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We study the gravitational bremsstrahlung owing to collisions mediated by a 1=r potential. We combine
classical and first order Born approximation results in order to construct an approximate gravitational
“Gaunt factor” for the total emitted energy. We also obtain the cross section with an angular momentum
cutoff and hence the cross section for emission via close hyperbolic encounters in a gravitating cluster.
These effects are the dominant source of very high frequency gravitational noise in the Solar System. The
total gravitational wave power of the Sun is 76� 20 MW.
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I. INTRODUCTION

This paper reviews and extends the study of gravitational
bremsstrahlung during collisions in a 1=r potential. In
practice this is Coulomb collisions and gravitational
“collisions” (i.e. hyperbolic encounters) where the potential
is well approximated as 1=r. Such processes take place in
plasmas such as stellar interiors, and in gravitating clusters
such as those of black holes believed to be present in
many galactic nuclei, or in the early Universe. However the
motivation to study these processes is mainly their innate
interest. They involve a combination of quantum theory and
dynamic gravitation. For Coulomb collisions in the Sun the
resulting gravitational wave amplitude is small and unde-
tectable on Earth using any technology liable to be realiz in
the near future, but in principle it contributes to the limits
on coherence of matter-wave interferometry owing to
gravitational field noise [1–4].
Introductory material is set out in the first two sections

below. Section II surveys previous work on gravitational
wave (GW) emission during collisions in a 1=r potential at
low (nonrelativistic) speeds. Section III introduces notation
and methods. Section IV obtains the total cross section
for the GW energy emission after integrating over impact
parameter. This consists in reporting existing work treating
classical and quantum (first order Born approximation)
limits, and providing approximate formulas for the inter-
mediate regime. Section V considers emission during a
single hyperbolic encounter. Section VI presents the cross

section obtained if one imposes a cutoff on the angular
momentum. This is useful for the case of attractive forces,
where it makes sense to separate the collisions into those
leading to capture and those where the bodies escape to
infinity. Section VII obtains the GW energy emission cross
section for close hyperbolic encounters in a gravitating
cluster. Section VIII estimates the total GW power of the
Sun. Section IX concludes.

II. HISTORICAL SURVEY

Early work on graviton emission during scattering of
fundamental particles was carried out by Ivanenko and
Sokolov (1947, 1952) [5,6]. In 1965 Weinberg calculated
gravitational bremsstrahlung during Coulomb collisions
using quantum field theory, in the limit where the gravitons
are “soft,” meaning they have negligible impact on the
energy-momentum in lines of Feynman diagrams on or
near the mass shell [7]. The following year Carmeli
confirmed this and also provided a classical calculation,
for a repulsive potential, finding the total emitted energy
after integration over impact parameters [30]. His clever
method of calculation did not require an expression for the
emitted energy in each hyperbolic encounter. Boccaletti
(1972) extended this method to the Yukawa potential, and
estimated emission from neutron stars [29]. Meanwhile
Barker et al. 1969 gave the Born approximation calculation
for graviton emission during collisions in a 1=r potential,
among other results [8]. Emission from binary stars on
Keplerian orbits had also been calculated, pioneered by
Peters and Matthews (1963) [9,10].
The above all concern low velocities and Euclidean

geometry. Pioneering calculations for the case of a
Schwarzschild-Droste metric and arbitrary velocity were
provided by Peters (1970) [11]. Since then there has been
a very large body of work devoted to post-Newtonian
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corrections to orbits and scattering, with impressive recent
progress, see for example the remarkable [12,13] and
references therein. In the present survey we will not pursue
the high-velocity or non-Newtonian cases. We restrict to
v ≪ c and r ≫ RS for participating massive objects (with
RS the Schwarzschild radius) and the quadrupole approxi-
mation applies.
Gal’Tsov and Grats (1974) carried out Born approxi-

mation calculations, giving some further information not
included in Barker et al. [14]. They subsequently (1983)
extended their study towards a more complete kinetic
theory of a plasma such as that of the Sun [15].
The first person to have correctly reported the total GW

energy emitted during a hyperbolic encounter in a 1=r
potential, according to classical (not quantum) physics,
appears to be Turner (1977), correcting a minor error in a
previous calculation by Hansen [16,17]. This work was
duly noted in a comprehensive review by Kovacs and
Thorne in 1978, who comment: “Such computations are
straightforward and simple,” but in view of the fact that
errors exist in the literature (we will point out some more
in the next paragraphs), such computations are clearly not
straightforward for ordinary mortals [18].
Dehnen and Ghaboussi 1985 treated a general central

potential and report some useful results for that case [19,20].
They apply their methods to the 1=r potential as an example
and obtain the total scattered energy. Their formula agrees
with that of Turner. They did not cite Turner, presumably an
indication that they were not aware of his work. (Different
authors report the formula in terms of different parameters
so the agreement is not self-evident; we shall display both
versions in Sec. V.)
Further reviews of astrophysical sources of gravitational

waves are provided by [1,2,21]. Whereas Papini and Valluri
discuss bremsstrahlung inside stars along with other
processes, Cutler and Thorne do not because their review
is focused on signals that may be detectable now or in the
near future.
Recently a further case has gained interest: the emission

from clusters of black holes which may have been produced
in the early Universe or in the centers of galaxies [22–26].
The emission is partly from masses in bound orbits, and
partly from a background of close hyperbolic encounters.
In this work we are concerned with the latter, because it has
received less attention in the literature and because it can, in
principle, dominate, depending on the parameters of any
given cluster. Capozziello et al. (2008) calculated the power
and total emitted energy per encounter in the case r ≫ RS
where the gravitational potential is Newtonian to good
approximation. Their results reproduce those of Turner and
of Dehnen and Ghaboussi though they cite neither; they cite
the review by Kovacs and Thorne which includes Turner
but they do not make the comparison. De Vittori et al.
(2012) follow the method of Capozziello explicitly but their
Eq. (6) has a sign error in the last term and their Eq. (8) has

the total power too large by a factor of 4. García-Bellido
and Nesseris, and also Gröbner at al., point out further
mistakes. In view of these discrepancies a new calculation
may be useful and we provide one.
The spectrum of the emitted radiation was treated by

various authors, with noteworthy contributions from
Turner, O’Leary et al., De Vittori et al., García-Bellido
and Nesseris and Gröbner at al.. (Gröbner et al.’s opening
statement that De Vittori et al. constitutes “the first cal-
culation of the frequency spectrum” understates the con-
tribution of Turner who gave explicit formulas for the cases
of eccentricity e ¼ 1 and e ≫ 1 and much of the analy-
sis for general e; subsequent authors completed the
Fourier integrals for all e). Some mistakes in [23] are
corrected in [25,27].
The existing studies for electrical plasmas and those for

gravitating clusters appear to be unaware of one another
although they are often calculating the same things (i.e.
emission during scattering in a 1=r potential). The present
work does the following: (i) bring together the two commu-
nities just outlined; (ii) present the work of Galt’sov and
Grats afresh; (iii) estimate the case, intermediate between
classical and quantum, which is not amenable to classical
nor Born approximations, obtaining an approximate
“Gaunt factor” for the total emitted power; (iv) obtain an
emission cross section by using an angular momentum
cutoff; (v) show how the above can be applied to calculate
the emission from gravitating clusters and from a stellar
plasma.

