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In cosmological N-body simulations of warm dark matter, thermal velocities of dark-matter particles
are sometimes taken into account by adding random initial velocities to the particles of simulation.
However, a particle in the N-body system represents a huge collection of dark-matter particles, whose
average thermal velocity is very close to zero. We consider justification of the procedure of adding
thermal velocities in N-body simulations and build a simple model of their influence on the power
spectrum. Our model captures the physical effect of suppression of the power spectrum at small wave
numbers and also explains its artificial enhancement at large wave numbers, observed in numerical
simulations with added thermal velocities. The cause of this enhancement is the disturbance of the
growth rate of the density profile introduced when adding random initial thermal velocities. Specifically,
the model predicts a turnover in the behavior of the simulated power spectrum at a certain wave
number k�, beyond which it grows as PðkÞ ∝ k2. Our treatment is generalized to a system consisting of
several matter components with different thermal velocity dispersion. We also estimate the effects of
discreteness related to the bulk velocity field and establish the conditions under which these effects
dominate over those of thermal velocities.
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I. INTRODUCTION

Comparisons between theory and observations indicate
the cosmological presence of dark matter (DM), which is
widely believed to consist of nonbaryonic particles. The
nature of these particles is unknown, and their basic
parameters can vary in a considerably wide range, affecting
their production mechanisms and evolution history. One of
the important characteristics of dark matter is its particle
velocity distribution. Dark matter that decouples (both
chemically and kinetically) from thermal equilibrium in
the primeval plasma deeply at the radiation-dominated epoch
while being nonrelativistic has a Boltzmann velocity
distribution function at the moment of freeze-out and is
dubbed as “cold dark matter” (CDM). In the CDM scenario,
primordial density perturbations grow on all spatial scales of
interest in cosmology, and structure formation proceeds in
the bottom-up fashion: the smallest structures form first,
subsequently combining into larger structures.
Dark matter which is nonrelativistic at the time of

matter–radiation equality (z ¼ zeq ≃ 3 × 103) but whose
particle velocity distribution cannot be neglected in the
theory of structure formation is called “warm dark matter”
(WDM). A typical example is super-weakly interacting

particles that are produced deeply at the radiation-
dominated epoch while being relativistic. Density pertur-
bations of WDM particles are suppressed on spatial scales
below their free-streaming length. The largest spatial scale
affected by free streaming is determined by the distance
covered by a dark-matter particle moving with a typical
velocity from the moment of its production or decoupling.
The form of the velocity distribution function of dark-

matter particles depends on the mechanism of their pro-
duction or decoupling. A typical example is primordial
phase-space distribution function of the form1

fðpÞ ¼ χ

expðp=TDMÞ þ 1
; ð1Þ

where p is the particle momentum, TDM is the effective
temperature, and χ ≤ 1 is the normalization factor. Such a
distribution function arises in the case of thermal relics that
are highly relativistic at the time of decoupling; in this case,
χ ¼ 1, and the temperature TDM ¼ TTR is deduced from the
mass and abundance of these particles. A similar distribu-
tion arises also in the scenario of nonresonantly produced
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1Our general consideration below is carried out at a classical
level and is not limited to a specific type of particles (bosons or
fermions) or their specific velocity distribution. Equation (1) is
used to illustrate one of the possibilities.
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sterile neutrinos [1,2] (see [3] for a review), in which case
χ < 1, and, typically, TDM ¼ Tν, the temperature of active
neutrinos. In view of the thermal nature of distribution (1),
one usually refers to the correspondingly distributed
velocities of dark-matter particles as to thermal velocities.
One can use this term also in more general situations, in
which the particle velocity distribution does not have
thermal character still featuring considerable dispersion.
Discreteness effects in numerical cosmological simula-

tions of cold dark matter are the subject of numerous
investigations (which are usually also done numerically,
see, e.g., [4]). In this paper, we consider, purely analyti-
cally, the issue of discreteness effects in numerical simu-
lations of dark matter with thermal velocities. In the
majority of papers on simulations of the cosmological
large-scale structure formation, the “warmth” of dark
matter is taken into account only in its resulting free-
streaming effect of suppression of the power spectrum on
small spatial scales, while the particles themselves are
treated as cold in the initial conditions. The justification of
this lies in the observation that thermal velocities of WDM
particles typically become small compared to their regular
(bulk) velocities by the time when structure formation starts
to become nonlinear. Even in this case, one observes
discreteness effects on small spatial (or mass) scales, such
as formation of a large number of spurious clumps
resembling dark-matter halos [5]. Recently, new numerical
methods were developed to simulate cosmologies with
suppression of density perturbations on small spatial scales
that avoid these numerical artifacts [6–9]. The core of these
methods is based on the fact that cold dark-matter particles
occupy a three-dimensional surface in a six-dimensional
phase space, which initially has relatively smooth shape.
However, in some situations, thermal velocities of

particles themselves may be non-negligible, making the
simulation problem essentially six-dimensional in phase
space. This is the case, e.g., when performing simulations
of warm dark matter starting from high cosmological
redshifts or when a fraction of dark matter is composed
of a light thermal relic (which can be the usual neutrino).
In such cases, initial random thermal velocities are usually
added to the simulation particles [10–14]. In this paper, we
would like to address the issue of the discreteness effects
caused by adding thermal velocities in cosmological
N-body simulations.
Random initial velocities are added to the simulation

particles according to the initial velocity distribution func-
tion of the physical WDM particles. However, because of
obvious computational limitations, a particle in a simu-
lation represents matter in a large region with characteristic
size l ≃ ðV=NÞ1=3 (where V is the box volume and N is the
number of simulation particles). Therefore, a huge number
of DM particles are represented as one particle in N-body
simulations. Formally, the average thermal velocity of
such a collection of DM particles is very close to zero.

There arises the question about the justification of the
procedure of adding thermal velocities and about possible
discreteness effects that may appear in such simulations.
We think it would be useful to provide a theoretical
assessment of these effects, which usually are treated
empirically by performing real N-body simulations.
In the present paper, we build a simple theoretical model

of N-body simulations of warm dark matter and elucidate
the effects arising by adding thermal velocities in such
simulations. The problem is analyzed by using the Peebles
equation describing the evolution of the Fourier compo-
nents of the density contrast. This equation allows for a
rather simple and direct analysis of the case of finite N and
has a natural physical limit of N → ∞.
Our analysis reveals that the main side effect of adding

initial thermal velocities in simulations consists in per-
turbing the initial growth rate of the density profile at that
moment. This perturbation then propagates to the future
resulting in an artificial increase of power at small spatial
scales. We obtain an analytic formula for the resulting
power spectrum that can be used for theoretical estimates
of this effect. In the limit of N → ∞, this discreteness effect
vanishes, and only the physical effect of thermal velocities
remains, which consists of a natural suppression of the
power spectrum.
Our theory and main results will be fairly general,

describing particles with thermal velocity distribution of
any form. We will see that, basically, only the dispersion
of this thermal velocity is going to be important for our
general results. However, in order to illustrate our results
for concrete situations, as an example, we will often use
distribution (1), specific to sterile neutrino.
Our paper is organized as follows. In Sec. II, we

introduce the Peebles equation [15,16] describing the
evolution of the density contrast in a system composed
of particles. In Sec. III, we describe the procedure of
coarse-graining of the DM particle system, relevant to
N-body simulations, identifying the shot noise. In Sec. IV,
we build our statistical model of N-body simulations,
deriving an approximate equation for the evolution of
the density contrast of warm dark matter that captures
the presence of thermal velocities. The effects of thermal
velocities in N-body simulations with finite box volume V
and particle number N are then studied in Sec. V. We
demonstrate the existence of numerical artifacts that tend to
increase the power spectrum; they are proportional to the
inverse of particle number density V=N, and depend on
the wave number as k2=k2th, where kth is the thermal wave
number arising in the presence of thermal velocities. We
obtain an analytic formula for the resulting power spectrum
containing both the physical effects and the artifacts of
discreteness connected with thermal velocities. In Sec. VI,
we discuss extension of our analysis to the case of dark
matter composed of several components with different
thermal velocity distributions. In Sec. VII, we analyze
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the discreteness effect connected with the effective coarse-
graining of the regular velocity field inN-body simulations.
We show that it also tends to increase the power spectrum
because of the presence of the term proportional to k2=k2fi in
the effective evolution equation for the density contrast,
where kfi is the characteristic wave number connected
with the coarse-graining of the smooth velocity field. We
determine the parameter region for which this effect is more
important than the physical effect of thermal velocities. In
Sec. VIII, we summarize the main results of the paper and
discuss their implications. Various definitions and technical
details are presented in Appendices A and B.

