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In this work, we investigate detection rates and parameter estimation of strongly lensed extreme mass-
ratio inspirals (LEMRIs) in the context of the Laser Interferometer Space Antenna (LISA). Our results
indicate that LEMRIs constitute a new gravitational-wave target signal for LISA, with detection rates
ranging from zero to ∼40 events over a four year-observation period, and that it is possible to reveal and
characterize LEMRIs at redshift z≳ 1. We finally show that one LEMRI observation with identified host
galaxy may yield percent constraints or better on the Hubble constant.
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I. INTRODUCTION

The most massive galaxies in our Universe are expected
to host a massive black hole (MBH, 104–109M⊙) in their
core [1–3], surrounded by nuclear star clusters of millions
of stars [4]. While these stars could be disrupted due to tides
induced by the MBH gravitational field and thus produce
both electromagnetic (EM, see recent reviews [5,6] and
references therein) and gravitational wave (GW) emission
[7,8], compact objects (COs) such as stellar-mass black
holes and neutron stars survive the tidal forces of the MBH
and start inspiralling toward it. The inspiral of a∼1–100M⊙
CO into a 104–107M⊙ MBH is called an extreme mass-
ratio inspiral (EMRI). The formation mechanisms of
EMRIs are still largely uncertain but recent studies find
that the Laser Interferometer Space Antenna (LISA) [9,10]
may be able to detect ∼1–1000 EMRIs per year, depending
on the underlying astrophysical assumptions of different
EMRI population models [11–14]. Computing EMRI
waveforms is challenging, requiring tools from black hole
perturbation theory to accurately describe the behavior of
the CO within the strong-field regime of the central MBH
[15–23]. The specific characteristics of the CO orbital
dynamics are sensitively encoded in the GW, and, due to
the large number (∼104–106) of observable orbital cycles,
EMRI observations offer unparalleled precision constraints
on parameters that govern the system [13,24–27]. Finally,

EMRIs provide an excellent laboratory to perform tests of
strong-field gravity [28–35].
To accurately retrieve the parameters of an EMRI, and

consequently correctly characterize the observed EMRI
population, it is crucial to understand how gravitational
lensing can impact the detected signals.Gravitational lensing
(see, e.g., [36,37]) occurswhen amassive object—the lens—
along the line of sight between the observer and the source,
bends the surrounding space-time, deflecting the signal from
its original path. In particular, we refer to strong lensingwhen
we have the production of magnified multiple images of the
same source [38–46], which arrive at the detector at different
times. If the duration of the signal is longer than the typical
time delay between two images, as in the case of EMRIs,
these will superimpose in time in the LISA data stream. The
ability to recognize lensed events in the data is crucial to
unveil correct information regarding the GW source and the
lens, and also to prevent us from a biased reconstruction of
the source parameters (see, e.g., [47–49]). Strongly lensed
events moreover offer great opportunity to measure proper-
ties of the source population as well as of the Universe itself,
such as the cosmological parameters (see, e.g., [50–52] and
references therein).
In this work, we investigate galaxy-induced strong

lensing on a population of EMRIs. We work within the
regime of geometrical optics since for LISA observational
frequencies (∼mHz) we expect wave effects to become
important only when considering diffusion from sub-
galactic structures [53–56] with masses M ≲ 106M⊙. In
the context of LISA, we consider 12 EMRI population
models, as described in [13,57], and for each of them, we
compute the 4-year detection rate of strongly lensed EMRIs
(LEMRIs). We then reconstruct the observed waveform of
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a LEMRI and we perform parameter estimation (PE) to
recover parameters of both the source and the lens using a
fully Bayesian approach. Finally, assuming the LEMRI
host galaxy can be uniquely identified, we discuss strat-
egies that could be used to constrain cosmological para-
meters, in particular the Hubble constant H0.
Following [58], upon which our lensing rate calculations

are based, we adopt a flat–ΛCDM cosmological model
with matter density parameter Ωm ¼ 0.274, dark energy
density parameter ΩΛ ¼ 0.726 and Hubble constant
H0 ¼ 70.5 km s−1Mpc−1.

II. GRAVITATIONAL LENSING

In our work, we model galaxies as axisymmetric singular
isothermal spheres (SIS), which are realistic enough for our
purposes (see, e.g., [59,60]). Furthermore this approach
allows us to derive simple analytical lensing formulas, that
will be used later in Sec. IV.
In the following, we perform all the lensing calculations

within the framework of geometrical optics, that is the
scenario where the GW wavelength is smaller than the
Schwarzschild radius of the lens. When operating within
this regime, the primary lensing effects are signal magni-
fication and generation of multiple images of the source,
while diffraction effects are negligible (cf. Appendix A).

A. The SIS model

In the SIS model, the mass components of the galaxy
behave like particles of an ideal gas, in thermal equilibrium,
confined by their spherically symmetric gravitational
potential [61]. The mass density of a SIS is

ρ ¼ ς2

2πGr2
; ð1Þ

with ς velocity dispersion of the lens and r distance from its
centre. The relation between the position of the source in
the sky and its lensed image is given by the lens equation,
which reads [37]

β ¼ θ − α: ð2Þ

In the above formula, β is the angle between directions to
the lens and to the source, θ is the angle between directions
to the lens and to the image and α is the (scaled) deflection
angle, determined by the mass distribution of the lens
projected along the line of sight [62]. For a given SIS the
deflection angle has a constant value

α ¼ 4π2
�
ς

c

�
2 dLS
dS

≡ α0; ð3Þ

with dLS and dS angular diameter distances [63] between
source-lens and source-observer respectively. In order to
have the lensed signal splitted in multiple images, the

following requirement needs to hold: β < α0. Defining the
dimensionless variables y≡ β=α0 and x≡ θ=α0, we can
rewrite Eq. (2) in the following way

y ¼ x −
x
jxj : ð4Þ

Thus, the criterion for multiple images becomes y < 1 and
the solutions of the lens equations are [64]

xþ ¼ jxþj ¼ 1þ y; x− ¼ jx−j ¼ 1 − y: ð5Þ

The magnification that the two images will have due to the
presence of the lens can be expressed in terms of y, [37]

μþ ¼ 1

y
þ 1; μ− ¼ 1

y
− 1; ð6Þ

and the difference between their arrival times at the detector
is (see, e.g., [37,65,66])

Δt ¼ 32π2

c

�
ς

c

�
4 dLdLS

dS
ð1þ zLÞy ð7Þ

¼ 8
GMLz

c3
y ð8Þ

with MLz ¼ MLð1þ zLÞ being the redshifted lens mass.
Within the geometrical optics limit, the lensed GW wave-
form reads [65,67]

ĥLðfÞ ¼ ðj ffiffiffiffiffiffiμþ
p j − ij ffiffiffiffiffiffiμ−

p j exp½−2πifΔt�ÞĥðfÞ; ð9Þ

where f is the gravitational frequency and ĥ is the Fourier
transform of the GW signal.

