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The thermal Sunyaev-Zeldovich (tSZ) effect is a spectral distortion of the cosmic microwave
background (CMB) resulting from inverse Compton scattering of CMB photons with electrons in the
medium of galaxy clusters. The spectrum of the tSZ effect is typically calculated assuming the spectrum of
the CMB is a blackbody. However, energy or photon number injection at any epoch after photon creation
processes become inefficient will distort the blackbody, potentially leading to a chemical potential or μ
distortion for early injection. These primordial spectral distortions will therefore introduce a change in the
tSZ effect, effectively a distortion of a distortion. While this effect is small for an individual cluster’s
spectrum, upcoming and proposed CMB surveys expect to detect tens of thousands of clusters with the tSZ
effect. In this paper, we forecast constraints on the μ-distortion monopole from the distortion of the tSZ
spectrum of clusters measured by CMB surveys. We find that planned experiments have the raw sensitivity
to place constraints on μ that are comparable to or better than existing constraints but control over
foregrounds and other systematics will be critical.
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I. INTRODUCTION

The cosmic microwave background (CMB) provides us
with vital information about the origin and evolution of our
observable Universe and of the underlying physical laws
that govern it. We have greatly improved measurements
of CMB temperature and polarization anisotropy over the
last 20 years with experiments such as WMAP [1] and
Planck [2].
On the other hand, our constraints on the frequency spec-

trum of the CMB have not improved since the measure-
ments of the Far Infrared Absolute Spectrophotometer
on the Cosmic Background Explorer (COBE/FIRAS
hereafter) [3]. Although the measured CMB spectrum
closely matches a blackbody, the CMB in fact is expected
to have some small distortion away from a blackbody
spectrum.
Energy injections in the form of diffusion damping of

small-scale anisotropies, resulting from imperfect photon-
baryon coupling in the prerecombination plasma, during
periods of inefficient thermalization (z≲ 2 × 106) will
slightly distort the spectrum. For 2 × 106 ≳ z≳ 5 × 104,
distortions of the μ type are generated by this process,
while for 5 × 104 ≳ z≳ 1100 distortions of the y type are
generated. Using an internal blackbody as a calibrator,
COBE/FIRAS was able to confirm the CMB spectrum
closely follows a blackbody distribution and place upper
limits of jyj < 1.5 × 10−5 and jμj < 9 × 10−5 (95% C.L.)
(see also follow-up analyses [4,5]).

While diffusion damping of fluctuations from slow-roll
inflation is one small (μ≳ 10−8) but guaranteed method for
generating spectral distortions before recombination [6–9],
other possibilities include annihilating particles [10], dif-
fusion damping in inflationary models that generate
primordial black holes [11], primordial black hole evapo-
ration [12], and primordial gravitational waves [13].
The CMB radiation can also be distorted by postrecom-

bination sources, for example through inverse Compton
scattering off of the hot electron gas in galaxy clusters,
resulting in cluster-scale distortions of the CMB spectrum,
a phenomenon referred to as the thermal Sunyaev-
Zeldovich (tSZ) effect [6]. In general, spectral distortions
allow one to probe any process associated with energy
injection into the CMB after the thermalization epoch.
Measuring the mean, or monopole, frequency spectrum

of the CMB is extremely challenging, because it requires an
experiment to retain information about the absolute power
received from the sky, not just the difference in power
between different sky locations. Absolute measurements
require exquisite stability over long timescales and tight
control over any spatially varying sources of emission.
Note that these stability requirements remain even for an
experiment that does not require an overall absolute gain
calibration (e.g., [14,15]). For these reasons, it is often
assumed that such measurements can only be made
from space.
One way around these requirements is to measure the

mean distortion of an anisotropic signal that can be measured
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differentially, such as the CMB dipole [16] or primary CMB
anisotropy. The issue with using CMB temperature
anisotropy is that most differential CMB experiments use
the temperature anisotropy (either the dipole—or, more
precisely, the annual modulation of the dipole—or the
degree-scale and smaller anisotropy) as a calibration source,
with the underlying assumption that the photon distribution
follows a perfect blackbody. This effectively destroys any
sensitivity to spectral distortions from the dipole or primary
anisotropy, because the calibrated spectrum of the anisotropy
will be forced to look like the derivative of a blackbody.
Put another way, experiments designed to measure spectral
distortions in the dipole or primary CMB anisotropy must
find a different way of calibrating the relative response
between observing frequencies.
In this work, we investigate the prospect for using the

tSZ effect to measure monopole spectral distortions. This
method, first proposed by [17], was used recently by [18] to
forecast constraints on the (primordial) y distortion of the
CMB from distortions of the (local-universe) tSZ effect. As
discussed in [19], this technique can in principle be applied
to y- or μ-type distortions and was also proposed in [20] to
test the validity of early measurements indicating large
spectral distortions near the blackbody peak, later demon-
strated by COBE/FIRAS to be spurious. Similar works
have explored constraining the primordial recombination
radiation [21] and the redshift evolution of the CMB
temperature from the distortion of the tSZ effect. This
paper focuses on the potential constraints on the mean value
of μ-type distortions frommeasurements of the tSZ effect in
the direction of massive clusters of galaxies using calibra-
tion from primary CMB temperature anisotropy under the
blackbody assumption. We will forecast constraints on
this quantity from the upcoming CMB-S4 experiment [22]
as well as one based on the proposed CMB-HD experi-
ment [23].

II. CMB SPECTRAL DISTORTIONS

A. μ and y distortions

At early epochs, any changes in the photon phase space
distribution f are efficiently thermalized to a blackbody
distribution through the joint action of the photon-number-
changing processes double Compton scattering and brems-
strahlung and the energy-exchanging process (single)
Compton scattering. Number-changing processes fall out
of equilibrium at a redshift zi ∼ 2 × 106 after which the
photon distribution evolves mainly under the Kompaneets
equation [24] (see Appendix B for relativistic corrections)

∂f
∂τ

¼ kBTe

mec2
1

x2e

∂

∂xe

�
x4e

�
∂f
∂xe

þ fð1þ fÞ
��

; ð1Þ

where τ is the Thomson optical depth and xe ¼ hν=kBTe
for a thermal distribution of electrons at temperature Te.

The equilibrium distribution under the Kompaneets equa-
tion is a Bose-Einstein distribution. Any changes to the
number or energy density of the photons thereafter lead to a
μ-type distortion

f ¼ ðexþμ − 1Þ−1; ð2Þ

where x ¼ hν=kBT with the temperature of the photons
T ¼ Te. For example, a fractional energy injection of
Δρ=ρ to the photons leads to μ ∼ 1.4Δρ=ρ. Energy
exchange via Compton scattering falls out of equilibrium
at around zf ∼ 5 × 104. After this epoch, we can solve
the Kompaneets equation by plugging the unperturbed
spectrum (2) into the right-hand side of Eq. (1) and
integrating [19]

Δfðx; μ; yÞ ¼
Z

dτ
∂f
∂τ

≈ yxexþμf2gðx; μÞ; ð3Þ

with

gðx; μÞ ¼ x coth

�
xþ μ

2

�
− 4; ð4Þ

where the Comptonization parameter

y ¼
Z

dτ
kBðTe − TÞ

mec2
ð5Þ

is assumed to be jyj ≪ 1. This generalizes the standard
expression for the y-type distortion to the case where μ ≠ 0;
i.e., the photons possess an initial μ-type distortion. Notice
that the spectrum only changes when Te ≠ T, e.g., when
the electrons are heated after zf. In particular, we are
interested in the case where the hot electrons exist in galaxy
clusters and produce the late-time y-type distortions known
as the tSZ effect. Our generalization implies that in
principle the initial μ value can be determined from a
precise measurement of the tSZ spectrum.