II. PRELIMINARIES: EVOLUTION OF THE
MASS DENSITY

We consider a spatially flat universe dominated by
nonrelativistic matter and cosmological constant. This is
a fairly good approximation to the later stages of cosmo-
logical evolution.
On sub-Hubble spatial scales, an instantaneous state of

matter is described by the mass density ρðxÞ with mean
background value ϱ. It is realized by a large number of
particles of (usually equal) masses mi placed at comoving
coordinates xi. We then have, accordingly,

ρðxÞ ¼
X
i

mi

a3
δDðx − xiÞ; ð2Þ

where a is the scale factor of the expanding universe, and
δDðxÞ is Dirac’s delta-function.
The particle equation of motion is

ẍi þ 2Hẋi ¼ −
1

a2
∇φðxiÞ; ð3Þ

where H ≡ ȧ=a is the Hubble parameter, and φðxÞ is the
gravitational potential that satisfies the equation

∇2φðxÞ ¼ 4πGa2½ρðxÞ − ϱ�: ð4Þ

In this paper, we use the formalism introduced by
Peebles in [15] (see also [16], Sec. 27), which appears
to be best suited to study the effects arising in N-body
simulations. For particles in a (periodic) box of comoving
volume V, one can proceed to the Fourier transform of the
density contrast δðxÞ≡ ½ρðxÞ − ϱ�=ϱ:

δk ¼
1

V

Z
V
δðxÞeikxd3x ¼

8<
:
P
i

mi
M eikxi ; k ≠ 0;

0; k ¼ 0;
ð5Þ

whereM is the total mass of particles,M ¼Pi mi. For the
gravitational potential, using (4), one then finds

φðxÞ ¼
X
k

φke−ikx ¼ −4πGa2ϱ
X
k≠0

e−ikx
δk
k2

: ð6Þ

Note that φk¼0 ¼ 0 by definition.
After that, using (3), one can derive a very useful

equation describing the temporal evolution of the Fourier
amplitudes δk [15,16]:

δ̈k þ 2Hδ̇k ¼ 4πGϱδk þ Ak − Ck; ð7Þ
where

Ak ¼ 4πGϱ
X

k0∉f0;kg

kk0

k02
δk−k0δk0 ; ð8Þ

Ck ¼
X
i

mi

M
ðkẋiÞ2eikxi : ð9Þ

We note that Eq. (7) is an exact equation for the
evolution of the density profile, valid in the case of universe
composed of the matter under consideration and cosmo-
logical constant. It is applicable both to real particles in
the universe and to particles in N-body simulations. This
equation is not closed with respect to δk because of the term
Ck, which involves particle velocities, and thus requires
an equation describing the evolution of the velocity field
(see [16], Sec. 27).

III. COARSE-GRAINING AND
THERMAL VELOCITIES

Numerical simulations deal with a coarse-grained system,
in which the particle mass exceeds the mass of a fundamental
dark-matter particle by many orders of magnitude. For
example, in [14], the simulation particle mass is around
107h−1M⊙, while the dark-matter particle mass is of the
order of keV, i.e., 10−63h−1M⊙. So each simulation particle
represents about 1070 physical particles. In this section, we
briefly describe this coarse-graining and its effects.
Regarding distribution (2) as the distribution of real

particles in the universe, we form its coarse-grained
realization as follows: the coordinate space is partitioned
into N regions, numbered by I, with (equal, for simplicity)
total mass mI within each region, and original particles of
small massmi within each region are collected to the center
of mass of the corresponding region to form a particle of
mass mI. For brevity, we will call the collection of original
particles in the Ith region as the Ith cluster. We get a coarse-
grained distribution and its Fourier transform, which we
denote by an overbar:

ρ̄ðxÞ ¼
X
I

mI

a3
δDðx − xIÞ;

δ̄k ¼
Z

ρ̄ðxÞ − ϱ

ϱV
eikxd3x ¼

X
I

mI

M
eikxI ; k ≠ 0: ð10Þ
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There are several effects connected with coarse-graining.
First of all, we would like to estimate the difference
between δ̄k and δk at wavelengths much larger than the
mean comoving separation between the masses mI . This is
done by noting that the position xiI of each particle in the
Ith cluster is obtained by a shift yiI from the center of mass
xI of the cluster: xiI ¼ xI þ yiI . Therefore, one can write

δk ¼
X
i

mi

M
eikxi ¼

X
I

mI

M
eikxI

X
iI

miI

mI
eikyiI

¼
X
I

mI

M
eikxI

X
iI

miI

mI

�
1þ ikyiI −

1

2
ðkyiIÞ2 þ…

�

¼
X
I

mI

M
eikxI

X
iI

miI

mI

�
1 −

1

2
ðkyiIÞ2 þ…

�
; ð11Þ

where we have expanded the second exponent according
to our condition kyi ≪ 1. The last equality in (11)
follows from the center-of-mass property

P
iI miIyiI ¼ 0.

Introducing the notation

l2
I ðnÞ≡

X
iI

miI

mI
ðnyiIÞ2; n ¼ k

k
; ð12Þ

and neglecting higher powers of kyi, we have

δk≃
X
I

mI

M
eikxI

�
1−

1

2
k2l2

I ðnÞ
�

¼
X
I

mI

M
eikxI

�
1−

1

2
k2l2

�
þ1

2

X
I

mI

M
eikxI k2½l2

I ðnÞ−l2�

¼ δ̄k

�
1−

1

2
ðklÞ2

�
þ1

2

X
I

mI

M
eikxI k2½l2

I ðnÞ−l2�; ð13Þ

where l2 is the average value of l2
I ðnÞ over I. The last term

in this expression is the sum of N random walks with
characteristic step ∼k2l2=N. It produces the shot noise
in the squared amplitude with the characteristic level
jδkj2 ∼ k4l4=N [16,17].
The length l is similar to the inter-cluster distance,

i.e., the distance between particle in simulations, hence,
l ≃ ðV=NÞ1=3. Introducing the Nyquist wave number kN by

kN ¼ π

l
¼ π

�
N
V

�
1=3

; ð14Þ

from (13) we obtain a relation between the coarse-grained
and fine-grained power spectra2:

P̄ðkÞ ≃ PðkÞ
�
1þ π2k2

k2N

�
þ PNðkÞ; k ≪ kN; ð15Þ

where

PNðkÞ ≃
V
N

�
πk
kN

�
4

; k ≪ kN: ð16Þ

Thus, coarse-graining modifies the power on large scales
producing relative noise of magnitude PðkÞðπk=kNÞ2 as
well as a shot noise PNðkÞ. Perhaps, if necessary, the
relative noise can be corrected in simulations by modifying
the input power spectrum PðkÞ to compensate for the
numerical factor in the first term of (15).
For wave numbers k exceeding the Nyquist wave

number (14), the power spectrum is dominated by the
shot noise, which can be obtained by averaging over
random realizations of the configurations fxIg:

PNðkÞ ¼ Vjδkj2 ¼ V

���� 1N
X

I
eikxI

����2 ¼ V
N
; k≳ kN: ð17Þ

We will use an interpolating formula capturing the two
asymptotics (16) and (17) for the shot noise for all values
of k:

PNðkÞ ¼
V
N

�
1þ

�
kN
πk

�
4
�
−1
: ð18Þ

Thus far, we were discussing the effects of coarse-
graining on the Fourier transform δk of the density profile
and on the related power spectrum. However, the evolution
equation (7) also involves the term Ck dependent on the
particle velocities. Therefore, it is necessary to consider the
properties of this term under coarse-graining. By definition,
in this procedure, we have

Ck ¼
X
i

mi

M
ðkẋiÞ2eikxi

¼
X
I

eikxI
X
iI

miI

M
½kðẋI þ ẏiIÞ�2eikyiI

¼
X
I

eikxI
X
iI

miI

M
½ðkẋIÞ2 þ 2ðkẋIÞðkẏiIÞ þ ðkẏiIÞ2�

×

�
1þ ikyiI −

1

2
ðkyiIÞ2 þ…

�

≈
X
I

mI

M
ðkẋIÞ2eikxI þ

X
I

mI

M
eikxI

X
iI

miI

mI
ðkẏiIÞ2

þO½ðkvÞ2kl�: ð19Þ

The second term in the last expression in (19) is a
contribution from the internal velocities of particles within
clusters. The velocity ẏiI of a particle can be split into two2Definitions of the power spectrum are presented inAppendixA.
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parts: the “field” part ẏfiiI due to the inhomogeneity of the
smooth original velocity field and the “thermal” part ẏthiI
due to random thermal particle velocities. Assuming that
these two parts are uncorrelated within a cluster, we have
ẏiI ¼ ẏfiiI þ ẏthiI and

X
iI

miI

mI
ðkẏiIÞ2 ¼

X
iI

miI

mI
½ðkẏfiiIÞ2 þ ðkẏthiI Þ2�: ð20Þ

Thus, eventually, we have

Ck ≈ C̄k þ Cfi
k þ Cth

k ; ð21Þ

where

C̄k ¼
X
I

mI

M
ðkẋIÞ2eikxI ;

Cfi
k ¼

X
I

mI

M
ðkẏfiÞ2I eikxI ;

Cth
k ¼

X
I

mI

M
ðkẏthÞ2I eikxI ; ð22Þ

are the coarse-grained part, field part, and thermal part,
respectively, and our notation is

ðkẏÞ2I ≡
X
iI

miI

mI
ðkẏiIÞ2: ð23Þ

It should be emphasized that, in a coarse-grained system
(inN-body simulations), the terms Cfi

k andC
th
k are no longer

present. However, their presence in Eq. (7) is required in
order that this equation reproduce the correct evolution of
the real particle distribution. That is, at least initially, one
should ensure that the velocity term C̄k for the coarse-
grained distribution matches Ck of the fine-grained (exact)
distribution. In particular, if the thermal part Cth

k dominates
in decomposition (21), then, in order to capture its effect,
one should give the coarse-grained particles a correspond-
ing initial velocity dispersion. This justifies the procedure
of distributing random thermal velocities directly over
simulation particles in spite of the fact that they represent
huge collections of mass.
We can estimate the last two parts in (22) as

Cfi
k ¼

�
kvfi
a

�
2

δk; Cth
k ¼

�
kvth
a

�
2

δk; ð24Þ

where vfi is the characteristic relative velocity between
neighboring particles in a coarse-grained distribution aris-
ing due to inhomogeneity of the regular velocity field,
and vth is the characteristic thermal velocity (these veloc-
ities will be rigorously defined below). This estimate shows

the relative importance of these two terms in (21). We will
postpone the effects caused by coarse-graining of the
regular velocity field till Sec. VII. Meanwhile, we will
be interested in the effects of thermal velocities.