III. NOTATION AND GENERAL APPROACH

For two colliding partners of masses m1, m2 we define
the total mass M ¼ m1 þm2 and the reduced mass μ ¼
m1m2=M. We shall also use the unadorned m (with no
subscript) for reduced mass; thus m≡ μ. A given binary
collision is described in the center of mass (COM) frame,
such that it consists in a particle of mass μmoving in a fixed
central potential of the form either VðrÞ ¼ Z1Z2e2=r or
VðrÞ ¼ −Gm1m2=r. It is only necessary to treat one of
these two cases since the other is then given by making the
replacement Z1Z2e2 ↔ −Gm1m2. In the following we
mostly present the former (Coulomb scattering) since it
includes both attractive and repulsive collisions, and also
preserves in the notation the distinction between the
potential and the role of G in the GW emission process.
For a slightly more succinct notation we define
e1e2 ≡ Z1Z2e2. We adopt electromagnetic units such that
the Coulomb force between electrons is e2=r2 and the fine
structure constant is α ¼ e2=ℏc.
For a collision with the masses initially far apart, v0 is the

initial velocity and b is the impact parameter. The collision
energy is E ¼ ð1=2Þμv20 and angular momentum L ¼ μbv0.
If a flux n2v is incident on a single collision center, then

the rate of collisions is n2vσ where σ is the cross section
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(this defines σ). If there is a density n1 of collision centers,
then the collision rate per unit volume is n1n2vσ if the
particle types 1 and 2 are distinct, and it is ð1=2Þn21vσ if the
particle types are not distinct. In this paper we shall write
n1n2vσ and expect the reader to understand that in the case
of identical particles the factor half must be introduced.
Our discussion is entirely nonrelativistic. This is a good

approximation for the core of the Sun, where the Lorentz
factor γ ≃ 1.004 for electrons.
Gravitational bremsstrahlung has some features in

common with electromagnetic bremsstrahlung, which has
been studied extensively. For the latter, the emitted power
per photon solid angle and frequency range is written as
a product of an approximate classical expression and a
factor gff called the “free-free Gaunt factor” which incor-
porates quantum and other corrections. Complicated
expressions exist for gff but for many purposes it is useful
to have a simpler formula of reasonable accuracy. For the
electromagnetic case this has recently been provided by
Weinberg [28].
For an approximate classical calculation, one way to

proceed is to integrate the emitted power at each moment
for a particle moving on the trajectory it would follow if no
radiation were emitted. For GW emission this approxima-
tion holds very well for particle collisions and we shall
adopt it.
Whether in the electromagnetic or GW case, there are

two significant energy scales in the collision dynamics: the
kinetic energy and the potential energy at a distance of
order a de-Broglie wavelength. The former is ð1=2Þmv2

where v can be taken as the speed at infinity for a repulsive
potential, or as the speed at the distance of closest approach
for an attractive potential. For low angular momentum the
speed and acceleration have very different behaviors for
attractive and repulsive cases, leading to different GW
emission even though the differential cross section of the
collision may be independent of the sign of the potential.
For Coulomb collisions between particles of charges

Z1e, Z2e we define the dimensionless parameter nB called
the Born parameter by Galt’sov and Grats (and called ξ by
Weinberg [28]):

nB ≡ jZ1Z2e2j
ℏv

¼ jZ1Z2jα
c
v
: ð1Þ

The Born parameter can be read as a statement either about
energy or about angular momentum. It is the ratio of the
Coulomb energy at 2ƛdB to the collision energy. It is also
approximately equal to the angular momentum in units of
ℏ. For a repulsive potential the distance at closest approach
is 2nBƛdB according to classical mechanics. The case
nB ≲ 1 is the quantum limit; the Born approximation for
the scattering holds when nB ≪ 1. The case nB ≫ 1 is the
classical limit. Thus low temperatures give classical tra-
jectories. The ground state of hydrogen has nB ≈ 1.

A further relevant energy is that of the emitted photons or
gravitons, hν. We say the photons or gravitons are “soft”
when hν ≪ ð1=2Þmv2 and “hard” otherwise. The maxi-
mum possible emitted photon or graviton energy is equal to
the entire kinetic energy ð1=2Þmv2. More generally if a
single photon or graviton is emitted then the initial and final
momenta of the scattered particle (e.g. electron) in the
COM frame are related by

p2
i

2m
−

p2
f

2m
¼ hν: ð2Þ

The collision process itself has a timescale τ ≈ r0=v where
r0 is the distance of closest approach. Classical mechanics
predicts that the emitted spectral power extends up to the
angular frequency range near 1=τ, but quantum mechanics
gives a hard cutoff at ω ¼ ð1=2Þmv2=ℏ. The question
arises, then, whether the classically “preferred” frequency
is available. The condition that 1=τ is less than the cutoff is
2ℏ < mvr0, i.e. nB > 1.
A further consideration in the gravitational case is

whether or not the 1=r potential is a good approximation.
This can be expressed by the condition r ≫ RS already
mentioned. We will assume this condition holds, and we
show at the end [Eqs. (56)–(58)] that for the orbits under
study (namely, noncaptured hyperbolic orbits) this can be
subsumed under the condition vmax ≪ c. The reason why
this is sufficient, without a further constraint on the impact
parameter, is that a constraint is placed implicitly by
restricting attention to orbits which do not undergo radi-
ative capture. In other words, slow encounters can only
avoid capture by remaining at large distances. The ques-
tion, whether the methods offer a good approximation in
any given case, then becomes a matter of practical
astronomy concerning the velocity and position distribu-
tions in any given cluster.

