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The growth of large-scale structures, together with the geometrical information of cosmic expansion
history and cosmological distances, can be used to obtain constraints on the spatial curvature of the
Universe that probes the early Universe physics, whereas modeling the nonlinear growth in a nonflat
universe is still challenging due to the computational expense of simulations in a high-dimensional
cosmological parameter space. In this paper, we develop an approximate method to compute the halo-
matter and halo-autopower spectra for nonflat Λ cold dark matter (ΛCDM) model, from quantities
representing the nonlinear evolution of the corresponding flat ΛCDM model, based on the separate
universe method. By utilizing the fact that the growth response to long-wavelength fluctuations
(equivalently, the curvature) TδbðkÞ is approximated by the response to the Hubble parameter ThðkÞ,
our method allows one to estimate the nonlinear power spectra in a nonflat universe efficiently from the
power spectra of the flat universe. We use N-body simulations to show that the estimator can provide the
halo-matter (halo-auto) power spectrum at ∼1% (∼2%) accuracy up to k ≃ 3ð1Þ hMpc−1 even for a model
with large curvature ΩK ¼ �0.1. Using the estimator, we can extend the prediction of the existing
emulators such as Dark Emulator to nonflat models without degrading their accuracy. Since the response to
long-wavelength fluctuations is also a key quantity for estimating the supersample covariance (SSC), we
discuss that the approximate identity TδbðkÞ ≈ ThðkÞ can be used to calculate the SSC terms analytically.

DOI: 10.1103/PhysRevD.109.063504

I. INTRODUCTION

The spatial curvature of the Universe (ΩK) is an important
quantity that characterizes the geometry of the Universe and
probes the physics of the early Universe including the
mechanism of inflation. The curvature of the Universe
influences various observables, including the spatial distri-
bution of galaxies, through both its geometric properties and
its impact on the growth of large-scale structures (LSSs).
The geometrical constraint, inferred from the primary cos-
mic microwave background anisotropy information of the
Planck data [1], is given as ΩK ¼ −0.044þ0.018

−0.015 (68% C.L.),
implying a 2σ hint of the close geometry, although combi-
nation with lensing and baryon acoustic oscillations [1] and

most other constraints are consistent with a flat universe
(e.g., [2–10]) (Fig. 1 of Ref. [11] shows a summary plot).
This indicates the importance of constraining the curvature
from the growth of the structure as an independent probe.
Furthermore, to obtain more precise constraints on the
curvature close to the amplitudes of primordial fluctuations,
jΩKj ∼ 10−4, it is crucial to combine observations of these
two effects (e.g., [12]). However, achieving this requires
development of a theoretical model that adequately incor-
porates mode coupling effects. Mode coupling refers to the
phenomenon where the nonlinear nature of gravity causes
fluctuations of different wavelengths to interact with each
other. Constructing such a model is generally challenging.
Despite its inherent difficulty, incorporating small-scale
information is vital for obtaining stronger constraints on
cosmological parameters. For flat cosmological models, in*ryo.terasawa@ipmu.jp
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particular, fitting formulas or emulators based on the pre-
dictions of N-body simulations have been developed (e.g.,
[13–24]). For example, Dark Emulator [20] predicts the basic
statistical quantities of dark matter halos (halos in what
follows for simplicity) such as their abundance as a function
of mass and the halo power spectrum down to the nonlinear
scale. With these nonlinear predictions of the halo statistics,
together with the halo occupation distribution (hereafter,
HOD) description, Ref. [25] analyzed the two-point corre-
lation function of galaxy clustering, galaxy-galaxy lensing,
and cosmic shear (so-called 3 × 2-point analysis) and
obtained tighter constraints on the cosmological parameters
compared to the traditional analysis based on the linear bias
model [26].
Theoretical models for the power spectrum in a nonflat

universe are still in the development stage compared to
models in a flat universe due to the computational expense
of covering a wider range in a multidimensional cosmo-
logical parameter space. Because of this limitation of
knowledge on nonlinear scales, in the 3 × 2-point analysis
of the DES Y3 [9] data, they used only the linear scales. In
this work, we provide a method to model the power
spectrum down to nonlinear scales so that one can gain
information on the curvature from small scales.
The effect of curvature on structure formation can be

identified with the very-long-wavelength density fluctua-
tions in theΛ cold dark matter (ΛCDM)model based on the
separate universe (SU) approach [27–31]. In [32], we
developed a method to compute the nonlinear matter power
spectrum for nonflat cosmologies utilizing the SU
approach. We utilized the approximate identity that states
the effect of these long-wavelength density fluctuations on
structure formation is well reproduced by the response to
the Hubble parameter h [32,33]. Using the response to
long-wavelength fluctuations modeled in this way, we have
shown that the model of the matter power spectrum for flat
universes, whose accurate model calculation is already
available from the fitting formula or emulator, can be
extended to calculate the nonlinear matter power spectrum
for a universe with nonzero curvature.
In this work, we apply the SU approach to predict the

halo-matter and halo-auto (halo-halo) power spectra down
to the nonlinear scales for nonflat cosmologies. We will
verify that the approximate identity holds for the halo-
matter and halo-autopower spectrum responses and con-
struct the estimators of these power spectra using the
response to the Hubble parameter. The nonlinear prediction
of these spectra together with the HOD prescription
provides a way to predict the galaxy-galaxy lensing or
galaxy clustering data down to small scales (e.g., [25,34]).
Another application of the modeling of the response to

long-wavelength fluctuations is to compute the supersam-
ple covariance (SSC) [28], which is the sample variance
contribution caused by mode coupling with long-
wavelength fluctuations. SSC for the power spectrum

can be computed using its response to the supersurvey
modes (e.g., [33]). We also provide a way to compute the
response to the supersurvey modes using the power
spectrum response to h, which enables us to utilize a
fitting formula or an emulator validated only for flat
geometry.
In the literature, there are analytical methods to compute

the response, with the perturbation theory (e.g., [35]) or
halo model (e.g., [36]). Using these analytical methods, we
can calculate the response quickly. However, these models
suffer from the limitation of scales or inaccuracy. On the
other hand, measuring the SSC from the scatter among an
ensemble of simulations (e.g., [37]) is expected to provide
an accurate covariance matrix with a relatively high
computational cost. The size of the data vector is expected
to become larger for future surveys, especially the ones
using multitracers, for which the number of simulations
needed could be Oð102Þ–Oð103Þ. In this paper, our model
is compared with simulations and shown to be more
accurate than the analytical methods used in the literature,
while the computational cost is much cheaper than a
simulation ensemble. Our method for computing the total
response would be implemented into the Core Cosmology
Library [38].
This paper is organized as follows. In Sec. II, we first

review the SU approach for the nonlinear matter power
spectrum in Ref. [32] and generalize it to predict the halo-
matter or halo power spectrum. In Sec. III, we introduce our
method to compute the total response to the supersurvey
modes using the response to h. In Sec. IV, we describe
details of N-body simulations for flat and nonflat ΛCDM
models used in this paper. In Sec. V, we present the main
results of this paper and show a numerical validation of our
methods. Section VI is devoted to discussion and con-
clusion. In the Appendix, we describe the details of how to
compute the power spectrum response to the long-wave-
length fluctuations. Throughout the paper, we assume
ΛCDM model and flat geometry for the fiducial cosmol-
ogy. We also assume that the SSC is calculated in this
fiducial cosmology.

II. SU APPROACH FOR Pðk;ΩKÞ
A. SU approach for Pmmðk;ΩKÞ

In this section, we briefly review the SU approach to
predict the nonlinear matter power spectrum PmmðkÞ for a
nonflat universe following Ref. [32].
First, since the effect of the curvature or the long-

wavelength density fluctuations on structure formation
appears only in the late Universe, throughout this paper
we consider a model where structure formation in the early
Universe is identical to that of the fiducial flat universe.
Specifically, we keep the parameters

fωc;ωb; As; nsg ð1Þ
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fixed, where ωcð≡Ωch2Þ and ωbð≡Ωbh2Þ are the physical
density parameters of CDM and baryons, respectively,
and As and ns are the amplitude (at the pivot scale
kpivot ¼ 0.05 Mpc−1) and the spectral tilt of the power
spectrum of primordial curvature perturbations. Note that
we fix the sum of neutrino masses so that the early Universe
physics remains unchanged and treat its impact only
through the linear transfer function of total matter fluctua-
tions at z ¼ 0 (see Refs. [20,39] for more details). These
models with the four fixed parameters [Eq. (1)] share the
same linear power spectrum PLðkÞ at sufficiently high
redshifts zi ≫ 1. The remaining parameters that affect
structure formation are ΩK and h within the nonflat
ΛCDM model. Note that the density parameter for the
cosmological constant ΩΛ is automatically determined
once the parameters in Eq. (1) and fΩK; hg are all fixed.
In the SU approach, the effects of the background

density modulation δbðtÞ in a flat universe are interpreted
as the local effective cosmology with modified background
density,