IV. MODEL OF N-BODY SIMULATIONS

From this point on, we deal with a finite system
appropriate for numerical simulations, and small Latin
indices i; j;… will label the simulation particles, running
from 1 to N. In the theoretical limit of very large N
(formally, N → ∞), the system will reproduce the real
physical situation.
In accordance with the reasoning of the preceding section,

it is required to add random initial thermal velocities to the
simulation particles if onewishes to capture their effects. The
initial peculiar velocity of a particle having position xi in
numerical simulations can, therefore, be split into its regular
velocity vregi ≡ aẋregi , which would be assigned to CDM
particles (e.g., by using the Zeldovich approximation,
see [18]), and a random thermal velocity, denoted by
vthi ≡ aẋthi , with zero average, which is added to particle
velocities when simulating WDM.
The velocity term (9) provides a criterion of importance

of thermal velocities in the initial conditions for warm dark
matter. Assuming that thermal velocities are uncorrelated
with the regular peculiar velocities (specified by the bulk
motion), we have

Ck ¼
X
i

mi

M
½kðẋregi þ ẋthi Þ�2eikxi ¼ Creg

k þ Cth
k ; ð25Þ

where the regular and thermal contributions to the velocity
term Ck are defined, respectively, as

Creg
k ¼

X
i

mi

M
ðkẋregi Þ2eikxi ; Cth

k ¼
X
i

mi

M
ðkẋthi Þ2eikxi : ð26Þ

By assumption, the quantities ẋthi are random with zero
average over the ensemble of particles (or over realiza-
tions). Assuming the isotropy of the thermal velocity
distribution, it is convenient to denote by vth the one-
component dispersion

vth ¼ a½ðlẋthi Þ2�1=2 ¼ a

�
1

3
ðẋthi Þ2

�
1=2

; ð27Þ

where l is a fixed unit vector in any spatial direction. Taking
l ¼ n≡ k=k, we present the thermal part in (26) as

Cth
k ¼

�
kvth
a

�
2X

i

mi

M
eikxi þ

X
i

mi

M

�
ðkẋthi Þ2−

�
kvth
a

�
2
�
eikxi

¼
�
kvth
a

�
2

δkþ
X
i

mi

M
ξieikxi ; ð28Þ
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where

ξi ¼ ðkẋthi Þ2 −
�
kvth
a

�
2

ð29Þ

are random quantities with zero average over realizations.
Their dispersion is given by

ξ2i ¼ cth

�
kvth
a

�
4

; ð30Þ

where cth is a numerical constant of order unity. For
distribution (1) it is equal to

cth ¼
�
189ζð3Þζð7Þ
50ζ2ð5Þ − 1

�
≈ 3.3; ð31Þ

while, for a Gaussian distribution, we would have cth ¼ 2.
Since the random quantities ξi are independent for different
i, the dispersion of the second term in (28) over realizations
of fξig can be calculated as

����Xi

mi

M
ξieikxi

����2 ¼ 1

N2

X
i

ξ2i ≃
cth
N

�
kvth
a

�
4

: ð32Þ

In the limit of N → ∞ (proceeding to a system of physical
particles), the second term on the right-hand side of (28) is,
therefore, insignificant.
Using (7) and relations (25)–(28), we obtain the follow-

ing equation capturing the effect of thermal velocities:

δ̈k þ 2Hδ̇k ¼
�
4πGρ −

�
kvth
a

�
2
�
δk þ Ak − Creg

k

þ
X
i

mi

M
ξieikxi ; ð33Þ

where the regular term Creg
k is defined in (26).

The criterion of importance of the thermal-velocity term
in the brackets on the right-hand side of (33) is given by the
comparison of ðkvth=aÞ2 with 4πGϱ, which is characterized
by the thermal wave number

kth ≡
�
4πGϱa2

v2th

�
1=2

: ð34Þ

The thermal velocity vth enters Eq. (33) as a speed of sound,
and the thermal wave number has the same expression in
terms of the thermal velocity as the Jeans wave number for
a nonrelativistic isothermal gas. An intrinsic difference
between the two system is that the particles of gas
experience collisions and can be described by an ideal-
fluid approximation on spatial scales larger than their mean
free path, while the dark-matter particles stream freely.

For this reason, the spatial scale 2π=kth is sometimes called
free-streaming scale (see [19]).
Note that if we neglect the term Ak, which is nonlinear in

the density profile δk, the regular-velocity term Creg
k and the

last term in (33), which describes the thermal-velocity
fluctuations and statistically vanishes in the continuum
limit N → ∞ [see (32)], we arrive at a linear equation for
density perturbations of a fluid with the effective speed of
sound cs ¼ vth. Equation of this kind naturally arises in
models with analytic treatment of WDM density perturba-
tions in linear approximation; see, e.g., [20].
Strictly speaking, the above splitting of the peculiar

velocities of simulation particles into their regular and
thermal parts can be defined only at the initial time, at
which the initial velocities are set. In the course of
evolution, simulation particles move away from their initial
positions, and it is no longer possible operationally to
split their intrinsic total peculiar velocity into a regular part
and a thermal part. However, one can imagine a parallel
evolution of a fine-grained (physical) system with matching
initial conditions, for which our system is initially a coarse-
grained one. For such a fine-grained system, the corre-
sponding coarse-grained velocity field is defined at any
position and at any moment of time, and one can attribute
a regular part of velocity to a simulation particle by using
this velocity field (the remainder will then be its thermal
velocity). We note that this represents only a theoretical
way of splitting a well-specified total particle peculiar
velocity ẋ into its regular and thermal parts which then
results in a decomposition (25) of the total velocity term.
We assume that relations (25)–(27) involving regular and
thermal velocities defined in such a manner remain to be
valid in the course of evolution. In particular, we neglect
possible cross-correlations between the regular and ther-
mal parts of velocities thus defined that can arise in the
course of evolution (such correlations are absent initially).
This is justifiable as, practically, it is either the thermal
velocity or the regular velocity that is going to dominate in
the velocity term Ck. In this case, Eq. (33) will also remain
to be a good approximation.
The main problem we are interested in is formulated as

follows. Assume that we run two simulations with identical
initial positions xi at some initial moment of time tin, with
and without initial thermal velocities. Denote the density
contrast in the evolution without thermal velocities by3

δcoldk , and that with thermal velocities by δwarmk . Our main
task is to estimate the effect of initial thermal velocities on
the evolution of δwarmk in such simulations, as compared to
the evolution of δcoldk .