B. Lensing prescription

The number of lensed sources that we can observe up to
redshift zmax with magnification higher than μmin is given
by [8,64,68]

N obs ¼
Z

zmax

0

dzS

Z
∞

μmin

dμpðμ; zSÞ
dN ðμ; zSÞ

dzS
: ð10Þ

The above formula is made of two main quantities: (i) the
magnification probability density function (PDF) for differ-
ent values of source redshift, pðμ; zSÞ, and (ii) the number
of visible sources per bin of zS in presence of magnification
μ, dN ðμ; zSÞ=dzS. In the following, we explain how we
build these two quantities in the case of LEMRIs.

1. The magnification PDF

We build the magnification PDF using the same meth-
odology as the one already presented in [8]. Specifically,
for cases where the source redshift zS is less than 1, we
compute pðμ; zSÞ by distributing the lenses in accordance
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with the analytical model proposed by [64,66], which
neglects the galaxy redshift evolution. This approach,
validated by [64,66], yields accurate results at low red-
shifts, aligning well with more complex models, while
allowing the use of analytical formulas. In addition, for
situations where zS ≥ 1, we incorporate the magnification
PDF from [58], which was computed through high-reso-
lution ray-tracing simulations reconstructing the path of
light through inhomogeneous matter structures within the
Universe. In particular, we interpolate their results for the
redshift values we intend to investigate. For more technical
details about the construction of the magnification PDF, we
refer the reader to [8,58,64,66].

2. The distribution of sources

Given a specific magnification factor μ, the number of
LEMRIs above the signal-to-noise ratio (SNR) detection
threshold ρth per bin of source redshift zS is given by
(cf. also Fig. 7 in Appendix B)

dN ðμ; zSÞ
dzS

¼
Z

∞

ρth=
ffiffi
μ

p dρ
dN
dρdzS

; ð11Þ

where dN =dρdzS is the number of sources per bin of SNR
ρ and bin of zS, that we compute for each of the 12
population models presented in [13,57], which we similarly
label M1 to M12.
The main ingredients on which the EMRI models depend

are the following [13]:
(1) the MBH distribution—the MBH population is

restricted to the range 104–107M⊙ and two different
mass functions are considered. The first model [69]
is derived from a self-consistent MBH evolutionary
scenario and remains largely unaffected by changes
in redshift. On the other hand, the second model [70]
is purely phenomenological and even if it is not
derived from a self-consistent MBH evolutionary
scenario is consistent with observational constraints.
The latter model is employed for the analysis of M5
and M11.

(2) CO mass—this is set equal to 10M⊙ across all
population models, except for M4, which assumes a
more massive CO of 30M⊙;

(3) ratio of plunges to inspirals—this is considered to be
0 for M7 and M12, 100 for M8 and M11 and 10 for
all the other cases;

(4) MBH spin—three different distributions are consid-
ered: nonrotating MBH for M10 and M11, flat spin
distribution over the interval (0,1) for M9 and highly
rotating MBH with median value 0.98 for all the
other populations;

(5) M-σ relation—three different models are considered
to describe the stellar distribution around the MBH
and to predict the cusp regrowth after a MBH binary
merger. A default distribution [71] which estimates

that the time for a cusp to reform is tcusp ≈ 6 Gyr, a
more pessimistic model [72] (considered for M2)
which gives tcusp ≈ 10 Gyr and a more optimistic
model [73] (for M3) with tcusp ≈ 2 Gyr.

The interested reader can find more technical details and
discussion about the different motivations behind each
astrophysical scenario in [13].

III. DATA ANALYSIS

A. Preliminaries

In our work we account for the LISA response [74–76]
acting on the two polarizations of the EMRI GW. The LISA
detector will observe three data streams

sðXÞðtÞ ¼ hðXÞe ðt; θEtrÞ þ nðXÞðtÞ ð12Þ

for first-generation TDI variables X ¼ fA;E; Tg. Here hðXÞe

represents the exact responsed-GW signal with true EMRI
source parameters θEtr , and nðXÞ are noise realizations
induced by instrumental perturbations and/or confusion
noise. As a simplification, we assume that the noise in each
channel, nðXÞ, is an ergodic weakly stationary Gaussian
stochastic process with zero mean. Due to these assump-
tions, it is more convenient to work in the frequency
domain. Our convention for the Fourier transform is

âðfÞ ¼ F ½hðtÞ� ¼
Z

∞

0

aðtÞ expð−2πiftÞdt: ð13Þ

As the noise is a stationary stochastic process, the noise is
uncorrelated in the frequency domain. This results in a
diagonal noise covariance matrix [77,78]

hðn̂ðXÞðfÞÞðn̂ðXÞÞ⋆ðf0Þi ¼ 1

2
δðf − f0ÞSðXÞn ðf0Þ ð14Þ

for h·i an average ensemble over the data generating

process, δðf − f0Þ Dirac delta function and SðXÞn ðfÞ (one-
sided) noise power-spectral-density (PSD) of the noise
process nðXÞðtÞ over each channel X ¼ fA; E; Tg.
In the results Sec. IV B we will use the most realistic

LISA orbits computed by the European Space Agency
(ESA) [79]. These orbits are carefully designed to account
for the craft’s gravitational interactions with significant
celestial bodies within our solar system and the craft’s fuel
consumption, among other considerations. A result of this
is that the arm-lengths are approximately equal and
approximately constant. Although the orbit of the craft
is more realistic, the variable arm-lengths introduces
undesirable correlations between the noise components
in the frequency domain [75,80]. In our work we will
neglect the effect of such correlations. This is reasonable
since we are considering zero-noise injections and the
impact of mismodeling the noise process will impact
the variability in recovered parameters (precision in a
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parameter estimation scheme). For a further review on this
topic, see Refs. [81–83].
The ESA based LISA-response alongside a GPU accel-

erated implementation is found in [76]. We use the code-
base lisa-on-gpu to apply the response function,
converting the source-frame EMRI polarizations to the
solar-system barycenter (SSB) frame. For a further review
on TDI, we refer the reader to Refs. [74,75,84].
In our analysis, we use the usual noise-weighted inner