ρ̄mðtÞ ¼ ρ̄mfðtÞ½1þ δbðtÞ�; ð2Þ

and nonzero curvature corresponding to δb (see below).
Note that the subscript of δb stands for “background” and
does not mean baryon. Hence it gives a mapping between
nonflat and flat ΛCDM models. Hereafter, we call the two
models ΩK-ΛCDM and fΛCDM, respectively, and we
denote quantities in the fΛCDM model by sub/superscript
“f” for flat. We assume δbðtÞ evolves according to the
linear growth factor DfðtÞ as δbðtÞ ∝ DfðtÞ.
The curvature and overdensity are related to each other

via [31]

ΩK ¼ −
5Ωm

3

δbðtÞ
DfðtÞ

: ð3Þ

The remaining parameter h is mapped as

hf ¼ hð1 − ΩKÞ1=2: ð4Þ

Note that the redshifts in these two cosmologies at a given
cosmic time t are related as

ð1þ zfÞ½1þ δbðzfÞ�1=3 ¼ 1þ z: ð5Þ

Inversely, we can treat the nonflat universe as an
over-/underdense region in the corresponding flat universe,
and the power spectrum in the target nonflat universe can be
approximated by Taylor expansion around the flat universe
as discussed in Ref. [32],

Pðk; z;ΩKÞ≃Pfðk; zf;δbÞ

≃Pfðk; zfÞjδb¼0

�
1þ ∂ lnPfðk; zf;δbÞ

∂δb

����
G;δb¼0

δb

�

≡ P̃ðk; z;ΩKÞ; ð6Þ

where δb ≡ δbðzfÞ. In the last equality on the rhs, we have
put the tilde symbol ˜ on P̃ðk; z;ΩKÞ to explicitly denote
that P̃ is an “estimator” of the nonlinear matter power
spectrum for the ΩK-ΛCDM model. We introduced sub-
script “G” to ∂PfðkÞ=∂δb to emphasize that it is the growth
response [29]. The growth response can be computed as the
difference between the power spectra at a fixed comoving
wave number k in the two SU cosmologies, omitting the
dilation effect that originates from the difference in the
scale factors (Sec. III). Throughout the paper, the wave
number k refers to a given comoving wave number, even if
the corresponding physical scales differ among the cos-
mologies. Note that the expansion of Eq. (6) is applicable to
not only the matter power spectrum but also the halo-matter
and halo-autopower spectra as we will show below.
Furthermore, we define a normalized growth response

Tmm
δb

ðkÞ as

Tmm
δb

ðkÞ≡
�
2
∂ lnDðδbÞ

∂δb

�
−1∂ lnPmmðk; δbÞ

∂δb

����
G;δb¼0

: ð7Þ

The normalized response has an asymptotic behavior of
Tmm
δb

→ 1 at the linear limit k → 0, because Pmmðk; zÞ ∝
DðzÞ2PLðk; ziÞ in such linear regime. The linear limit of the
matter power spectrum growth response is given in
Refs. [27,28] as

2
∂ lnDðδbÞ

∂δb
≈
26

21
: ð8Þ

Since we have a prediction for the linear power spectrum for
theΩK-ΛCDMmodel, we only need to expand the nonlinear
correction Bðk; zÞ defined as Pðk; zÞ≡ PLðk; zÞBðk; zÞ.
Using the normalized response TδbðkÞ, we can write the
expansion as

P̃ðk;ΩKÞ¼
�

DðzÞ
DfðzfÞ

�
2

PfðkÞ
�
1þ26

21
ðTδbðkÞ−1ÞδbðzfÞ

þ
�
G2ðkÞ
2

−
1501

1323
−
�
26

21

�
2

ðTδbðkÞ−1Þ
�
δbðzfÞ2

�
;

ð9Þ

where

G2ðkÞ≡ 1

PfðkÞ
∂
2PðkÞ
∂δ2b

����
G;δb¼0

ð10Þ
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and 1501=1323 is the linear limit of G2ðkÞ=2 for the matter
power spectrum [40], derived in an Einstein–de Sitter
cosmology. We explicitly wrote down the expansion up to
the second order in δb and show below that the second-order
term is negligible for moderate values of jΩKj that are
consistent with the current bounds, jΩKj≲Oð10−1Þ. For
the matter power spectrum, the normalized growth response
TδbðkÞ ranges about [0.3, 1.6] at redshift z ≃ ½0; 1.5� in the
range of k ≃ ½10−2; 6� hMpc−1 (see Fig. 2 of Ref. [32]) and
G2ðkÞ=2 ranges about [0.5, 2] at z ¼ 0 in the range of k ≃
½10−2; 2� hMpc−1 (Fig. 2 of [31]). Since the prefactors of the
first- and second-order terms before δb and δ2b are at most
Oð10−1Þ, the contributions from the first- and second-order
terms are at percent and subpercent level, respectively, even
for a large curvature case of jΩKj ∼Oð10−1Þ [corresponding
to δbðtÞ ∼Oð10−1Þ]. As we will show below, the second- or
higher-order terms are also negligible for the halo-matter or
halo-autopower spectrum. Hence we consider the expansion
up to the first order of δb throughout this paper.
We also define the normalized growth response to h

within the flat model as

Tmm
h ðkÞ≡

�
2
∂ lnD
∂h

�
−1 ∂ lnPmmðk; hÞ

∂h
: ð11Þ

As shown numerically in Refs. [30,32] (also as will be
shown in Fig. 1), these two responses agree well even in the

nonlinear regime: Tmm
δb

ðkÞ ≃ Tmm
h ðkÞ. Finally, using this

approximate identity TδbðkÞ ≃ ThðkÞ and ignoring the terms
of second or higher order in δbðtÞ, we can approximate the
estimator as

P̃ðk; z;ΩKÞ ¼
�

DðzÞ
DfðzfÞ

�
2

Pfðk; zfÞ

×

�
1þ 26

21
ðThðkÞ − 1ÞδbðzfÞ

�
: ð12Þ

By construction, the estimator reproduces the linear pre-
diction at k → 0, where the first-order term vanishes
because Tmm

h ðk → 0Þ ¼ 1. The novel feature of the above
estimator (12) is that it allows one to compute the nonlinear
matter power spectrum for nonflat universe from the
quantities in flat universe. With this estimator, we can
extend emulators available in the community, which are
applicable only for flat universes, to predict the power
spectrum in a nonflat universe.

B. SU approach for halo power spectra

In this paper, we extend the SU approach mentioned
above to the halo-matter and halo-autopower spectra.
Similar to the above discussion, we define TXY

δb
ðkÞ and

TXY
h ðkÞ as

TXY
δb

ðkÞ≡
�
2
∂ lnDðδbÞ

∂δb

�
−1∂ lnPXYðk; δbÞ

∂δb

����
G;δb¼0

;

TXY
h ðkÞ≡

�
2
∂ lnD
∂h

�
−1 ∂ lnPXYðk; hÞ

∂h
; ð13Þ

where XY ¼ fmm; hm; hhg. When considering the
response of PhmðkÞ or PhhðkÞ, we perform the derivative
keeping the comoving halo number density fixed. As we
will specify the latter in Sec. A 3 of the Appendix, these
responses are not the same as the growth response in the SU
approach where the derivative is performed keeping the
halo mass threshold fixed.
As a highlight of our approach, in Fig. 1 we show the

responses of power spectra of matter-matter (mm), halo-
matter (hm), and halo-halo (hh) to δb or h, Tmm, Thm and
Thh, which are computed using Eq. (13). At the large-scale
limit k → 0, the matter-matter response Tmm

δb
¼ 1 and

Tmm
h ¼ 1 by definition. Given that the abundance-matched

halo samples correspond to the same initial density peaks,
which is true as long as mergers do not severely affect this
correspondence, the clustering amplitudes of the abun-
dance-matched halos on large scales barely change. This is
why Thhðk → 0Þ ≃ 0 and Thm is smaller than Tmm. The
figure also shows that the responses for “mm,” “hm,” and
“hh” have quite different k dependence. Hence accurate
calibration is important to capture the scale dependence.
The responses for δb and h are in good agreement with each