A. Methods of calculation

In the compact source approximation in linearized
gravity, the luminosity (i.e. the emitted power) of a source
is given by

LGW ¼ G
5c5

h ⃛Qij
⃛Qiji; ð3Þ

where

Qij ¼ 1

c2

Z
T00

�
xixj −

1

3
δijxkxk

�
d3x ð4Þ

is the quadrupole moment of the mass distribution and the
angle bracket indicates an average over a small region of
spacetime.
For given collision partners, a collision is parametrized

by two quantities: the initial velocity v0 and the impact
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parameter b. We can express the total power generated in
some small volume V of a plasma, as a result of collisions
between particles of types 1 and 2, as

P ¼ Vn1n2hv0Σi; ð5Þ

where n1 and n2 are number densities of two species
[n1n2 should be replaced by ð1=2Þn21 if the species are
identical, as already remarked] and Σ is a cross section
(to be calculated) with the physical dimensions of energy
times area.
We shall obtain Σ by calculating the total GW energy

emitted during a single collision, integrated over impact
parameter b. We adopt and compare four methods of
calculation, as follows.
(1) Purely classical. We calculate that trajectory in the

COM frame. The total emitted energy is
R
LGWdt

per collision, with ⃛Qij obtained from the trajectory.
The GW emission cross section is

Σ ¼
Z

∞

−∞
dt
Z

∞

0

2πbdbLGW: ð6Þ

By exploiting the symmetry of the inward and
outward motion this can be written

Σ ¼ 2

Z
∞

r0

dr
jṙj

Z
bmax

0

2πbdbLGW; ð7Þ

where r0 is the smallest distance of closest approach
and bmax is the largest impact parameter whose
associated trajectory can reach a given r; see Fig. 1
for an elucidation of this.

(2) Born approximation. For a quantum treatment in
the Born approximation we shall present results
obtained by Barker et al. and by Gal’tsov and Grats
(GG) [8,14].

(3) Soft photon theorem. Weinberg has obtained a very
general expression for the emission of soft massless
particles in any collision. In the nonrelativistic limit
his “soft photon theorem” applied to gravitons yields
an expression for the power in the radiated spectrum
up to frequency Λ=ℏ:

P<Λ ≃ V
8G
5πc5

m2v5n1n2
Λ
ℏ

Z
dσ
dΩ

sin2θdΩ; ð8Þ

where Λ is an energy cutoff which has to be taken
low enough so that it is small compared to relevant
kinetic energies in the problem, and dσ=dΩ is the
differential cross section for the collision in the
absence of radiant emission. The term “soft” here
means the graviton’s energy momentum is small
compared to that of the particle emitting it.
Weinberg’s formula does not give the whole

emitted power, only the part owing to soft gravitons,
and only that part up the frequency cutoff Λ=ℏ.
Therefore we should not expect it to match calcu-
lations of the whole power. Nonetheless it offers a
useful consistency check. Expressed as a cross
section we have

Σ<Λ ≃
8G
5πc5

m2v4
Λ
ℏ

Z
dσ
dΩ

sin2θdΩ: ð9Þ

(4) Modified classical. With a view to gaining intuition
about the quantum limit, and to obtain formulas
which are approximately valid for any initial veloc-
ity, we explore the effect of modifying the classical
formula (7). This is not a modification to the
equation of motion; it is merely a rough method
to gain reasonable insight and approximate formu-
las. The idea is that the quantum behavior can be
modeled roughly by using a classical mass distri-
bution with mass density equal tomjψ j2 where ψ is a
wave function in position space, and we suppose this
distribution has a peaked (e.g. Gaussian) form with
a standard deviation to be discovered and a mean
which follows the classical trajectory. We then
suppose that, to sufficient approximation, the result
of such a model can be estimated by some simple
adjustment to the integrand in (7).
One idea, for example, is to replace r in the

integrand of (7) with some simple function such as
ðr2 þ Δ2Þ1=2, where Δ is a parameter to be set so as
to reproduce the known behavior in the limits of
small and large Born parameter. One would expect
this Δ to be of the order of the de Broglie wave-
length. This was explored, and so were other possi-
bilities. In particular, one might leave the integrand
unchanged and simply adjust the lower limit of

FIG. 1. The region of integration of (7) and (47). b is the impact
parameter, r is the distance from the origin in the COM frame. At
any given impact parameter b, the trajectory does not reach values
of r below rmin and therefore at any given r it does not reach
values of b above b1.
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the integral. It was found that this gives a good
approximation. This is presented in Secs. IV E, VI.

IV. TOTAL EMISSION CROSS SECTION

A. Order-of-magnitude estimate

In order to get some general insight into the results to be
discussed, we first present a simple order-of-magnitude
estimate of GW radiation during repulsive Coulomb
collisions.
From (3) we have

LGW ≈
G
5c5

�
Mx2

τ3

�2

≈
4G
5c5

�
EQ

τ

�
2

; ð10Þ

where τ is the timescale and EQ is the part of the kinetic
energy associated with nonspherical (i.e. quadrupolar)
movements. The timescale of the changing quadrupole
moment is τ ≃ r0=v, where r0 is a characteristic distance
scale for a collision at energy E and v is the relative speed
of the colliding partners. We take r0 equal to the distance of
closest approach in a head-on collision,

r0 ¼ e1e2=E ¼ 2e1e2
μv20

: ð11Þ

The duration of each collision is about 2τ so the emitted
energy per collision is ð8G=5c5ÞE2=τ. Multiplying this by
the collision rate n2σv and the number density n1, and using
σ ¼ 4πr20, we obtain the power per unit volume of the
gravitational wave production:

P
V
≈ n1n2e1e2

64πG
5c5

E2

μ
: ð12Þ

Equation (12) is compared with the result of a precise
calculation in the next section. We there find that it captures
correctly the scaling with parameters of the classical result
for a repulsive potential, and gets the numerical factor
about right.