product of the form

ðajbÞX ¼
Z

∞

0

aðXÞðfÞðbðXÞðfÞÞ⋆
SðXÞn ðfÞ

df; ð15Þ

and the so-called whittle-likelihood, which, for a known
form of the PSD [85], reads

logpðsjθÞ ∝ −
1

2

X
X¼fA;E;Tg

ðs − hmðθÞjs − hmðθÞÞX: ð16Þ

The quantity hmðθÞ are our model templates, used to extract
the underlying exact signal in the data stream [see Eq. (12)].
In our analysis, we will assume that the noise properties are
known and fixed. We use the latest SciRDv1 noise curve
[86] and account for the double-white-dwarf (DWD)
confusion noise assuming LISA has been operating for
4 years [87]. We will not take into account the EMRI
confusion background [57]. The EMRI confusion back-
ground is the superposition of nonresolvable EMRI signals
present within the data stream. Depending on the astro-
physical assumptions of the generated EMRI background,
the presence of such a background will raise the overall
noise-floor or will be unnoticeable. If the most optimistic
model is chosen (See M12 in Ref. [13]), then the SNR of
the injected signal will lessen, increasing the uncertainty on
measured parameters. The presence of the DWD back-
ground appears at almost the same frequency range of the
EMRI background, and largely dominates. We thus believe
that it is reasonable to exclude the EMRI background in the
parameter estimation Sec. IV B.
We define the optimal matched-filtering signal-to-noise

ratio (SNR) as the noise-weighted inner product with the
injected signal and itself

ρAET ¼
� X
X¼fA;E;Tg

ðhejheÞX
�
1=2

; ð17Þ

with he ≔ heðθEÞ. Equation (17) measures the likelihood
of detection as it measures the power of the signal to the
root-mean-square average of noise fluctuations. For all
EMRI signals generated throughout our work, we will
always work with ρAET ≳ 15, since we believe this a
suitable threshold for detection [13].

B. Parameter estimation

Parameter estimationwithin gravitationalwave astronomy
is usually conducted using Bayesian methods. At the corner
stone of Bayesian statistics lies Bayes’ theorem, which states
up to a constant of proportionality

logpðθjsÞ ∝ logpðsjθÞ þ logpðθÞ: ð18Þ

Here pðsjθÞ is the likelihood function, which is the
probability of observing the data given a set of parameters
of the source. In our analysis, we will use the whittle-
likelihood [see Eq. (16)]. The second quantity on the right
side, pðθÞ, represents our prior distributional beliefs of
parameters θ before observing the data d. The missing term
in Eq. (18), the evidence pðsÞ ¼ R pðsjθÞpðθÞdθ, is a
normalizing constant. It is a function only of the data,
and we will ignore it in our analysis. The goal is to use
algorithms to generate autocorrelated samples from the
posterior density pðθjsÞ, reflecting our beliefs on param-
eters after observing the data stream s.
We will use Markov-Chain Monte-Carlo (MCMC)

methods to generate samples from the posterior density.
Our sampling algorithm of choice is the EMCEE algorithm
[88] (with default stretch proposal given by [89]). In our
simulations, we set 50 walkers (chains) to sample the log-
posterior and set uninformative uniform priors on all
parameters. Finally, we set the starting coordinates of our
sampler θ0 ≈ θtr. In our work, we are not performing a
search, but insteadwish to focus on constraints onparameters
that govern the LEMRI system. During our simulations, we
set the noise realizations in (12) to nðXÞðtÞ ¼ 0. The noise
process is suitably represented in the PSD for each channel,
which features in the inner product (15) and ultimately the
likelihood (16). Incorporating noise realizations into our
parameter estimation analysis will induce statistical fluctua-
tions to the log-likelihood, enforcing the likelihood to no
longer be maximized on the true parameters. The result of
this is that posteriors are no longer centered on the true
parameters. For our intents and purposes, it is unnecessary to
include specific noise realizations. This is because the
average statistical fluctuation enforcing a difference between
the true parameters and recovered parameters is zero [90].
Whether or not noise realizations are included, the con-
clusions of our results would not change.

C. LEMRI waveform model

To generate our EMRI waveforms, we will use
the latest state-of-the-art EMRI implementation
FastEMRIWaveforms (FEW) [84,91] found in the
Black Hole Perturbation Toolkit [92]. Our waveform model
is the fully generic GPU accelerated 5PN AAK model that
uses fifth-order post-Newtonian approximations to describe
the trajectory of the CO driven by radiation reaction
[93,94]. The trajectories are valid at adiabatic order in
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the small mass-ratio q ¼ μ=M ≪ 1 and neglect further
contributions in the gravitational self-force at postadia-
batic order [95,96]. For a review on this topic, see [97].
Our SSB responsed-EMRI waveform consists of a
14-dimensional parameter space, governed by M and μ
the primary/secondary objects redshifted masses, a the
dimensionless spin parameter, p0 initial semi-latus rec-
tum, e0 initial eccentricity, Y0 ¼ cosðι0Þ for ι0 initial
inclination angle, DS source luminosity distance in
Gpc, ðθS;ϕSÞ angles describing the source location in
the SSB frame, ðθK;ϕKÞ angles describing the orientation
of the primary spin vector and fΦr0 ;Φθ0 ;Φϕ0

g three initial
fundamental frequencies intrinsic to the smaller body.
The waveforms are generated with a sampling interval of

10 seconds and will be four years in length. The orbit (and
thus waveform) terminates ∼0.1 in semi-latus rectum away
from the separatrix. The separatrix is defined as the final
point in semi-latus rectum where stable orbits for the
smaller companion object exist [98]. The reason for
terminating the waveform at this point in semi-latus rectum
is that the 5PN AAK model does not take into account the
transition from inspiral to plunge. At the time of writing,
there exist no fast-to-evaluate EMRI models that incorpo-
rate the transition from inspiral to plunge [99–103]. The
time-to-merger phase of an EMRI is hard to define, so
instead the time-to-separatrix (or time to plunge tplunge) is a
more convenient parameter. Loosely speaking, the param-
eter tplunge is equivalent to the time to coalescence for
comparable mass binaries. Unlike MBHs, EMRIs are not
parametrized in terms of their time of coalescence for two
reasons: (1) because it is simply impractical and (2) the
“merger” phase will likely be unobservable. This is due to a
lack of SNR accumulated during those final few cycles
during the plunging phase [99]. To understand this, defin-
ing the small mass-ratio q ¼ μ=M, scaling arguments from
[99] show that the number of (azimuthal) orbits Φϕ scales