FIG. 1. The responses of the power spectra to δb and h
measured from the N-body simulations (see Sec. IV for details
of the simulations). The circle, triangle, and square symbols show
the responses of the matter power spectrum [TmmðkÞ], halo-matter
power spectrum [ThmðkÞ], and halo power spectrum [ThhðkÞ],
respectively. For ThhðkÞ, we only plot the scales where halo
power spectra after subtracting the shot noise have positive
values. We slightly shift the symbols of ThðkÞ along the x axis
for illustration.
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other, for all the mm, hm, and hh power spectra, which
validates our method to approximate the response to δb by
the response to h.
Finally, using the approximate identity TδbðkÞ ≃ ThðkÞ,

we can obtain the estimator as

P̃XYðk; z;ΩKÞ ¼
�

DðzÞ
DfðzfÞ

�
2

Pf
XYðk; zfÞ

×

�
1þ 26

21
ðTXY

h ðkÞ − 1ÞδbðzfÞ
�
: ð14Þ

III. TOTAL RESPONSE ESTIMATOR USING
FLAT ΛCDM MODEL

In this section, we discuss that our approximation using
the response of the power spectrum to the Hubble param-
eter can be used to calibrate the SSC of a cosmological
observable. Here the SSC is the sampling variance error of
the observable in a finite-volume survey, which arises from
the mode coupling of density fluctuations in the survey
with density fluctuations on scales greater than the survey
window, i.e., supersurvey modes [28,29,41]. For instance,
the SSC gives a dominant source of the sample variance on
scales larger than the scales where the shot noise domi-
nates, e.g., for the two-point correlation function of cosmic
shear, which is given by the weighted line-of-sight inte-
gration of the matter power spectrum.
SSC for the X and Yobservables in the ith and jth bins,

respectively, is generally expressed, as proposed by
Ref. [28], as

CðXYÞSSC
ij ≈ σ2b

∂OXi

∂δb

∂OYj

∂δb
; ð15Þ

where σ2b is the variance in the linear density filtered by a
window function assuming a sufficiently large survey
volume in that the supersurvey modes (δb) are in the linear
regime, and ∂O=∂δb is the total response of the observable to
δb including both the growth and dilation responses (see
below). The observables can be any statistical cosmological
quantities such as power spectrum, bispectrum, and cluster
mass function. In this paper, we consider, asOX and/orOY,
either of the matter, halo-matter, or halo-halo power spec-
trum and the ith index in the above equation corresponds to
the ith k bin. Otherwise, the above equation is a general
expression of SSC.We also note that, once the total response
for the 3D observable (e.g., the matter power spectrum) is
given, the SSC to the corresponding angular observable
(e.g., cosmic power spectrum) can be obtainedby aweighted
line-of-sight integral of the 3D SSC term [41].
In the following, we provide an approximate way to

compute the total response using the power spectrum
response to h.

A. Preliminary

First, we summarize analytical methods of computing
the total response proposed in the literature.

1. Perturbation theory

The total response can be computed using the perturba-
tion theory (PT) [35] as

∂ lnPmm;PTðkÞ
∂δb

¼ 68

21
−
1

3

∂ lnk3PLðkÞ
∂ lnk

;

∂ lnPgm;PTðkÞ
∂δb

¼ 68

21
þbg;2

bg
−bg−

1

3

∂ lnk3PLðkÞ
∂ lnk

;

∂ lnPgg;PTðkÞ
∂δb

¼ 68

21
þ2

bg;2
bg

−2bg−
1

3

∂ lnk3PLðkÞ
∂ lnk

; ð16Þ

where bg and bg;2 denote the first- and second-order Eulerian
galaxy biases. Using the HOD prescription (e.g., [42]), bg is
given as

bg ¼
1

n̄g

Z
dM

dn
dM

ðMÞbh;1ðMÞhNgðMÞi; ð17Þ

with the mean number density of galaxies

n̄g ¼
Z

dM
dn
dM

ðMÞhNgðMÞi; ð18Þ

where hNgðMÞi is the mean number of galaxies in a halo,
dn=dM is the halo mass function in the mass range
½M;M þ dM�, and bh;1ðMÞ is the linear bias of halos of
massM. Throughout the paper, we use the fitting function by
Ref. [43] for the linear halo bias bh;1ðMÞ.
Similarly, bg;2 is given as

bg;2 ¼
1

n̄g

Z
dM

dn
dM

ðMÞbh;2ðMÞhNgðMÞi; ð19Þ

where bh;2ðMÞ is the second-order halo bias of halos of
mass M. Throughout this paper, we use the fitting formula
of bh;2 proposed in Ref. [44], which gives bh;2ðMÞ in terms
of the linear halo bias, i.e., bh;2 ¼ bh;2ðbh;1Þ.
As we will show later on, the perturbation theory well

describes the response on a large scale, but it fails to
reproduce the small-scale behavior, where perturbation
theory itself starts to break down.

2. Halo model

The halo model (e.g., [45]) is commonly used to
calculate the response of the matter power spectrum in
the literature [28,29,46]. Reference [36] derived the
responses for the multiprobe power spectrum, denoted as
PXY, based on the halo model. Following the notations in
Ref. [36], the responses are written as
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∂PXYðkÞ
∂δb

¼
�
47

21
þ I2XðkÞ
I1XðkÞ

þ I2YðkÞ
I1YðkÞ

−
1

3

∂ lnPLðkÞ
∂ ln k

�

× I1XðkÞI1YðkÞPLðkÞ þ I1XYðk; kÞ
− ½bX;X¼g þ bY;Y¼g�PXYðkÞ; ð20Þ

where bX;X¼g ¼ bg for X ¼ g and otherwise bX;X¼g ¼ 0

and the functions IαX and IαXY are defined as

IαXðkÞ ¼
Z

dM
dn
dM

ðMÞbh;αðMÞũXðk;MÞ;

IαXYðk; k0Þ ¼
Z

dM
dn
dM

ðMÞbh;αðMÞũXðk;MÞũYðk0;MÞ;

ð21Þ

where ũXðk;MÞ is the Fourier transform of the radial
profile of tracers X in host halos, multiplied by the number
density normalization and the HOD function for galaxies
following the notations in Ref. [36]. Note that ũXðk;MÞ has
a dimension of volume.
We stress that we included the terms proportional to

I2XðkÞ in the parentheses of Eq. (20), which were missing in
Ref. [36]. These terms depend on the second-order halo
bias bh;2, which arises from the response of the linear halo
bias bh;1 to δb. For the matter power spectrum (for the
case X ¼ Y ¼ m), the terms proportional to I2mðkÞ are
negligible due to the halo model consistency relation [40].
Since I1gðkÞ → bg and I2gðkÞ → bg;2 at the k → 0 limit,
I2gðkÞ=I1gðkÞ → bg;2=bg at the limit, which reproduces the
PT response [Eq. (16)]. Thus we believe that the above
response formula [Eq. (20)] is more accurate in the sense
that it includes the PT theory at the limit of k → 0.
We will below assess the accuracy and limitation of these

analytical formulas of the power spectrum responses by
comparing the model predictions with the simulation
results.

B. h response method

The long-wavelength modes (supersurvey modes) whose
wavelengths are larger than the survey volume/simulation
box affect the growth of LSSs via mode coupling. The
effects of the long-wavelength modes can be considered as
the background density (mean density) modulation δb,
which in turn can be interpreted as the local effective
cosmology with nonzero curvature corresponding to δb (the
SU approach, e.g., [27–31]).

Different large-scale structure tracers are measured with
respect to either the “global” or “local” mean density of the
tracers, where the local mean is the average density of the
tracers in a finite-volume survey. Depending on this
difference, the response of power spectrum of X and Y
tracers, PXY, to the supersurvey modes can be decomposed
into three contributions (e.g., [29,41]),

∂ lnPXYðk; δbÞ
∂δb

����
total

¼ nþ ∂ lnPXYðk; δbÞ
∂δb

����
G

−
1

3

∂ ln k3PXYðkÞ
∂ ln k

: ð22Þ

The first term on the rhs accounts for the change in the
mean density of the tracers by δb, used in the definition of
the density fluctuation field; for example, for the matter
field (XY ¼ mm), δm ¼ ρm=ρ̄m − 1. The cases of n ¼ 2, 1,
and 0 correspond to XY ¼ mm, gm, and gg, respectively,
which are relevant to cosmic shear, galaxy-galaxy weak
lensing, and galaxy-galaxy clustering, respectively [41].
The second term is the growth response, which describes
the fractional change in the power spectrum amplitude by
the presence of δb. The last term is the dilation response,
which originates from the change in the physical scale
corresponding to a given comoving scale due to the change
in cosmic expansion.
Using this decomposition, we propose the matter power

spectrum response estimator as

∂ lnPmmðk; δbÞ
∂δb

����
total

¼ 2þ 26

21
Tmm
h ðkÞ

−
1

3

∂ ln k3PmmðkÞ
∂ ln k

; ð23Þ

where we have used the fact that the normalized growth
response to δb is approximated by that to h,

