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Isocurvature fluctuations, where the relative number density of particle species spatially varies, can be
generated from initially adiabatic, or curvature, fluctuations if the various species fall out of or were never
in thermal equilibrium. The freezing of the thermal relic dark matter abundance is one such case, but for
modes that are still outside the horizon the amplitude is highly suppressed and originates from the small
change in the local expansion rate due to the local space curvature produced by the curvature fluctuation.
We establish a simple separate-universe method for calculating this generation that applies to both freeze-in
and freeze-out models, identify three critical epochs for this process, and give general scaling behaviors for
the amplitude in each case: the freezing epoch, the kinetic decoupling epoch and matter-radiation equality.
Freeze-out models are typically dominated by spatially modulated annihilation from the latter epochs and
can generate much larger isocurvature fluctuations compared with typical freeze-in models, albeit still very
small and observationally allowed by cosmic microwave background measurements. We illustrate these
results with concrete models where the dark matter interactions are vector or scalar mediated.
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I. INTRODUCTION

The primordial perturbations responsible for the large
scale structure in our universe can be of two types: curvature
(also known as adiabatic) or isocurvature. Generically, slow-
roll, single-field inflation predicts only adiabatic perturba-
tions, where the number density of particle species fluctuate
together (e.g., [1,2]). More involved models such as multi-
field inflation can generate isocurvature modes where the
relative number density of species fluctuate as well (e.g.,
[3]), though these modes are tightly constrained by cosmic
microwave background (CMB) anisotropy [4].
In principle, even if the primordial perturbations are

adiabatic, the subsequent evolution of the universe can
generate spatial fluctuations in the relative number density
of species if thermal equilibrium between species is not
maintained. One such possibility involves fluctuations
between relic dark matter and the thermal radiation bath [5].
Dark matter is known to make up approximately a

quarter of the energy density of the universe, however
its specific properties and the manner of its production are
yet unknown [6–8]. Two proposed mechanisms which can
produce the correct relic abundance from the thermal
radiation bath for a wide range of particle dark matter
models are the freeze-in and freeze-out mechanisms. In the
freeze-out mechanism the dark matter begins in thermal
equilibrium with the Standard Model radiation bath. Once
interactions that produce and destroy the dark matter
become inefficient, its abundance is frozen, leaving behind
a thermal relic that is no longer in equilibrium. In the
freeze-in mechanism, dark matter interacts so weakly that it

is never produced in equilibrium abundance; instead, it
builds up slowly until the production channel is suppressed
[9–11]. Freeze-in and freeze-out represent the regimes at
either end of a continuum of phenomena depending on the
strength of interactions, but in both cases, the dark matter is
out of equilibrium at the freezing epoch and beyond.
Recent investigations in the literature have raised the

question of whether isocurvature fluctuations which arise
from the dark matter freeze-in process are observable and
ruled out by current CMBobservations ([5] v1). On the other
hand, general perturbation theory and causal arguments
imply that any such production can only produce isocurva-
ture fluctuations that are suppressed on superhorizon scales
by k2, where k is the comoving wave number [12,13] (see
also [5] v2) but these arguments leave the exact amplitude
and dynamics of the generation unspecified.
Our goal for this paper is to quantify the amplitude and

clarify the mechanisms behind isocurvature generation
from curvature fluctuations for the general class of thermal
relic dark matter models. Because dark matter production is
a local process, we can calculate its local abundance
through the so-called separate universe formalism in which
the effects of a long-wavelength perturbation on local
small-scale observables can be absorbed into a change in
the background cosmology, or “separate universe” [14–20].
We use this separate universe approach to examine the
connection between long-wavelength spatial curvature
perturbations and dark matter isocurvature perturbations
for both freeze-in and freeze-out. Our technique applies to
any dark matter model where the final abundance depends
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on the local expansion rate and we illustrate the results for
both freeze-in and freeze-out scalar and vector mediated
models.
Generically there are three epochs of interest which