Φϕ ∼
Z

Ωϕdt ∼ q−1; inspiral;

Φϕ ∼
Z

Ωϕdt ∼ q−3=5; transition to plunge:

The number of orbits elapsed during the plunging phase is
thus a mere fraction, approximately q2=5 of the full number
of orbits. Finally, since1 the SNR ρ ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
Norbits

p
, one can see

that the SNR accumulation during the plunge phase is small
in comparison to the inspiral phase. This is not the case for
comparable high-mass binaries where instead the SNR is

concentrated around the merger. As seen from the above
scaling arguments, this is not the case for EMRIs.
For computational convenience, EMRI waveforms are

parametrized in terms of initial variables, fp0; e0; Y0;
Φϕ0

;Φθ0 ;Φr0g that, together, dictate the initial time of
observation.
The source is located at zS ¼ 1.26 since we expect to

observe the largest number of LEMRIs between redshifts
1 and 2 (cf. Fig. 8). With these chosen parameters, the
optimal matched filtering SNR of the nonlensed source is
ρEMRI
AET ∼ 22, suitable for detection and parameter estima-
tion. As for the lensing, we fix y ¼ 0.5, resulting in
magnification factors μ� ¼ f3; 1g. For the lens, we
choose a mass of ML ¼ 1011M⊙, located at redshift
zL ¼ 1. With our choice of impact factor and redshifted
lensed mass, the time-delay [see Eq. (8)] between the two
images (signals) is Δt ∼ 45.6 days. Since Δt ≪ 1 year,
i.e., the orbital period of the craft, we can apply the
response of LISA to the lensed waveform model [see
Eq. (2)] as a suitable approximation to the response of the
instrument to the incoming double images sourced by
the lens.
The SIS lens model results in two magnifications and a

time-delay between the two images. The impact on the
signal is a modified luminosity distance that controls the
overall amplitude of the observed signal. We thus define
two effective luminosity distances, namely Dþ ¼ DS=

ffiffiffiffiffiffi
μþ

p
and D− ¼ DS=

ffiffiffiffiffiffi
μ−

p
. The effective distance Dþ < D−,

resulting in one image with higher SNR. The lensing
parameters are thus θL ¼ fDþ ≔ DS=

ffiffiffiffiffiffi
μþ

p ¼ 5.13 Gpc;
D− ≔ DS=

ffiffiffiffiffiffi
μ−

p ¼ 8.89 Gpc;Δt ¼ 45.6 daysg. With this
configuration of parameters, the SNR of the LEMRI
ρLEMRI
AET ∼ 45. Approximately, this is an enhancement of
the nonlensed EMRI ρEMRI

AET by an amount consistent with

the magnification factors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijμþj þ jμ−j

p ¼ 2.
We appreciate that y ¼ 0.5 results in a magnification

μ− ¼ 1 giving rise to DS ¼ D−. This was neither done
on purpose, or a special case of the SIS lens. Our
choice y ¼ 0.5 was simply to ensure that the SNR of
both images ≳20 to aid detection of each image sepa-
rately. This is important, particularly in Sec. IV B 1. The
full parameter space that will be sampled over is given by
Θ ¼ θE ∪ θL. We generate the LEMRI using Eq. (9) and
plot the first-generation TDI variable A as a function of
time in Fig 1. The details presented in Secs. III B and III C
will be used specifically in the parameter estimation
Sec. IV B.
For both waveform generation and application of the

response, all computations are performed on a single
NVIDIA A100 Tensor Core GPU using CuPy as a drop-
in replacement for NumPy while utilizing the GPU agnostic
codes developed by [76,84].

1From the two timescale approach [104] the number of orbits
Norbits scales with the orbital timescale, which is Oð1Þ in com-
parison to the radiation reaction timescale which is Oð1=ηÞ.
Approximating EMRIs as quasi-monochromatic sources, the
SNR ρ scales like

ffiffiffiffiffiffiffiffi
Tobs

p
, which further scales with

ffiffiffiffiffiffiffiffiffiffiffi
Nobits

p
.
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IV. RESULTS

A. LEMRI event rates

In agreement with [105,106] we choose the following
detection thresholds for LEMRIs, ρth ∈ f15; 20g. As for the
SNR calculation in this Sec. IVA, in order to minimize the
computational cost, we approximate the EMRI waveform
with a inclination-polarization averaged simplified variate
of the analytical kludge (AK) model [94], as adopted also
as in [57]. In particular, since we truncate the EMRI
evolution at the Kerr innermost stable circular orbit [16],
we call it simplified AK Kerr (AKK) waveform. Under this
simplification, which follows the PN formalism from [107],
the expression for the SNR calculation reads

ðS=NÞ2AKK ¼
Z

h2cðfÞ
fSnðfÞ

d ln f:; ð19Þ

Here, hc ¼ 2fĥðfÞ represents the total characteristic strain,
which takes into account all harmonics, and SnðfÞ is the
sky-averaged LISA sensitivity, specifically the SciRDv1
sensitivity model [86], which also incorporates DWD
confusion noise [87], assuming a four-year observational
period.
We remove sources with initial eccentricity e0 ≳ 0.9 due

to the limitations of the AKK model. Depending on the
initial eccentricity, higher harmonics can be crucial com-
ponents of hc, therefore we choose the number of harmon-
ics n carefully so that it’s sufficient to keep the waveform
accuracy. We take n ¼ 20 for e0 < 0.5, n ¼ 30 for
e0 < 0.8, n ¼ 40 for e0 < 0.9. Comparing the SNR calcu-
lated using the simplified AKK model ðS=NÞ2AKK with the

one calculated by 5PN AAK model ðS=NÞ2AAK, the ratio of
ðS=NÞ2AKK over ðS=NÞ2AAK mostly distributed between 0.6
and 4. Therefore in this section, using the simplified AKK
waveform could lead to a slightly optimistic result in the
detection rates of EMRI populations. We also take into
account the EMRI confusion stochastic background com-
puted by averaging over unresolved EMRIs according to
various astrophysical models [13,57]. For ρth ¼ 20, we take
the EMRI confusion backgrounds of the 12 population
models from [57], while for ρth ¼ 15, in order to simplify
calculations, we rescale all the EMRI background PSDs by
a factor of ∼1.18, which is the EMRI background noise
ratio between ρth ∈ ½15; 20� at frequency 3 mHz for pop-
ulation M1, as provided by [57].
Table I presents LEMRI (and EMRI) detection rates for

