for Case II.

FIG. 15. Same as in Fig. 11, but for Case II.
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in comparison, has a drastically reduced temperature
distribution, biased pixel-to-pixel relationships, and
cross-correlation ratios underestimated by around 60%.
Figure 14 shows RautoðkÞ (left panel) and RcrossðkÞ (right

panel). Red solid and blue dashed lines correspond to
UNet-fd and PCA reconstruction, respectively. In UNet-fd
reconstruction, both values of RautoðkÞ and RcrossðkÞ are
consistent with unity at the 1σ level over the scales
k < 0.1 hMpc−1. The underestimation of RcrossðkÞ at scale
k > 0.1 hMpc−1 is caused by the beam effect in compari-
son to the beam-free result of Fig. 10. Though, the overall
reduction of the cross-correlation power spectrum at
k ¼ 0.2 hMpc−1 and 0.3 hMpc−1 are at 10% and 30%
levels, respectively. The PCA, in contrast, exhibits large
fluctuations in RautoðkÞ and a reduction in RautoðkÞ, indicat-
ing an uncleaned recovery with lingering residual fore-
ground and signal loss.
To test the RSD reconstruction, Fig. 15 shows the

comparisons of Pðk⊥; kkÞ (upper panels) and P2ðkÞ (lower
panels). All panels are the same as those in Fig. 11 but

for considering additional beam effect. In this case, both
UNet-fd’s autocorrelation and cross-correlation Pðk⊥; kkÞ
are in good agreement with the target truth, except for a few
discrepancies of auto-Pðk⊥; kkÞ at large jkkj. The RSDs are
also recovered successfully with the anisotropic Kaiser
features apparent. As expected, the quadrupole P2ðkÞ
deviates from zero and agrees with the target truth. For
both the auto and cross-correlation, the PCA results show a
highly atypical shape of Pðk⊥; kkÞ and unjustifiable ampli-
tude of P2ðkÞ.
Therefore, even when taking into account the systematic

beam effect, UNet-fd is still effective in removing the
foregrounds.

C. Case III: Introducing thermal noise

Along with foregrounds and beam effects, we also take
into account the instrumental thermal white noise as the
Case III. As described in Sec. II C, we are not referring to
any specific experiment for HI but rather simulating various

FIG. 16. Comparison of the brightness temperature field for Case III in introducing thermal noise. Different columns correspond to
different noise levels, as indicated at the top of each column. The first row presents the target HI with different levels of added noise
(where the HI with βN ¼ 0.0 is the same target HI as in Figs. 8 and 12). The second and third rows correspond to the UNet-fd and PCA-3
reconstructions respectively, as indicated to the left of each row.
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levels of uncorrelated Gaussian noise. In this subsection,
we verify how the noise affects our cleaning procedure, and
look for a guideline threshold level for possible future
configurations of intensity mapping experiments.
Figure 16 shows the visual comparison of the brightness

temperature field. Different columns correspond to differ-
ent noise levels: βN ¼ 0.0, βN ¼ 0.1, βN ¼ 0.5, and
βN ¼ 1.0, as indicated at the top of each column. To
demonstrate the effectiveness of noise elimination, the first
row presents the target HI with different levels of added
noise (where the HI with βN ¼ 0.0 is the same target HI as
in Figs. 8 and 12). The second and third rows correspond to
the UNet-fd and PCA-3 reconstructions respectively, as
indicated to the left of each row. Upon comparing the first
two rows, it becomes evident that UNet-fd successfully
restores the high-temperature structures while eliminating
random noise. This highlights its ability to effectively
separate the signal from Gaussian noise. The expected
outcome from UNet is based on the distinct spatial distri-
bution patterns of HI and noise. The HI demonstrates scale-
dependent clustering, while the noise is dispersed in an
uncorrelated random manner. However, when it comes to
recovering the low-temperature structure, especially under
high levels of noise, U-Net’s capability to separate the signal
is somewhat limited. Additionally, the noise variance of
the difference maps is twice that of the original frequency
maps, further compromising the accuracy of the U-Net
reconstruction of the 21-cm signal. Nonetheless, the recon-
structions obtained through PCAyield even poorer results, as
the method is unable to effectively subtract the noise.
Figure 17 shows RautoðkÞ (left panel) and RcrossðkÞ

(middle panel) for the UNet-fd reconstructions. Different
color lines are shown for different-level noise as indicated,
where lines of βN ¼ 0 are the same as the UNet-fd results in
Fig. 14. The results of RautoðkÞ are all near to unity at 1σ
level over large scales, but have reductions at small scales
(e.g. k > 0.1 hMpc−1). For the cross-correlation case, it
reveals underestimates throughout all scales.

In the right panel of Fig. 17, we show the mean cross-
correlation ratio, R̄crossðβNÞ, for a comparison of UNet-fd
(red) versus the PCA-3 (blue). We compute R̄cross by
averaging RcrossðkÞ over scales 0 < k < 0.1 hMpc−1. The
UNet-fd result shows an inverse relation between R̄cross and
βN, providing a practical guideline. It shows that the mean
cross-correlation ratio remains above 0.8 when the variance
of the thermal noise is smaller than or equal to that of the HI
signal. In this case, the UNet-fd method reaches a limita-
tion, leading to a systematic loss of the 21-cm signal. On
the other hand, the PCA results exhibit significantly lower
cross-correlation ratios, with values being around 0.5. This
highlights the superior performance of the UNet-fd method
compared to PCA in terms of cross-correlation ratios.