∂ lnPmmðk; δbÞ
∂δb

����
G
¼ 26

21
Tmm
δb

ðkÞ ≃ 26

21
Tmm
h ðkÞ: ð24Þ

Similarly, as we will show in Sec. A 3 of the Appendix, we
can use the approximate identity of the responses of halo-
matter and halo-autopower spectra to predict the growth
responses of galaxy-matter and galaxy-autopower spectra
with the HOD description,

∂PgmðkÞ
∂δb

����
G
≃

1

n̄g

Z
dM

�
dhŨgðk;MÞi

dM
nð>MÞ

�
bLh;1ð>MÞPhmðk;MÞ þ 26

21
Thm
h ðk;>MÞPhmðk;>MÞ

�

þ 1

3
Phmðk;>MÞ ∂

∂ ln k

d lnhŨgðk;MÞi
dM

�
− bLg PgmðkÞ; ð25Þ
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∂PggðkÞ
∂δb

����
G
≃

1

n̄2g

ZZ
dMdM0

�
dhŨgðk;MÞi

dM

dhŨgðk;M0Þi
dM0 nð>MÞnð>M0Þ

�
2bLh;1ð>M0ÞPhhðk;>M;M0Þ

þ
�
26

21

�
Thh
h ðk;>M;>M0ÞPhhðk;>M;>M0Þ þ 2

3
Phhðk;>M;>M0Þ ∂

∂ ln k

d lnhŨgðk;MÞi
dM

��

þ 1

n̄2g

Z
dM

dn
dM

ðMÞ
�
bLh;1ðMÞhŨ2

gðk;MÞi þ 1

3

∂hŨ2
gðk;MÞi
∂ ln k

�
− 2bLg PggðkÞ; ð26Þ

where the superscript L denotes the Lagrangian bias and
Ũgðk;MÞ describes the quantity arising from the galaxy-
halo connection (see the Appendix for the definition).
Since the h response is defined within flat cosmologies,

we can predict the power spectrum response from flat
cosmology predictions or simulations without performing
a pair of nonflat universe simulations following the SU
framework. As we will show below, using the simulation-
based emulator we can predict the response accurately down
to the nonlinear scale.
Finally, to ensure the estimator is correct at large scales,

we stitch the estimator with perturbation theory prediction
[35] described above in Eq. (16). Specifically, we smoothly
stitch the estimator with perturbation theory prediction as

∂ lnPXYðkÞ
∂δb

¼ ∂ lnPXY;PTðkÞ
∂δb

e−ðk=kswitchÞ

þ ∂ lnPXY;estðkÞ
∂δb

½1 − e−ðk=kswitchÞ�: ð27Þ

Throughout the paper, we adopt the switching scale
kswitch ¼ 0.08 hMpc−1 for XY ¼ mm, gm, and gg.

IV. SIMULATIONS

A. N-body simulations

In this section, we give a brief summary of the simu-
lations used in this paper. Our simulations follow the
method in Nishimichi et al. [20].
We use Gadget-2 [47] to carry out N-body simulation for a

given cosmological model. The initial conditions are set up
at redshift zi ¼ 29 using the second-order Lagrangian
perturbation theory [48,49] implemented by Nishimichi
et al. [50] and then parallelized in Valageas and Nishimichi
[51]. We use the public code CAMB [52] to compute the
transfer function for a given model, which is used to
compute the input linear power spectrum. For all simu-
lations in this paper, we use the same simulation box size in
gigaparsec (i.e., without h in the units) and the same
number of particles: L ¼ 2h−1f ≃ 2.97 Gpc (without h in
units) and Np ¼ 20483, which correspond to the particle
Nyquist wave number k ¼ 3.2 hf Mpc−1. In the following,
we will show the results at wave numbers smaller than this
Nyquist wave number. In this paper, we use simulations for

four different cosmological models, denoted as fiducial flat
ΛCDM,ΩK-ΛCDM1,ΩK-ΛCDM2, and h-ΛCDMmodels,
respectively, as given in Table I. Here the cosmological
parameters for the fiducial model are chosen to be con-
sistent with those for the Planck 2015 best-fit cosmology
[53]. The cosmological parameters for each of the nonflat
cosmological models are chosen so that it has the fiducial
ΛCDM model as the corresponding flat ΛCDM model
in the SU approach. We use paired simulations for
ΩK-ΛCDM1 model to compute the power spectrum
response with respect to δb (Tδb ), where the curvature
parameters are specified by δb ¼ �0.01 at zf ¼ 0. The
h-ΛCDMmodel is for computing the response with respect
to h (Th): here, we chose a step size of δh ¼ �0.02 for the
numerical derivative. We also use the simulations for
nonflat ΛCDM models with ΩK ¼ �0.1, named as
ΩK-ΛCDM2, to assess how our method can approximate
the halo-matter and halo-autopower spectrum for nonflat
models.
Table I gives the values ofΩK and h, and we use the fixed

values of other cosmological parameters, given as
ðωc;ωb;As;nsÞ¼ ð0.1198;0.02225;2.2065×10−9;0.9645Þ,
which specify the transfer function and the primordial
power spectrum or, equivalently, the linear matter power
spectrum. Note that we also include the effect of massive
neutrinos on the linear matter power spectrum, assuming
Ωνh2 ¼ 0.00064 corresponding to mν;tot ¼ 0.06 eV, the
lower limit inferred from the oscillation experiments (see
Ref. [20] for details). Hence the physical density parameter
of total matter is Ωmh2 ¼ ωc þ ωb þ ων. Note that Ωm and
ΩΛ are specified by a given set of the parameters for each
model: Ωm ¼ Ωmfh2f=h

2 and ΩΛ ¼ 1 −Ωm −ΩK . For
each model, we use the outputs at four redshifts, zf ≃ 0,
0.55, 1.03, and 1.48. Since the fiducial flat ΛCDMmodel is
the flat model in the SU method, each redshift for the
fiducial flat model corresponds to a slightly different
redshift in each nonflat model, which is computed
from Eq. (5).
Furthermore, we use simulations that are run using the

paired-and-fixed method in Angulo and Pontzen [54],
where the initial density field in each Fourier mode is
generated from the fixed amplitude of the power spectrumffiffiffiffiffiffiffiffiffiffi
PðkÞp

and the paired simulations with reverse phases, i.e.,
δk and −δk. The mean power spectrum of the paired runs
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fairly well reproduces the ensemble average of many
realizations even in the nonlinear regime [54,55]. The
paired-and-fixed simulations allow us to significantly
reduce the sample variance in the power spectrum estima-
tion. “2 (8)” on the column Nreal denotes one (four) pair(s)
of the paired-and-fixed simulations. For all simulations,
halos are identified using Rockstar [56]. We adopt M≡
MΔ ¼ 4π=3ðRΔÞ3ðΔρ̄m0Þ with Δ ¼ 200 throughout the
paper. Note that, when measuring the total response in
the ΩK-ΛCDM1 simulations, we use the spherical over-
density ΔW ¼ 200=ð1þ δbðtÞÞ so that halos are identified
using the same physical overdensity as in the correspond-
ing global universe (e.g., [57]). Note that all the N-body
simulations for different cosmological models have a fixed
mass resolution because they share the same Ωmh2 and
comoving volume.
After we identified halo candidates, we determine

whether they are central or satellite halos. When the
separation of two different halos (between their centers)
is closer than R200m of the more massive one, we mark the
less massive one as a satellite halo. In the following, we use
only central halos.

B. Mock catalogs of galaxies
in ΩK-ΛCDM simulations

To validate our method to compute the galaxy clustering
observables such as galaxy-matter and galaxy-autopower
spectra in nonflat cosmology and their total response, we
build the galaxy mock catalogs using the halo catalogs of
ΩK-ΛCDM simulations. We use the halo catalogs of
ΩK-ΛCDM1 simulations with the halo mass defined using
ΔW ¼ 200=ð1þ δbðtÞÞ to measure the total response,
whereas we use the halo catalogs of ΩK-ΛCDM2

simulations with the halo mass defined using Δ ¼ 200
to measure the galaxy clustering observables in the nonflat
universe. We assume that the galaxy profile around halos
and the mean HOD depend only on halo mass and are
invariant to cosmology, and we populate galaxies into halos
of each realization assuming the same HOD in each
ΩK-ΛCDM simulation. Specifically, we adopt the follow-
ing central and satellite HODs [42]:

hNcðMÞi ¼ 1

2

�
1þ erf

�
logM − logMmin

σlnM

��
;

hNSðMÞi ¼ ΘðM −M0Þ
�
M −M0

M1

�
αsat

; ð28Þ

where Θ is the step function. The total galaxy occupation is
written as

hNgðMÞi ¼ hNcðMÞi½1þ hNsðMÞi�: ð29Þ

We populate the central galaxies into the center of halos
according to the Bernoulli distribution with mean hNcðMÞi.
For satellite galaxies, we populate them only into host
halos, each of which already hosts a central galaxy,
assuming they obey the Poisson distribution with mean
hNSðMÞi. We assume that the satellite galaxy density
profile uSðr;MÞ follows the Navarro-Frenk-White profile
[58] with mass-concentration relation cðMÞ in Ref. [59].
We employ the HOD parameters as denoted in Table II.
These values correspond to the fiducial values of the Sloan
Digital Sky Survey “CMASS1” sample in Ref. [60] except
for σlogM, for which we use σlogM ¼ 0.5 instead of the
fiducial value σlogM ¼ 0.7919.