4 years of LISA observations. The detection rates are
calculated for SNR thresholds of 15 and 20 and are provided
for two different scenarios: with and without the inclusion of
the EMRI confusion noise (for some extra information on the
EMRI/LEMRI populations, see appendix B).
Our results show that in 4 year LISA lifetime, the

LEMRI detection rate ranges from 0 to ∼43. In particular,
excluding the most pessimistic population model M11, we
can distinguish three cases: (i) M4 always presents the
highest percentage of observed LEMRIs (roughly 0.4%), in
all the cases considered. This is mainly related to the fact
that such a model extends to higher redshifts (up to ∼6),
where the contribution of lensing becomes more relevant
(see, e.g., Discussion section in [8]; (ii) without the EMRI
confusion noise, for both SNR thresholds, we have that the
percentage of LEMRIs is around 0.2% for all the other
population models. In terms of absolute numbers, M7 and

FIG. 1. Top left: TDI variable A plotted with respect to time (expressed in days), where the first-generation LISA response is applied.
The blue and purple curves represent the magnified and demagnified EMRI waveform in the time domain, respectively. Top right: sum
of these two curves. Bottom line: same layout as above, but on a different timescale (hours).
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M12 present the highest number of detections (respectively,
∼11 and ∼16 for ρth ¼ 20, while ∼32 and ∼43 for
ρth ¼ 15); (iii) in presence of the EMRI background, we
have that the percentage of observed LEMRIs remains
roughly the same, except for M7 and M12, for which it
drops to ∼0.1%, since these two populations are heavily
affected by the background contribution. In terms of
absolute numbers, in this case M4 is the more favorable
scenario (∼7 for ρth ¼ 20 and ∼11 for ρth ¼ 15).
We want to stress that, in order to calculate the LEMRI

rates, we require that the more magnified image exceeds the
detectability threshold, thus ensuring that the superposition
of the two images will be detectable by LISA.

B. Parameter estimation

In this section we will use the notions described in
Sec. III to characterize a LEMRI in a noiseless data stream.
This section will be split into two parts: the first discusses a
potential strategy to identify LEMRIs and the second will
focus on estimating the LEMRI parameters ultimately
leading to a constraint on the redshifted lens mass.

1. LEMRI detection strategy

We will begin with an injected LEMRI waveform with
parameters described in section III C, Θ ¼ θE ∪ θL, and
attempt to characterize it with a single nonlensed EMRI
waveform model. In reality, during the search phase for
EMRI signals, it is highly unlikely that a specific lensing
model will be assumed prior to the first phase of searching
for nonlensed EMRIs. Instead, it is more natural to search
for a LEMRI first using a nonlensed EMRI template to gain
intuition on what lensing model should describe the
LEMRI within the data stream. In this section, we will
describe a robust strategy that is able to extract a LEMRI

within the data stream when working under the geometric
optics limit.
We wish to make clear here that we are not performing a

general search for the LEMRI within the data stream.We are
assuming that suitable tools are in place that are able to
efficiently search and characterize a single EMRI in the data
stream. We are not claiming a solution to this specific
problem. The search problem, for EMRIs, has been solved
in very simplified and ultimately unrealistic circumstances.
Groups in the past [105,106,108,109] submitted results to the
Mock Lisa Data Challenges (MLDCs) [105] using semi-
analytical (analytic kludge [94]) EMRI waveforms buried in
known detector noise. We remind the reader here that the
scope of this work is not to perform a search algorithm.
Instead we will show that once a suitable search algorithm
exists, it is possible to extract a LEMRI out the data stream
without first assuming a lensingmodel.We refer the reader to
Ref. [110] for a recent study on the search problem of EMRI
waveforms from eccentric Schwarzschild inspirals.
To begin, we inject a LEMRI with parameters stated in

Sec. III C into three noise-free LISA data streams. We
remind the reader that the lensing procedure produces two,
largely orthogonal, EMRI signals in the data stream (see
Fig. 1). Performing parameter estimation on the LEMRI
assuming a single EMRI model template results in the blue
posterior distributions in Fig. 9 in Appendix. We report
statistically insignificant biases on all parameters except
from the luminosity distance to the source. We recover a
single magnified image (with respect to the nonlensed
EMRI atDS) at an effective distanceDþ ¼ DS=

ffiffiffiffiffiffi
μþ

p
. Since

the time-delay Δt is (much) larger than the orbital-time-
scale of the smaller companion, the second image is
orthogonal to the first image. This is the reason for the
statistically insignificant biases on the intrinsic parameters.
The second image can be thought of as a noise source with
respect to the first detected image.

TABLE I. 4-year LEMRI (and EMRI) detection rates for LISA for all 12 EMRI population models. The first/last
two columns consider an SNR threshold of 20=15 with and without taking into account the EMRI background
confusion noise.

ρth ¼ 20w=o bg ρth ¼ 20 w bg ρth ¼ 15 w=o bg ρth ¼ 15 w bg

M1 1.2 (482) 0.6 (313) 3.5 (1021) 2.1 (713)
M2 0.9 (358) 0.5 (225) 2.8 (804) 1.7 (573)
M3 3.2 (1331) 1.0 (689) 7.9 (2638) 3.6 (1436)
M4 7.8 (1846) 6.6 (1587) 12.3 (3156) 11.4 (2827)
M5 0.2 (64) 0.1 (63) 0.3 (118) 0.3 (116)
M6 1.9 (742) 0.8 (435) 5.0 (1508) 2.7 (936)
M7 10.6 (4441) 0.7 (853) 31.8 (9544) 2.8 (2091)
M8 0.1 (58) 0.1 (51) 0.3 (126) 0.4 (120)
M9 0.7 (381) 0.3 (231) 2.2 (813) 1.2 (555)
M10 0.5 (346) 0.3 (210) 1.8 (753) 1.0 (505)
M11 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
M12 15.8 (6344) 0.8 (1019) 43.4 (13122) 3.2 (2380)
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At this point, we have identified a single EMRI (image)
within the data stream, but there is still one image left to
characterise. With the recovered parameters governing the
single lensed image, it is possible to convolve this EMRI
with the data stream to extract features of the data that are
qualitatively similar to the first detected image. We discuss
this procedure below.
Recalling the Whittle-likelihood (16) up to a constant of

proportionality

logL ∝ ðsjhmÞ −
1

2
ðhmjhmÞ; ð20Þ

We wish to maximize the noise-weighted inner product
ðdjhmÞ by time-sliding the model templates evaluated at the
best-fit parameters hmðθbfÞ across the data stream d. Time-
shifts are trivial to encode in the Fourier domain