3Note that δcoldk at t ¼ tin may have arbitrary power spectrum
(e.g., suppressed at small spatial scales due to the effects of free-
streaming that took place before the time tin). The superscript
“cold” here only means that its evolution from that moment on is
governed by the dynamics of particles without thermal velocities.
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To quantify this effect, we introduce the difference

Δδk ≡ δcoldk − δwarmk : ð35Þ
Taking the difference of the corresponding differential
equations (33), we obtain an equation for this differenceΔδk:

Δδ̈k þ 2HΔδ̇k −
�
4πGϱ −

�
kvth
a

�
2
�
Δδk

¼
�
kvth
a

�
2

δcoldk þ ΔðAk − Creg
k Þ −

X
i

mi

M
ξieikxi : ð36Þ

Here,ΔAk andΔC
reg
k are the differences of the corresponding

terms in the evolution of cold andwarmparticles in numerical
simulations.
Since the particles initially are at the same positions in

two simulations, initially we have Δδk ¼ 0. The right-hand
side of (36) can be regarded as a peculiar source for its left-
hand side, which gradually generates nonzero Δδk. The
term ΔðAk − Creg

k Þ depends on the exact particle dynamics
in the two cases. This term, however, is equal to zero
initially, while the total source on the right-hand side is
initially given by the remaining two terms. We will see in
Sec. V B that the effect of thermal velocities develops on
the timescale equal to the initial times tin and is caused by
the perturbation of the initial velocity Δδ̇k. This suggests
that the effect can be estimated by omitting the last term,
ΔðAk − Creg

k Þ, in (36) during the whole evolution. One
might worry that this assumption may become illegitimate
especially during dynamical clustering, where the usual
(nonthermal) peculiar velocities of particles may become
large, strongly contributing to the term Creg

k . However, the
contribution to Ak and Creg

k at small wave numbers k from
virialized clusters (with the spatial scale 2π=k well exceed-
ing the size of a cluster), in fact, by a large part cancel each
other [15,16]. Therefore, omitting the term ΔðAk − Creg

k Þ
looks reasonable at relatively small wave numbers for an
estimate that follows. For clustering on spatial scales larger
or comparable to 2π=k, what we essentially neglect is the
nonlinear contribution to the deviation between the spectra
with and without thermal velocities. We note that, for large
enough wave numbers, the effects of resolution and shot
noise will anyway dominate in the spectrum. The main aim
of this paper is to determine the boundary in k-space where
this occurs.
Other simplifications of Eq. (36) can be made for wave

numbers

k ≪ kth; ð37Þ
which are typically of interest in simulations. In this case,
using (34), we have

4πGρ ¼
�
kthvth
a

�
2

≫
�
kvth
a

�
2

: ð38Þ

Thus, the second term in the coefficient of Δδk on the
left-hand side of (36) can be neglected.
Compare now the second term on the left-hand side

of (36),

2HΔδ̇k ¼ −2iH
X
i

mi

M
kẋthi e

ikxi ; ð39Þ

with the last term on its right-hand side. The random
velocity-dependent factors under the sum in both terms
have zero average, but the dispersion of the factor in (39) is
much larger than that of the corresponding factor in the last
term of (36). Indeed, using (34), we obtain

ð2Hkẋthi Þ2 ¼ 4H2

�
kvth
a

�
2

¼ 8

3

�
kthvth
a

�
2
�
kvth
a

�
2

; ð40Þ

while the dispersion of ξi is given by (30). Hence, the last
term in Eq. (36) can also be neglected under condition (37).
Finally, with all these approximations, Eq. (36) takes the

simple form

Δδ̈k þ 2HΔδ̇k − 4πGϱΔδk ¼
�
kvth
a

�
2

δcoldk : ð41Þ

This is our main equation to be solved.

V. EFFECTS OF THERMAL VELOCITIES

A. Initial conditions

Let us discuss the initial conditions for Eq. (41). As
described above, the initial positions of particles in the
profiles of δcold and δwarm are the same; hence, their initial
values are also the same, giving the initial condition
ΔδkðtinÞ ¼ δcoldk ðtinÞ − δwarmk ðtinÞ ¼ 0. What distinguishes
the initial conditions is the presence of thermal velocities
of particles in the profile δwarm. This leads to a nonzero
initial value Δδ̇kðtinÞ. We have

Δδ̇k ¼ δ̇coldk − δ̇warmk ¼ −i
X
i

mi

M
kẋthi e

ikxi ; ð42Þ

with randomly distributed thermal components ẋthi of
particle velocities. Because the thermal velocities ẋthi with
different i are independent, the dispersion of quantity (42)
over realizations of thermal velocities at the initial moment
of time is

jΔδ̇kðtinÞj2 ¼
1

N

�
kvin
ain

�
2

; ð43Þ

where vin is the initial value of vth, and ain is the initial
value of the scale factor. We thus conclude that, as thermal
initial velocities are added to a system with finite number of
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particles, their main effect is connected with the perturba-
tion of the initial value of the first derivative δ̇k.

B. Solution

For the thermal part of peculiar velocity, we can use the
free-streaming approximation. This approximation can be
justified by the condition aHjv̇thi j ≫ j∇φðxiÞj, typically
valid for thermal velocities. Then, given the equation
of motion (3), we have ẍthi þ 2Hẋthi ≃ 0, which entails
ẋthi ∝ a−2 and vthi ≡ aẋthi ∝ a−1.
Using then the laws vth ∝ a−1 and δcoldk ∝ a ∝ t2=3 at the

matter-dominated stage, the solution of Eq. (41) with the
initial conditions ΔδkðtinÞ ¼ 0 and Δδ̇kðtinÞ ≠ 0 is given by

Δδk ¼
�
9

10

�
t
tin

�
2=3

þ 3

5

�
tin
t

�
−
3

2

��
kvintin
ain

�
2

δcoldk ðtinÞ

þ 3

5
tinΔδ̇kðtinÞ

��
t
tin

�
2=3

−
tin
t

�
: ð44Þ

At t ≫ tin, the leading contributions are given by the first
terms in each of the brackets, proportional to the growing
mode of the CDM solution. Since the right-hand side
of (41) rapidly decays with time, the solution asymptoti-
cally continues as a growing mode of the general solution
of (41) with zero right-hand side. In this regime, Δδk
respects the same equation as δcoldk , so that their solutions on
the subsequent stage, where the cosmological constant
takes over, will be proportional to each other. This enables
us to write, for t ≫ tin,

ΔδkðtÞ≃
1

5

�
3k2

k2thðtinÞ
δcoldk ðtinÞþ

2Δδ̇kðtinÞ
Hin

�
DðtÞ
DðtinÞ

; t≫ tin;

ð45Þ

where DðtÞ is the growth factor in the evolution of dark-
matter perturbations in ΛCDM cosmology.
The second term in the bracket of (45) is the contribution

from the noise connected with the finiteness of the N-body
system. This is a random quantity with dispersion deter-
mined by (43):

�����Δδ̇kðtinÞHin

����2
�

¼ 1

N

�
kvin
ainHin

�
2

¼ 3

2N
k2

k2thðtinÞ
: ð46Þ

Being specified at the initial moment of time tin, at which
the initial particle thermal velocities in (42) are uncorre-
lated with their initial positions, the quantities δcoldk ðtinÞ and
Δδ̇kðtinÞ are also statistically uncorrelated.
Defining the difference between the corresponding

power spectra as

ΔPðk; zÞ ¼ Pwarmðk; zÞ − Pcoldðk; zÞ; ð47Þ

and statistically averaging it over realizations of initial
conditions [which amounts to averaging over realizations
of δ̇kðtinÞ using (46)], we will have, for 1þ z ≪ 1þ zin,

ΔPðk;zÞ

≃
�
−

6k2

5k2thðzinÞ
Pcoldðk;zinÞþ

6V
25N

k2

k2thðzinÞ
��

DðzÞ
DðzinÞ

�
2

¼−
6k2

5k2thðzinÞ
Pcoldðk;zÞþ

6V
25N

k2

k2thðzinÞ
�
DðzÞ
DðzinÞ

�
2

; ð48Þ

where DðzÞ is the growth factor as a function of redshift z.
Thus, for 1þ z ≪ 1þ zin, we have

Pwarmðk; zÞ ¼
�
1 −

6k2

5k2thðzinÞ
�
Pcoldðk; zÞ

þ 6

25

V
N

k2

k2thðzinÞ
�
DðzÞ
DðzinÞ

�
2

: ð49Þ

The exact solution for DðzÞ in the case of universe filled
with dark matter and cosmological constant can be found
in [[21], Sec. 6.3.4]. It can be very well approximated by
the simple form

DðzÞ ¼ 1

1þ z

�
Ωm þ ΩΛ

ð1þ zÞ3
�
−1=3

; ð50Þ

which is normalized asDð0Þ ¼ 1. Here, Ωm and ΩΛ are the
usual cosmological parameters for matter and cosmological
constant, respectively. We will use this form of the growing
factor in our plots below.
If the interval between zin and z is not that large, then

we can turn to solution (44) with all terms present to get
corrected estimates for the effects of thermal velocities
under consideration. The physical effect (the one that
survives in the limit N → ∞) is then given by

ΔphysPðk; zÞ ≃ −
6k2

5k2thðzinÞ
Pcoldðk; zÞ

�
1þ 2

3

�
1þ z
1þ zin

�
5=2

−
5

3

�
1þ z
1þ zin

��
; ð51Þ

and the dominating contribution connected with the per-
turbation of the initial time derivative δ̇k is

ΔNPðk; zÞ ≃
6V
25N

k2

k2thðzinÞ
�
DðzÞ
DðzinÞ

�
2
�
1 −

�
1þ z
1þ zin

�
5=2
�
2

:

ð52Þ

Then

Pwarmðk;zÞ¼Pcoldðk;zÞþΔphysPðk;zÞþΔNPðk;zÞ: ð53Þ

Equations (49) and (53) are our main results.

YURI SHTANOV and VALERY I. ZHDANOV PHYS. REV. D 109, 063031 (2024)

063031-8



The power spectrum Pwarmðk; zÞ [as well as Pcoldðk; zÞ]
in N-body simulations also contains the shot-noise con-
tribution (18), which has to be taken into account.