B. Classical treatment

We treat the two-body dynamics as a single-body
motion of a particle of mass μ moving in a static potential
centered on the origin. Let Dij ≡ 3Qij, then Dik ¼
μð3xixk − xjxjδikÞ and

D̈ik ¼ 6μvivk − 6
dV
dr

1

r
xixk − 2

�
μvjvj −

dV
dr

1

r
xjxj

�
δik:

The calculation of ⃛Dik
⃛Dik is straightforward and the result

is given by Boccaletti [29]. For Coulomb collisions
one finds

LGW ¼ 8G
15c5

ðe1e2Þ2
r4

�
v2 þ 11v2⊥

�
; ð13Þ

where v2⊥ ¼ v2 − ṙ2 and in this expression v; v⊥ and r are
all functions of time.
The case of gravitational scattering can be treated by the

replacement e1e2 → −Gm1m2.
The potential is

VðrÞ ¼ e1e2=r; ð14Þ

which may be positive or negative, depending on the signs
of the charges. In the case of a repulsive force (potential
hill), r0 is a positive number equal to the minimum distance
attained in a head-on collision. In the case of an attractive
force (potential well) r0 has no such interpretation but we
retain the formula (11) as a definition, and then r0 < 0.
From conservation of energy and angular momentum

we have

v2 ¼ v20ð1 − r0=rÞ; v⊥ ¼ v0b=r; ð15Þ

where v0 is the initial velocity and b is the impact
parameter. Hence

ṙ ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r0=r − b2=r2

q
: ð16Þ

Using (7) and the above definitions, we have

Σ¼ 32πG
15c5

e21e
2
2v0

Z
∞

rmin

dr
Z

b1

0

db
ð1− r0=rÞ þ 11b2=r2

r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− r0=rÞ− b2=r2

p b;

ð17Þ

where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − rr0

p
. Taking the integration with respect

to b first, we have that, for constants a, B, C, d,

Z
Cþ db2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−Bb2

p bdb¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−Bb2

p

B

�
Cþ 2ad

3B
þ db2

3

�
: ð18Þ

Therefore

Σ ¼ 64πG
9c5

ðe1e2Þ2v0
jr0j

χ; ð19Þ

where

χ ¼ 5jr0j
2

Z
∞

rmin

1

r2

�
1 −

r0
r

�
3=2

dr; ð20Þ

¼ 5

2

Z
∞

xmin

1

x2

�
1� 1

x

�
3=2

dx; ð21Þ

where the plus (minus) sign corresponds to an attractive
(repulsive) potential. The lower limit on the integral with
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respect to r is the smallest r attained in the motion. This is
zero for an attractive collision and r0 for a repulsive one.
It follows that xmin ¼ 0 for an attractive collision and
xmin ¼ 1 for a repulsive one. Consequently χ diverges for
an attractive collision and one obtains χ ¼ 1 for a repulsive
collision. Hence the classical calculation (with no adjust-
ment for quantum effects) yields a divergent result for an
attractive collision (owing to infinite acceleration in a head-
on collision), and for a repulsive collision yields

Σr ¼
32πG
9c5

Z1Z2e2mv3; ð22Þ

where we now use v to indicate v0 which makes a compari-
son with other results more transparent. This is the equation
first obtained by Carmeli [[30], Eq. (4.4)]. When substi-
tuted into (5) it confirms our rough estimate (12).

C. Quantum treatment

We now review results of quantum scattering theory for
this problem, obtained by previous authors. Both Barker
et al. and GG treat the Born approximation and give some
higher-order results. We shall present the Born approxi-
mation and some further observations by GG.
Equation (8) of GG is the same as Eq. (10) of Barker

et al. after the replacement ðGMm=ℏcÞ → ðe2=ℏcÞ. [This
replacement is the one Barker et al. point out after their
Eq. (15), except that they adopt rationalized electromag-
netic units.] In our units, Barker et al., and also GG, find
that the contribution to Σ of the graviton frequency range
dω, in the case of Coulomb scattering, is

dΣ¼ 64Gℏ
15c3

�
e1e2
ℏc

�
2
�
5xþ 3

2
ð1þ x2Þ ln1þ x

1− x

�
ℏdω; ð23Þ

where x ¼ p0=p is the ratio of final to initial momentum of
a particle scattering off a fixed potential. For single graviton
emission (i.e. Born approximation) we have, by conserva-
tion of energy, ℏω ¼ ðp2 − p02Þ=2m ¼ ð1 − x2Þp2=2m, so
ℏdω ¼ −xp2=m. When ω ranges from 0 to the hard cutoff,
x ranges from 1 to 0, so

Σ ¼ 64G
15c5ℏ

ðe1e2Þ2
p2

m

Z
1

0

5x2 þ 3

2
xð1þ x2Þ ln 1þ x

1 − x
dx;

¼ ð160G=9ℏc5Þðe1e2Þ2mv2: ð24Þ

However one should keep in mind that the Born approxi-
mation is only valid when nB ≪ 1 for both the initial and
final momenta. At the hard end of the spectrum p0 → 0 so
nB → ∞. Therefore the above formula has to be corrected
at the hard end. This is the region where x → 0. GG obtain

dΣ → � 1024πG
15c5

ðe1e2Þ2
α̃c
v

dω

ðe�2πα̃c=xv − 1Þ ; ð25Þ

where the þ sign is for repulsion and the − sign is for
attraction, and α̃≡ Z1Z2α. Since xv is the final speed, the
corrected formula should match the uncorrected one when
the final Born parameter αc=xv ≪ 1, as indeed it does.
But at the hard end, x → 0, the spectrum is different in the
two cases:

dΣ→
1024πG
15c5

ðe1e2Þ2
α̃c
v
dω

	
e−2πα̃c=xv repulsion

1 attraction
: ð26Þ

It follows that (24) overestimates the power in the repulsive
case and underestimates it in the attractive case; cf. Fig. 2.
Note also that dΣ scales as ðZ1Z2Þ3.
The above Born approximation results apply when

nB ≪ 1. Closed formulas are also available in the other
limit, nB ≫ 1. For repulsion one then regains the classical

FIG. 2. Spectrum of GWemission in a Coulomb collision in the
first order Born approximation for the collision (nB ≪ 1), as
given by (23). The dashed lines show the corrected spectrum near
the hard end, Eq. (25). Blue dashed: v ¼ 0.1c, red dash-dot:
v ¼ 0.3c.
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result (22). For attraction the classical result (with no
angular momentum cutoff) diverges; the quantum treatment
derived by GG [their Eq. (17)] gives

Σa ¼
8G
5c5

121=3Γ2ð2=3ÞZ1Z2e2mv4=3ðα̃cÞ5=3; ð27Þ

where the subscript “a” stands for “attractive.”
In order to compare the various results, let us define in

each case

χ ≡ Σ=Σr; ð28Þ

where Σr is given by (22). From (24) one obtains

χB ≡ Σ
Σr

¼ 9

2π
nB: ð29Þ

Thus quantum effects here act to suppress the power by a
factor 9nB=2π compared to what would be expected
classically.
Comparing now attraction and repulsion in the low-

velocity limit, we have

χa ≡ Σa

Σr
≃ 0.6013ðα̃c=vÞ5=3 ¼ 0.6013n5=3B : ð30Þ

The power in the attractive case greatly exceeds that in the
repulsive case for low v. This is because the relevant speed
for the attractive case is not the incident speed but the speed
at closest approach. For a classical trajectory at angular
momentum L, the speed at closest approach is approx-
imately nBvℏ=L ¼ α̃cℏ=L in the limit nB ≫ L=ℏ. The
scaling v4=3 exhibited in (27) can be interpreted as the cube
of a velocity which makes a compromise (roughly a
geometric mean) between v and nBv.
The predictions of (22), (29) and (30) are plotted as

dashed lines on Fig. 3.