determine the final isocurvature amplitude: the freezing
epoch, the kinetic decoupling epoch and the epoch around
matter-radiation equality. Even though in all three cases the
isocurvature generation is suppressed by k2 outside of the
horizon, the amplitudes can vary by many orders of
magnitude for the same final relic dark matter abundance.
In fact typical freeze-out models can have a much larger
isocurvature amplitude than freeze-in models.
The structure of the paper is as follows: in Sec. II, we

review the separate universe formalism and develop the
methodology for calculating isocurvature generation. In
Sec. III, we describe our illustrative models for both freeze-
in and freeze-out and in Sec. IV present our numerical
results for the isocurvature perturbations in each case. We
conclude in Sec. V with a discussion of the general
predictions for thermal relic dark matter and the observa-
tional implications of the very small isocurvature modes
that result. Throughout this work we employ units where
ℏ ¼ c ¼ kB ¼ 1 and the scale factor a ¼ 1 at the present.

II. SEPARATE UNIVERSE DARK MATTER
ABUNDANCE

Since cosmological dark matter (DM) production and
annihilation is a local process, it is governed by the local
properties of the radiation bath (e.g., temperature) and the
local expansion rate, as well as the cross sections involved
in any given model. As long as the spatial modulation due
to the initial curvature fluctuation is on scales larger than
the horizon, the modulation in the abundance Y ¼ nχ=s can
be calculated locally using the so-called “separate universe”
approach. Here nχ is the dark matter number density and s
is the entropy density of the thermal bath.
In the separate universe approach, the local density

perturbation δL associated with the long wavelength
curvature fluctuation ζ is reabsorbed into the local
Friedmann-Robertson-Walker parameters of the separate
universe [14,17], explicitly constructed for radiation domi-
nation in a spatially flat background in Refs. [19,20], as we
shall now review.
Specifically, observers in free-fall that are initially at rest

with respect to the global expansion define the synchronous
gauge, and in radiation domination, the density fluctuation
in Fourier space is

δL ¼ 1

3

�
k
aH

�
2

ζ ∝ a2; ð1Þ

when the comoving wave number is above the horizon
k ≪ aH, where the Hubble rate H ¼ d ln a=dt. The local
radiation density of the separate universe is then

ρL ¼ ρð1þ δLÞ; ð2Þ

which in turn defines the local scale factor as

aL ¼ að1 − δL=4Þ ð3Þ

at equal synchronous times. Because dark matter produc-
tion depends crucially on the local expansion rate, we need
to know the local Hubble rateHLðaLÞ in the presence of δL.
Taking the time derivative of Eq. (3), we can see that

H2
LðaLðtÞÞ ¼ H2ðaðtÞÞð1 − δLÞ: ð4Þ

The local Friedmann equation associates this change with
both the local radiation density and the spatial curvatureKL
associated with the curvature fluctuation:

H2
LðaLÞ≡ 8πGρL

3
−
KL

a2L
: ð5Þ

By comparing Eqs. (4) and (5), the local spatial curvature
induced by δL is identified as

KL

a2L
¼ 2H2δL; ð6Þ

which is consistent with the perturbation to the 3D Ricci
scalar induced by the curvature fluctuation [20]. Notice that
when compared to the global universe at the same value of
the scale factor aL ¼ a, ρLðaLÞ ¼ ρðaLÞ since TL ¼ T and
the only change is that the expansion rate differs due to the
spatial curvature since

H2
LðaLÞ ¼

8πGρðaLÞ
3

ð1 − 2δLÞ ¼ H2ðaLÞð1 − 2δLÞ: ð7Þ

Here and below, all variables are functions of aL unless
otherwise specified.
Likewise in local coordinates, the local entropy is

conserved sLðaLÞ ¼ sðaLÞ ∝ a−3L and the local temperature
evolves in the usual way given changes in the relativistic
degrees of freedom, so we can calculate the local DM
abundance YL by solving the usual Boltzmann system with
all local quantities (e.g., [21]),1

dYL

d ln aL
¼ sL

HL
½hσviY2

eq − hσvieqY2
L�; ð8Þ

where Yeq is the DM abundance if it were in local
thermodynamic equilibrium with the radiation bath and
hσvi is the thermally averaged DM annihilation cross
section. hσvieq is the annihilation cross section similarly