B. Interfrequency calibration

As discussed in Sec. I, most differential CMB experi-
ments derive their interfrequency calibration from CMB
anisotropy, either the CMB dipole or the primary temper-
ature anisotropy, under the assumption that the background
photon distribution is a pure blackbody. Experiments that
have access to very large angular scales, such as the Planck
andWMAP satellites, calibrate off of the annual modulation
of the dipole from Earth’s motion around the Sun. When
compared to predictions using our precise knowledge of the
current CMB temperature T0 and Earth’s orbital velocity,
and assuming a blackbody background, this provides both
an interfrequency calibration and a calibration of the overall
intensity scale. Experiments that use the primary anisotropy
for interfrequency calibration (as is the case for most
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ground-based CMB experiments) need a separate reference
for the absolute intensity scale, but since the inference for μ
depends on the relative frequency dependence for a given
amplitude y, an accurate relative calibration of channels
is more important than the overall absolute calibration.
For the specific measurement envisioned in this work, the
absolute scale is effectively marginalized over, and we
neglect it hereafter.
In practice, for the case of calibration off of the annual

modulation of the dipole, the signal in each frequency band
is scaled to agree with predictions assuming a pure black-
body background. The situation is similar for calibration
off of the primary anisotropy: Maps at every observing
frequency ν are compared to each other in a region of the
sky and a range of angular scales in which the primary
CMB anisotropy is the dominant signal, and the maps are
calibrated so that the signal follows the expected spectrum
of temperature fluctuations in a background blackbody
with mean temperature T0. In both cases, the true spectrum
of the calibration source is that of temperature fluctuations
in the true background, and the result of calibrating
assuming a blackbody background is that the measured,
calibrated dipole and/or primary CMB anisotropy is forced
to follow the spectrum of temperature fluctuations in a
blackbody.
Let us examine the case of calibrating off of the observed

dipole in the presence of a monopole μ distortion in the
background spectrum while assuming the background
spectrum is a blackbody. (The results in the case of
calibrating off of the primary CMB anisotropy are iden-
tical.) In the case of dipole calibration, the Lorentz
invariance of f implies that the specific intensity in the
boosted frame Idν ∝ ν3f obeys

Idν ∝
ν3

ehνrest=kBTþμ − 1
; ð6Þ

where

νrest ¼
�
1 − β cos θffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p �

ν ð7Þ

and θ is the angle between the line of sight and the velocity.
Notice that we can absorb the Doppler shift into a temper-
ature anisotropy as usual and to first order in β,
TðθÞ ≈ Tð1þ β cos θÞ. The change in the specific intensity
becomes

ΔIdν ≈ ðβ cos θÞT ∂Iν
∂T

: ð8Þ

The frequency dependence involves the derivative of Iν,
and this result holds for calibration involving any type
of temperature anisotropy by suitably generalizing the
anisotropy source, not just a dipole due to a boost. Note

that we are ignoring higher-order terms in the expansion of
the blackbody fluctuation spectrum, which are negligible at
least for the order 10−5 anisotropy in the CMB.
If a blackbody background distribution is assumed in the

calibration process, then the anisotropy-calibrated specific
intensity Icν differs from the true specific intensity Iν by

Icν ¼ Cðx; μÞIν; ð9Þ

where the miscalibration from the true spectrum is char-
acterized as

Cðx; μÞ ¼ ∂Bν=∂T
∂Iν=∂T

: ð10Þ

Notice that this anisotropy calibration factor involves
the spectral shape of the derivative of the specific intensity,
not the specific intensity itself. Thus, while this particular
calibration procedure removes any information about
spectral distortions from the primary anisotropy signal,
distortions of signals that do not have the spectrum of the
temperature derivative of the CMB monopole spectrum can
still be measured.
Counterintuitively, this observability includes the μ

distortion of the CMB monopole itself:

IcνðμÞ
Bν

¼ Iν
Bν

∂Bν=∂T
∂Iν=∂T

¼ e−μ
exþμ − 1

ex − 1
; ð11Þ

and the correction for jμj ≪ x ≪ 1 goes as μ=x. In practice,
as discussed in Sec. I, since this measurement requires a
nondifferential measurement on the sky, it remains chal-
lenging from the ground.
Now let us apply this sort of calibration to the tSZ

distortion of a μ-distorted background in the direction of a
galaxy cluster, a signal which can be measured differ-
entially. In terms of the calibrated apparent CMB temper-
ature fluctuation at frequency ν, ΔT, we obtain

ΔTðx; μÞ≡ ΔIcν
∂Bν=∂T

¼ ΔIν
∂Iν=∂T

¼ Δf
∂f=∂T

¼ yT0gðx; μÞ; ð12Þ

where we have used Eq. (3) for Δf. Notice that the
anisotropy calibrated ΔT differs from the absolutely
calibrated temperature fluctuation, and Eq. (4) for gðx; μÞ
carries the measurable frequency dependence under aniso-
tropy calibration. This difference is illustrated in Fig. 1.
Notice also that in both cases the response to μ increases at
low frequency but with the opposite sign.

C. Cluster model

Using Eq. (5), our model for the value of the Compton y
parameter in the direction of an isothermal cluster
(Te ¼ const ≫ T) is
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yðθÞ ¼ kBTe

mec2
τðθÞ; ð13Þ

where θ is the angular distance from the center of the
cluster. For the optical depth profile τðθÞ we follow
e.g., [25], and adopt a spherically symmetric β model or
King profile with β ¼ 1 and express Eq. (13) as

yðθÞ ¼ yc

�
1þ

�
θ

θc

�
2
�
−1
: ð14Þ

Here, the angular size of the cluster’s core is given by
θc ¼ rc=DA, with DA being the angular diameter distance
and rc the core radius of the cluster, all in comoving co-
ordinates for later convenience. We follow [26,27] and we
adopt the relation rc ∼ 0.2R500c, where R500c is the radius
at which the enclosed spherically averaged density is 500
times the critical density ρcðzÞ≡ 3H2ðzÞ=8πG.
For yc we adopt the self-similar scaling relation

yc ¼ AẼ2ðzÞ
�

M500c

1014M⊙

�
; ð15Þ

where

ẼðzÞ≡ HðzÞ
70 km=s=Mpc

ð16Þ

and the normalization A from x-ray cluster observations of
luminosity and temperature at low z [28] to calibrate the
universal pressure profile [Eq. (6) in Ref. [29] ]

A ¼ 0.97 × 10−5h−3=2: ð17Þ

Note using this normalization in the context of Eq. (14)
is approximate given differences with the universal
pressure profile [30]. We also adopt the temperature-mass
relation [31]

kBTe ¼ 2.28
�

M500c

1014M⊙
ẼðzÞ

�
0.585

keV: ð18Þ

Because the noise in our forecasted surveys is expected to
be diagonal in spherical harmonic (l; m) space, we choose
to work in that basis. To transform Eq. (14) into l; m space,
we note that since even the most massive and low-redshift
clusters only subtend a small angle on the sky, we can use
the flat-sky approximation. As detailed in Appendix A, in
coordinates centered on the cluster at θ ¼ 0, the spherical
harmonic-space cluster profile is given by

ylm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
δm;0yðlÞ; ð19Þ

where

yðlÞ ¼ yc2πθ2cK0ðlθcÞ ð20Þ

and KnðxÞ is the modified Bessel function of the sec-
ond kind.

III. FORECAST

A. Survey specifications

We forecast our constraints on μ from tSZ cluster
measurements using instrument configurations based on
the upcoming CMB-S4 experiment and the proposed
CMB-HD experiment. CMB-S4 will conduct two surveys:
The wide survey conducted from Chile will cover 67% of
the sky, while the deep survey will concentrate a similar
amount of total observing weight on 3% of the sky from the
South Pole. From here on, we will refer to these two CMB-
S4 surveys as “S4-wide” and “S4-deep,” respectively. Both
surveys will have similar beam sizes and differ mainly in
the noise in the sky maps. The CMB-HD-like survey we
forecast for here covers 50% of the sky. For all three
surveys, we use the instrument configuration parameters
from Table 1 of [32], which we reproduce in Table I. We
note that for both S4-wide and CMB-HD, the galactic plane
will significantly contaminate our maps of tSZ clusters and
reduce our ability to accurately measure the cluster spec-
trum. Therefore, for these surveys we assume fsky ¼ 0.5.