TABLE I. Details of N-body simulations for different cosmological models. The columns ΩK and h give their
values of the curvature parameter and Hubble parameter that are employed in each simulation, while we fix other
cosmological parameters fωc;ωb; As; nsg, which are needed to specify the linear power spectrum for the initial
conditions, to the values for the fiducial Planck cosmology (see text for details). Ωm and ΩΛ are specified by a given
set of ΩK and h, because we keep Ωmh2 fixed and ΩΛ ¼ 1 − Ωm − ΩK. The column “Nreal” denotes the number of
realizations, with different initial seeds, used for each model. We employ the “paired-and-fixed” method in [54] to
reduce the sample variance effect in small k bins for the power spectrum measurement: it uses the paired
(2) simulations by design (see text for details). The column “redshift (z)” gives the redshifts of simulation outputs:
for the ΩK-ΛCDM model, we properly choose the redshifts corresponding to the same cosmic time for each of
redshifts, z ¼ f0.0; 0.549; 1.025; 1.476g in the “fiducial” model in the SU approach [see around Eq. (5) in Sec. II].
All the simulations are done in the fixed comoving box size without h in its units, i.e., L ≃ 2.97 Gpc (corresponding
to 2h−1f Gpc for the fiducial model) and with the same particle number, i.e., Np ¼ 20483.

Name ΩK h Nreal Redshift (z)

Flat (fiducial) 0 0.6727 2 f0.0; 0.549; 1.025; 1.476g
ΩK-ΛCDM1 0.00663 0.6749 8 f−0.0033; 0.544; 1.018; 1.467g

−0.00672 0.6705 8 f0.0033; 0.554; 1.031; 1.484g
ΩK-ΛCDM2 0.1 0.7091 2 f−0.059; 0.482; 0.955; 1.405g

−0.1 0.6414 2 f0.043; 0.600; 1.079; 1.531g
h-ΛCDM 0 0.6927 8 f0.0; 0.549; 1.025; 1.476g

0 0.6527 8 f0.0; 0.549; 1.025; 1.476g
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As noted in the previous section, each pair of the SU
simulation uses the same initial seeds to reduce the sample
variance. However, as we populated galaxies randomly, the
reduction of the sample variance is partially ruined. Hence,
we marginalized over ten HOD seeds for each realization of
N-body simulation to obtain the converged results.

C. Measurements of power spectra and the responses

To calculate the power spectrum from each simulation
output, we assign the N-body particles, halos, or galaxies
on 20483 grids using the cloud-in-cells (CIC) method [61]
to obtain the density fields of matter, halo, or galaxy. After
performing the Fourier transform, we correct for the
window function of CIC following the method described
in Ref. [62]. We will show the results at wave numbers

smaller than the Nyquist frequency, k ¼ 3.2 hfMpc−1.
Furthermore, to evaluate the power spectrum at k ≥
1.6 hfMpc−1 accurately, we fold the particle positions into
a smaller box by replacing x → x%ðL=2Þ, where the
operation a%b stands for the remainder of the division
of a by b. This procedure leads to effectively 2 times higher
resolution. For the halo- and galaxy-autopower spectra, we
subtract the shot noise from the measurements, where we
simply assume the shot noise to be given by the number
density of the tracers.
Since we use the fixed box size and the same particle

number, we use the same k binning to estimate the average of
jδkj2 in eachkbin to estimate the bandpower.We thenuse the
two-side numerical derivative method to compute the power
spectrum responses. We compute the growth response as

∂ lnPðk; zÞ
∂δb

����
G;sim

¼ lnPþðk; δb0 ¼ þϵÞ − lnP−ðk; δb0 ¼ −ϵÞ
2ϵ ×DðzÞ ð30Þ

and compute the total response as

∂Pðk; zÞ
∂δb

����
total;sim

¼ ðn − 1ÞPðk; δb0 ¼ 0Þ þ Pþðð1 − δb=3Þk; δb0 ¼ þϵÞ − P−ðð1þ δb=3Þk; δb0 ¼ −ϵÞ
2ϵ ×DðzÞ ; ð31Þ

where δb0 ≡ δbðzf ¼ 0Þ and ϵ ¼ 0.01 for the ΩK-ΛCDM1
simulations. To reduce statistical stochasticity (or sample
variance), we employ the same initial seeds as those for the
fiducial model. The column Nreal in Table I denotes the
number of realizations for paired simulations, where each
pair uses the same initial seeds. For ΩK-ΛCDM1 and
h-ΛCDM models, we run eight paired simulations to
estimate the statistical scatters.

V. RESULTS

A. Growth response

First, we study the approximate identity of the growth
response TδbðkÞ ≈ ThðkÞ with our N-body simulations.
In Fig. 2, we compare the growth response of the halo-

matter power spectrum to δb and h, for the abundance-
matched halo samples, at the four redshifts as in Table I.
These responses are calculated from N-body simulations
for ΩK-ΛCDM1 and h-ΛCDMmodels. We can see that the
approximate identity Thm

δb
ðkÞ ≈ ThðkÞ holds for all four

redshifts and down to the nonlinear scale. Note that halos
are selected using the abundance-matching method, where
the same number of halos, selected in the ascending order

of masses, are identified in the two simulations when
computing the responses.
In Fig. 2,we also compare thegrowth response of the halo-

autopower spectrum. Again it is clear that the approximate
identities Thh

δb
ðkÞ ≈ Thh

h ðkÞ hold for all four redshifts and
down to mildly nonlinear scales. Since the pairs of SU
simulations (ΩK-ΛCDM1) share the same Gaussian initial
condition, the abundance-matched halo samples correspond
to the same initial density peaks unless mergers severely
affect this correspondence.Hence the pairs of SUsimulations
have the similar clustering amplitudes of the abundance-
matchedhaloson large scales,which lead toThhðk → 0Þ ≃ 0.
The large change in the response ThhðkÞ around k ∼
1 hf Mpc−1 can be attributed to the exclusion effects of
the halos, whereas the scales smaller than the exclusion
scales do not contribute to the galaxy-autopower spectrum.
We showed the results for only one case of the number

density selected halo sample, but we confirmed that the
approximate identity also holds for other number densities.
As discussed in Ref. [32], we expect the responses

TδbðkÞ and ThðkÞ agree when the power spectrum is a
functional of the amplitude of the linear power spectrum. If
we assume the universal halo mass function, which

TABLE II. The parameters of HOD [Eq. (28)] used for making
the galaxy mock catalogs in this paper.

logMmin½M⊙=hf� 13.94
σlnM 0.5
logM0½M⊙=hf� 13.72
logM1½M⊙=hf� 14.46
αsat 1.192
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depends on cosmology only through PLðkÞ, the corre-
sponding halo bias is also determined only by PLðkÞ.
Hence, we can expect the responses TðkÞ to the different
parameters that leave the shape of the linear power
spectrum unchanged agree with each other for the linear
or quasinonlinear scales, where bias expansion of the
density field is valid. Especially, on large scales, where
PhmðkÞ¼b1PLðkÞ (PhhðkÞ ¼ b21PLðkÞ) holds, the response
TðkÞ is expected to be constant. On the other hand, the
responses in the nonlinear regime could be different due to
the difference in the growth history of the structure [32],
which leads to a change in the concentration of halos [30].
For TδbðkÞ and ThðkÞ, we found out they agree with each
other even in the nonlinear scale by numerical simulations.
In Fig. 3 we assess the accuracy of the responses of halo-

matter and halo-autopower spectra to h calculated by

Dark Emulator. The emulator can predict the response accu-
rately down to the nonlinear scale. For the halo-autopower
spectrum, it turned out that Dark Emulator does not predict the
h response correctly, and hence we also show the response
to As and z calculated by Dark Emulator, Thh;emu

lnAs
ðkÞ and

Thh;emu
z ðkÞ. These responses approximate the response to h

well. Since the halo-autopower spectrum only contains the
two-halo term, it is less affected by a change in the
concentration of halos and we can expect that the responses
to As, z, and h have similar features.