D. Soft photon theorem

The soft photon theorem has to be applied with caution
in the case of Coulomb collisions owing to the divergence
of the collision cross section term in (9). That is, the
quantity

σ̃ ≡
Z

dσ
dΩ

sin2 θdΩ ð31Þ

diverges. Therefore the approximations invoked in the
theorem do not hold in the case of the Coulomb potential.
The problem is the long-range nature of 1=r; similar
difficulties arising in other scattering problems associated
with this potential. In practice in a plasma there will be
Debye screening which leads to a Yukawa potential. One
then finds that σ̃ ∼ v−4 ln v in the limit of small screening.

The soft photon/graviton theorem does not give the whole
emitted power and one only expects order-of-magnitude
agreement with the full Σ in general. However by judicious
choice of the cutoffΛ one may expect to reproduce the full Σ
to within a factor of 2 for the repulsive case. For Coulomb
collisions there are two relevant frequency scales: the inverse
of the collision time jr0j=v (where v is the maximum speed),
and the hard cutoff at K=ℏ where K ¼ ð1=2Þmv2. If we use
as Λ the smaller of ℏv0=r0 and K, and take

σ̃ ≃ 32πα2ðℏ=μcÞ2ðc=vÞ4; ð32Þ

then the behavior shown in Fig. 3 for repulsive collisions is
reproduced by the formula (9) in both limits of low and
high v0.
For attractive collisions the soft photon theorem is less

successful, but gives a good estimate at high v0 (low Born
parameter).

E. Modified classical

As noted in Sec. III, our modified classical method of
calculation is an adjustment of the classical integrals so as
to yield a reasonable approximation. We consider the effect
of adjusting xmin in (21), giving

χrðλÞ ¼
5

2

Z
∞

1þλ

dx
x2

�
1 −

1

x

�
3=2

¼ 1 −
�
1þ 1

λ

�
−5=2

; ð33Þ

χaðλÞ ¼
5

2

Z
∞

λ

dx
x2

�
1þ 1

x

�
3=2

¼ −1þ
�
1þ 1

λ

�
5=2

; ð34Þ

FIG. 3. Predictions for GW radiation in Coulomb collisions.
The dashed lines show the limiting cases as described by (22)
and (29) (low v) and (30) (high v). The full (dotted) line shows
the predictions of the modified classical method described in
Sec. IV E [Eqs. (33), (34)]. The horizontal axis is α̃=nB; this is
equal to v=c in the case of electron collisions.
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where λ is a parameter which one would expect to be of
the order of the de Broglie wavelength divided by jr0j.
Defining λdB ≡ 2πℏ=μv0, one finds λdB=jr0j ¼ π=nB.

By setting the parameter value

λ ¼ 0.5515π=nB ð35Þ

one finds that (33) reproduces the known results in both
classical and quantum limits, and gives reasonable behavior
at all v < c, see Fig. 3.
For attractive collisions the distance scale where quan-

tum effects must be allowed for is not simply jr0j but may
be considerably smaller. By solving for r the equation
r ¼ h=μv with v ¼ v0ð1þ jr0j=rÞ1=2 one finds r ≃ πλC=α
where λC ¼ h=μc is the Compton wavelength. We mention
this merely to indicate that the attractive case is less
straightforward. We shall choose the parameter λ so as
to match (30) in the low-velocity limit and (29) in the high-
velocity limit. We also have a further piece of information
provided by (26), namely that χ approaches the asymptote
from above at small Born parameter in the attractive case.
These constraints are achieved by adopting (for example)

λ ¼ ð5.20þ 1.84nBÞ1=3=nB: ð36Þ

The result is shown in Fig. 3.
Equations (33)–(36) together provide a formula for χ

which is approximately valid at all collision speeds v. This
χ is the “Gaunt factor” for the total (i.e. integrated over
frequency) emission. It allows one to obtain Σ by taking Σr
given by (22) and multiplying by a correction factor.
The task of calculating gravitational scattering ampli-

tudes and other observables in full is presented in Kosower
at al. [31]. They offer at once an extensive review, a tutorial
and original contributions. There is a procedure to system-
atize the approximations which allows the classical limit
to be taken. Such a calculation remains lengthy. The crude-
but-reasonably-accurate method presented here serves
partly as a simple formula to apply to study of plasmas and
clusters (cf. Sec. VIII), and partly to facilitate the checking
of more advanced methods.

V. POWER AND ENERGY FOR A GIVEN
SCATTERING EVENT

So far we have not treated the motion during individual
scattering events, because it was convenient to integrate
over impact parameter. We now treat individual events of
given b; v0. We shall present the gravitational (Keplerian),
i.e. attractive, case.
The orbit can be described by the parameters b; v0 or by

a number of other pairs, including E, L (energy and angular
momentum, both conserved) and a, ewhere a≡GM=v20 ¼
−r0=2 and e is the eccentricity defined by

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2=a2

q
: ð37Þ

For a hyperbolic orbit one then finds that the distance of
closest approach is

rmin ¼ aðe − 1Þ ¼ b

ffiffiffiffiffiffiffiffiffiffiffi
e − 1

eþ 1

r
ð38Þ

and e ¼ −1= cosϕ0, where ϕ0 is half the total change in
azimuthal angle during the encounter (the deflection angle
is 2ϕ0 − π).
On a classical model under the adopted assumptions

(i.e. motion in a 1=r potential), the GW power during the
scattering process is given by (13), which, after using the
conservation laws (15), gives an expression in terms
of r and constants. Turner gives the following formula
[Eq. (24) of [17]]:

P¼ 8G4

15c5
M3μ2ð1þ ecosϕÞ4

½ð1þ eÞrmin�5


e2sin2ϕþ 12ð1þ ecosϕÞ2�;

ð39Þ

where ϕ is the azimuthal angle taken from ϕ ¼ 0 at
periastron (the point where r ¼ rmin). Thus ϕ goes from
−ϕ0 initially to ϕ0 finally.
Capozziello et al. give [Eq. (21) of [22]]

P ¼ 32GL6μ2

45c5b8
fðϕ0;ψÞ; ð40Þ

where

fðϕ0;ψÞ ¼
sin4ðϕ0 − ψ=2Þsin4ðψ=2Þ

tan2ϕ0sin6ϕ0

×


150þ 72 cos 2ϕ0 þ 66 cos 2ðϕ0 − ψÞ

− 144ðcosð2ϕ0 − ψÞ þ cosψÞ�: ð41Þ

(This formula is quoted incorrectly in [23] where there is a
sign error in the last term). Here ψ ≡ ϕþ ϕ0 (thus ψ goes
from 0 initially to 2ϕ0 finally). If we express f in terms of ϕ
rather than ψ , it simplifies a little:

f ¼ 3

8

ðcosϕ0 − cosϕÞ4
tan2ϕ0sin6ϕ0



25þ 12 cos 2ϕ0

− 48 cosϕ0 cosϕþ 11 cos 2ϕ
�
: ð42Þ

Equations (13), (39) and (40) give three ways of expressing
the same result. They are all equivalent, which one may
confirm by employing r ¼ b sinϕ0=ðcosϕ − cosϕ0Þ (a
standard result of orbital mechanics).
The integral of P over time is conveniently done by

converting to an integral over ϕ. The result was first
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obtained by Turner:

ΔE ¼ 8G7=2

15c5
M1=2m2

1m
2
2

r7=2min

gðeÞ; ð43Þ

with

gðeÞ¼ϕ0

�
24þ73e2þ 37

4
e4
�þ ffiffiffiffiffiffiffiffi

e2−1
p
12

�
602þ673e2

�
ð1þeÞ7=2 ð44Þ

(correcting an earlier calculation of Hansen). In order to
bring out the comparison with (22), note that

8G7=2

15c5
M1=2m2

1m
2
2

ððeþ 1ÞrminÞ7=2
¼ 8G

15c5
GMμ2v30

b2ðe2 − 1Þ5=2 : ð45Þ

Dehnen and Ghaboussi’s result [Eq. (7) of [19]] is

ΔE ¼ 8Gðe1e2Þ2
15c5

μE2

L3


ð37þ 366z2 þ 425z4Þϕ0

þ ð673=3þ 425z2Þz�; ð46Þ

where z≡ − cotϕ0 ¼ ðe2 − 1Þ−1=2. This agrees with
Turner after one makes the substitution e1e2 → −Gm1m2.
The total scattered energy was also obtained by

Capozziello et al. Their expression is consistent with
Turner’s if one handles the term

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
correctly. It must

be taken positive, which means it is equal to − tanϕ0 not
tanϕ0 when e > 1. Also, [23] gives a result a factor of 4
larger than that of [22]. In view of these issues a further
check is useful. We completed the calculation independ-
ently and agree with Turner (and therefore also Dehnen
and Ghaboussi) and with Capozziello et al. as long as the
correct sign is taken, as just noted.

VI. CLASSICAL COLLISIONS WITH ANGULAR
MOMENTUM CUTOFF

So far we have surveyed or confirmed existing work, and
contributed a small extension in the modified classical
method. The remainder of our discussion is mostly new.
Rather than taking the integral (7) over all impact

parameters, we now place a lower limit on b. This will
be useful for two purposes. First, the influence of quantum
mechanics on collision cross sections can sometimes be
estimated by imposing a low angular momentum cutoff, at
a value of order ℏ, on a classical collision integral. Second,
for attractive collisions the low angular momentum limit
has to be considered separately in any case. This is because
the approximation that the orbit is almost unaffected by the
radiation breaks down.

In place of Eq. (7) we introduce

ΣðL; v0Þ≡ 2

Z
∞

rmin

dr
jṙj

Z
b1

L=mv0

2πbdbLGW; ð47Þ

where L is the cutoff and the notation on the left-hand side
is to indicate explicitly that the result is a function of the
cutoff angular momentum L as well as v0. Then in (17) we
replace the lower limit 0 on the b integral by b0 ¼ L=mv0,
and rmin is given by (38) (and by (49)). After using (18)
we obtain

ΣðL; v0Þ ¼
64πG
9c5

ðe1e2Þ2v0
jr0j

χðL; v0Þ; ð48Þ

where

χ ¼ jr0j
10

Z
∞

rmin

dr
r2

�
25

�
1 −

r0
r

�
þ 11

b20
r2

��
1 −

r0
r
−
b20
r2

�
1=2

:

The lower limit on this integral is the smallest r attained in
the motion when the impact parameter is b0. This is

rmin ¼
1

2

�
r0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ 4b20

q 
; ð49Þ

where the positive square root should be taken. (For L ¼ 0
this gives rmin ¼ r0 for a repulsive collision and rmin ¼ 0
for an attractive collision.) One finds

χðL; v0Þ ¼
1

80jy5j
�
6ð1þ y2Þ�85þ 37y2

��π
2
− cot−1y

�

− 510y − 562y3
�
; ð50Þ

where

y≡ Lv0
e1e2

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
; jyj ¼ L=ℏ

nB
; ð51Þ

where the negative square root is taken for the attractive
case. χðL; v0Þ is plotted as a function of y in Fig. 4. It is
remarkable that this χ is a function of eccentricity alone.
One finds

χðL; v0Þ →

8><
>:

1 y ≪ 1; y > 0

ð51π=8Þy−5 jyj ≪ 1; y < 0

ð111π=80Þy−1 jyj ≫ 1

: ð52Þ

Positive y means the potential is repulsive. At small y the
result is then independent of L and reproduces the classical
calculation without any angular momentum cutoff. This is
because at small initial velocities the particles do not
approach closely in a repulsive potential. At large y the

GRAVITATIONAL BREMSSTRAHLUNG IN PLASMAS AND … PHYS. REV. D 109, 063032 (2024)

063032-9



result exactly reproduces the first order Born approxima-
tion (24) in the limit if we take

L ¼ 37π2

120
ℏ ≃ 3.043ℏ: ð53Þ

It follows that Σð3.04ℏ; v0Þ can be taken as a reasonable
approximation to the exact result (i.e. a quantum scattering
calculation to all orders) for GW scattering during
Coulomb collisions on a repulsive potential, for any
collision energy in the nonrelativistic limit. In other words,
for repulsive Coulomb collisions the complete quantum
scattering prediction (summed over all orders or Feynman
diagrams) closely matches a classical prediction in which
low angular momentum states do not contribute at all. The
phrase “closely matches” here signifies exact agreement in
the limits of large or small nB, and agreement at some
unknown accuracy of order 10% in the case nB ∼ 1.
For an attractive potential Σð3.04ℏ; v0Þ produces the

correct cross section at high jyj but not at low jyj. In other
words, for an attractive Coulomb collision it is not
sufficient merely to place a lower bound on the angular
momentum in order to approximate the quantum physics of
a collision at low energy.