B. Cluster catalog

In addition to specifications on map noise, angular
resolution, and sky fraction, to forecast constraints on μ
from the distortion of the tSZ spectrum we also need to

FIG. 1. The fractional response of the tSZ temperature spec-
trum ∂ lnΔT=∂μ to a monopole μ distortion with anisotropy
calibration as we assume in this work (solid blue line ∂ ln g=∂μ) vs
absolute calibration [dashed blue line ∂ lnðg=CÞ=∂μ]. The dotted
gray line denotes an undistorted spectrum for reference and the
spike in the curves occurs at the tSZ null where the fractional
response diverges corresponding to a finite change in the location
of the null.
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define a sample of galaxy clusters. For each of the three
surveys considered here, we use the expected cluster
catalog for that survey, based on work from [32,33].
Underlying the expected number of clusters detected by

a given CMB experiment is the halo mass function
dn=d lnM, the number density of host dark matter halos
at a given redshift z over a logarithmic mass interval d lnM.
We adopt for this quantity the Tinker mass function [34] as
implemented in the publicly available code Colossus [35,36].
Our cosmological parameters are taken from Planck
2018 [2], where Ωm ¼ 1 −ΩΛ ¼ 0.31, Ωb ¼ 0.049, H0 ¼
67.7 km=s=Mpc, σ8 ¼ 0.81, τ ¼ 0.054, and ns ¼ 0.965.
A given experiment will have a selection function in

mass and redshift which we approximate here as a simple
mass limit as a function of redshiftMlimðzÞ. For each of the
three surveys we forecast, we use the values of MlimðzÞ
calculated in [32]. These limits are reproduced in Fig. 2.
The jaggedness of the curves reflects the Δz ¼ 0.1 binning
in Ref. [32] as does our effective zmin ¼ 0.05, but we will
show in later sections that this effective redshift limit does
not affect our results significantly. The general trend of the
MlimðzÞ curves—which is the opposite of mass-limit curves
from, e.g., x-ray-selected cluster samples—is discussed in
Sec. 3.2.1 of [33].

We model the expected number of total detected clusters
for each survey as

Ntot ¼ 4πfsky

Z
∞

zmin

dz
D2

AðzÞ
HðzÞ

Z
∞

MlimðzÞ

dM
M

dn
d lnM

; ð21Þ

where fsky is the fraction of sky measured by the experi-
ment. We find that for our fiducial cosmology: Ntot ¼
1.04 × 105 for S4-wide; 1.10 × 104 for S4-deep, and
4.63 × 105 for CMB-HD. Our number of clusters agrees
with [32] to within ∼3% for S4-wide, ∼7% for S4-deep,
and ∼10% for CMB-HD.

C. Forecasting method

We forecast constraints on μ from the distorted tSZ
spectrum in the direction of massive clusters using a Fisher
matrix technique. First, we define the likelihood per cluster
in the catalog. Given the expression for the measured,
calibrated tSZ spectrum from Eq. (12), we model the cluster
likelihood L as

−2 lnL ¼
X

ij;lm;l0m0

�
ΔTi;lm − ylmT0gðxi; μÞ

�
×C−1

ij;lml0m0
�
ΔTj;l0m0 − yl0m0T0gðxj; μÞ

�
; ð22Þ

where i and j run over frequency bands, ΔTi;lm is the
measured, calibrated (spherical harmonic-space) temper-
ature fluctuation in band i in the direction of the cluster, ylm
is the spherical harmonic-space cluster profile, and we have
approximated the sources of noise as Gaussian by charac-
terizing the likelihood with the covariance matrix C. Using
Eq. (20) for the cluster profile and assuming statistical
isotropy, there is no azimuthal dependence in the model or
the covariance, and the covariance will be diagonal in l, in
which case we can write

−2 lnL ¼
X
ij;l

2lþ 1

4π

�
ΔTi;l − yðlÞT0gðxi; μÞ

�
× ðClÞ−1ij

�
ΔTj;l − yðlÞT0gðxj; μÞ

�
: ð23Þ

For the noise covariance matrix, we begin with a baseline
of just uncorrelated white noise and write

ðClÞij → ðClÞwij ¼ δij
Cw;i

B2
l;i

; ð24Þ

where Cw;i is the map noise variance in band i and the
Gaussian beam profile is

B2
l;i ≈ exp

�
−
lðlþ 1Þ
8 ln 2

θ2FWHM;i

�
: ð25Þ

In this case, the likelihood reduces to
FIG. 2. The mass detection limit Mlim as a function of redshift
from Ref. [32], linearly interpolated between their Δz ¼ 0.1 bins.

TABLE I. Specifications for the CMB-S4 wide and deep
surveys and a CMB-HD-like survey, taken from [32].

Channels (GHz) 30 40 90 150 220 270

Survey fsky θFWHM &
ffiffiffiffiffiffi
Cw

p
(μK-arcmin)

S4-wide 50% 7.30 5.50 2.30 1.50 1.00 0.80
21.8 12.4 2.0 2.0 6.9 16.7

S4-deep 3% 8.40 5.80 2.50 1.60 1.10 1.00
4.6 2.94 0.45 0.41 1.29 3.07

CMB-HD 50% 1.40 1.050 0.450 0.250 0.20 0.150
6.5 3.4 0.73 0.79 2.0 2.7
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−2 lnL¼
X
i;l

2lþ 1

4π

B2
l;i

Cw;i

�
ΔTi;l − yðlÞT0gðxi;μÞ

�
2: ð26Þ

More generally we can include other noise terms, indexed
by X, as additional contributions to the covariance matrix

ðClÞij ¼ ðClÞwij þ
X
X

ðClÞXij ð27Þ

and in particular for various foreground noise contributions
that are fully correlated in frequency space, we take

ðClÞXij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXðl; νiÞCXðl; νjÞ

q
; ð28Þ

where CXðl; νiÞ is the angular power spectrum of compo-
nent X at frequency νi. We often characterize such con-
tributions using their logarithmic power spectrum

DXðl; νiÞ≡ lðlþ 1Þ
2π

CXðl; νiÞ: ð29Þ

To forecast measurement errors on μ we employ the
Fisher matrix

Fαβ ¼ −
	
∂
2 lnL

∂pα∂pβ



; ð30Þ

where in our baseline study we take the parameters as
pμ ∈ yc; μ and evaluate the parameter derivatives around a
fiducial model with μ ¼ 0 and the expected ycðM; zÞ.
We include Te as a parameter when considering relati-
vistic corrections in Sec. IV B. In general, the forecasted
error on μ then comes from the μμ element of the matrix
inverse of F:

σkðμÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þμμ

q
; ð31Þ

where k indexes the cluster so that the combined result of
the independent clusters in the catalog is given by

σ−2ðμÞ ¼
X
k

σ−2k ðμÞ: ð32Þ

Since the sum over identical clusters involves the same
σk, in practice we sum over mass and redshift bins that are
narrow enough so as to provide results that is sufficiently
close to the full sum once weighted by the expected number
of clusters per bin.

IV. RESULTS

In this section, we present our main forecasting results.
We begin by providing the forecasted constraints on μ
for each of the three experimental configurations in the
idealized or “baseline” case of white detector noise only.

We then introduce real-world complexities that an experi-
ment will have to address, including relativistic corrections
to the tSZ effect, CMB background anisotropy, cluster-
associated kinetic Sunyaev-Zeldovich (kSZ) signal, fore-
ground sources, and atmospheric contamination. We report
the degradation of constraints from each of these cumu-
latively. Since we do not analyze each effect separately, the
ordering of the cumulative contributions can matter in
the interpretation of which is seemingly the most signifi-
cant. We choose this approach to instead emphasize which
complexities, in descending order, are fundamental to the
measurement and which ones are contaminants to specific
experiments.

A. Baseline noise

Constraints on μ for each survey configuration for the
baseline case of white detector noise only are shown in the
first row of Table II. These represent the most optimistic
possible projections from each survey and the baseline
against which we compare the degraded constraints from
successive real-world effects in the rest of the table and
section.
We notice a few interesting results with regards to our

baseline constraints on μ. For the two CMB-S4 surveys in this
ideal forecast, σðμÞ is comparable to the bounds from COBE/
FIRAS, which constrain jμj < 9 × 10−5 (95% C.L. [3]).
With a CMB-HD-like configuration, we start to see improved
constraints on μ relative to COBE/FIRAS, indicating that,
from a raw sensitivity standpoint, this method of constraining
μ has some promise.
In addition, we note that S4-deep provides a slightly

better constraint on μ than S4-wide, despite the fact that
the constraint comes from an order of magnitude fewer
clusters. This can be understood from the fact that, for a
fixed set of frequency bands, the per-cluster μμ Fisher
matrix element [Eq. (31)] will scale as the square of the
total signal to noise (S=N) on the tSZ signal from the
cluster. In the ideal white-noise-only case, for the ith
frequency channel and a cluster of a given mass and
redshift, the squared, per-cluster tSZ S=N is given by

TABLE II. Forecasted constraint on μ for the baseline white
detector noise of each experimental configuration and its cumu-
lative degradation from additional effects.