1In Ref. [21], hσvieq is denoted as hσvineq and the abundance is
evolved as a function of temperature.
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averaged over the actual, potentially nonequilibrium (“eq”),
dark matter phase space distribution. We shall see in our
examples below that the two cross sections are typically
equal hσvieq ≈ hσvi when the dark matter is in kinetic
equilibrium with the radiation and can be simply approxi-
mated otherwise. In this section we keep the methodology
general and consider these cross sections to be arbitrary
functions of the local scale factor.
Since the fluctuation in YL due to δL is small, we can

linearize Eq. (8) in

δYðaLÞ≡ YLðaLÞ − YðaLÞ
YðaLÞ

ð9Þ

and δL to obtain

dδY
d ln aL

¼ s
HY

½hσviðδL − δYÞY2
eq

− hσvieqðδL þ δYÞY2�: ð10Þ
Here s=HY ¼ sðaLÞ=HðaLÞYðaLÞ with their functional
forms the same as in the global universe.
Note that in the absence of the local curvature effect of δL

on the expansion rateHLðaLÞ → HðaLÞ, YLðaLÞ → YðaLÞ,
and δY → 0 in spite of the finite local density fluctuation.
Physically then δY represents the fractional change in the
abundance due to the effect of local curvature on the local
expansion alone. Therefore the only way that δY can be
generated from the curvature fluctuation is through this KL
effect. This includes any changes to the radiation temper-
ature TðaÞ due to entropy injection from particles annihi-
lating away in the bath which changes the relationship
between density fluctuations and temperature fluctuations
and causes transient changes to the equation of state of the
background (cf., Ref. [5] v2).
We refer to the effect of δLY2

eq in Eq. (10) as modulated
production and that of δLY2 as modulated annihilation. For
cases where modulated production is important, we generi-
cally expect that since the final abundance YLð∞Þ involves
the competition between reaction rates and the Hubble rate,
that the OðδLÞ change in the Hubble rate at production will
lead to

δYða�Þ ¼ OðδLða�ÞÞ; ð11Þ
where a� is evaluated at the characteristic “freezing” epoch
where YL is sufficiently close to its final value YLð∞Þ. The
coefficient and sign will depend on how a larger or smaller
Hubble rate affects the abundance (see Sec. IV). For
definiteness we take a� to be defined by���� lnYLða�Þ

YLð∞Þ
���� ¼ 1: ð12Þ

After a�, the modulated abundance δY can still change
since δL itself grows. Since Y ≫ Yeq for nonrelativistic

dark matter, this mainly happens through modulated
annihilation where Eq. (10) can be approximated as

dδY
d ln aL

≈ −
sY
H

hσvieqδL ¼ −
nχ
H

hσvieqδL: ð13Þ

Here Y is nearly constant, reflecting a small annihilation
rate vs Hubble rate nχhσvieq=H ≪ 1 but so long as this
decreases more slowly than δL increases, δY will continue
to change. If we assume that for some range of time, not
necessarily during radiation domination,

hσvieqðaÞ ∝ ap ð14Þ
the relevant comparison for whether late or early time
annihilation is more important during this interval is whether

nχhσvieq
H

δL ∝ apþð9w−1Þ=2 ð15Þ

grows or decays, where w ¼ P=ρ and δL ∝ ðk=aHÞ2. Note
that here and below, we do not distinguish evaluation at a
vs aL for quantities that are already first order in δL.
If p > ð1 − 9wÞ=2 then the modulated annihilation will

be dominated in this interval by late times and early times
otherwise. For radiation domination when w ¼ 1=3, the
transition is for p ¼ −1, and for matter domination where
w ¼ 0 it is for p ¼ 1=2. Therefore for −1 < p < 1=2, the
dominant annihilation modulation will occur around mat-
ter-radiation equality amr and we can solve for δY, assuming
again that nχhσvieq=H ≪ 1 and modulated annihilation
dominates over production, to obtain