ĥmðf; θ;ΔtÞ ¼ ĥmðf; θÞ expð−2πifΔtÞ: ð21Þ
and thus we can rewrite the inner product (Eq. (15) as

ðsjhÞ ¼ 4

Z
∞

0

�
ŝðfÞĥ⋆mðf; θbfÞ

SnðfÞ
�
expð2πifΔtÞdf;

¼ F−1
�
4 ·

ŝðfÞĥ⋆mðf; θbfÞ
SnðfÞ

�
ðΔtÞ; ð22Þ

in other words, the inverse Fourier transform of the noise-
weighted inner product with respect to time-shifts Δt. For
N ¼ 2J with J∈Zþ, this is aOðN log2NÞ operation and is
thus an inexpensive procedure. Equation (22) is the
matched-filter statistic, used to cheaply detect patterns in
the data stream that match a model template of choice.
To give an example of Eq. (22), we consider the same

LEMRI described above and consider two cases: with and
without noise. The model template in (22) will be a
nonlensed EMRI with best-fit parameters θEbf given by
the posterior means of the blue curves in Fig. 9 in
Appendix. For the noise and noiseless data stream, the

results given by Eq. (22) are given in Fig. 2. Regardless
ofwhether the signal is in the presence of stationaryGaussian
noise, there are two clear maxima at Δt ¼ 0 and
Δt ∼ 45.6 days. This implies that the first image has similar
features to a second image present in the data stream. Due to
the geometric optics limit, the specific frequency compo-
nents of the signal are not changed. Only the amplitude is
affected. As long as the signal is distinguishable from noise
and wave-optics effects are negligible, this method will
always return the correct time delay of the two images.
With starting coordinates at θbf from the blue posterior

with a time shift of Δt ∼ 45.6 days, we perform another
parameter estimation run assuming a nonlensed shifted
EMRI template (21). Our results are given by the red
posterior in Fig. 9 in Appendix. Directly comparing with
the blue posterior in the same figure, we recover near-
identical intrinsic/extrinsic parameters but recover a lumi-
nosity distance D− ¼ DS=

ffiffiffiffiffiffi
μ−

p
with respect to the true

luminosity distance of the source DS. For both simulations,
we notice that the same intrinsic parameters of the EMRI
are recovered, with statistically insignificant biases on the
extrinsic parameters except the luminosity distances. Due
to our choice of y ¼ 0.5, we have that μ� ¼ f3; 1g
implying that D− ¼ DS=

ffiffiffiffiffiffi
μ−

p ¼ DS so it may seem that
the result quoted here is unbiased. This is simply due to the
choice of impact factor, had we chosen, say, y ¼ 0.8 then
the effective distances D� ≠ DS resulting in biased esti-
mates of the luminosity distance. The take-home message
here is that we have recovered two near-identical EMRI
signals separated by Δt with two different amplitudes. This
is a strong indication that the source has been lensed and the
lensing model is consistent with the SIS.
From both Figs. 9 and 2, we have estimates of the two

(effective) luminosity distances to the source alongside a
nontrivial time-delay between two images. If we now
assume that the lensing model is consistent with the SIS,
point-estimates for the lensing parameters can be easily
computed. A point estimate of y can be computed using

FIG. 2. Left plot: computation of Eq. (22) with a data stream composed entirely of signal. Right plot: is the same but a data stream with
a signal embedded in Gaussian stationary noise.
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y ¼ ðD−Þ2 − ðDþÞ2
ðDþÞ2 þ ðD−Þ2 : ð23Þ

From Eq. (23), our simulations indicate that y ≈ 0.509.
With the estimate y, one can use Eq. (6) to compute the
magnification factors μ�. This allows for a point estimate
on the luminosity distance DS of the source to be
computed. Finally, from Eq. (8), a point estimate of the
redshifted lensed mass can be returned. We remark here
that since the results for the lensed mass and luminosity
distance to the source come from two distinct simulations,
correlations between the lensing parameters and EMRI
parameters have been neglected. These correlations will be
explored in section IV B 2 when a lensing model of the
form (9) is assumed when estimating the full parameter
set Θ ¼ θE ∪ θL.
Above we have sketched out an algorithm on how point

estimates can be returned for the lensing parameters. Now,
we will argue why this detection strategy for a LEMRI is so
robust. ForEMRIs, thevolumeof theparameter space is huge
[111], so the chance of recovering two identical EMRIs, at
the same position in the sky with identical intrinsic param-
eters but with different luminosity distances is near zero. The
evolution of the individual frequencies of the EMRI signals
are extremely sensitive to the intrinsic parameters of the
system. The two images, with only differences being the
time-delay and themagnifications, shouldnever admit biased
parameter simulations when searching with a single EMRI
template. This is because the two images will be orthogonal
assuming that the time-delay is greater than the orbital
timescale of the smaller compact object.
The deflection angle α [Eq. (3)] will also be small. Since

α is small and Δt ≪ 1 year, the orbital timescale of LISA,
there should be little to no bias on the sky-location
parameters. There may be small biases on the initial
frequencies Φϕ0

;Φθ0 and Φr0 , likely arising from the
geometry of the instrument changing over the scale of
the time-shift. Even if the transition to inspiral to plunge
was incorporated in our model, the plunging phase would
be largely unresolvable. Inclusion of the transition from
inspiral to plunge would neither help or hinder our
detection strategy. We thus conclude that, within the
geometric optics regime, the only noticeable biases would
be on the luminosity distances to the source. This, along-
side maximizing over all time-shifts Δt, would give
evidence for a particular lensing model to assume when
re-reanalyzing the data stream. In our case it was the SIS
model, however, multiple images could be returned imply-
ing more complex lensing models could be assumed such
as a singular isothermal ellipsoid [see, e.g., [112]].