C. Physical effect

The first, N-independent, terms on the right-hand side
of (49) or (53) describe the physical effect of thermal
velocities that survives in the limit of N → ∞.
For dark matter in the form of thermal relic particles

with the distribution function (1) with χ ¼ 1, the thermal
velocity, according to definition (27), is given by [14] (in
units of the speed of light)

vthðzÞ ¼ 0.8 × 10−9
�
ωDM

0.12

�
1=3
�
keV
mTR

�
4=3

ð1þ zÞ; ð54Þ

where ωDM ¼ ΩDMh2, and this quantity is normalized by
the current best-fit value ωDM ≈ 0.12. For dark matter
composed of thermal sterile neutrino, the thermal velocity,
calculated according to (27), is

vthðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
5ζð5Þ
ζð3Þ

s
TνðzÞ
mSN

≈
2.077ð4=11Þ1=3Tγð1þ zÞ

mSN

¼ 3.5 × 10−7ð1þ zÞ keV
mSN

: ð55Þ

This can be expressed through the redshift of nonrelativistic
transition znr defined via the condition

ffiffiffi
3

p
vthðzÞ ¼

1þ z
1þ znr

; 1þ z ≪ 1þ znr: ð56Þ

Then, according to (54) and (55), we have

1þ znr ≃ 0.7 × 109
�
0.12
ωDM

�
1=3
�
mTR

keV

�
4=3

;

1þ znr ≃ 1.7 × 106
mSN

keV
; ð57Þ

respectively, for thermal relic and sterile neutrino, which
determines the redshift values below which our theory of
nonrelativistic particles will be applicable. Since numerical
simulations with warm dark matter typically are performed
at z≲ 200, these conditions will be satisfied for all
reasonable masses of dark-matter particles.
The thermal wave number (34) is calculated to be

kthðzÞ ≈
1.7 × 103ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

�
ωDM

0.12

�
1=6
�
mTR

keV

�
4=3

Mpc−1; ð58Þ

kthðzÞ ≈
4 × 102ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�
ωDM

0.12

�
1=2
�
mSN

keV

�
Mpc−1; ð59Þ

respectively. The physical effect on the power spectrum for
1þ z ≪ 1þ zin is, respectively,

ΔphysPðk; zÞ
Pcoldðk; zÞ

≃ −3 × 10−11
�
0.12
ωDM

�
1=3
�

k
Mpc−1

�
2

×

�
keV
mTR

�
8=3

ð1þ zinÞ; ð60Þ

ΔphysPðk; zÞ
Pcoldðk; zÞ

≃ −6 × 10−6
�
0.12
ωDM

��
k

Mpc−1

�
2

×

�
keV
mSN

�
2

ð1þ zinÞ: ð61Þ

Setting in the last equation zin ¼ 199, k ¼ 20 Mpc−1, and
mSN ¼ 2 keV, we get relative correction to the power
spectrum at the level of 10−1, the smallness of which
justifies condition (37) in view of (51).

D. Effects of discreteness

For finite N, adding thermal velocities to the simulation
particle results in (unwanted) numerical effects at relatively
large k, described by the last terms in (49) and (53). In this
section, we plot several graphs demonstrating these effects
in the case of sterile neutrino.
In Figs. 1–3, solid curves show power spectra PðkÞ

without the thermal velocities [but with the shot-noise
contribution (18) included], which are plotted up to the
Nyquist wave number (14) for corresponding values of the
box size L ¼ V1=3 and particle numberN. Dashed curves in
these figures show power spectra with thermal velocities
and are plotted till k ¼ kthðzinÞkN=½kthðzinÞ þ kN �, so that k
does not exceed either kthðzinÞ or kN, and our approxima-
tion (37) remains valid. Dotted continuations are the
theoretical linear spectra (B6) for sterile neutrino.
Figure 1 shows the effect of sterile-neutrino mass; here

three different plots correspond to different neutrino
masses, and the parameters are indicated in the figure
caption. Solid curves describe the expected resulting power
spectrum in simulations without adding initial thermal
velocities. Their deviation from the theoretical power
spectrum at higher values of k is caused by the shot
noise (18). Dashed curves describe the linearly extrapolated
resulting power spectrum as thermal velocities are switched
on at redshift zin. One observes a turnover in the power
spectrum at certain wave number, after which it starts
growing as PwarmðkÞ ∝ k2, corresponding to the last term
in (49). The wave number k� of turnover can be estimated
by comparing this term to the first term on the right-hand
side of (49), which amounts to solving the equality

PWDMðk�; zinÞ ¼
6

25

V
N

k2�
k2thðzinÞ

: ð62Þ
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The expected results of simulations at k≳ k� contain
numerical artifacts.
The characteristic behavior PwarmðkÞ ∝ k2 in the power

spectra at k≳ k� are observed in real numerical simulations
(e.g., in [11,14]).
Similarly, Fig. 2 shows the expected effect of thermal

velocities for different values of N, and Figure 3 for
different values of zin.

The small physical effect of thermal velocities at
k≲ k�, that suppresses power spectrum on these scales,
is demonstrated in Fig. 4, which shows a small region of
scales for the plot of Fig. 3. The earlier the thermal
velocities are turned on, the more prominent is their effect
in simulations.
As we have seen, the main disturbance of the spectrum

caused by thermal velocities comes from the uncontrolled
noise in the initial condition (42). One might try do reduce

N = 2563

N = 2563

N = 5123

N = 5123

N = 10243

N = 10243

1 5 10 50 100
k, Mpc–1

10–7

10- 4

0.1

100

P(k), Mpc3

theoretical spectrum
with thermal velocities
without thermal velocities

FIG. 2. Plots of the resulting analytic power spectrum (49) at
z ¼ 0 shown for sterile neutrino of fixed mass and for different
numbers of simulation particles N ¼ 2563, 5123, and 10243.
Solid curves correspond to spectrum without thermal velocities
[but with the shot-noise contribution (18) included], and dashed
curves show the effect of switching thermal velocities at the initial
redshift zin. Dotted continuation is the theoretical spectrum (B6).
All curves are plotted for ωDM ¼ 0.12, h ¼ 0.7, the initial redshift
zin ¼ 199, the box size L ¼ 25h−1 Mpc and the sterile-neutrino
mass mSN ¼ 2 keV.

zin = 199

zin = 89

zin = 39

1 5 10
k, Mpc–1

10–4

0.01

1

100

P(k), Mpc3

theoretical spectrum
with thermal velocities
without thermal velocities

FIG. 3. Plots of the resulting analytic power spectrum (49) at
z ¼ 0 shown for different values of zin ¼ 39, 89, and 199, at
which the thermal velocities are switched on. Solid curve
corresponds to spectrum without thermal velocities [but with
the shot-noise contribution (18) included], and dashed curves
show the effect of switching thermal velocities. Dotted continu-
ation is the theoretical spectrum (B6). All curves are plotted for
ωDM ¼ 0.12, h ¼ 0.7, the box size L ¼ 25h−1 Mpc, the particle
number N ¼ 5123, and the sterile-neutrino mass mSN ¼ 2 keV.

zin = 199

zin = 89
zin = 39

3.001 3.002 3.003
k, Mpc–1

4.14

4.15

4.16

4.17

(k), Mpc3

with thermal velocities
without thermal velocities

P

FIG. 4. Zoom of a small region of the plot in Fig. 3. Solid curve
corresponds to the spectrum without thermal velocities, and
dashed curves show the result of switching thermal velocities
at different initial redshifts zin ¼ 39, 89, and 199. This figure
captures the physical effect (51) of suppression of the power
spectrum in the region of k well below the turnover scale k�,
where the effects of resolution are subdominant. The power
spectrum becomes the more suppressed the earlier one turns on
thermal velocities.

mSN = 2 keVN
mSN = 4 keV

mSN = 7 keV

1 5 10 50
k, Mpc–1

0.001

0.100

10

(k), Mpc3

theoretical spectra
with thermal velocities
without thermal velocities

P

FIG. 1. Plots of the resulting analytic power spectrum (49) at
z ¼ 0 shown for sterile neutrino of different massesmSN ¼ 2, 4,
and 7 keV. Solid curves correspond to spectra without thermal
velocities (but with the shot-noise contribution (18) included),
and dashed curves show the effect of switching thermal
velocities at the initial redshift zin. Dotted continuations are
the theoretical spectra (B6). All curves are plotted for
ωDM ¼ 0.12, h ¼ 0.7, the initial redshift zin ¼ 199, the box
size L ¼ 25h−1 Mpc and N ¼ 5123.
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this noise by adding thermal velocities not randomly but
with correlations among neighbors in such a way that they
average to zero over certain small clusters of simulation
particles. For instance, after choosing randomly a thermal
velocity for the first particle, one could assign exactly
opposite thermal velocity to its randomly chosen neighbor,
and then repeat this procedure with other particle pairs. One
could also do the same with triples of particles, and so on.
Whether such scheme is going to work requires special
investigation with simulations.