σðμÞ assuming: S4-wide S4-deep CMB-HD

Baseline noise only 1.6 × 10−4 1.4 × 10−4 2.8 × 10−5

þ first-order rSZ 2.1 × 10−4 1.9 × 10−4 3.6 × 10−5

þCMBand background kSZ 2.5 × 10−4 2.5 × 10−4 4.4 × 10−5

þ cluster kSZ 2.8 × 10−4 2.6 × 10−4 4.6 × 10−5

þ extragalactic foregrounds 3.5 × 10−4 7.0 × 10−4 1.2 × 10−4

þ galactic foregrounds 9.2 × 10−4 9.1 × 10−4 1.6 × 10−4

þ atmosphere 1.3 × 10−3 9.9 × 10−4 1.9 × 10−4
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�
S
N

�
2

i
¼

X
l

2lþ 1

4π

½ylT0gðxi; 0ÞBl;i�2
Cw;i

¼ ½ycT0gðxi; 0Þ�2
Cw;i

X
l

2lþ 1

4π

�
2πθ2cK0ðlθcÞBl;i

�
2:

ð33Þ

As expected, this scales as y2c=Cw;i.
The total μ constraint for a given survey will scale with

this quantity summed over all the clusters in the catalog and
frequency, ðS=NÞ2surv. For S4-wide ðS=NÞ2surv is 1.5 × 109,
for S4-deep it is 1.9 × 109, and for CMB-HD it is
2.3 × 1010. The CMB-S4 wide survey covers 17 times
more sky than the deep survey, so for any mass and redshift
bin above the detection limit of both surveys, the wide
survey will have 17 times more clusters in the catalog. But
the square of the ratio of map noise in the main CMB bands
in the two surveys—and, by extension the squared S=N per
cluster—is over 20, so it is not surprising that the deep
survey attains slightly better μ constraints.
This line of reasoning ignores the fact that the CMB-S4

deep survey also has a lower mass limit and a higher cluster
number density, which in principle could lead to an even
larger difference between the μ constraints from the deep
and wide surveys. All of the clusters that will be in the
S4-deep catalog but not the S4-wide catalog are low-mass
systems with z > zmin ¼ 0.05, but as we shall see next,
these clusters do not significantly improve the constraint.
To understand which clusters are providing most of the

constraining power, we calculate the cumulative ðS=NÞ2
above a given mass and redshift and plot that quantity in
Fig. 3. Specifically, we calculate the per-cluster ðS=NÞ2,
calculated for frequency channel i using Eq. (33), sum
over frequency channels and clusters above a given mass
M and redshift z in the catalog, and plot this cumula-
tive ðS=NÞ2cumulðM; zÞ.

Note that Fig. 3 extends the ðS=NÞ2cumul to below our
fiducial values for MlimðzÞ and zmin (red lines) so that the
ratio with the given survey ðS=NÞ2surv can exceed unity.
Nonetheless, in each case half of ðS=NÞ2 at zmin comes
from cluster masses well above MlimðzminÞ and at MlimðzÞ
from cluster redshifts below z < 0.5. This implies that the
clusters around MlimðzÞ for each survey are not providing
much constraining power on μ if zmin ¼ 0.05. It is only for
z < 0.05 and masses substantially below MlimðzminÞ that
the cumulative ðS=NÞ2 changes noticeably, but even
then only by 20%—30%.1

In this work we produce forecasts for fixed instrument
configurations, but it is possible that small modifications to
one or more of the configurations could improve the μ
constraints. In particular, it is not obvious from just the total
S=N which frequency bands are contributing most to the
constraint and where more bands could potentially help.
We note that, when the frequency band allocation is not
fixed, the total μ constraint depends not just on the total
S=N but also includes the sensitivity of bands to the μ
distortion. We can write the μμ Fisher matrix element as

Fμμ ¼
X
i

�
S
N

�
2

i

�
∂ ln gðxi; μÞ

∂μ

�
2

; ð34Þ

where recall ∂ ln g=∂μ is shown in Fig. 1. Of course, the
final constraint on μ depends on the other contributions to
the signal that must be marginalized over.
In the simple case where only yc is marginalized over, we

can build intuition for which frequencies contribute most to
the μ constraint by considering the scenario with only two
channels, in which case the squared uncertainty on μ (or,

FIG. 3. The cumulative squared signal to noise, ðS=NÞ2cumul, above a given cluster mass and redshift threshold normalized to the total
ðS=NÞ2surv for the three surveys from their catalog of clusters with masses and redshifts above the red line.

1At least part of this signal could be recovered by augmenting
the internal cluster catalogs with external detections in the optical
and x-ray bands. For example, the cluster mass limit for the
all-sky survey of the currently operating eROSITA mission is
≲2 × 1013M⊙ at z < 0.1 (see, e.g., Fig. 5.1.1 in [37]).
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equivalently, the μμ element of the inverse Fisher matrix) is
given analytically by

σ2ðμÞ ¼ ðS=NÞ21 þ ðS=NÞ22
ðS=NÞ21ðS=NÞ22

�
∂

∂μ
ln
gðx1; μÞ
gðx2; μÞ

�
−2
: ð35Þ

From Eq. (35), it is clear that both sensitivity and frequency
lever arm are important for constraining μ, as σ2ðμÞ blows
up when the S=N in either of the two bands gets too small
or when gðx; μÞ is similar enough between the bands that
the spectral signature becomes indistinguishable from that
of yc. For estimation purposes, we find that the expression

�
S
N

�
2

i
≈
ðycT0Þ2
Cw;i

πθ2cg2ðxi; 0Þ
1þ ðθFWHM;i=4θcÞ1.6

ð36Þ

approximates Eq. (33) to within a few percent for all
clusters and instrument configurations discussed here. To
further illuminate scaling results we can also roughly scaleffiffiffiffiffiffi
Cw

p
and θFWHM with frequency from 150 GHz to mimic

CMB-S4 wide survey specifications:

ffiffiffiffiffiffi
Cw

p ðνÞ
2 μK-arcmin

¼ 1þ 11.5

�
ν

150 GHz
− 1

�
2

; ð37Þ

θFWHMðνÞ
1.5 arcmin

¼
�

ν

150 GHz

�
−1
: ð38Þ

We plot Eq. (37) in Fig. 4 (upper panel, curve) and
compare it against the actual CMB-S4 wide channel noise
(points). Using this noise curve and Eq. (38), in Fig. 4
(bottom panel), we show σ2ðμÞ for a cluster with yc ¼
1 × 10−4 and θc ¼ 1 arcmin in this two-channel case, as a
function of the frequency of the second channel ν with the
first fixed at either ν1 ¼ 30, 90, or 150 GHz.
Notice that σ2ðμÞ diverges whenever the two frequencies

have the same value of ∂ lnðΔTÞ=∂μ (see Fig. 1), causing μ
to become degenerate with yc in the fit. This occurs by
definition when the two frequencies are coincident, and,
for a lower frequency ν1 below the null, it occurs again for a
specific upper frequency ν2. In the limit where the lower
frequency goes to zero and the μ response diverges, this
second degeneracy between μ and yc occurs when the
upper frequency approaches the null. For a lower frequency
around 150 GHz, the degeneracy disappears since the
response in Fig. 1 is near the local minimum where it is
single valued in frequency. The degeneracy is “accidental”
in the sense that it only exists for pairs of frequency
channels and is resolved once there are three or more
channels. As we shall see next, the more complexity we add
onto this baseline case the more multiple frequency
channels are required to distinguish the μ signal.