B. SU approach for Pðk;ΩKÞ
To assess the performance of our estimator for the halo-

matter and halo-autopower spectra for nonflat universe
P̃ðk;ΩKÞ [Eq. (14)], we compare it with the power spectra

FIG. 2. Growth responses of halo-matter and halo-autopower spectra with respect to δb (h), Thm
δb
ðkÞ [Thm

h ðkÞ], and Thh
δb
ðkÞ [Thh

h ðkÞ], at
the four redshifts as denoted by the legend in each panel. We use eight paired simulations for ΩK-ΛCDM1 and h-ΛCDM models in
Table I to compute these responses. The symbols denote the mean of Tδb or Th in each k bin, and the error bars (although not visible in
some k bins) denote the statistical errors for the simulation box with side length L ¼ 2 h−1f Gpc, which are estimated from the standard
deviations among the eight paired simulations. For ThhðkÞ, we only plot the scales where halo power spectra after subtracting the shot
noise have positive values. We slightly shift the symbols of ThðkÞ along the x axis for illustration.
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measured from N-body simulations with ΩK ¼ �0.1
(ΩK-ΛCDM2 model).
In Fig. 4, the data points show the power spectrum

measured from simulations, for the fΛCDM model and
ΩK-ΛCDM2 models. The curves show the predictions of
Eq. (14), where we used Pfðk; zfÞ and Thðk; zfÞ measured
from simulations of fΛCDM and h-ΛCDM models,
respectively. For the halo-matter power spectrum (left
panel), the estimator has ∼1% accuracy even for such

large curvature, ΩK ¼ þ0.1;−0.1 [corresponding to
δbðzf ¼ 0.55Þ ¼ −0.12;þ0.10]. For the halo-autopower
spectrum (right panel), the estimator has ∼2% accuracy
up to k ≃ 1 hfMpc−1. The relatively large deviation at k≳
1 hfMpc−1 is due to both large deviation from Pfðk; zfÞ
and the inaccuracy of approximation, TδbðkÞ ≈ ThðkÞ. The
smaller fractional change in the amplitudes of Phm and Phh
by the nonzero ΩK than the change in Pmm (see Fig. 5 in
[32]) is ascribed to the result of Fig. 1 (see the discussion
around the figure).
Further, we tested the accuracy of the prediction for the

galaxy-matter and galaxy-autopower spectra by Dark

Emulator, using the estimator in Eq. (14). We calculated
these spectra as the weighted integral of Phmðk;>MÞ or
Phhðk;>MÞ as in Eq. (A6). For the nonflat cosmology, we
use Eq. (14) to estimate Phmðk;>MÞ and Phhðk;>MÞ,
using Pfðk; zfÞ and Thðk; zfÞ predicted by the emulator.
We used the halo mass function predicted by the emulator
for the flat model, while we used the model in Ref. [63]
for the nonflat model because the emulator is not
trained for the nonflat model. On the large scale, we
stitched the predictions with those of the linear theory,
similar to Eq. (27).
In Fig. 5, we can see the predictions of the galaxy-matter

power spectrum by the emulator PemuðkÞ have ∼5%
accuracy. Compared to the prediction for the flat universe,
we can extend the prediction to the nonzero curvature
without significant degradation.

FIG. 4. An assessment of the accuracy of our method [Eq. (14)] for predicting the halo-matter power spectrum PhmðkÞ (left) and the
halo-halo power spectrum PhhðkÞ (right) for nonflat ΛCDMmodels. The different symbols in each panel denote PðkÞ, directly estimated
from N-body simulations for nonflat models with ΩK ¼ �0.1 (ΩK-ΛCDM2 models in Table I), at zf ¼ 0.55, while the lines denote
the results from our method, P̃ðkÞ in Eq. (14). Note that we used the simulation results for Pfðk; zfÞ and Thðk; zfÞ in Eq. (14). For the
simulation results, we used the paired-and-fixed method of Angulo and Pontzen [54] to reduce the stochasticity, and we considered the
halo sample with number density nh ¼ 10−3 h3fMpc−3. We only plot the range of scales where the halo power spectra after subtracting
the shot noise have positive values. For comparison, we also show the simulation result for the flat fiducial simulation by triangle
symbols. The lower plot in each panel shows the ratio between the simulation result and our method. The horizontal solid and dashed
lines denote �2;�1% fractional accuracy, respectively.

FIG. 3. Comparison of the simulation result for Thm
h ðkÞ, Thh

h ðkÞ
at zf ¼ 0.55 with those computed using Dark Emulator [20],

Thm;emu
h ðkÞ, Thh;emu

h ðkÞ.
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For the galaxy-autopower spectrum, due to the poor
accuracy of calculating the h response by the emulator
(Fig. 3), we use Thh

lnAs
ðkÞ instead. The accuracy of predict-

ing the galaxy-autopower spectra in the nonflat universe is
degraded compared to that for the flat universe, but the
estimator still can predict the spectra with ∼10% accuracy.

C. Total response

We tested the accuracy of our estimator for the power
spectrum total response to the supersurvey modes com-
pared with the measurement from the mock galaxy catalog
and N-body results.
In Fig. 6 we show the accuracy of the matter power

spectrum total response at zf ¼ 0.55 calculated by our
method [Eq. (23)] against the N-body simulations,
along with other theoretical predictions. We use Halofit in
Smith et al. (Smithþ 03) [14] and Takahashi et al.
(Takahashiþ 12) [17] to compute Tmm

h ðkÞ and PmmðkÞ
in Eq. (23), respectively. This different choice of
Halofit is because Smithþ 03 predicts Tmm

h ðkÞ better than
Takahashiþ 12 (see Fig. 3 in [32]), while Takahashiþ 12
is known to be more accurate for PmmðkÞ, especially on
small scales. The perturbation theory prediction agrees with
the N-body results on large scales, but it begins to deviate
around k≳ 0.1 hfMpc−1. The halo model reproduces the
behavior of the response out to the nonlinear scale, but it
underestimates the response by ∼20% at k ∼ 1 hMpc−1.
Compared with these two analytical models that are
commonly used in the literature, our method predicts the
response better over a wide range of scales.
In Fig. 7 we show the accuracy of the galaxy-matter and

galaxy-autopower spectrum total response at zf ¼ 0.55

calculated by our method [Eqs. (22), (25), and (26)] against
the N-body simulations, along with other theoretical pre-
dictions. We use Dark Emulator to compute PðkÞ, ThðkÞ, and
mass function in Eqs. (22), (25), and (26). For the galaxy-
autopower spectrum, as discussed in the Sec. VA, since Dark

Emulator does not predict the h response of the halo-
autopower spectrum correctly, we used the response to As
calculated by Dark Emulator instead. As with the matter power
spectrum response, ourmethod can predict the galaxy-matter

FIG. 6. Total response of matter power spectrum at zf ¼ 0.55
measured from the simulations and those calculated using our
method [Eq. (23); labeled as “This work”), perturbation theory
[Eq. (16)], and halo model [Eq. (20)]. The error bars (although
not visible) are estimated from the standard deviations among the
eight paired simulations.

FIG. 5. An assessment of the accuracy of our method [Eq. (14)] for predicting the galaxy-matter power spectrum PgmðkÞ (left) and the
galaxy-autopower spectrum PggðkÞ (right) for nonflat ΛCDM models. The different symbols in each panel denote PðkÞ, directly
estimated from N-body simulations for flat and nonflat models with ΩK ¼ �0.1, at zf ¼ 0.55, while the lines denote the prediction
using our method, P̃ðkÞ in Eq. (14) together with Dark Emulator. Error bars are estimated from the standard deviations among the 20 mock
catalogs. The lower plot in each panel shows the ratio between the simulation result and our method. The horizontal solid and dashed
lines denote �5;�2% fractional accuracy, respectively.
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and galaxy-autopower spectrum responses more accurately
compared to the analytical ones in the literature.
Finally, we mention the linear limit of the halo model

predictions. In Figs. 6 and 7, as we discussed in Sec. III A,
we can see the predictions of the halo model converge to
those of the perturbation theory at large scale. We also show
the impact of ignoring the I2gðkÞ term in the halo model
prediction. It is clear that ignoring the term results in an
inaccurate prediction on linear and quasinonlinear scales.