E. Comparison with numerical simulations

As a test of our model, we compare some of its
predictions with the numerical results presented in Fig. 2
of [14], which we reproduce here as Fig. 5. There, the initial

conditions with and without thermal velocities were set at
zin ¼ 199 with variable box size L, number of particles N
or mass of thermal relic mTR. It should be noted that the
results in Fig. 2 of [14] are presented for the power spectra
of the velocity divergence at the initial moment of time
(i.e., at zin ¼ 199).
In linear theory (valid at high values of z), the divergence

of the velocity field on sub-Hubble spatial scales is related
to the density contrast as

θ≡∇ · v ¼ −aδ̇: ð63Þ
For the initial conditions with thermal velocities, there
is a random thermal contribution to δ̇ given by (42), with
spectral dispersion given by (43) or (46). On the other hand,
the contribution of regular velocities to δ̇ is given by the

FIG. 5. Power spectra Pθθ measured in the simulations of [14] from initial conditions for WDM with thermal velocities (WDM-vth,
triangles) and without thermal velocities (WDM-novth, dots). The different panels show how the spectra change when varying (a) the
box length L, (b) the number of particles N and (c) the mass of thermal relic mTR ¼ mWDM, while fixing the other parameters. The
velocity power spectra are normalized such that Pθθ ¼ PWDM, so that they can be compared with the theoretical linear matter power
spectra represented as dashed lines. This is Fig. 2 from [14], which is reproduced here with the consent of the authors © IOP Publishing.
Reproduced with permission. All rights reserved.
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usual growth law: δ̇cold ¼ Hδ. Hence, using (46), the initial
velocity power spectrum can be approximated as

Pθθðk;zinÞ ¼PWDMðk;zinÞþ
3V
2N

k2

k2thðzinÞ
þPNθθðkÞ: ð64Þ

Here, we have normalized the initial power spectrum PθθðkÞ
in such a way that it coincides with PWDMðkÞ at small k, as
this is also done in [14]. We have also included the
subdominant Nyquist shot noise PNθθðkÞ in (64), which
will be of no interest to us here. Expression (64) qualitatively
matches the behavior observed in numerical simulations
of [14] presented in Fig. 5, while its features are inherited in
the evolved density power spectrum (49) and (53).
To determine the turnover scale k⋆ at which thermal

velocities are going to take over in the initial velocity power
spectrum, we should compare the first and second terms on
the right-hand side of (64). We then obtain an equation
similar to (62) with a somewhat different coefficient:

PWDMðk⋆; zinÞ ¼
3V
2N

k2⋆
k2thðzinÞ

: ð65Þ

To make a comparison with the results of [14], we calculate
the values of log10 k⋆ for k⋆ in units of h=Mpc in each
situation using Eq. (65) and the theoretical linear power
spectrum evaluated at zin by using (B6) and the growth
factor (50).
For simulations with N ¼ 5123, mTR ¼ 3.3 keV, and

variable box size L¼50h−1Mpc, 25h−1 Mpc, 10h−1 Mpc,
and 2h−1 Mpc, our Eq. (65) gives, respectively,
log10 k⋆ ≈ 1.38, 1.51, 1.66, and 1.84, in a good agreement
with the results displayed in Fig. 2(a) of [14] [reproduced
here as Fig. 5(a)].
For simulations with L ¼ 2h−1 Mpc, mTR ¼ 3.3 keV,

and variable particle number N ¼ 643, 1283, 2563, and
5123, our Eq. (65) gives, respectively, log10 k⋆ ≈ 1.58,
1.69, 1.77, and 1.84, in a good agreement with the results
displayed in Fig. 2(b) of [14] [reproduced here as Fig. 5(b)].
For simulations with L ¼ 2h−1 Mpc, N ¼ 5123, and

variable masses of thermal relics mTR ¼ 2 , 3.3, and 7 keV,
our Eq. (65) gives, respectively, log10 k⋆ ≈ 1.64, 1.84,
and 2.13, in a good agreement with the results displayed
in Fig. 2(c) of [14] [reproduced here as Fig. 5(c)].
Thus, our model predicts a correct turnover scale and

qualitative behavior of the spectrum when compared with
the numerical simulations of [14].
It should be noted that, in numerical simulations, large

initial differences between the power spectra with and
without initial thermal velocities become gradually much
smaller in the course of evolution on spatial scales that
enter essentially nonlinear regime [14]. This effect is not
captured by our theory, which essentially works in the
linear approximation. In any case, it remains questionable
whether such simulations reproduce adequate physical

picture on spatial scales that were dominated by the
resolution noise in the course of evolution, i.e., with
k > k⋆. For nonlinear evolution with clustering, perhaps,
one should speak about the mass scales corresponding to
k⋆, which is the dark-matter mass in the homogeneous
universe within a sphere of comoving diameter d ¼ π=k⋆,
and which is equal to

M⋆ ¼ π3ΩDMH2
0

16Gk3⋆
≈ 5× 1011

�
ωDM

0.12

��
Mpc−1

k⋆

�
3

M⊙: ð66Þ

Dark-matter halo mass function in simulations is then
questionable for halo masses M < M⋆.

VI. MATTER CONSISTING OF
SEVERAL COMPONENTS

Using the methods of the preceding section, it is easy to
obtain equations describing the evolution of density con-
trasts of nonrelativistic matter consisting of several com-
ponents with different thermal velocity dispersions. We
label the components by index n and introduce the densities
for all components according to (2):

ρnðxÞ ¼
X
in

min

a3
δðx − xinÞ;

δðnÞk ¼
Z

ρnðxÞ
ϱnV

eikxd3x ¼
X
in

min

Mn
eikxin : ð67Þ

Here, ϱn and Mn ¼
P

in min are the background density
and the total mass, respectively, of the nth component. The
Newtonian potential is then generalized from (6) to

φðxÞ ¼ −4πGa2
X
n

ϱn
X
k≠0

e−ikx
δðnÞk

k2
: ð68Þ

Repeating the similar steps that lead to (7), one can
obtain the following system of equations for the evolution
of the Fourier components of the density contrasts:

δ̈ðnÞk þ 2Hδ̇ðnÞk ¼ 4πGϱδk þ AðnÞ
k − CðnÞ

k ; ð69Þ
where

ϱ ¼
X
n

ϱn; ϱδk ¼
X
n

ϱnδ
ðnÞ
k ð70Þ

define the total background density and its perturbation,
respectively, and

AðnÞ
k ¼ 4πGϱ

X
k0≠0;k

kk0

k02
δðnÞk−k0δk0 ; ð71Þ

CðnÞ
k ¼

X
in

min

Mn
ðkẋinÞ2eikxin : ð72Þ
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Since all components of matter are nonrelativistic, we
can write

ϱn¼fnϱ; δk¼
X
n

fnδ
ðnÞ
k ;

X
n

fn¼1; fn¼
Mn

M
¼ const:

ð73Þ

For the total density contrast, we have the following
equation:

δ̈k þ 2Hδ̇k ¼ 4πGϱδk þ Ak −
X
n

fnC
ðnÞ
k ; ð74Þ

where Ak is given by (8). The only difference of this
equation from (7) is the sum over different components in
the velocity term on the right-hand side.
We note that the thermal part of the partial velocity

term (72) is similar to (26) and (28):h
CðnÞ
k

i
th
¼
X
in

min

Mn
ðkẋthinÞ2eikxin

¼
 
kvðnÞth

a

!
2

δðnÞk þ
X
in

min

Mn
ξine

ikxin ; ð75Þ

with expression for ξin given in (29). Writing the last term
in (74) as the sum of “regular” and “thermal” contributions,
and proceeding along the same lines as in Sec. IV, we will
obtain a generalization of the effective equation (41):

Δδ̈ðnÞk þ 2HΔδ̇ðnÞk ¼ 4πGϱΔδk þ
 
kvðnÞth

a

!
2

δðnÞcoldk ; ð76Þ

where δðnÞcoldk is the density profile in the case where all
particles are cold, i.e., initial thermal velocities are not
added. The perturbation of the initial condition is

Δδ̇ðnÞk ¼ δ̇ðnÞcoldk − δ̇ðnÞwarmk ¼ −i
X
in

min

Mn
kẋthine

ikxi : ð77Þ

Its initial dispersion is given, similarly to (43), by

jΔδ̇ðnÞk ðtinÞj2 ¼
1

Nn

 
kvðnÞin

ain

!
2

; ð78Þ

where Nn is the number of particles in the nth component.
Equation for the total density contrast is obtained from (76)
by summing over n with weights fn:

Δδ̈kþ2HΔδ̇k¼4πGϱΔδkþ
X
n

fn

 
kvðnÞth

a

!
2

δðnÞcoldk : ð79Þ

Its growth rate is given by

Δδ̇k ¼ Δδ̇coldk − Δδ̇warmk ¼
X
n

fnΔδ̇
ðnÞ
k ; ð80Þ

with the initial dispersion

jΔδ̇kðtinÞj2¼
X
n

f2njΔδ̇ðnÞk ðtinÞj2¼
X
n

f2n
Nn

 
kvðnÞin

ain

!
2

; ð81Þ

In the simplest case where particles of all components
are initially distributed with the same profile, so that

δðnÞcoldk ≃ δcoldk , we obtain a generalization of (51) and (52)
for the total power spectrum:

ΔphysPðk; zÞ ≃ −
X
n

fn
6k2

5k2thðnÞðzinÞ
Pðk; zinÞ

�
DðzÞ
DðzinÞ

�
2

×

�
1þ 2

3

�
1þ z
1þ zin

�
5=2

−
5

3

�
1þ z
1þ zin

��
;

ð82Þ

ΔNPðk; zÞ ≃
X
n

f2n
6V
25Nn

k2

k2thðnÞðzinÞ
�
DðzÞ
DðzinÞ

�
2

×

�
1 −

�
1þ z
1þ zin

�
5=2
�
2

: ð83Þ

Individual terms in these sums, in which one sets fn ¼ 1,
give the expressions for the differences of partial power
spectra for individual components: ΔPn ≡ Pwarm

n − Pcold
n .