δYðaÞ≈−
fmr

pþ1
δLðamrÞ×

�ða=amrÞpþ1 a≲amr

Oð1Þ a>amr

; ð16Þ

where the Oð1Þ accounts for the transition to matter
domination when modulated annihilation ceases. Here
the normalization constant fmr gives the ratio of annihila-
tion to Hubble rates at equality

fmr ¼
ffiffiffi
2

p nχhσvieq
H

����
amr

; ð17Þ

where
ffiffiffi
2

p
accounts for the fact that at equality the radiation

contributes half the total energy density so that during
radiation domination nχhσvieq=H ¼ fmrða=amrÞp−1.
A final case that will be relevant is when p transitions

from p > −1 to a value < −1 during radiation domination,
say at an epoch akd < amr. Then the modulated annihilation
contribution is given by

δYðaÞ≈−
fkd
pþ 1

δLðakdÞ×
� ða=akdÞpþ1 a≲akd
Oð1Þ a> akd

; ð18Þ
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where the normalization constant

fkd ¼
nχhσvieq

H

����
akd

ð19Þ

and the Oð1Þ coefficient depends on how smoothly the
transition occurs.
In both the amr and akd dominated annihilation cases,

p ¼ −1 is a special case where jδY j grows logarithmically
with aL up to that epoch before freezing in. In those cases
modulo the 1=ð1þ pÞ factors, Eqs. (16) and (18) give the
order of magnitude up to log factors rather than the exact
value of the result for a > amr;kd and so we will consider
this special case as part of those generic scalings.
We can combine these generic expectations for the

contributions to δY at a� and annihilation at a ≫ a� in
Eqs. (11), (16), and (18) to determine when each domi-
nates. In either the amr and akd cases, modulated annihi-
lation dominates over production in determining δY if

fkd;mr

�
akd;mr

a�

�
2

≫ 1; ð20Þ

i.e., if the epochs of annihilation and production are
separated by a large enough factor for the growth of δL
to overcome the small ratio of annihilation to Hubble rates.
Finally, it is interesting to note that there is in principle a

difference between δY , the change in the abundance when
the local universe reaches the same scale factor or temper-
ature as the global universe, and the spatial fluctuation of
the abundance at the same synchronous time. For cases
where the modulations are dominated by early times, at late
times δY itself is frozen and the difference in evaluation
time between the two quantities is irrelevant. In this case
the isocurvature mode is time slicing invariant. More
generally, in radiation domination where

ln aL − ln a ¼ −δL=4 ð21Þ

the synchronous gauge dark matter photon isocurvature
perturbation at fixed time well after electron-positron
annihilation is

S≡ δðnχ=nγÞ
nχ=nγ

¼ YLðaLðtÞÞ − YðaðtÞÞ
YðaðtÞÞ

¼ δY −
d lnY
d ln a

δL
4
; ða ≪ amrÞ; ð22Þ

where the last expression can be evaluated at t to linear
order in δL. The second term accounts for the gauge
dependence of adiabatic abundance fluctuations defined
from a time evolving abundance and in that sense does
not reflect a true isocurvature perturbation on its own.
Furthermore note that even for cases like hσvieq ¼ const
and more generally, the p < 1=2 modulated annihilation

cases of Eq. (16), S → δY when a ≫ amr. For cases that are
dominated by modulated production [see Eq. (11)] or
modulated annihilation at akd [see Eq. (18)], this conver-
gence occurs even earlier. Because of this late time
equivalence, we use δY in all cases as the measure of
isocurvature generation.