2. Constraining LEMRI parameters

In this section, we will assume the SIS lensing model and
constrain both the EMRI parameters θE and the parameters
specific to the lens θL ¼ fDþ; D−;Δtg. With the

constraints from the lensing parameters, we will be able
to estimate y, MLz and the ratio of angular diameter
distances dLdLS=dS. The constraint on this ratio will be
useful for studies within cosmology that we present in
Sec. IV C.
We can rewrite Eq. (9)

ĥLðf;ΘÞ ¼
�

1

Dþ −
i
D− e

−2πifΔt
�
ĥðf; θEnfDSgÞ: ð24Þ

To aid the parameter estimation scheme, we can use the
results from the previous section given in Fig. 9 in
Appendix. Using the EMCEE sampling algorithm, we can
set the starting coordinates to be the posterior means of the
recovered parameters given by the blue (image 1) and red
(image 2) posteriors. Similarly, we can set the starting
coordinate for the time-delay to be Δt ≈ 45.6 days, in
accordance with Fig. 2. In our simulation, we will sample
over the full EMRI parameter space θE and the lensing
parameters θL ¼ fDþ; D−;Δtg. The goal here is to under-
stand how well one can constrain the lensing parameters
and whether correlations between the two parameter sets θE

and θL exist.
We inject a LEMRI into noiseless data and recover with a

lensing model template given by Eq. (9). Our results are
given in Fig. 10 in Appendix. With samples for the effective
distances, we can use both (23) and (8) to determine
samples for MLz. Since the EMRI and lensing parameter
sets are largely orthogonal, we see that the only correlated
parameter set is between the luminosity distance and the
redshifted mass of the lens MLz. Defining the error in the
sky location, ΔΩ as in [113],

ΔΩ ¼ 2πðΔ sinðθSÞΔϕS − Cov½sinðθSÞ;ϕS�Þ ð25Þ
we can constrain the sky-position of the LEMRI by
ΔΩ ∼ 11 deg2. The relative errors on the redshifted mass
of the lens and source impact parameter are ΔMLz=MLz ≲
4% and Δy=y≲ 4%. This is consistent with Fisher matrix
estimates given by Eq. (34) in [65].
The LEMRI parameters are distributed as Gaussians with

tight constraints, as expected in the unlensed case [13,84].
In both scenarios, the orientation of the spin vector ðθK;ϕKÞ
shows degeneracy, consistent with previous analyses
[105,106], while the distance parameter is poorly con-
strained only for the secondary image, likely due to the low
SNR of the injected signal (ρEMRI ∼ 20). We believe that the
θK;ϕK degeneracy originates from using semirelativistic
waveform models with PN driven inspirals. Such effects
have not been observed in fully relativistic waveforms with
accurate adiabatic flux driven inspirals originating from the
self force [114].
As a comparison, we have performed another simulation

where we inject a nonlensed EMRI into noiseless data with
an identical parameter set to the LEMRI. The precision
measurements degrade on parmeters by an amount

STRONGLY LENSED EXTREME MASS-RATIO INSPIRALS PHYS. REV. D 109, 063505 (2024)

063505-9



consistent with the loss of SNR due to the lack of
magnification incurred by the lens.
Our findings suggest that LISA can successfully identify

LEMRIs even in the case when the original unlensed signal
is close to the SNR threshold (ρth ∼ 20). The parameter
constraints improve in accordance with the factor
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijμþj þ jμ−j
p

, as expected. In addition, we investigate
a more optimistic LEMRI with the same parameters as the
previous injection, apart from zS ∼ 0.5 and zL ∼ 0.3. Over
all TDI channels, we find that ρLEMRI ∼ 140. Consequently,
the relative errors on the redshifted lens mass and the
luminosity distance of the source improve to the ∼1% level.
In addition to this, for such a luminous LEMRI, the sky
position could be determined within a better accuracy
(ΔΩ ∼ 3 deg2), and also the posteriors for spin orientation
ðθK;ϕKÞ resemble more Gaussian behavior.

C. Cosmology

1. Constraining H0

Given its reduced sky-localization and the constraints we
can infer on its parameters as outlined above, the lens and
the host galaxy, which also undergoes strong lensing, may
be identified through dedicated deep-field follow-up EM
surveys. By leveraging on EM follow-up strategies devel-
oped for Earth-based GW detectors [115,116], and by
noting that LEMRIs will convey additional information on
the host galaxy luminosity since the MBH mass is tightly
constrained, we can optimistically expect that lens and host
galaxy can be spotted for a relevant fraction of observed
LEMRIs. This strategy can be applied also to the case
where only two lensed images are produced [116], as
considered in this work.
Working within a flat-ΛCDM model, and assuming a

spectroscopic redshift measurement of the host galaxy
(which implies a redshift uncertainties irrelevantly small
for our estimates), we can then constrain H0 if we fix
Ωm ¼ 0.274. Note that we can only constrain a one-
parameter cosmological model with one single LEMRI
event because we obtain one single point in the distance-
redshift space which would yield strong degeneracy for a
multiparameter model. In particular, we consider two
estimates of H0 derived from two separately investigated
LEMRIs at zS ¼ f1.26; 0.5g, respectively with lenses at
zL ¼ f1; 0.3g, corresponding to the two sets of injected
values we considered above.
From parameter estimation simulations, ignoring sys-

tematic uncertainties due to weak lensing and peculiar
velocities, we find that the luminosity distances can be
constrained to within ΔDS=DS ≲ 2% and ΔDS=DS ≲ 1%,
respectively (1σ C.I.). From the distance-redshift relation
we obtain Fig. 3, which shows the posterior distributions
pðH0jsÞ for each case. Our results demonstrate that H0 can
be constrained to within a relative error of around ∼0.4%
for the LEMRI at zS ¼ 0.5, while the relative error increases

to∼1% at zS ¼ 1.26. Suchmeasurements are comparable to,
or even more precise of, other cosmological forecasts with
LISA [117–120] and they would definitely be enough
accurate to provide a solution to the Hubble tension [121].
Furthermore, they are more realistic than similar cosmologi-
cal estimates with strongly lensed LISA MBHBs [50,51]
since identification of the EMRI host galaxy may be easier
given the lower expected redshift of the source and better sky-
localization, directly providing less potential hosts in the
cosmological localization volume of the source. On the other
hand, in our analysis we ignored possible selection effects
due to weak lensing, peculiar motion, waveform and cali-
bration uncertainties which may well provide additional
systematic errors at the percent level or more if not properly
accounted for (see, e.g., [122–126]).