B. Relativistic corrections

So far when forecasting μ distortions from the distorted
tSZ spectrum, we have used the nonrelativistic limit of the
tSZ frequency spectrum. In reality, the hottest clusters,
from which most of our constraining power is derived, are
going to have non-negligible relativistic corrections, some-
times called the relativistic Sunyaev-Zeldovich (rSZ) effect,
especially compared to the small level of distortion that μ
introduces. We show in Appendix B that the μ-distorted
rSZ spectrum modifies Eq. (12) for the anisotropy cali-
brated temperature fluctuation to

ΔT ¼ yT0gðx; μ; θeÞ; ð39Þ

FIG. 4. Top: frequency scaling relation for
ffiffiffiffiffiffi
Cw

p
. Blue points

correspond to the S4-wide survey’s specifications. Bottom: σ2ðμÞ
for different frequency pairs for a single cluster with yc ¼ 10−4

and θc ¼ 1 arcmin. We see that the constraints on μ improve
when the channels are separated from each other rather than being
closely spaced. In general, we see that as long as there is a
separation, lower-frequency channels provide more sensitivity to
μ in this baseline case of white detector noise only, in accordance
with Fig. 1.
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where θe ¼ kBTe=mec2. This generalizes from the form
gðx; μ; 0Þ ¼ gðx; μÞ given in Eq. (4).
We then marginalize over Te per cluster bin, around the

central values given by Eq. (18), along with yc using the
first order in θe expression for g from Eq. (B3). In Fig. 5,
we show the corresponding fractional change in the y
distortion as a function of frequency for a range of cluster
temperatures for comparison with Fig. 1 for the μ dis-
tortion. Marginalizing over Te per cluster bin degrades our
constraint on μ by ∼30% (see Table II). While this is not a
large effect by itself, marginalizing over Te has the effect of
using up another linear combination of frequency bands
to help break the degeneracy with μ, as was the case
with yc.
As noted by Ref. [38], the convergence of relativistic

corrections as a Taylor expansion in powers of θe is slow at
frequencies around the null and above. In Fig. 5, we also
show the spectral shape of the relativistic correction at
fourth order. The small change in the shape associated with
the central frequencies of the surveys, which are below the
null, implies a correspondingly small change in the μ
constraints. We find that going to fourth order makes a 5%
change for S4-wide, a 6% change for S4-deep, and a 3%
change for CMB-HD.

C. CMB anisotropies

Another source of variance in the measurement of the
tSZ effect from clusters is primary CMB anisotropy. As can
be inferred from Fig. 3, the constraint on μ is dominated by
high-mass, low-redshift clusters. These clusters are suffi-
ciently extended on the sky that primary anisotropy is a
potential concern.
There are also secondary CMB anisotropies arising from

the kSZ effect due to scattering off of gas through its bulk
rather than thermal motion after recombination. The kSZ
effect is intrinsically a Doppler shift and has the same

spectrum as primary anisotropies (see Sec. II B). In this
section, we only consider the background kSZ signal rather
than the contribution specific to the clusters in our catalog.
The isotropic kSZ signal is subdominant relative to the
primary CMB anisotropies until l≳ 4000.
Since these sources are statistically isotropic, we model

their effects on our constraints by including the CMB
temperature power spectrum and kSZ power spectrum in
our noise covariance matrix. As described in Sec. II A, the
spectrum for CMB anisotropies will look like the derivative
of a blackbody given that our experiments will calibrate
off the anisotropies. Such sources have a constant temper-
ature across frequencies by definition. This means that
the temperature power spectra will act as frequency-
independent, fully correlated noise across frequency chan-
nels in Eqs. (28) and (29). We use CAMB to generate the
primary CMB logarithmic power spectrum DTTðlÞ for the
fiducial cosmology. For the kSZ power spectrum, we con-
sider a scale invariant spectrum with a constant DkSZðlÞ.
We use the amplitude measured from the South Pole
Telescope (SPT) at l ¼ 3000 [39],DkSZð3000Þ ¼ 2.9 μK2.
As shown in Table II, σðμÞ slightly degrades when

including the CMB and kSZ background, but not by a large
amount. For both CMB-S4 surveys, the individual con-
tribution of the CMB and kSZ effect are similar to one
another. The smaller beams and wider l coverage of CMB-
HD make the kSZ effect relatively more important than the
primary CMB.

D. Cluster kinetic Sunyaev-Zeldovich effect

In the previous section, we only considered the kSZ
signal corresponding to a statistically isotropic background.
Since each cluster also has a specific kSZ profile associated
with its gas profile and peculiar motion, we cannot treat it
as statistically isotropic noise as we can with foregrounds
that are not associated with the cluster.
We could model the kSZ signature from each cluster as

part of the cluster signal and marginalize over the peculiar
velocity of the cluster as we did for yc and Te. On the other
hand, the spectrum of the kSZ is perfectly known, and we
can effectively marginalize over a signal with a known
spectrum by adding a component with that spectrum and
artificially high amplitude to the covariance matrix [40].
Since kSZ has the same spectrum as the primary CMB
anisotropy, which already is in the covariance matrix with
an amplitude much larger than the instrumental noise, we
expect this procedure to have minimal impact on our μ
constraints. In practice, we marginalize over any signal
with the spectrum of primary CMB anisotropy or kSZ by
multiplying the DTT þDkSZ spectra by a sufficiently large
constant that the resulting σðμÞ saturates to its asymptotic
value. Any part of the μ signal that comes from the
combination of frequency channels with a blackbody
spectrum will have effectively infinite noise and not
contribute to the constraint.

FIG. 5. The fractional response of the tSZ spectrum, with first-
order and fourth-order relativistic corrections, to the temperature
of the cluster. Here we take μ ¼ 0 for a cluster with kBTe ¼
5 keV and another with kBTe ¼ 12 keV.
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The fourth row of Table II shows σðμÞ when we
implement this procedure. We see that our constraints
hardly change for all three CMB surveys. This suggests
that, as expected, any contribution to the μ constraint from
the combination of frequency band information corre-
sponding to the spectrum of primary CMB anisotropy is
already made negligible by the inclusion of the fiducial
DTT þDkSZ in the covariance.

E. Extragalactic foregrounds

We treat three independent types of extragalactic fore-
grounds X∈ c; p; r: “c” the clustered cosmic infrared back-
ground (CIB); “p” the spatially unclustered or “Poisson”
component of the CIB; and “r” the radio sources or
synchrotron-emitting active galactic nuclei, the clustering
of which is assumed to be negligible. For extragalactic
foregrounds and, in the next section, galactic foregrounds,
we parametrize the logarithmic power spectrum of fore-
ground X at multipole l and frequency ν as

DXðl; νÞ ∝
�

fXðνÞ
ð∂B=∂TÞν

�
2

lβX ð40Þ

and provide the normalization DXðlX; νXÞ at a fiducial
multipole value lX and frequency νX. Here βX is the index
of the assumed power-law multipole dependence, fXðνÞ
encodes the frequency dependence in specific intensity
units, and ð∂B=∂TÞν converts specific intensity to CMB
temperature units at the relevant frequency ν assuming a
blackbody CMB spectrum.2 We assume 100% correlation
between observing bands for all individual extragalactic
and galactic foreground components, such that we only
need to specify the behavior at a single frequency, with
the cross-frequency components of the covariance given
by Eq. (28).
For all three extragalactic foregrounds considered here,

we assume a power-law frequency dependence

fXðνÞ ¼ ναX : ð41Þ

Following [39], for the clustered CIB we adopt Dcð3000;
150 GHzÞ ¼ 3.5 μK2 and αc ¼ 4.3, while for the Poisson
component of the CIB we adopt Dpð3000; 150 GHzÞ ¼
9.2 μK2 and αp ¼ 3.3, and for the radio Poisson compo-
nent, we adopt Drð3000; 150 GHzÞ ¼ 2.0 × 10−2 μK2 and
αr ¼ −0.70. For the l dependence, we adopt βc ¼ 0.80
(again following [39]), while for the Poisson terms βp ¼
βr ¼ 2 by definition.

We note that the assumed radio amplitude we adopt is
significantly lower than the best-fit radio source power
quoted in [41] (the follow-up paper to [39], which did not
constrain the radio amplitude), owing to the assumption of
a much lower source cut threshold in the experiments
treated here. The 5σ point source threshold in the 150 GHz
channel of the CMB-S4 deep survey should be roughly 50×
lower than that used in [41], and the slope of the number
counts of radio sources is such that the Poisson power should
scale roughly linearly with flux cut. As such, we adopt a
radio amplitude value 50× smaller than the 1.0 μK2 value
from [41]. This number will be slightly optimistic for CMB-
S4 wide and slightly pessimistic for CMB-HD.
We see in Table II that extragalactic foregrounds have a

larger impact on our constraints of μ than the effects of the
previous sections. Moreover CMB-HD no longer provides
improvements on μ compared to the constraints from
COBE/FIRAS. More specifically, in all three of our
surveys, radio point sources are the dominant extragalactic
foreground contaminating our constraints on μ. Both the
clustered and Poisson contributions of the CIB have a
negligible effect on σðμÞ. Thus, efforts to reduce the effects
of extragalactic foregrounds should prioritize mitigating the
effects of radio sources. One clear path forward is to exploit
the available lower-frequency data, both in the CMB
surveys themselves and in planned contemporaneous radio
surveys such as the Square Kilometer Array (SKA [42]),
the source detection threshold of which will be such that
masking of SKA-detected sources in CMB-S4 or CMB-HD
data will be limited by the number of independent pixels
or resolution elements in the map. Using current source
models (e.g., [43]), the source density at flux cut levels a
factor of several lower than those assumed here still only
reaches hundreds per square degree, still feasible for
masking in CMB-HD data.
Note that we are implicitly treating extragalactic fore-

grounds as a statistically isotropic background to the cluster
signal. In fact, galaxy clusters will likely be overdensities of
“foreground” contamination as well as the desired tSZ
signal. A potential method to account for this would be to
parametrize the covariance matrix with amplitude param-
eters for each extragalactic component and marginalize
over these parameters per cluster. With sufficiently inform-
ative priors from observations in other surveys and at other
wavelengths, this could be achieved with a minimal
degradation of the eventual μ constraint.