VI. CONCLUSION

In this paper, we have developed an approximate method
to model the halo-matter and halo-autopower spectra for
the nonflat ΛCDM model, from quantities representing the
nonlinear evolution of the corresponding flat ΛCDM
model, based on the SU method. The key points to build
the estimator are the correspondence between the nonflat
and flat universes through the SU picture and the equiv-
alence of the growth responses to long-wavelength modes
and the Hubble parameter. This work is a sequel of our
previous research [32], in which we proposed the approxi-
mate method for predicting the nonlinear matter power
spectrum for a nonflat ΛCDM model.
The estimator of the halo-matter (halo-auto) power

spectrum has ∼1% (∼2%) accuracy even for a large
curvature model with ΩK ¼ �0.1. Using the estimator
we can extend the existing emulators to predict the non-
linear power spectra for a nonflat universe without degrad-
ing its accuracy. In particular, we showed we can extend
the Dark Emulator to predict the galaxy-matter and galaxy-
autopower spectra for a nonzero curvature model.
The response TδbðkÞ is also a key quantity for estimating

SSC. We utilized the approximate identity TδbðkÞ ≈ ThðkÞ

and proposed the calculation of the total response (SSC
terms) using Halofit or Dark Emulator. We showed that our
method can predict the total response at an accuracy better
than the analytical methods used in the literature, such as
the perturbation theory and the halo model, thanks to
capturing the nonlinear response through ThðkÞ. We are
going to implement our method for computing the total
response into the Core Cosmology Library [38].
Although we assume the ΛCDMmodel in this paper, we

expect our approach to approximate the response to δb is
also applicable to the wCDM model, where dark energy is
not the cosmological constant. Once validated with numeri-
cal simulations, we can ease the computational cost of the
SU simulations by substituting it with the response to
another parameter that can be evaluated fast. In this paper,
we focused on the responses to δb and h, but we can think
of other parameters that share almost the same response in
wider cosmological parameter space, which can be used to
extend the simulation-based theory predictions and to ease
the computational cost for building such models.
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APPENDIX: CALCULATION METHODS
OF THE RESPONSE FUNCTIONS OF HALO

AND GALAXY POWER SPECTRA

1. The response of galaxy-matter power spectrum

We define the cumulative number density of halos as

nð>Mth; δbÞ≡
Z

∞

Mth

dM
M

nlnMðM; δbÞ; ðA1Þ

where nlnM ≡ dn=d lnM. We define the following dimen-
sionless quantities:

Phmðk;>MthÞ≡ nð>MthÞPhmðk;>MthÞ; ðA2Þ

for mass-threshold samples (above mass Mth) and

Phmðk;M−;MþÞ≡ nðM−;MþÞPhmðk;M−;MþÞ; ðA3Þ

for mass-bin samples in the mass range of ½M−;Mþ�,
respectively. Using these quantities, all the equations for
Pgm and its response can be simplified. The idea behind this
is as follows. First, mass-threshold halo samples are easier
to analyze in simulations. Once the halo-matter power
spectrum for various different mass thresholds is known,
one can convert them to that for mass-bin samples by
taking a derivative with respect to the mass threshold.
Numerically, this can be done by taking the finite difference

Phmðk;MÞ ≃ nð>M−ÞPhmðk;>M−Þ − nð>MþÞPhmðk;>MþÞ
nð>M−Þ − nð>MþÞ

; ðA4Þ

where M� ¼ M � ϵM with some small ϵM compared to
M�. In the above, note that the halo-matter power spectrum
is a halo number-weighted quantity, and thus n must be
considered appropriately. This equation is actually imple-
mented in Dark Emulator. Now, using Phm, this relation is
simplified as

Phmðk;M−;MþÞ ¼ Phmðk;>M−Þ − Phmðk;>MþÞ: ðA5Þ
We can use a similar trick for the galaxy-matter power
spectrum. Assuming a halo occupation distribution model,
we can have

PgmðkÞ ¼
1

n̄g

Z
dMhŨgðk;MÞi dn

dM
ðMÞPhmðk;MÞ; ðA6Þ

where Ũgðk;MÞ describes the Fourier transform of the
average radial profile of galaxy number density in host
halos with mass M, which can be computed by taking the
product of the halo occupation distribution NgðMÞ and the
radial profile of each galaxy.
This can be evaluated by substituting Eq. (A4). Now,

multiplying both sides of Eq. (A6) by n̄g and defining
Pgm ¼ n̄gPgm, one can compute

PgmðkÞ ¼
Z

dMhŨgðk;MÞi d
dM

ð−Phmðk;>MÞÞ

¼ −hŨgðk;MÞiPhmðk;>MÞ
���∞
0

þ
Z

dM
dhŨgðk;MÞi

dM
Phmðk;>MÞ;

¼
Z

dM
dhŨgðk;MÞi

dM
Phmðk;>MÞ: ðA7Þ

In the above, we have performed an integration by parts to
obtain the second line and then use the fact that NgðMÞ
tends to zero at the low mass end and PhmðMÞ tends to zero
at the high mass end to reach the final line. This is how we
can avoid estimating the power spectrum for the mass-bin
samples and directly compute the galaxy-matter power
spectrum from the mass-threshold halo samples.
The responses are also related by a similar equation as

∂PgmðkÞ
∂δb

����
G
¼

Z
dM

�
dhŨgðk;MÞi

dM
∂Phmðk;> MÞ

∂δb

����
G;M

þ ∂

∂δb

dhŨgðk;MÞi
dM

����
G
Phmðk;>MÞ

�
; ðA8Þ

where the subscript M denotes the derivative with fixed
mass threshold. Assuming that the cosmological depend-
ence is fully encoded in Pgm and that the galaxy profile
around halos in the physical scale and the mean HOD are
given irrespective of the cosmological model, which is
partly validated in Ref. [64], one can trivially derive

∂

∂δb

dhŨgðk;MÞi
dM

����
G
¼ 1

3

∂

∂ ln k

dhŨgðk;MÞi
dM

: ðA9Þ

Finally, one can convert this to the standard response
function by

∂PgmðkÞ
∂δb

����
G
¼ 1

n̄g

∂PgmðkÞ
∂δb

����
G
− bLgPgmðkÞ; ðA10Þ
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where bLg is the Lagrangian galaxy bias, related to the
Eulerian bias as bg ¼ bLg þ 1. We can give a physical
interpretation of the bias factor as follows. The Lagrangian
galaxy bias bLg describes the change in the number density
of galaxies at a fixed Lagrangian or, equivalently, local
comoving volume in the SU picture, and the difference
between the Eulerian and the Lagrangian bias bg − bLg ¼ 1

represents the contribution from the change in the physical
volume, i.e., equivalent to the dilation effect. Note that the
second term in Eq. (A10), −bLg PgmðkÞ, comes from the

response of n̄g and since the growth response should be
evaluated at a fixed comoving volume, the response of n̄g
gives bLg instead of bg.

2. The response of galaxy auto-power spectrum

Similarly, we can also evaluate the galaxy-autopower
spectrum using mass-threshold quantities. First, the halo-
autopower spectrum of the mass-bin samples can be
calculated by taking the finite difference,

Phhðk;M1;M2Þ ¼
∂
2

∂M∂M0 ½nð>MÞnð>M0ÞPhhðk;>M;>M0Þ�jM¼M1;M0¼M2

dn
dM ðM1Þ dn

dM ðM2Þ
: ðA11Þ

Following the halo model description, we split the galaxy power spectrum into the two-halo and one-halo terms as
PggðkÞ ¼ P2h

ggðkÞ þ P1h
ggðkÞ. Using Eq. (A11), we can write the two-halo term of the galaxy power spectrum as

P2h
ggðkÞ ¼

1

n̄2g

Z
dM

dn
dM

ðMÞhŨgðk;MÞi
Z

dM0 dn
dM0 ðM0ÞhŨgðk;M0ÞiPhhðk;M;M0Þ

¼ 1

n̄2g

Z
dM

dhŨgðk;MÞi
dM

nð>MÞ
Z

dM0 dhŨgðk;M0Þi
dM0 nð>M0ÞPhhðk;>M;>M0Þ

¼ 1

n̄2g

ZZ
dMdM0 dhŨgðk;MÞi

dM

dhŨgðk;M0Þi
dM0 Phhðk;>M;>M0Þ; ðA12Þ

where we did integration by parts and ignored the surface terms, and we define

Phhðk;>Mth; >M0
thÞ≡ nð>MthÞnð>M0

thÞPhhðk;>Mth; >M0
thÞ: ðA13Þ

The SU growth responses of the two-halo term of the galaxy-autopower spectrum can be calculated as

∂P2h
ggðkÞ
∂δb

����
G
¼ 1

n̄2g

ZZ
dMdM0 dhŨgðk;M0Þi

dM0

�
dhŨgðk;MÞi

dM
∂Phhðk;> M;> M0Þ

∂δb

����
G;M;M0

þ 2
∂

∂δb

dhŨgðk;MÞi
dM

����
G
Phhðk;>M;>M0Þ

�
− 2bLg P2h

ggðkÞ: ðA14Þ

For the one-halo term, we can compute the SU growth response as

∂P1h
ggðkÞ
∂δb

����
G
¼ 1

n̄2g

Z
dM

dn
dM

ðMÞ
�
bLh;1ðMÞhŨ2

gðk;MÞi þ ∂hŨ2
gðk;MÞi
∂δb

����
G

�
− 2bLg P1h

ggðkÞ: ðA15Þ

Note that the response of the one-halo term in our approach
is identical to that of the halo model description (e.g.,
[36,65]).