VII. THE VELOCITY FIELD

Consider first the case of CDM, where the thermal
velocities are negligible. In this case, error of simulation
will arise due to the coarse-graining of the continuous
velocity field. Suppose that we statistically compare two
simulations, a fine-grained one and a coarse-grained one,
with similar initial conditions. A qualitative difference
between them at every moment of time will be the presence
of an additional term Cfi

k in the fine-grained simulation [see
Eq. (21)], which will be absent in the coarse-grained
simulation. An important difference between this effect
and the effect of thermal velocities will be that, in the
present case, perturbation of the initial velocity δ̇k can
be neglected. Indeed, the time derivative of the density
amplitude for a fine-grained system is given by

δ̇k ¼ i
X
i

mi

M
kẋieikxi ¼ i

X
I

mI

M
eikxI

X
iI

miI

mI
kðẋI þ ẏiIÞeikyiI :

ð84Þ

For kl ≪ 1, where l is a typical comoving separation
between the coarse-grained particles placed as fxIg, the
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exponent eikyiI in (84) can be replaced by unity; then the
center-of-mass property

X
iI

miI

mI
yiI ¼ 0;

X
iI

miI

mI
ẏiI ¼ 0 ð85Þ

will ensure that the fine-grained quantity (84) is approxi-
mated by

δ̇k ≈ i
X
I

mI

M
kẋIeikxI ; ð86Þ

i.e., is equal to its coarse-grained value with a very high
precision.
The effect of Cfi

k can be estimated along the same lines as
was done for the case of thermal velocities. Using decom-
position (21) and the first expression in (24), one can
approximate the evolution of the fine-grained system by the
effective equation

δ̈k þ 2Hδ̇k ¼
�
4πGϱ −

�
kvfi
a

�
2
�
δk þ Ak − C̄k: ð87Þ

Here, vfi is the characteristic relative velocity between
the neighboring particles in a coarse-grained distribution
arising due to inhomogeneity of the velocity field.4

Equation (87) effectively differs from that describing the
evolution of the coarse-grained system only by the presence
of the term with vfi in the brackets. In this case, we should
note that vfi itself depends on the resolution, hence, on
the number of particles N in the coarse-grained system.
Therefore, the error of simulation ΔP ¼ Pcoarse − Pfine will
be determined mainly by the effect that will be charac-
terized by the wave number kfi, defined similarly to kth but
with characteristic relative field velocity replacing the
thermal velocity:

kfi ¼
�
4πGϱa2

v2fi

�
1=2

: ð88Þ

Returning now to the case of particles with thermal
velocities and comparing the two terms in (24), we can see
that whether the thermal velocities are important for
simulations or not is determined by the relation between
the characteristic velocities vfi and vth or, respectively,
kfi and kth.
To estimate the quantities vfi and kfi, we can use the

equation that relates the peculiar velocity field to the
density contrast on sub-Hubble spatial scales:

∇ · v ¼ ∇2v ¼ −aδ̇ ¼ −aHδ; ð89Þ

where v is the scalar velocity potential, and we have taken
into account that δ ∝ a at the matter-dominated stage. The
difference between peculiar velocities of particles separated
by a small comoving distance Δx is

Δv ¼ ðΔx∇Þv ¼ ðΔx∇Þ∇v: ð90Þ

Using (89) and (90), we calculate the dispersion of the
relative velocity perturbation at this distance:

hðΔvÞ2i ¼ ðaHÞ2
Z

d3k
ð2πÞ3

ðkΔxÞ2
k2

PðkÞWk

¼ 1

3
ðaHÞ2ðΔxÞ2

Z
∞

0

dk
k
PðkÞWk; ð91Þ

where Wk ≥ 0 is an appropriate window function that cuts
the integral at the Nyquist wave number k ¼ kN, and we
have used definition (A6) for the dimensionless spectrum
PðkÞ. In the WDM scenario, where the power spectrum
rapidly decays at large wave numbers k [see Eqs. (B6)
and (B7)], the last integral can be estimated by the region
(in fact, a plateau) where PðkÞ reaches the maximum value
Pmax, and we have

hðΔvÞ2i ≃ ðaHÞ2ðΔxÞ2Pmax: ð92Þ

Now, considering the smallest interparticle distance
Δx ¼ ðV=NÞ1=3 ¼ π=kN , we have

v2fi ≃ π2
�
aH
kN

�
2

Pmax ð93Þ

and

k2fiðzÞ ≃
3k2N

2π2PmaxðzÞ
: ð94Þ

The quantity PmaxðzÞ is estimated as

PmaxðzÞ ≃
Pmaxð0Þ
ð1þ zÞ2 ≃

1

ð1þ zÞ2 : ð95Þ

Eventually, we have

k2fiðzÞ ≃
3

2π2
k2Nð1þ zÞ2: ð96Þ

For z≳ 0.5, the wave number kfi exceeds the Nyquist wave
number kN.
The effect of thermal velocities will be unimportant

relative to the effect caused by the coarse-graining of the
regular velocity field if kfi ≲ kth. For a thermal relic, the
thermal wave number is given by (58), and, using (96),

4Note that this is not the total relative velocity between the
particles, part of which constitutes the Hubble velocity, but only
the difference between their peculiar velocities. It can be defined
as vfi ¼ aðẋi − ẋjÞ, where i and j label the neighboring particles.
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we obtain the estimate of the redshift for which the effect of
thermal velocities can be neglected relative to the effect of
coarse-graining of the regular velocity field:

1þ z≲ 30

�
ωDM

0.12

�
1=9
�
mTR

keV

�
8=9
�

L
50 Mpc

�
2=3
�
512

N1=3

�
2=3

;

ð97Þ

where L ¼ V1=3 is the comoving size of the simulation box.
For sterile neutrino, using (59), we similarly obtain

1þ z≲ 12

�
ωDM

0.12

�
1=3
�
mSN

keV

�
2=3
�

L
50 Mpc

�
2=3
�
512

N1=3

�
2=3

:

ð98Þ

Our crude estimates show that, for dark-matter particle
masses in the keV range, switching thermal velocities in
N-body simulations is relevant only for sufficiently high
redshifts.

VIII. DISCUSSION

In this paper, we investigated analytically the expected
effects of thermal velocities in N-body simulations with
warm dark matter. In numerical simulations, thermal
velocities of WDM particles are taken into account by
adding random initial velocities to the simulation particles
according to the velocity distribution function of WDM
calculated at the initial moment of time. However, because
of obvious computational limitations, a huge number of
DM particles are represented as one body in N-body
simulations. Formally, the average thermal velocity of such
a collection of particles is very close to zero, which raises
the issue of correctness of the procedure of adding thermal
velocities to the simulation particles. By presenting the
evolution equation for the density contrast in the form (7)
due to Peebles [15,16], we were able to see that this
procedure is legitimate as long as it produces the same
velocity term Ck. We have elaborated on this in Sec. III.
The physical effect of thermal velocities, surviving in the

limit of N → ∞, is described by Eq. (51) on spatial scales
much larger than the thermal scale of the warm dark mater
(k ≪ kth) defined in (34). It causes small suppression of the
power spectrum and is understandable as the effect of free-
streaming. Its quantitative features are very similar to the
effect of suppression of Jeans instability by pressure and the
related speed of sound. The thermal spatial scale 2π=kth is a
close analog of the Jeans scale and is determined by the
thermal velocity distribution. Sometimes it is also called the
free-streaming scale [19].
Along with the physical effect, N-body simulations

contain artificial effects connected with discreteness. We
have shown that the dominating artificial effect of switch-
ing thermal velocities consists in the perturbation (42)
of the initial time derivative δ̇k of the density profile.