III. FREEZE-IN/OUT MODELS

To illustrate the range of possible phenomena, we
consider two generic dark matter particle models in which
a fermionic dark matter particle, χ interacts with standard
model fermions, f, via a vector (V) or scalar (S) mediator,
as described in [22]. The Feynman diagram for DM
annihilation is shown in Fig. 1.
The interaction Lagrangian for the vector-mediated

scenario is

L ⊃ gχ χ̄γμVμχ þ gff̄γμVμf; ð23Þ

where gχ and gf represent the coupling strength of the dark
matter and the SM fermions to V, respectively and the
particles χ and V have massesmχ and mV . An example of a
specific realization of this broader model class is the
millicharged dark matter, used as the example in [5], in
which the millicharge arises from kinetic mixing with a
dark photon mediator to the SM, or from a DM
hypercharge.
From the above diagrams, one can compute the cross

section for χχ̄ annihilation from Eq. (23):

σχ̄χ→f̄f ¼ g2fg
2
χ

12πs½ðs −m2
VÞ2 þm2

VΓ2
V �

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

f

s − 4m2
χ

s
ðsþ 2m2

fÞðsþ 2m2
χÞ; ð24Þ

where s is the Mandelstam variable for the center-of-mass
energy squared (not to be confused with entropy s else-
where), and ΓV is the total decay width of V, which can be
neglected away from resonance when mχ ≫ mV .
The interaction Lagrangian for the scalar-mediated

scenario is

FIG. 1. Feynman diagram for χ̄χ → f̄f annihilation.
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L ⊃ λχχ̄χSþ λff̄fS; ð25Þ

where λχ and λf are the couplings from S to χ and f
respectively. In this case, the annihilation cross section is

σχ̄χ→f̄f ¼ λ2fλ
2
χ

16πs½ðs −m2
SÞ2 þm2

SΓ2
S�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

f

s − 4m2
χ

s
ðs − 4m2

fÞðs − 4m2
χÞ; ð26Þ

where mS is the mass of the scalar mediator and we again
neglect its decay width, ΓS. Note that there can also be axial
vector couplings (∼γ5) for each of these interactions, which
can in principle change the velocity and temperature
dependence of the cross section. For simplicity, we set
these to zero, but our technique itself can be used to predict
isocurvature production given any such cross section, or
more generally whenever the abundance itself can be
calculated from local quantities.
For different choices of parameter values (couplings gχ ,

gf, λχ , λf and massesmχ ,mV ,mS), these models can lead to
both freeze-in or freeze-out DM production. We construct
four illustrative examples, a freeze-in and freeze-out
scenario for each of the two models. For simplicity, we
consider that the mediator interacts only with the DM and
electrons (f ¼ e). We take mχ ¼ 100 GeV in all cases and
avoid resonances (which introduce more complicated
temperature dependence) by choosing the mediator masses
to be mV ¼ mS ¼ 1 GeV. The coupling parameters are
then chosen to produce the observed DM abundance

Yð∞Þ ≈ ρχ
mχs

����
a¼1

≈ 3.64Ωχh2
�
eV
mχ

�
ð27Þ

with s ≈ 7.04nγðTCMBÞ and Ωχh2 ¼ 0.12 [8]. For freeze-
out, this requires gχ ¼ ge ¼ 0.1774 and λχ ¼ λe ¼ 0.5044
and for freeze-in, it requires gχ ¼ ge ¼ 2.716 × 10−6 and
λχ ¼ λe ¼ 3.259 × 10−6. We do not claim that these illus-
trative cases are fully viable DM models given direct and
indirect detection constraints (see, e.g., [23]). Rather, our
aim is to illustrate the mechanisms that generate isocurva-
ture perturbations in a range of simple, but representative
scenarios.
For a DM annihilation cross section σ, assuming the