2. Constraining H0 and Ωm

We also want to investigate a different approach to
constrain both H0 and Ωm, assuming further knowledge of
the redshift and velocity dispersion ς of the galaxy-lens.
Such a scenario could materialize only if the lens can be
identified with EM observations and its morphology is well
characterized (see, e.g., [115,116]).
With knowledge of both zL and ς (both of which we

assume with zero uncertainty for our analysis here, neglect-
ing peculiar velocity effects), and with our estimates for y
and Δt, it is possible to constrain the ratio of the angular
diameter distances dLdLS=dS. Knowledge of this ratio of
quantities can then lead to an estimate to the luminosity
distance to the lens. The angular diameter distance to an
object is related to the luminosity distance via
dL ¼ ð1þ zLÞ2DL. Similarly, assuming a flat cosmology
with Ωk ¼ 0, the angular diameter distance between the
lens and source dLS is given by [63]

dLS ¼
1

1þ zS

�
dS

1þ zS
−

dL
1þ zL

�
: ð26Þ

FIG. 3. Posterior distributions on the Hubble constant for a
LEMRI located at zS ¼ 0.5 (purple) and at zS ¼ 1.26 (green),
assuming unique identification of the host galaxy and a flat
ΛCDM model with Ωm fixed to its fiducial value. The injected
value of H0 is represented by the black dashed vertical line.
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With this equation, one can write down a quadratic
equation for the luminosity distance DL

1þ zS
DSð1þ zLÞ3

D2
L −

1

ð1þ zLÞ2
DL þ

dLdLS
dS

¼ 0 ð27Þ

with (positive) solution

DL ¼ DSð1þ zLÞ
2ð1þ zSÞ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

dLdLSð1þ zSÞð1þ zLÞ
dSDS

s !
:

ð28Þ

The luminosity distance to the lens is then calculated
from Eq. (28). From the distance-redshift relation, the
estimates of ðzS; DSÞ and ðzL; DLÞ could allow for con-
straints on the two cosmological parameters ðH0;ΩmÞ
simultaneously. However, with significant uncertainties
on ς and the difficulty of properly measuring zL, these
estimates could be seen as largely optimistic. We remark
here that neither cosmological parameter is well con-
strained using the weaker source at zS ¼ 1.26. For a loud
EMRI with zS ¼ 0.5 instead, it is possible to constrain the
luminosity distance to the lens ΔDL=DL ≲ 3% (1σ C.I.)
giving rise to the simultaneous constraints on H0 and Ωm
presented in Fig. 4. These results indicate that one can

constrain H0 to within a relative error of ΔH0=H0 ≲ 7%
while we weakly constrain ΔΩm=Ωm ≲ 60% (1σ C.I.).
These statements are statistically expected to scale with the
number of LEMRI observations as ∼N−1=2

obs . We stress that,
contrary to the H0 estimates presented in Sec. IV C 1, these
results do not assume prior knowledge on Ωm. They
moreover strongly depend on our SIS modeling of the
lens, although the EM follow-up of the lens may provide
sufficient morphological information to understand which
lensing model may better describe the LEMRI observations
and thus provide unbiased estimates.

V. CONCLUSION

In this work, we show that LEMRIs are new potential
targets for LISA and we outline a technique to extract this
signal from the data-stream. The identification of multiple
images of the same source would allow us to understand
what is the best model that describes the lens, giving
valuable information on the nature of this object.
Furthermore, the unique identification of the LEMRI host
galaxy would yield an unprecedented opportunity to under-
stand in depth the nature of the source and the lens, as well
as to perform precise cosmological measurements. Our
results show that LEMRIs constitute a new target GW
signal for LISA, whose observation will enable interesting
astrophysical and cosmological insights. Further work is
needed to fully characterize their detectability and scientific
potential.
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APPENDIX A: GEOMETRIC OPTICS REGIME

The validity of Eq. (9) is determined by the magnitude of

ω ¼
�
8πG
c3

�
· fMLz ≈

�
MLz

107M⊙

��
f

mHz

�
; ðA1Þ

where ω determines the oscillatory nature of the general
lensing amplification factor in Eq. (19) of [65]. For theEMRI
source considered in this work, we takeML ¼ 1011M⊙ and

zL ¼ 1 with an observation period of Tobs ¼ 4 years, with
cadence ∼10 seconds. From a signal processing viewpoint,
the resolvable frequencies span f∈ ½0; 0.05� Hz spaced
equally with Δf ¼ 1=Tobs ∼ 10−10 Hz. However, due to
the presence of LISA instrumental noise, we are insensitive
to frequencies f ∉ ½10−5; 10−1� Hz. For the source consid-
ered in this work, we find that 1 ≪ ω∈ ð102; 5 × 105Þ thus
validating the geometric optics simplification used through-
out our work. Effects due to wave optics will always be
present, but largely insignificant since they are subdominant
contributions to the overall lensing effect. If, on the other
hand, wewere sensitive to lower frequency sources f ∼ μHz
and/or had a less massive lens mass (such as a MBH)
MLz ∼ 107M⊙, then we must consider potential wave-optics
effects. Formore details on gravitationalwave science from a
wave-optics perspective, see [65,135,136].

APPENDIX B: ADDITIONAL INFORMATION ON
THE EMRI/LEMRI POPULATION PROPERTIES

Figure 5 shows the MBH mass/redshift distribution of
the detected EMRIs for population model M1 at different
SNR thresholdswith orwithout the EMRIbackground noise.

FIG. 5. The MBHmass (upper panel) and redshift (lower panel)
distributions of the detected EMRIs for population model M1
after 4 years of LISA observation.

FIG. 6. The MBHmass (upper panel) and redshift (lower panel)
distributions of the detected EMRIs for population model M1,
M4 and M12 after 4 years of LISA observation without EMRI
background confusion noise. The solid (dashed) lines show the
distributions at SNR threshold 15 (20).
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FIG. 7. Number of LEMRIs per redshift bin assuming ρth ¼ 20 and no EMRI confusion noise. We show the curves for selected
redshift bins centered on the following values: zs ¼ 0.76, 1.76, 2.76, 3.76.
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Figure 6 shows the MBH mass/redshift distribution of the
detectedEMRIs for three representativemodelsM1,M4, and
M12 in orange, violet and green respectively.
Figure 7 shows the number of visible LEMRIs in the

presence of magnification μ per redshift bin, dzS for all 12
population models, computed for SNR threshold of 20,
without considering the EMRI confusion noise.

Figure 8 shows the redshift distribution of the observed
LEMRIs over a time of 4 years for M1, M4, M12, assuming
a detection threshold of 20 and no EMRI confusion noise.
For M1, our fiducial model, the number of LEMRIs above
threshold peaks between 1≲ z≲ 2, which justifies our
assumption of a LEMRI located at zS ¼ 1.26 in the
parameter estimation section.

FIG. 8. Observed LEMRIs in 4 years as a function of source redshift. We plot in blue M1, in violet M4 and in green M12, assuming no
EMRI background confusion noise.
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FIG. 9. The blue posterior represents pðθEjs; zS ¼ 1.26Þ with Δt ¼ 0. The red posterior is the same except with a time shift
Δt ¼ 45.6 days. The black vertical line indicates the true values of the LEMRI. Due to our choice of impact factor y ¼ 0.5, the effective
distance D− is equal to the luminosity distance of the source DS.
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