Its evolution eventually produces an additional term (52) in
the power spectrum. Unlike the physical effect of thermal
velocities, this effect does not depend on the original power
spectrum (it is additive rather than multiplicative), but
depends on the particle number density N=V in the
simulations. We have obtained a simple analytic for-
mula (53) combining all effects of thermal velocities in
the power spectrum as well as the usual shot noise. In the
case of large initial redshift, it is further simplified to (49).
As a specific discreteness effect caused by thermal veloc-
ities in simulations, the model predicts a turnover in the
behavior of the power spectrum at certain wave number k�,
which is estimated implicitly by formula (62). The
power spectrum at k > k� starts growing artificially as
PwarmðkÞ ∝ k2, corresponding to the last term in (49). In
real simulations, this is likely to cause the production
of a large number of spurious halos on these scales,
similar to those observed in simulations with initially
“cold” particles [5].
Perhaps, the noise in the initial condition (42) can be

reduced if one adds thermal velocities not randomly but
with correlations among neighbors in such a way that they
average to zero over certain small clusters of simulation
particles. For instance, after choosing randomly a thermal
velocity for the first particle, one could assign exactly
opposite thermal velocity to its randomly chosen neighbor,
and then repeat this procedure with other particle pairs.
One could also do the same with triples of particles, and so
on. Whether such scheme is going to work requires special
simulations.
We generalized our model of physical and discreteness

effects of thermal velocities to a dark-matter system con-
sisting of several components in Sec. VI. Equations (82)
and (83) describe, respectively, the physical and discreteness
effects on the total power spectrum, with individual terms in
the sums describing the effects on the power spectra for each
dark-matter component.
Effective coarse-graining of the regular velocity field

in N-body simulations is a source of another discreteness
effect in the evolution of the power spectrum. In Sec. VII,
we show that it also tends to enhance the power spectrum
because of the presence of the term proportional to k2=k2fi in
the effective evolution equation for the density contrast,
where kfi is the corresponding characteristic wave number
connected with the coarse-graining of the smooth velocity
field. For a given particle number N, we estimate the
redshift below which this effect exceeds the effect of
thermal velocities, in which case the latter can be neglected
in simulations.
According to our results, whether is is useful to switch on

random thermal velocities in N-body simulations depends
on the desired precision in the power spectrum at relatively
small wave numbers, where the effect of thermal velocities
can be captured with negligible numerical artifacts. In cases
where such numerical artifacts are unacceptably large,

DISCRETENESS EFFECTS IN N-BODY SIMULATIONS … PHYS. REV. D 109, 063031 (2024)

063031-15



it may be advisable just to make the theoretical correction
for the spectrum that uses cold particles, as given
by Eq. (51).
To capture the effects of thermal velocities under the

conditions of coarse-graining naturally arising in N-body
simulations, we used certain model assumptions that are
difficult to control on a rigorous basis. For example, we
neglected (with some justification) possible correlations
between regular and thermal velocities arising in the course
of evolution, or contributions of nonlinear and regular
velocity terms, Ak and C

reg
k , in the basic Eq. (36). However,

comparison of our results for the turnover scale k⋆,
determined by (65), with the available results of numerical
simulations of warm dark matter [14] shows that our model
works quite well in this respect.
It would be interesting to extend the present model of the

effects of thermal velocities to the stage of fully nonlinear
evolution of the density profile [14] and to more sophis-
ticated computational algorithms, and we hope to return to
these issues in the future.
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APPENDIX A: DEFINITION OF THE
POWER SPECTRUM

1. Infinite space

In the infinite space, we define ρðxÞ to be the matter
density (at a given moment of time; we suppress the time
coordinate), so that

a3
Z
V
ρðxÞd3x ¼ MV ðA1Þ

is the total mass in a comoving volume V. For an infinite
space, the quantity

lim
V→∞

MV

a3V
¼ ϱ ðA2Þ

is the background density, and the dimensionless density
fluctuation is defined as

δðxÞ ¼ ρðxÞ − ϱ

ϱ
¼ ρðxÞ

ϱ
− 1: ðA3Þ

We define the Fourier transform in the infinite comoving
space as

δk¼
Z

δðxÞeikxd3x; δðxÞ¼
Z

δke−ikx
d3k
ð2πÞ3 ; δ�k¼ δ−k:

ðA4Þ

For small density contrast, the density fluctuation is
assumed to be a homogeneous Gaussian process with
correlation function

ξðxÞ¼hδð0ÞδðxÞi¼
Z

PðkÞe−ikx d3k
ð2πÞ3¼

Z
PðkÞsinkx

kx
dk
k
;

ðA5Þ

where the dimensionless quantity

PðkÞ≡ k3

2π2
PðkÞ ðA6Þ

determines the rms amplitude σR of mass fluctuation on the
comoving scale R via

σ2R ≡
��

δM
M

�
2

R

�
¼
Z

WRðkÞPðkÞ
dk
k
; ðA7Þ

where WRðkÞ is an appropriate window function.
Equation (A5) together with (A4) implies

hδkδ�pi ¼ PðkÞð2πÞ3δDðk − pÞ; ðA8Þ

where δDðkÞ is Dirac’s delta-function.

2. Finite space

Simulations are done in a finite volume; therefore, we
must introduce the counterparts of the preceding quantities
in this case. The space integrals are now performed over the
total finite comoving volume V, and the Fourier space
becomes discrete, with the orthogonality propertyZ

V
eiðk−k0Þxd3x ¼ Vδk;k0 ; ðA9Þ

where δk;k0 is the Kronecker symbol. The background
density is now

ϱ ¼ M
a3V

; ðA10Þ

whereM is the total mass. The Fourier transform is defined
similarly to (A4) with normalization over the total volume:

δk¼
Z

δðxÞeikxd
3x
V

; δðxÞ¼
X
k

δke−ikx; δ�k¼ δ−k: ðA11Þ

With this convention, the quantity δk is dimensionless,
as is δðxÞ.
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In a large finite volume, the sum over momenta is
approximated by an integral as follows:

X
k

→
Z

Vd3k
ð2πÞ3 : ðA12Þ

Therefore, we have the following connection between
the Fourier amplitudes and power spectrum in the case
of finite volume:

Vhδkδ�pi ¼ PðkÞδk;p: ðA13Þ

In particular,

Vhjδkj2i ¼ PðkÞ ¼ 2π2PðkÞ
k3

: ðA14Þ

This gives normalization of the rms amplitude of the
Fourier coefficients δk to be used in the estimates, with
power spectrum defined in (A5) and (A6).

APPENDIX B: POWER SPECTRA

1. Cold dark matter

The today’s linear power spectrum in the ΛCDM model
can be approximated as [22]:

PCDMðkÞ ¼
Bk

ð1þ ½αkþ ðβkÞ3=2 þ ðγkÞ2�νÞ2=ν ; ðB1Þ

where α ¼ ð6.4=ωmÞ Mpc, β ¼ ð3.0=ωmÞ Mpc, γ ¼
ð1.7=ωmÞ Mpc, ν ¼ 1.13, and ωm ¼ Ωmh2. The comoving
quantity k is measured in Mpc−1. In accordance with the
CMB power-spectrum normalization, we have

B ¼ 8π2g20Ac
4

25Ω2
mH4

0

; ðB2Þ

where the scalar-type perturbation amplitude [23]
A ¼ 2.1 × 10−9, and g0 ≈ 0.75. Therefore,

B ≈ 1.5 × 107
�
0.143
ωm

�
2

Mpc4: ðB3Þ

The linear power spectrum at arbitrary z is then calcu-
lated approximately as

PCDMðk; zÞ ≈
g2ðzÞPCDMðkÞ

ð1þ zÞ2 ; ðB4Þ

where

gðzÞ ¼
�
1þ ΩΛ

Ωm

�
1=3
�
1þ ΩΛ

Ωmð1þ zÞ3
�
−1=3

ðB5Þ

is the factor taking into account the presence of the
cosmological constant.

2. Warm dark matter

In the linear theory with WDM, the today’s spectrum
PWDMðkÞ can be related to that of the CDM PCDMðkÞ by a
transfer function TðkÞ:

PWDMðkÞ ¼ T2ðkÞPCDMðkÞ: ðB6Þ

In the case of thermal relics with phase-space distribution (1),
the transfer function is approximated by [24]

TðkÞ ¼
�
1þ

�
k
k0

�
2α
�
−5=α

; ðB7Þ

where α ¼ 1.12, and

k0 ≈ 14.3

�
mTR

keV

�
1.11
�
0.25 × 0.72

ΩDMh2

�
0.11

Mpc−1 ðB8Þ

is the characteristic free-streaming scale, with mTR being the
mass of the thermal relic. The equivalent massmSN of sterile
neutrino with spectrum (1) and temperature TDM ¼ Tν that
produces the same transfer function is related to the mass of
thermal relic mTR via [[24], Eq. (5)]

mSN

keV
¼ 4.43

�
mTR

keV

�
4=3
�
0.25 × 0.72

ΩDMh2

�
1=3

: ðB9Þ

Expressing mTR through mSN, we then get

mTR

keV
≈ 0.33

�
mSN

keV

�
3=4
�

ΩDMh2

0.25 × 0.72

�
1=4

: ðB10Þ

In the case of sterile neutrino, we will have

k0 ≈ 4.2

�
mSN

keV

�
0.83
�

ΩDMh2

0.25 × 0.72

�
0.17

Mpc−1: ðB11Þ

One can observe that the cutoff wave numbers (B8)
and (B11) are much smaller than the typical corresponding
thermal wave numbers (58) and (59).
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