DM phase space is distributed according to Maxwell-
Boltzmann statistics with a temperature T, the thermally
averaged cross section is [24]

hσvi ¼ 1

8m4TK2
2ðmTÞ

Z
∞

4m2

ds σ
ffiffiffi
s

p ðs − 4m2ÞK1

� ffiffiffi
s

p
T

�
ð28Þ

where m is the DM mass, s is the squared center-of-mass
energy in the collisions, and Kn is the modified Bessel
function of the second kind of order n. The main practical

difference between the vector and scalar-mediated DM
models is the low-temperature/velocity dependence in the
thermally averaged cross section. The asymptotic temper-
ature dependence of both models can easily be found from
Eqs. (24) and (26) and is summarized in Table I. These
scalings originate from the fact that the vector-mediated
DM has s-wave-suppressed annihilation while the scalar-
mediated model is p-wave-suppressed.
We apply these thermally averaged cross sections to

Eq. (10) by taking for the production term

hσviðaÞ ¼ hσviðaðTÞÞ ð29Þ

with the thermal bath temperature given by conservation of
entropy through sðaÞ ¼ ð2π2=45Þg⋆;sT3 ∝ a−3, where g⋆;s
is the usual effective number of relativistic degrees of
freedom in entropy [25–27].
For the annihilation term, kinetic decoupling affects the

evolution of hσvieqðaÞ. A DM particle undergoing freeze-
out is initially both in chemical and kinetic equilibrium,
while for freeze-in, it is never in chemical equilibrium, and
possibly never in kinetic equilibrium. In both cases, even
after number-changing production and annihilation reac-
tions stop, there are typically also scattering reactions that
may keep Tχ ¼ T via momentum transfer. In practice, for
freeze-out models, we assume that the DM has the same
temperature as the radiation bath until momentum transfer
effectively ceases and it kinetically decouples [21]:

hσvieqðaÞ ¼ hσviðaðTχÞÞ ð30Þ

with

TχðaÞ ≈
�
T T > Tkd

Tkdða=akdÞ−2 T < Tkd
: ð31Þ

The scaling for T < Tkd comes from the fact that after
kinetic decoupling, particle momenta always redshift as
a−1 and the dark matter is assumed to be nonrelativistic.
Notice that in terms of our scaling solutions in the previous
section where in Eq. (14) we parameterized hσvieq ∝ ap,
this scaling is equivalent to hσvieq ∝ T−p

χ before kinetic

decoupling (except when g⋆;s changes) and hσvieq ∝ T−p=2
χ

after, when the dark matter is nonrelativistic. Notice that for
the scalar-mediated case this makes the low temperature
scaling change from p ¼ −1 to p ¼ −2 across akd

TABLE I. Asymptotic temperature dependence of the thermally
averaged cross section for each model.

Model High T Low T

Vector-mediated hσvi ∝ T−2 hσvi ∝ const
Scalar-mediated hσvi ∝ T−2 hσvi ∝ T
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[cf. Eq. (18)]. For illustrative purposes, we simply set the
temperature of dark matter kinetic decoupling to be Tkd ¼
10−4mχ [28] but it should be considered an adjustable
quantity that can be calculated in a given model from the
momentum exchange rate. The accuracy of this sort of
prescription for hσvieq has been tested in Refs. [21,29].
For freeze-in models, we are typically in a region of

parameter space where annihilation is never important
which we check by monitoring the contribution of the
maximal annihilation case where hσvieqðaÞ ¼ hσviðaÞ and
testing Eq. (20).
In each case, we illustrate the generation of isocurvature

from curvature with a k-mode that is near the horizon at
matter radiation equality: kmr ¼ amrHmr. For this mode
when a≲ amr

δL
ζ
¼ 2

3

�
a
amr

�
2

; ð32Þ

and we correspondingly compute δY=ζ, which is the
quantity that is observationally constrained (see Sec. V).
Other modes that are superhorizon scaled during the
relevant modulation epoch simply differ in the normaliza-
tion through Eq. (1).
For simplicity we ignore the matter contribution to the

expansion rate as well as well as any annihilation products,
even though we compute up to a ¼ amr, by taking
ρ ¼ ðπ2=15Þg⋆T4, where g⋆ is the effective number of
relativistic degrees of freedom in energy density. For each
of these models, we first numerically solve Eq. (8) for the
background and then solve Eq. (10) for δY with δL
normalized for the mode kmr in Eq. (32).