V. SUMMARY AND CONCLUSION

In this study, we propose the frequency-difference
technique for pre-processing the data in U-Net deep
learning for 21-cm foreground removal. We find that this
technique dramatically suppresses the dynamic range of the
foreground amplitudes by 2-3 orders of magnitude. This
improvement significantly enhances the performance of
U-Net in foreground removal. Additionally, it circumvents
the uncertainty associated with the traditional PCA pre-
processing method, which involves selecting the number of
eigenmodes and avoids the 21-cm signal loss often asso-
ciated with PCA. Our tests reveal that the frequency-
difference technique and U-Net are primarily employed
to eliminate smooth and non-smooth foreground compo-
nents, respectively.
We first verify our method using the 21-cm temperature

including HI and foregrounds only. By conducting a series
of comparison tests, including image comparison, pixel-to-
pixel temperature relation, temperature distribution, and
power spectrum, we find that our method can reliably
remove the foreground. Both autocorrelation and cross-
correlation power spectrum ratios agree excellently with

FIG. 17. Results of RautoðkÞ (left) and RcrossðkÞ (middle) for Case III are shown using the UNet-fd method, with varying noise levels as
indicated. The values for βns ¼ 0 are the same as the UNet-fd results in Fig. 14. The right panel shows a comparison of the mean cross-
correlation ratio, R̄crossðβNÞ, between UNet-fd (red) and PCA-3 (blue). The value of R̄cross is calculated by averaging RcrossðkÞ from the
values over scales 0 < k < 0.1 hMpc−1.
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unity over the ranges of scales k < 0.3 hMpc−1, indicating
a successful recovery of the HI clustering and remarkable
concordance between the reconstructed and the true HI
temperature field. Further considering the systematic beam
effects, our reconstruction has autocorrelation and cross-
correlation power spectrum ratios consistently at the 1σ
level over the scales k < 0.1 hMpc−1. Beam effects smear
out the small-scale clustering with 10% and 30% reduction
of the cross-correlation power spectrum at k ¼ 0.2 hMpc−1

and 0.3 hMpc−1, respectively. Moreover, the RSD effects
are also reconstructed overall very successfully with the
anisotropic Kaiser features apparent.
As a comparison, our method outperforms PCA, which

has a drastically reduced temperature distribution,
biased pixel-to-pixel temperature relationships, and
cross-correlation ratios underestimated by around 60%.
PCA also fails to reconstruct the RSD structure, which has
Pðk⊥; kkÞ with a highly atypical shape and P2ðkÞ with
unjustifiable amplitude.
We eventually investigate the impact of instrumental

thermal noise on the cleaning procedure and find that,
with the help of the U-Net network, our approach can
separate the signal from the noise. By simulating various
levels of Gaussian uncorrelated noise, we present an inverse
relationship between the mean cross-correlation ratio R̄cross
and the noise level βN. It suggests that if the variance level
of the thermal noise is smaller than or equal to the HI
signal, our method should be capable of obtaining a signal
recovery with a cross-correlation ratio greater than approx-
imately 0.8, surpassing the PCA result of 0.5. This
information could be used as a reference for applying
our method in practical experiments.
The large dynamic range of the foreground amplitude

limits the deep learning method, which is now being
applied in the 21-cm foreground removal. PCA preprocess-
ing could be a solution, but it cannot solve the issue of
HI signal loss. As a result, the frequency difference can
considerably enhance network performance by reducing
the amplitude range of the smooth foreground components
and helping in the prevention of HI loss.
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APPENDIX: EXPLANATION ON USING UNet
TO EXTRACT THE SINGLE-BAND HI

FROM THE DIFFERENCE MAP

As an illustration, Fig. 18 shows the pure HI temperature
map at ν1 ¼ 1130 MHz (left panel), ν2 ¼ 1132 MHz
(middle panel), and their corresponding difference map,
THIðν1Þ − THIðν2Þ (right panel). The difference map retains
a significant number of structures from both frequency
bands, with most positive values corresponding to ν1
signals and most negative values corresponding to ν2
signals. It should be noted that the pure HI signals
have a minimum value of zero in our dataset. Figure 19
shows the pixel-to-pixel temperature relation between
THIðν1Þ and THIðν1Þ − THIðν2Þ. The blue circles reveals
a significant positive correlation between THIðν1Þ and

FIG. 18. The pure HI temperature map at ν1 ¼ 1130 MHz (left panel), ν2 ¼ 1132 MHz (middle panel), and their corresponding
difference map, THIðν1Þ − THIðν2Þ (right panel). The ν1 slice is taken to be same as the target HI in Fig. 8, which is randomly selected
from the dataset.
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THIðν1Þ − THIðν2Þ, indicating the pixels associated with the
THIðν1Þ map. In contrast, the red squares exhibit a much
lower level of correlation, suggesting the pixels from the

THIðν2Þ map. It is expected that such relationships will
enable the UNet model to distinguish between THIðν1Þ and
THIðν2Þ, as well as extract the targeted single-band HI
signals from the difference map. However, the presence of
biased pixels within the blue circles and red squares is a
result of mutual cancellation by the overlapping region in
the difference map between THIðν1Þ and THIðν2Þ. This may
introduce some error when attempting to recover the
targeted HI signals.
From another perspective, if the signals in the frequency-

difference maps are purely random and lack any specific
structure or features, such as white noise, it would be
impossible to recover either of the signal maps from their
difference maps using any method, including AI. This is
because there are far more degrees of freedom that need to
be recovered than the number of dimensions in the data.
However, in our case, the HI signal does exhibit some
structure, and the number of degrees of freedom for major
features (eigenmodes) contained in the signal map is less
than the dimension of the frequency-difference map.
Therefore, this is the reason why wewere able to effectively
recover the HI maps for each frequency from the
frequency-difference maps.
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