F. Galactic foregrounds

The sources of galactic contamination that have tradi-
tionally been considered most important at CMB observing
frequencies are thermal dust emission and synchrotron
emission, but we also include a component of “anomalous
microwave emission” (AME) because of its importance at
low frequencies (e.g., [44]).

2Note that we neglect the μ-dependent anisotropy calibration C
factors from Eq. (10) here, since we are considering the fore-
grounds as noise rather than signal. In principle, measuring
anisotropy-calibrated foregrounds with known absolute spectra
could themselves be used to measure μ.
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Because galactic foregrounds are not statistically iso-
tropic, we adopt separate sets of values for foreground
amplitudes for the fsky ¼ 0.03 S4-deep survey and the
fsky ¼ 0.5 region targeted by the S4-wide survey (which
we also adopt for the CMB-HD survey).3

Interstellar dust heated by starlight emits as a quasither-
mal modified blackbody. We follow Ref. [45] and para-
metrize the frequency behavior of thermal dust emission as

fdðνÞ ¼ ναdBνðTdÞ; ð42Þ
where Td ¼ 19.6 K is the dust temperature and αd ¼ 1.6.
Also following that work, we set βd ¼ −0.4. Following
Ref. [46], we adopt Ddð80; 145 GHzÞ ¼ 3.3 μK2 for
S4-deep and 1.2 × 103 μK2 for S4-wide and CMB-HD.4

This very large increase from deep to wide is attributed
at least partly to the requirement adopted in the CMB-S4
wide survey to restrict observing elevation to ≥40°. If
we impose no elevation restriction and instead choose the
50%of the sky at highest galactic latitude (using the publicly
available PySM simulations [47] as in [46]), we find
Ddð80; 145 GHzÞ ¼ 63 μK2. This would similarly reduce
the impact of AME on the wide surveys (see below for
details).
Again following Ref. [45], we parametrize synchrotron

as a pure power law in frequency [as in Eq. (41)] and adopt
αs ¼ −1.1 and βs ¼ −0.4. Likewise following Ref. [46],
we adopt Dsð80; 93 GHzÞ ¼ 5.0 × 10−3 μK2 for S4-deep
and 5.5 × 10−2 μK2 for S4-wide and CMB-HD. We note
that the synchrotron amplitude does not vary as strongly
across the sky in PySM as the dust amplitude: The ratio of
power in the wide and deep areas is only ∼10 for
synchrotron, compared to over 300 for dust. Similarly, if
we use jbj > 30° instead of the official CMB-S4 wide
region, we find that the synchrotron amplitude decreases by
less than a factor of 2 (compared to ∼20 for dust).
Because of the potential importance of low-frequency

information in our μ constraint, we also consider the impact
of AME. We investigate the behavior of AME in the CMB-
S4 3% sky region using PySM. We find that the AME
spectral energy distribution (SED) has a double-peaked
shape, which we parametrize as

f2aðνÞ ¼ e−½lnðν=ν1Þ�2=2σ21 þ Ae−½lnðν=ν2Þ�2=2σ22 ; ð43Þ

with ν1 ¼ 10 GHz, σ1 ¼ 0.43 GHz, ν2 ¼ 22 GHz, σ2 ¼
0.35 GHz, and A ¼ 6.5 × 10−3. We assume βa ¼ −0.4 (as
would be expected if AME were from spinning dust grains

and traced the thermal dust emission). From PySM, we
estimateDað80; 10 GHzÞ ¼ 1.0 × 104 μK2 for the S4-deep
survey and, assuming the same scaling between deep
and wide found for the thermal dust, Dað80; 10 GHzÞ ¼
3.6 × 106 μK2 for S4-wide and CMB-HD.
The inclusion of galactic foregrounds has a larger impact

on S4-wide compared to S4-deep and CMB-HD, which are
more impacted by extragalactic than galactic foregrounds
due to their μ constraint being weighted toward higher
multipoles (see Table II). More specifically, S4-wide and
S4-deep now have comparable constraints on μ, despite
vastly different galactic foreground amplitudes. Most
notably, AME is responsible for most of the degradation
in σðμÞ for all three surveys. Synchrotron provides some
contribution while being subdominant to AME, and dust
has a negligible effect on σðμÞ. As discussed above,
relaxing restrictions on observing elevation in the wide
surveys can help mitigate the impact of AME. But this
result also motivates a more careful investigation into the
spectral and spatial behavior of AME, beyond the simple
ansatz made in this work.
We also note that, because of the large variation in

galactic foreground amplitudes across the wide survey
region, using a single covariance matrix for the wide-area
surveys is almost certainly suboptimal. The true foreground
covariance across the full region will have off-diagonal
elements in l space, owing to the statistical anisotropy
across the region, but even including these off-diagonal
elements, the use of a single covariance matrix implicitly
assumes statistical isotropy across the field. Because of
this, the constraints presented here for the wide surveys are
likely somewhat pessimistic. We could potentially recover
some of the μ constraints lost to galactic foregrounds (and
make the use of covariance matrices that are diagonal in l
more appropriate) by dividing the wide surveys into
subpatches based on foreground amplitude and analyzing
each subpatch individually, with different covariance matri-
ces. This would effectively weight different parts of the
wide survey region inversely by foreground amplitude.

G. Atmosphere

We saw in our S=N contour plot that most of the signal is
from high-mass, low-redshift clusters, and they can subtend
a large angle in the sky. In addition to being potentially
confused with primary CMB fluctuations (see Sec. IV C),
signals from objects this large on the sky are also impacted
(in ground-based measurements) by emission from poorly
mixed water vapor in the atmosphere. The amplitude of
water-vapor fluctuations in the atmosphere is higher at
large spatial scales than small spatial scales, and the
emission thus behaves as “red noise” in CMB maps, often
modeled as a power law in l. The total detector þ
atmosphere noise power in frequency band i can then be
parametrized with three numbers, namely the white noise
level Cw, the multipole value at which the detector and

3Because of the statistically anisotropic nature of the galactic
foregrounds, in a real dataset, the covariance for clusters in
different parts of the sky would be potentially quite different, and
using the mean covariance across the sky for all clusters is not
strictly correct.

4This is technically for fsky ¼ 0.58, but if we recalculate for
fsky ¼ 0.50, the value only decreases by ∼30%.
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atmosphere noise levels are equal lknee, and the power-law
index of the atmosphere noise αatmo:

Cw;i → Cw;i

�
1þ

�
lknee;i

l

�
αatmo;i

�
: ð44Þ

Our values of lknee and αatmo for the three surveys are taken
from [32] and given in Table III.
While Eq. (44) describes atmospheric emission as

uncorrelated between frequency bands, physical intuition
and empirical evidence (e.g., [48]) argue that it should in
fact be strongly correlated between bands, at least for
instruments in which the beam patterns for detectors at
different frequencies overlap in the atmosphere. The effects
of atmosphere could in principle be reduced using the
correlation between frequency bands to project out much of
the atmospheric contamination.

H. Order of operations

Our chosen ordering of cumulative effects may give the
impression that certain effects are negligible because they are
when implemented early in the ordering. However, these
effects could prove significant when implemented last, after
the survey’s constraining power is used to fix other effects.
To help gauge the impact each effect has on the end result,
we calculate σðμÞwhen excluding individual effects from the
end result. These results are shown in Table IV.