VII. GRAVITATING CLUSTERS

In Sec. IV we discussed the total emission cross section,
integrating over all impact parameters. For emission from
a plasma this is a useful quantity, but for gravitational
scattering in general it is not because the approximations
break down at low L in an attractive potential. Various
situations can arise. Astrophysical bodies are generally not
pointlike and can crash into each other or otherwise merge.
Also, even on a pointlike model there can be radiative
capture. This happens when

ΔE >
1

2
μv20: ð54Þ

That is, the emitted energy is larger than the initial energy
in the binary system, with the result that an initially
unbound pair finishes in a bound state. In a bound state
the pair subsequently follows an almost periodic, almost
elliptical orbit, gradually losing more energy until the
bodies coalesce.
In order to treat a gravitating cluster, we separate the

scattering events into those where the bodies emerge to
infinity, and those where there is gravitational capture
owing to the gravitational radiation. We will employ the
condition (54) to separate the two cases, which is valid at a
low density of pairs but not at higher density where three-
body effects tend to reduce the capture rate [32].
Using (43) on the left-hand side of (54) we find that the

limiting case (where ΔE ¼ E) is given by

e − 1 ¼
�
16

15

μ

M
v50
c5

gðeÞ
�

2=7

: ð55Þ

This method of calculation is approximate since for such
collisions the outgoing value of e will not be equal to the
initial value, but it gives a reasonable estimate. Equation (55)
has gðeÞ on the right-hand side so it is an implicit equation
for e with no analytical solution. But we observe that for
v0 ≪ c one has e − 1 ≪ 1 as one would expect: e ¼ 1 is the
parabolic orbit where E ¼ 0. In this case we can use gð1Þ on
the right-hand side, obtaining

e − 1 ≃
�
85π

6
ffiffiffi
2

p μ

M
v50
c5

�
2=7

: ð56Þ

This agrees with Eq. (17) of [26]. Noncaptured orbits have
e − 1 larger than this. We should now note two consistency
checks. For the Newtonian potential to be valid we require
rmin ≫ RS ¼ 2GM=c2 (the Schwarzschild radius). This
yields the condition

e − 1 ≫ 2v20=c
2: ð57Þ

This is comfortably satisfied by (56) for v0 ≪ c. Also for
nonrelativistic mechanics we require vmax ≪ c. Conser-
vation of angular momentum gives rminvmax ¼ bv0 and one
obtains

e − 1

eþ 1
≫

v20
c2

: ð58Þ

Since eþ 1 > 2 this is a stronger condition than the
previous one, but still comfortably satisfied.
We have in (56) an expression for the minimum eccen-

tricity, at any given v0, for noncaptured orbits. Since
e − 1 ≪ 1 we can use y≡ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
≃ −

ffiffiffi
2

p ðe − 1Þ1=2,

FIG. 4. χðL; v0Þ given by (50) for attractive (upper line, dashed)
and repulsive (lower line, full) collisions.
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and since this is small we can use the small jyj limit of
Eq. (50), giving

χðyÞ ≃ 51π

32
ffiffiffi
2

p
�
6

ffiffiffi
2

p

85π

M
μ

c5

v50

�5=7

: ð59Þ

Hence the total cross section for emission of gravitational
wave energy during hyperbolic (i.e. noncaptured) encoun-
ters, in a low-density, low-velocity gravitating cluster is

Σ ¼ π

5

�
340π

3
ffiffiffi
2

p
�

2=7GM
c2

Gm1m2

�
μ

M

�
2=7

�
c
v

�
4=7

: ð60Þ

As an example, consider information furnished by
O’Leary et al. They remark, “20,000 BHs are expected
to have segregated into the inner ∼1 pc of the Milky
Way” [26]. The number density distributions in their Fig. 1
give n ≃ n0ðr0=rÞ2 for r0 < r < 0.3 pc, where r is the
distance from the center of the Galaxy, n0 ≃ 1010 pc−3 and
r0 ¼ 3 × 10−4 pc. They propose black holes in the mass
range 5 to 15M⊙ and encounters with initial relative speeds
of order v ∼ 1000 km=s. Putting these values into (60)
and (5) we obtain a total power from close hyperbolic
encounters of black holes in the Galactic Center of order
1025 watt after averaging over times long enough for many
encounters.

VIII. THE GRAVITATIONAL RADIATION
OF THE SUN

Consider now a plasma in thermal equilibrium at the
density and temperature of the core of the Sun—cf. Table I.
The thermal energy kBTcore ≃ 1.35 keV is about twice the
Fermi energy of the electrons, and therefore the electron
gas is nondegenerate to reasonable approximation. Each
electron or proton has a kinetic energy of order kBT and the
rms energy is approximately EQ ≃ 2kBT.
Gravitational bremsstrahlung in the Sun arises mainly

from collisions among electrons, protons and 4He nuclei.
We shall present the result of integrating the emission over

the Sun, treating the collisions as Coulomb collisions. This
ignores the effect of Debye screening and therefore cannot
be taken as an accurate value for the actual situation. But
the Debye screening is not expected to change the overall
result by as much as an order of magnitude. Therefore a
calculation using the unscreened potential is a useful
indicator, and also serves to establish which regime of
behavior (low or high Born parameter, attractive or repul-
sive collisions) dominates.
In the solar core we have jnBj ≃ 0.06 for collisions

involving electrons. It was remarked by GG that the
emission is therefore substantially reduced below the value
predicted by the classical calculation (22) (we find one
order of magnitude below, not two as suggested by GG).
We observe also that it is important to include the attractive
(ep and eHe) collisions as well as the repulsive ones.
The total power is obtained by adding the contributions