IV. MODEL RESULTS

In this section, we present the results for isocurvature
generation from curvature fluctuations for the illustrative

FIG. 2. Isocurvature production for the vector mediated freeze-
out case where modulated annihilation around matter-radiation
equality dominates. Top: thermally averaged annihilation cross
section hσvi, which reaches a constant at low T or large scale
factor a. Middle: dark matter abundance Y in the background,
which follows the equilibrium abundance Yeq before freezing out
at a�. Bottom: isocurvature vs curvature fraction δY=ζ (negative
definite) for the horizon wave number at matter-radiation equality
amr, which grows from a freeze-out value OðδLða�Þ=ζÞ (dotted
line) linearly in a until amr matching the scaling solution [dot-
dashed line, Eq. (16)].

FIG. 3. Isocurvature production for cases where modulation
occurs before matter radiation equality (freeze-out scalar media-
tor [solid line], freeze-in scalar and vector mediator [dashed
lines]). Labels are otherwise as in Fig. 2. For the freeze-in cases,
production ceases around a� with the final δY=ζ ¼ OðδLða�Þ=ζÞ
(positive definite). For the freeze-out scalar mediated case,
modulated annihilation grows logarithmically until kinetic de-
coupling akd and freezes into a negative definite value thereafter.
The expectations from the scaling relations (11) and (18) are
shown as x markers and are valid to order of magnitude.
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models described in Sec. III. We start with the vector-
mediated freeze-out model in Fig. 2. Here hσvi approaches
a constant at low velocities and temperatures, as shown in
the top panel, so that kinetic decoupling does not change
annihilation at late times. In this case freeze-out as defined
by Eq. (12) occurs at a� ¼ 3.1 × 10−14 as shown in the
middle panel. At this epoch δYða�Þ ¼ −0.58δLða�Þ vali-
dating the expectations of Eq. (11). The sign of the
modulation is negative since δL > 0 decreases the local
Hubble rate and allows annihilation to continue locally later
than the in the background. On the other hand, since the
cross section reaches a constant (p ¼ 0), modulated anni-
hilation continues after a�. In fact the analytic scaling
solution from Eq. (16) δYðaÞ ¼ −ða=amrÞfmrδLðamrÞ
agrees very closely with the numerical calculation in this
regime as also shown in the dashed black line in Fig. 2.
Therefore somewhat counterintuitively, the main effect of
modulated freeze-out in this case occurs much later than the
nominal freeze-out epoch a� due to the growth of density
perturbations outside the horizon. Since the mode consid-
ered is on the horizon at matter-radiation equality and
would not satisfy the separate-universe assumption after-
ward, we do not continue the calculation to a > amr,
though we have shown through the scaling relation of
Eq. (16) that for this case, δYð∞Þ ∼ −fmrδLðamrÞ, asymp-
toting to a constant on superhorizon scales.
We contrast this with the 3 other cases where δY

approaches a constant well before matter-radiation equality
as shown in Fig. 3. In this class, we first consider the scalar-
mediated freeze-out case. Here the annihilation cross section
is velocity-dependent at low temperatures and kinetic decou-
pling affects how quickly hσvieq decreases and thus when
modulated annihilation stops. Here we take kinetic decou-
pling to occur at T ¼ 10 MeV or akd ¼ 1.7 × 10−11. Notice
that at a < akd, p ¼ −1 and jδY j grows logarithmically.
Once a > akd, p ¼ −2 and modulated annihilation freezes
out, here to a constant level δYð∞Þ ¼ −8.5fkdδLðakdÞ
validating the expected scaling (i.e. Eq. (18) without the
ð1þ pÞ−1 factor).
Finally we consider the vector and scalar freeze-in cases.