σðμÞ when excluding relativistic contributions, com-
pared to including first-order corrections, improves by
∼40% for both CMB-S4 surveys, whereas the results
improve by ∼30% for CMB-HD. If we include the effect
up to fourth order, the results are almost identical to first-
order results.
The CMB and the kSZ effect, both the isotropic and

cluster component, have a negligible impact on σðμÞ when
excluded at the end. Interestingly, extragalactic foregrounds
also have a negligible impact on μ for S4-wide and
CMB-HD. S4-deep’s constraint improves when we exclude
extragalactic foregrounds but only by about 25%.
The exclusion of galactic foregrounds improves S4-wide

and CMB-HD’s constraints on μ but only modestly
improves S4-deep’s constraints. This is likely because
contamination from galactic foregrounds is much worse
for S4-wide and CMB-HD, which include observations
near the galactic plane.
Our results suggest that the largest way to improve con-

straints on μ for all surveys is to address relativistic correc-
tions. For S4-wide and CMB-HD, galactic foregrounds are
a major challenge to improving constraints. For S4-deep,
galactic and extragalactic foregrounds present similar levels
of degradation. Generally, addressing these challenges
requires additional frequency channels in order to help
isolate the μ signal. Finally, we note that priors on Te can in
principle be obtained from external data such as x-ray
observations.

I. Interfrequency calibration requirement

While we can effectively perfectly account for the
miscalibration induced from assuming the background
photon distribution is a blackbody when it is in fact a
Bose-Einstein distribution, in a real instrument there will
also be miscalibration from the fact that the observation of
the calibration source is not noise-free. If we parametrize
this calibration error as

Cmeas ¼ Ctrueð1þ δcalÞ≡ 1þ δcal; ð45Þ

then in a real experiment, the measured, (mis)calibrated
signal from a single cluster will be

ΔTðx; yc; μ; δcalÞ ¼ yT0gðx; μÞð1þ δcalÞ: ð46Þ

The requirement for interfrequency calibration is most
obvious in the Rayleigh-Jeans limit (and in the limit
μ ≪ x), in which gðx; μÞ ¼ −2ð1þ μ=xÞ. The basic infor-
mation used to constrain μ is the ratio of the cluster signal in
two bands. If we assume perfect calibration in one band and
a miscalibration in the other, we find

TABLE III. Atmosphere parameters for the CMB-S4 wide and
deep surveys and a CMB-HD-like survey, taken from [32].

Channels (GHz) 30 40 90 150 220 270

Survey fsky lknee and αatmo

S4-wide 50% 400 400 1900 3900 6700 6800
3.5 3.5 3.5 3.5 3.5 3.5

S4-deep 3% 400 400 1200 1900 2100 2100
4.2 4.2 4.2 4.1 4.1 3.9

CMB-HD 50% 400 400 1900 3900 6700 6800
3.5 3.5 3.5 3.5 3.5 3.5

TABLE IV. Forecasted fractional improvement to σðμÞ (see last
line of Table II for the values for each experimental configuration)
when excluding certain individual effects.

Excluded S4-wide S4-deep CMB-HD

First-order rSZ ×0.60 ×0.58 ×0.68
CMB and all kSZ ×0.90 ×0.94 ×0.97
Cluster kSZ ×0.97 ×0.99 ×0.98
Extragalactic foregrounds ×0.99 ×0.79 ×0.92
Galactic fore ×0.41 ×0.83 ×0.71
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Rðx1; x2; yc; μ; δcalÞ ¼
ΔTðx2; yc; μ; δcalÞ
ΔTðx1; yc; μÞ

¼ −2ycT0ð1þ μ=x2Þð1þ δcalÞ
−2ycT0ð1þ μ=x1Þ

¼ 1þ δcal þ μ=x2 þ δcalμ=x2
1þ μ=x1

≃
�
1þ δcal þ

μ

x2

��
1 −

μ

x1

�

≃ 1þ μ

�
1

x2
−

1

x1

�
þ δcal: ð47Þ

It is clear from this formulation that to constrain μ to
some level σðμÞ, we need calibration uncertainty smaller
than σðμÞjðx−12 − x−11 Þj. For the experimental configurations
considered in this work, that means we need calibration
better than 10−4–10−5 in the bands around the peak of the
CMB blackbody. A full-sky experiment with noise levels
of 1 μK-arcmin has S=N per band on the primary CMB
temperature anisotropy approaching 106, so in principle
this level of interfrequency calibration is achievable.
Additionally, this level of calibration precision must be

maintained over the full survey area. For surveys that cover
a large fraction of the sky, different parts of the survey are in
general surveyed at widely separated times and possibly
under different atmospheric conditions. This places an
effective requirement on calibration stability; alternatively,
different parts of the survey can be calibrated independ-
ently, in which case the S=N requirement on the CMB is
per independently calibrated patch.
Finally, we note that this calibration requirement

imposes a practical minimum size of the survey area.
Figure 3, taken at face value, implies that an efficient
strategy for constraining μ with tSZ could be to make
incredibly deep measurements on a single very massive and
low-redshift cluster (or a handful of such clusters). If,
however, the calibration for such a survey is to come from
CMB anisotropy, the survey must contain enough sky in
which the signal is dominated by primary CMB to achieve
the required calibration precision. This disfavors strategies
along the lines of pointing a powerful interferometer (such
as ALMA) at a small number of massive clusters.

J. Cluster profiles

The model for the angular distribution of the Compton-y
signal adopted in Sec. III is an oversimplification in at least
three ways.
(1) Real clusters of the same mass and redshift will not

all have the same overall normalization to their
Compton-y signal.

(2) Real clusters of the same mass and redshift will not
all have the same profile shape.

(3) The Compton-y signal in real clusters will not be
described perfectly by an isothermal β-model profile.

(4) Real clusters are not spherically symmetric.
One important point to remember here is that, in our fore-
casting, the cluster model serves effectively as a weighting
of angular modes, and getting this weighting wrong will
result in a lower S=N and thus a worse constraint on μ but
will not bias the result.
The impact of the first two effects, scatter in the overall

normalization and profile shape at fixed mass and redshift,
can be estimated using the expression in Eq. (33). In a
given mass and redshift bin, if there is scatter in overall
normalization or scale radius, but they are treated as
uniform—for example, if the analysis is performed on a
stacked cluster profile—the total achieved ðS=NÞ2 in a bin
will be equal to NclðS=NÞ2mean, where Ncl is the number of
clusters in the bin and ðS=NÞ2mean is the result of Eq. (33)
using the mean normalization or scale radius in the bin. The
maximum achievable ðS=NÞ2, if each cluster was treated
individually and its properties fully known, would beP

iðS=NÞ2i , and the degradation in ðS=NÞ2 from stacking
is the ratio of these,NclðS=NÞ2mean=

P
iðS=NÞ2i . Because the

constraint on μ scales as the inverse square root of this
quantity [i.e., σ2ðμÞ ¼ F−1

μμ ∝ ðS=NÞ2], the degradation on
σðμÞ will be 1=2 the degradation on ðS=NÞ2 (for small
degradation factors).
We estimate the degradation factor for 10% scatter in

overall normalization (roughly the upper limit to the
intrinsic scatter in the Y −M relation found in [49]) and
for 30% scatter in scale radius (see Table A2 in [28]). The
effect of scatter in the normalization can be estimated
analytically and should result in a degradation of order
σ2y0=y0

2 in total ðS=NÞ2, or 0.5σ2y0=y02 in σμ. This relation
predicts a 1% degradation in total ðS=NÞ2 or 0.5% in
σðμÞ for 10% scatter, and we find results consistent with
this using Eq. (33) for a Gaussian distribution with
σy0=y0 ¼ 0.1. For a Gaussian distribution of scale radii
with σθc=θc ¼ 0.3, we find a degradation of roughly 10% in
total ðS=NÞ2 or 5% in σðμÞ.
Assuming the wrong cluster model or assuming a spheri-

cally symmetric cluster when the true cluster is elliptical or
triaxial will result in a degradation in S=N even with no
scatter in cluster shape within a mass and redshift bin. For a
fiducial cluster with mass M500 ¼ 5 × 1014M⊙ and redshift
z ¼ 0.5, if we assume the true underlying profile is the
universal pressure profile from [28], but we use a β model
in the fitting procedure, we incur a penalty in ðS=NÞ2 of
roughly 3%. If we assume the true underlying model is a β
model with typical ellipticity (defined as ratio of minor to
major axis) of 0.8 (cf. Table 2 in [50]), we find a degradation
in ðS=NÞ2 of roughly 1%. All of these effects are small
compared to the impact of the configuration choices
described earlier and shown in Table II.
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V. CONCLUSION