from the various types of collision, integrated over the
temperature and density distribution of the Sun. In order to
perform such an integral, we adopted the distributions
given by the Standard Solar Model [33,34]. The result of
the numerical integration is indicated in Table II. We find
that the total power is 76 MW (in the absence of Debye
screening). This is the first time this power has been
calculated with better than order of magnitude accuracy.
(The previous best estimate was that of GG who estimated
the order of magnitude as 10 MW). It follows that the GW
power of the Sun is 76� 20 MW, where the uncertainty is
mostly owing to the as-yet-uncalculated impact of Debye
screening.
It is noteworthy that ee, ep and eHe collisions make

almost equal contributions. If it were not for the quantum
effects, it would not be so. For if we simply set χ ¼ 1 for all
the processes, then one finds the ee collisions dominate
owing to their smaller reduced mass, leading to higher
velocities. The value χ ¼ 1 also leads to a total power
10 times larger, indicating that the quantum effects are
important for the conditions of the Sun. Note also that the
increased emission for attractive, as compared with repul-
sive, collisions also raises the contribution of ep and eHe
collisions a little, compared with ee.
From the above one may deduce that there is gravita-

tional noise in the Sun with an rms strain amplitude of order
10−41 at 1018 Hz owing to Coulomb collisions. This is the
dominant source of gravitational noise in the Solar System

TABLE I. Some properties of the solar core. pm ¼ picometre.
λth is defined such that nλ3th is the onset of degeneracy. ƛdB is the
distance over which a de Broglie wave acquires a phase of one
radian, for a particle of energy E ¼ ð3=2ÞkBTcore.

Tcore 1.57 × 107 K
ð3=2ÞkBTcore 2.03 keV
Coulomb distance r0 0.7 pm
Plasma wavelength ƛ 640 pm
Debye (screening) length λD 23 pm

Electrons Protons
Mean separation 25 pm 32 pm
λth ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=mkBT

p
18.8 pm 0.43 pm

ƛdB ¼ ℏ=
ffiffiffiffiffiffiffiffiffiffi
2mE

p
4.3 pm 0.10 pm

TABLE II. Total GW power, in megawatts (MW), from the
main types of Coulomb collision in the Sun.

e p Heþþ

e 26
p 29 0.096
Heþþ 21 0.048 0.004

Total 76 0.14 0.004
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at this frequency. The energy density of this radiation
arriving at Earth is of order 10−24 Wm−3. This is similar
to the energy density of relic gravitational waves in the
frequency band up to GHz thought to be present owing to
early Universe processes [4,35,36]. Owing to their lower
frequency, the latter will have larger observable effects.

IX. CONCLUSION

In conclusion, we have achieved the five aims set out at
the end of Sec. II. We have reviewed studies of gravitational
bremsstrahlung during Coulomb collisions and presented a
formula, based on semiclassical physical reasoning, which
is able to reproduce, approximately, the predictions of a full
(i.e. quantum) treatment of the total emitted power at any
value of the Born parameter, in the nonrelativistic limit.
Equations (33)–(36) allow one to calculate the energy
cross section with high accuracy in certain limits and with
∼10% accuracy in general. One can thus obtain the power
averaged over many collisions in a homogeneous fluid. As
an example, we have applied these equations to a treatment

of the Sun, obtaining the total emitted power in the
approximation where Debye screening is neglected.
Equation (50) [combined with (22)] gives the cross

section for gravitational wave emission in the classical
(high Born parameter) limit for collisions at a given initial
velocity after integrating over impact parameters above a
lower limit set by a given angular momentum. This has not
previously been calculated. We have used it to obtain, in
Eq. (60), the total cross section for emission of GW energy
during close hyperbolic encounters where capture does not
occur. This can be used to calculate, for example, the time-
averaged emission from galactic nuclei by this process.
It has recently been suggested that black hole collisions

in the early Universe made a non-negligible contribution
to the stochastic gravitational background in the present.
One may ask whether Coulomb collisions in the very early
Universe made a further non-negligible contribution. I have
attempted an estimate of this (unpublished); the estimate
suggests that the contribution is negligible but it would be
interesting nonetheless to look into this more fully.
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[33] Sylvaine Turck-Chièze, The standard solar model and
beyond, J. Phys. Conf. Ser. 665, 012078 (2016).

[34] Núria Vinyoles, Aldo M. Serenelli, Francesco L. Villante,
Sarbani Basu, Johannes Bergström, M. C. Gonzalez-Garcia,
Michele Maltoni, Carlos Pe na Garay, and Ningqiang Song,
A new generation of standard solar models, Astrophys. J.
835, 202 (2017).

[35] The LIGO Scientific and The Virgo Collaborations,
An upper limit on the stochastic gravitational-wave back-
ground of cosmological origin, Nature (London) 460, 990
(2009).

[36] David Coward and Tania Regimbau, Detection regimes
of the cosmological gravitational wave background
from astrophysical sources, New Astron. Rev. 50, 461
(2006).

GRAVITATIONAL BREMSSTRAHLUNG IN PLASMAS AND … PHYS. REV. D 109, 063032 (2024)

063032-13

https://doi.org/10.1016/j.dark.2022.101009
https://doi.org/10.1016/j.dark.2022.101009
https://doi.org/10.1016/j.dark.2018.06.001
https://doi.org/10.1016/j.dark.2018.06.001
https://doi.org/10.1111/j.1365-2966.2009.14653.x
https://doi.org/10.1111/j.1365-2966.2009.14653.x
https://doi.org/10.1088/1361-6382/ab6be2
https://doi.org/10.1103/PhysRevD.99.076018
https://doi.org/10.1103/PhysRevD.99.076018
https://doi.org/10.1007/BF02757104
https://doi.org/10.1007/BF02757104
https://doi.org/10.1103/PhysRev.158.1243
https://doi.org/10.1007/JHEP02(2019)137
https://doi.org/10.1007/JHEP02(2019)137
https://doi.org/10.1103/PhysRevD.101.043015
https://doi.org/10.1103/PhysRevD.101.043015
https://doi.org/10.1088/1742-6596/665/1/012078
https://doi.org/10.3847/1538-4357/835/2/202
https://doi.org/10.3847/1538-4357/835/2/202
https://doi.org/10.1038/nature08278
https://doi.org/10.1038/nature08278
https://doi.org/10.1016/j.newar.2006.07.001
https://doi.org/10.1016/j.newar.2006.07.001