In both cases, the modulated annihilation term is irrelevant
as is whether the produced dark matter is kinetically
decoupled. The whole effect therefore comes from modu-
lated production and the isocurvature mode reaches a
constant δYð∞Þ ¼ 6.2δLða�Þ for vector mediated and
8.0δLða�Þ for scalar mediated cases. Notice first that the
sign of δY=δL is positive and opposite to that of freeze-out
because a smaller local Hubble rate means that production
continues to occur at a later time than in the background.
Also, since the cross section decreases at low temperature in
the scalar case, to match the same final abundance a�
and hence δY itself is smaller. Otherwise the two freeze-in
cases behave very similarly despite the difference in the
temperature scaling of the cross section, unlike the corre-
sponding freeze-out cases.

V. DISCUSSION

Our separate universe methodology provides a simple
means of determining the isocurvature production from a
curvature fluctuation ζ for any model where the cosmo-
logical expansion rate affects the final dark matter abun-
dance, including generic freeze-out and freeze-in cases.
One merely needs to recalculate the abundance using the
local rather than global background. In this method, it is the
change due to ζ of the local expansion rate from the space
curvature contribution to the Friedmann equation that
modulates the abundance, not the change to the local
density of the plasma, though we use this fluctuation δL
to parameterize the results.
For a typical model, there are three important epochs in

this process: a� when the freezing of the background
abundance occurs, akd when the annihilation rate can
change relative to the Hubble rate due to kinetic decoupling
of the dark matter, and amr when matter dominates the
Hubble rate and changes its scaling relative to the anni-
hilation rate. In typical freeze-in models, annihilation is
never important and so the isocurvature amplitude scales as
δY ∼ δLða�Þ, and is fully correlated with the curvature ζ.
For freeze-out models, modulated annihilation can occur at
a ≫ a� due to the growth of density perturbations. For
cases where the annihilation rate drops sufficiently due to
kinetic decoupling this leaves δY ∼ −fðakdÞδLðakdÞ which
is fully anticorrelated with ζ, where the annihilation to
Hubble rate f is evaluated at akd. For cases like a constant
thermally averaged annihilation cross section, modulated
annihilation continues to grow until amr and the anticorre-
lation scales as δY ∼ −fðamrÞδLðamrÞ. In fact it is these
cases where the isocurvature generation is largest and its
size increases with increasing annihilation rate fðamrÞ ∝
m−1

χ for a fixed relic mass density.
In all of these cases, which we have illustrated using

concrete scalar and vector mediated dark matter models, the
relative amplitude of the correlated or anticorrelated iso-
curvature mode to the curvature mode is highly suppressed
on scales relevant for the CMB as long as a� ≪ amr due to
the either the smallness of the superhorizon density
perturbation at that time or the smallness of the annihilation
rate after that time. A generic model therefore will easily
evade CMB bounds from Planck which constrain a
primordial δY ¼ S from inflation to ðS=ζÞ2 < 10−3 at
95% C.L. [4] for fully correlated fluctuations of the same
spectrum. This case behaves similarly to our freeze-in and
scalar mediated freeze-out in that the isocurvature fluc-
tuation is frozen in at early times but has a different
k-spectrum due to the fact that δL ∝ ðk=aHÞ2ζ. In principle
constraints on such a spectrum place an independent bound
on how close a� can be to amr and how much annihilation
can occur near recombination but other more direct bounds
on these quantities are generally much stronger in typical
models (e.g., [30]).

DARK MATTER ISOCURVATURE FROM CURVATURE PHYS. REV. D 109, 063507 (2024)

063507-7



For the freeze-out vector mediated case, the isocurvature
modes themselves grow until matter radiation equality and
would impact observableCMBmodes in a differentway that
is beyond the scope of the separate universe approximation
since the relevant modes are subhorizon at recombination
and annihilation products can change the ionization. Even in
this case, we can infer from the smallness of δY=ζ that such
models generically predict signals that are well below
cosmic variance limits for the CMB.
More generally, our methodology provides a model-

independent means of determining the generation of iso-
curvature from curvature that is as simple as determining
the background dark matter abundance itself and moreover
illuminates the amplitude and the relevant scales in this
process.

Note added. Some aspects of this work are mirrored in the
independent work of [31].
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