In this study, we have demonstrated that the spectrum
of the tSZ effect in the direction of massive clusters of
galaxies can be used to constrain the μ-distortion monop-
ole. We have shown that this can in principle be achieved
without measuring the mean intensity across the sky and
instead using a differential experiment that calibrates off of
the CMB anisotropies, even when assuming the underlying
CMB is an undistorted blackbody. We forecasted con-
straints on μ using the tSZ spectrum for the upcoming
CMB-S4 experiment, using both the wide and deep
surveys, as well as the proposed CMB-HD experiment.
We found that the most massive clusters at the lowest
redshifts provide the strongest constraints on the μ-dis-
tortion monopole. In terms of raw sensitivity, we found that
all three surveys closely match or outperform COBE/
FIRAS in constraining the μ-distortion monopole. Extra-
galactic and galactic foregrounds significantly degrade
these constraints to the point where CMB-S4 performs
worse than COBE/FIRAS, and CMB-HD delivers roughly
equivalent constraints to COBE/FIRAS. Specifically, we
found that radio point sources heavily impact low-noise
surveys such as S4-deep and CMB-HD, whereas the
inclusion of AME significantly degrades S4-wide con-
straints on μ.
To improve on these constraints, foreground removal

is a priority. Improving foreground removal, in general,
requires additional frequency channels to help distinguish
signal from foregrounds. In regards to specific foregrounds,
improved masking of radio point sources using higher-
resolution surveys should reduce their impact, while to
reduce the effects of galactic foregrounds such as AME,
the most straightforward strategy is to perform deep sky
observations that avoid the galactic plane. We see in Figs. 1
and 4 that the distortion of the tSZ spectrum increases at
lower frequencies. This suggests additional coverage at low
frequencies should also improve constraints on μ. Finally,
the inclusion of external data (particularly x-ray data) could
be useful both in filling in the low-redshift gaps in the CMB
experiments’ cluster selection and in providing external
priors on the temperature of individual clusters, helping to
break degeneracies between μ, central tSZ decrement, and
cluster temperature.
Based on the above discussion, an experiment that would

improve on these current constraints should have many
frequency channels to remove foregrounds, with some
channels dedicated to frequencies below 30 GHz if pos-
sible. The experiment should have beams comparable to the
targeted cluster sample with white noise levels comparable
to or better than CMB-S4. This implies observations with
radio instruments combined with a CMB experiment have
the potential to improve measurements of μ. While our
results suggest a deep observation of individual low-
redshift clusters would be ideal for obtaining better con-
straints on μ, we caution that one would need to also

measure in the same observation the CMB at a high enough
SNR for all frequencies to calibrate off of CMB anisotropy.
Certain assumptions we make in our forecasts may turn

out to be overly optimistic. For example, the assumption of
100% correlation between the foreground power across
all frequency bands must break down at some level.
Although the level of decorrelation in galactic dust at these
frequencies has been limited to be very small [51], even a
low level of decorrelation could degrade precision con-
straints significantly. On the other hand, analyzing the
foregrounds in subpatches should improve the statistical
modeling and more optimally weight the data. We also
show that the degradation in σðμÞ due to scatter in the
overall normalization and cluster shape is small compared
to other effects we model. Although it is small, this
degradation could be recovered in future work by fitting
the true profile to each cluster in order to recover the
maximum achieved ðS=NÞ2.
The low-frequency enhancement of μ distortions of the

tSZ effect suggests that a synergistic combination of CMB
and radio telescope data could further improve constraints
on the μ monopole using this technique. To realize this
promise with specific radio surveys, future studies can use
the forecasting framework presented here to address the
calibration and foreground-mitigation requirements of
the combined dataset.
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APPENDIX A: FLAT SKY HARMONICS

For a function on the sky yðn⃗ ¼ fθ;ϕgÞwith support only
on a small area θ ≪ 1 around the pole (in the main text,
center of the cluster), we can directly relate the spherical
harmonic ylm and flat sky yl harmonic coefficients

yðn⃗Þ ¼
X
lm

ylmYlmðn⃗Þ

≈
Z

d2l
ð2πÞ2 yðl⃗Þe

in⃗·l⃗; ðA1Þ

using an approximation for Ylm itself in an elaboration of
the derivation in Ref. [52]. This approximation follows
from the relation ([53], 8.722.2)

lmP−m
l ðcos θÞ ≈ JmðlθÞ ðA2Þ
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for m ≥ 0 and l ≫ 1. We can use the fact that

J−mðxÞ ¼ ð−1ÞmJmðxÞ; ðA3Þ

P−m
l ¼ ð−1Þm ðl −mÞ!

ðlþmÞ!P
m
l ; ðA4Þ

and

Ylm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcos θÞeimϕ ðA5Þ

to obtain for all m

Ylm ≈ l−jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ jmjÞ!
ðl − jmjÞ!

s
ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
JmðlθÞeimϕ:

ðA6Þ

When transforming functions with support only near the
pole only jmj ≪ l modes contribute substantially due to
the rapid variation of higher modes with ϕ, so it is a good
approximation to cancel the factorials with l−jmj and use

Ylm ≈ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
JmðlθÞeimϕ ðjmj ≪ lÞ: ðA7Þ

Note that we can always orient the pole of the spherical
coordinate system to align with the region of support.
We can now obtain the desired relation between the two
coefficients in Eq. (A1) [52]:

yðl⃗Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r X
m

i−mylmeimφl ;

ylm ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Z
dφl

2π
e−imφlyðl⃗Þ; ðA8Þ

where φl is the azimuthal angle ϕ that l⃗ points at the pole.
In particular, if the function is azimuthally symmetric
around the pole only m ¼ 0 coefficients contribute and

yðl⃗Þ ¼ 2π

Z
θdθJ0ðlθÞyðθÞ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
yl0: ðA9Þ

It is common in the literature to slightly improve on the
accuracy of the underlying approximation (A2) at low l by
taking the argument of the Bessel function as lθ → ðlþ
1=2Þθ and correspondingly l2 → lðlþ 1Þ, e.g., in the
Gaussian beam profile formula (25).

APPENDIX B: RELATIVISTIC CORRECTIONS

Following Refs. [38,54], we can derive the relativistic
corrections to the y distortion of an initial μ distortion using
the generalized Kompaneets equation which is the expan-
sion of the Compton collision term to the Boltzmann
equation in the small energy transfer due to scattering.
To first order in θe ≡ kBTe=mec2, Eq. (1) is generalized to

∂f
∂τ

¼ θe
X4
n¼1

xneIn

�
ð1þ fÞ

�
∂

∂xe
þ 1

�
n
−
∂
nf
∂xne

�
f ðB1Þ

with

I1 ¼ 4 − xe þ
�
10 −

47

2
xe þ

21

5
x2e

�
θe;

I2 ¼ 1þ
�
47

2
−
63

5
xe þ

7

10
x2e

�
θe;

I3 ¼
�
42

5
−
7

5
xe

�
θe;

I4 ¼
7

10
θe: ðB2Þ

We can again find the change Δf in the jyj ≪ 1 regime by
plugging in an initial Bose-Einstein distribution to the
right-hand side of Eq. (B1) to obtain Δf ¼ yxexþμf2g,
where

g ¼ X − 4þ θe

�
−10þ 47

2
X −

42

5
X2 þ 7

10
X3

þ S2
�
−
21

5
þ 7

5
X

�
þ 7x2

10
ð6 − XÞ T

Te

�
ðB3Þ

and

X ¼ x coth½ðxþ μÞ=2�; S ¼ x csch½ðxþ μÞ=2�: ðB4Þ

Recall that the Comptonization parameter y was defined in
Eq. (5) to vanish for T ¼ Te.
For the tSZ effect in clusters where Te ≫ T, the

expression becomes even simpler, reproducing and general-
izing the μ ¼ 0 result found in Ref. [38]. This same rule for
generalizing g in the presence of μ through the modification
to X and S in Eq. (B4) applies to the higher order in θe
terms of Ref. [38] for Te ≫ T as we have explicitly
checked to fourth order.
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