3. The response calibration of halo and galaxy power
spectra using the abundance-matching method

In this subsection, we describe the relation between the
SU growth response and the number density fixed or
abundance-matched response, which we clarify later. We

denote the derivative performed keeping the comoving halo
number density fixed as the “AM” response, which stands
for the abundance-matching method. When evaluating the
AM response, we change the threshold MthðδbÞ so that the
cumulative halo number density in the comoving volume is
kept fixed when varying δb [57],

dnð>Mth; δbÞ
dδb

¼ 0: ðA16Þ
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We define the mass-threshold shift sðMÞ to keep the
number density as

d lnMth ≡ sðMthÞdδb: ðA17Þ
We can calculate Eq. (A16) as

dnð>Mth; δbÞ
dδb

¼ d
dδb

Z
∞

MthðδbÞ

dM
M

nlnMðM; δbÞ

¼
Z

∞

Mth

dM
M

∂nlnMðM; δbÞ
∂δb

þ ∂

∂δb
½F1ðM ¼ ∞Þ − F1ðM ¼ MthÞ�

¼
Z

∞

Mth

dM
M

∂nlnMðM; δbÞ
∂δb

− nlnMðMthÞsðMthÞ

¼ 0; ðA18Þ
where we defined F1ðMÞ as the function satisfying
∂F1ðMÞ=∂ lnM ¼ nlnMðMÞ and we can calculate its
response as

∂F1ðMÞ
∂δb

¼ ∂F1ðMÞ
∂ lnM

∂ lnM
∂δb

¼ nlnMðMÞsðMÞ: ðA19Þ

Hence, we have

Z
∞

Mth

dM
M

∂nlnMðM; δbÞ
∂δb

¼ nlnMðMthÞsðMthÞ: ðA20Þ

Using this, the Lagrangian halo bias above the mass
threshold is given as [57]

bLh;1ð>MthÞ≡ 1

nð>MthÞ
Z

∞

Mth

dM
M

bLh;1nlnM

¼ 1

nð>MthÞ
Z

∞

Mth

dM
M

∂ ln nlnM
∂δb

nlnM

¼ nlnMðMthÞsðMthÞ
nð>MthÞ

: ðA21Þ

Likewise, the AM response of Phmðk;>MthÞ can be
calculated as

dPhmðk;> MthÞ
dδb

����
G
¼ d

dδb

Z
∞

Mth

d ln MnlnMðMÞPhmðk;MÞ

¼
Z

∞

Mth

d lnM
∂

∂δb
½nlnMðMÞPhmðk;MÞ� þ d

dδb
½F2ðM ¼ ∞Þ − F2ðM ¼ MthÞ�

¼ ∂Phmðk;> MthÞ
∂δb

����
G;Mth

− nlnMðMthÞPhmðk;MthÞsðMthÞ

¼ ∂Phmðk;> MthÞ
∂δb

����
G;Mth

− bLh;1ð>MthÞnð>MthÞPhmðk;MthÞ; ðA22Þ

where F2ðMÞ is a function satisfying ∂F2ðMÞ=∂ lnM ¼ nlnMðMÞPhmðk;MÞ. On the other hand, the lhs of Eq. (A22) can be
written as

dPhmðk;> MthÞ
dδb

����
G
¼ nð>MthÞ

∂Phmðk;> MthÞ
∂δb

����
G
¼ nð>MthÞ

�
26

21

�
Phmðk;>MthÞThm

δb
ðk;>MthÞ

≃ nð>MthÞ
�
26

21

�
Phmðk;>MthÞThm

h ðk;>MthÞ; ðA23Þ

where we used the approximate relation Thm
h ðk;>MthÞ ≈ Thm

δb
ðk;>MthÞ in the last equation. Hence, we can calculate the

PgmðkÞ SU growth response using Thðk;>MthÞ as
∂PgmðkÞ
∂δb

����
G
¼ 1

n̄g

∂PgmðkÞ
∂δb

����
G
− bLg PgmðkÞ

¼ 1

n̄g

Z
dM

�
dhŨgðk;MÞi

dM
∂Phmðk;> MÞ

∂δb

����
G;M

þ 1

3
Phmðk;>MÞ ∂

∂ ln k

dhŨgðk;MÞi
dM

�
− bLg PgmðkÞ

¼ 1

n̄g

Z
dM

�
dhŨgðk;MÞi

dM
nð>MÞ

�
bLh;1ð>MÞPhmðk;MÞ þ

�
26

21

�
Thm
h ðk;>MÞPhmðk;>MÞ

�

þ 1

3
Phmðk;>MÞ ∂

∂ ln k

d lnhŨgðk;MÞi
dM

�
− bLg PgmðkÞ: ðA24Þ
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The AM response of Phhðk;>Mth; >M0
thÞ is calculated as

dPhh

dδb

����
G
¼ dPhhðk;>Mth; >M0

thÞ
dδb

����
G;Mth;M0

th

þ
Z
Mth

d lnMnlnMðMÞ
�

∂

∂δb
½F3ðM0 ¼ ∞Þ − F3ðM0 ¼ M0

thÞ�
�

þ
Z
M0

th

d lnM0nlnMðM0Þ
�

∂

∂δb
½F3ðM ¼ ∞Þ − F3ðM ¼ MthÞ�

�

¼ dPhhðk;>Mth; >M0
thÞ

dδb

����
G;Mth;M0

th

− bLh;1ð>M0
thÞnð>M0

thÞ
Z
Mth

d lnMnlnMðMÞPhhðk;M;M0
thÞ

− bLh;1ð>MthÞnð>MthÞ
Z
M0

th

d lnM0nlnMðM0ÞPhhðk;M0;MthÞ

¼ dPhhðk;>Mth; >M0
thÞ

dδb

����
G;Mth;M0

th

− nð>MthÞnð>M0
thÞ

× ½bLh;1ð>M0
thÞPhhðk;>Mth;M0

thÞ þ bLh;1ð>MthÞPhhðk;>M0
th;MthÞ�; ðA25Þ

where F3ðMÞ satisfying ∂F3ðMÞ=∂ lnM ¼ nlnMðMÞPhhðk;M;M0Þ. Since the lhs of Eq. (A25) can be written using the
approximate relation Thh

δb
ðk;>Mth; >M0

thÞ ≈ Thh
h ðk;>Mth; >M0

thÞ as
dPhh

dδb

����
G
¼ nð>MthÞnð>M0

thÞ
dPhhðk;>Mth; >M0

thÞ
dδb

����
G

¼ nð>MthÞnð>M0
thÞ
�
26

21

�
Thh
δb
ðk;>Mth; >M0

thÞPhhðk;>Mth; >M0
thÞ

≃ nð>MthÞnð>M0
thÞ
�
26

21

�
Thh
h ðk;>Mth; >M0

thÞPhhðk;>Mth; >M0
thÞ; ðA26Þ

the SU growth response of P2h
gg can be related to Thh

h ðk;>Mth; >M0
thÞ as

∂P2h
ggðkÞ
∂δb

����
G
¼ 1

n̄2g

ZZ
dMdM0 dhŨgðk;M0Þi

dM0

�
dhŨgðk;MÞi

dM
∂Phhðk;>M;>M0Þ

∂δb

����
G;M;M0

þ 2

3
Phhðk;>M;>M0Þ ∂

∂ ln k

dhŨgðk;MÞi
dM

�
− 2bLg P2h

ggðkÞ

≃
1

n̄2g

ZZ
dMdM0

�
dhŨgðk;MÞi

dM

dhŨgðk;M0Þi
dM0 nð>MÞnð>M0Þ

�
2bLh;1ð>M0ÞPhhðk;>M;M0Þ

þ
�
26

21

�
Thh
h ðk;>M;>M0ÞPhhðk;>M;>M0Þ þ 2

3
Phhðk;>M;>M0Þ ∂

∂ ln k

d lnhŨgðk;MÞi
dM

��

− 2bLg P2h
ggðkÞ: ðA27Þ

Using Eqs. (A15) and (A27), we can compute the SU growth response for the galaxy-autopower spectrum as in Eq. (26).
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