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For a horizonless Schwarzschild star with a photon sphere, its strong deflection gravitational lensing can
generate unique inner relativistic images of pointlike sources, which are absent for a Schwarzschild black
hole. In order to understand the signatures of its outer and inner relativistic images, we generalize the strong
deflection limit method for an ultracompact object by including the finite distance effect of a source, and
analytically calculate the complex visibility of all the relativistic images of the Schwarzschild star. We show
that the interferometric pattern of the relativistic images of the Schwarzschild star has richer features than
the one of the Schwarzschild black hole and is more likely to be resolved by future space-borne very long
baseline interferometry.
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I. INTRODUCTION

Detection of gravitational waves from merging binary
black holes [1–6] and direct images the supermassive black
holes M87* [7–12] and Sgr A* [13–18], not only demon-
strate the abundance of black holes in the Universe, but also
offer new opportunities for exploring the laws of physics in
the strong gravitational fields. A black hole with an event
horizon and a central singularity is a fundamental object in
Einstein’s general relativity. However, the presence of the
event horizon blocks the connection between the interior
and exterior regions of the black hole, resulting in Hawking
radiation and the information paradox [19,20], while the
singularity straightforwardly causes breakdown of general
relativity. In pursuit of addressing these issues, the idea of
black hole mimickers has been put forth in the literature
(see Ref. [21] for a review). One prominent example is the
simplest Schwarzschild interior solution, which removes
the intrinsic singularity and event horizon of the
Schwarzschild metric by introducing a bounded isotropic
fluid into a region with a radius R slightly larger than the
Schwarzschild radius Rs [22,23].
Besides being an exact solution of general relativity,

the Schwarzschild interior solution is one of the few
analytical solutions that can smoothly match the external
Schwarzschild metric [24]. Such a solution characterizes an
isotropic self-gravitating object with a uniform energy
density, also known as a Schwarzschild star. It can be divided
into two distinct classes. The first one is the Schwarzschild
star with R > 9Rs=8 and positive internal pressure, and the
second one is the supercompact Schwarzschild star with

R < 9Rs=8 and negative internal pressure [25,26]. It is
demonstrated that both classes could maintain the radial
stability [27]. TheSchwarzschild starwithR ¼ 9Rs=8 shows
a divergence in its pressure [28]. This critical radius comes
from Buchdahl’s theorem, which states that any spherically
symmetric object composed of isotropic fluids has an upper
limit of its mass as 4c2R=ð9GÞ under the condition that the
energy density is positive andmonotonically decreases in the
radial direction [28]. Although the Schwarzschild star suffers
from the Buchdahl limit and its oversimplified uniform
matter distribution, it has still attracted great attention, such
as its anisotropy [29,30] and time dependence [31], and its
connection to the gravastar [32,33]. These studies have also
shed light on remarkable features of the Schwarzschild star,
that the supercompact one with R < 9Rs=8 might have a
nonvanishing positive tidal Love number [34] and a power-
law tail very similar to the Schwarzschild black hole in the
gravitational wave ringdown waveform [35].
The unique properties of the Schwarzschild star arouse

the interest of identifying it observationally. It is feasible in
principle to detect its lower multipoles or trailing echoes
through gravitational waves, but this approach requires a
high signal-to-noise ratio and thus challenges current
technologies [35,36]. Searching for the Schwarzschild star
can also be accomplished by electromagnetic wave obser-
vations [21]. Noteworthy discoveries achieved by the Event
Horizon Telescope in recent years, such as shadows of
M87* and Sgr A* [7,13] and characteristics of the accretion
disk, highlight the significance of very long baseline
interferometry in both astronomy and black hole physics.
In extreme astrophysical environments near a compact
object, electromagnetic emission of the accretion disk
may be strongly deflected or even wind several times*yixie@pmo.ac.cn
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around the central compact object before reaching the
observer. This phenomenon, often called the strong deflec-
tion gravitational lensing [37–51], results in the observed
thick ring appearance of the accretion disk [7,13,52–56].
Enclosed within the ring are finer substructures, such as
photon rings [57] and relativistic images [58]. The photon
rings are formed by the emission winding around the
gravitational lens [57,59]. Although the lower-order photon
rings that are most easily accessible could be measured via
future observations with the Earth-Moon baseline [60,61],
they moderately depend on both the gravitational model of
the compact object and the accretion physics [55,56]. In
contrast, the relativistic images originate from the strong
bending of the emission from small compact sources in the
vicinity of the lens [50,58,62–65] and are thus independent
of the accretion disk models, providing a more concise way
to study the strong gravitational field around the compact
object.
For a compact object with a photon sphere that is an

unstable circular orbit for photons, we focus on the photons
that have radial turning points in their trajectories, that are
initially emitted in the radially inward direction by the
sources outside the photon sphere, and that finally reach
asymptotic observers. For the Schwarzschild black hole,
these photons result in the formation of the outer relativistic
images, the interferometric pattern of which can exhibits
qualitatively similar staircaselike structures to those of the
photon rings [58,60,66]. Taking Sgr A* as the lens, it is
recently shown that the outermost image could be detected
by an Earth-Moon baseline interferometry [58]. Inspired by
these works, we will investigate the interferometric pattern
of the relativistic images around a Schwarzschild star.
Unlike the Schwarzschild black hole, the Schwarzschild
star can have unique relativistic images inside the photon
sphere. The outer and inner relativistic images make the
interferometric pattern much more complicated, possibly
helpful for distinguishing the Schwarzschild star from the
Schwarzschild black hole. There are other types of pho-
tons’ orbits, such as those trajectories outwardly beginning
from a source inside the photon sphere, which might also
generate relativistic images [67–69]. We leave these sce-
narios for our future work.
This paper is organized as follows. In Sec. II, we briefly

review the metric of the Schwarzschild star, the geodesics
of a photon and its special circular orbits, such as the
photon and antiphoton spheres. In Sec. III, analytical
approaches to describe the relativistic images of a pointlike
source are given. Considering the finite distance of a
source, we generalize the strong deflection limit method
for the relativistic images inside the photon sphere [64]. In
Sec. IV, we calculate the interferometric pattern of all the
relativistic images of the Schwarzschild star and study the
features in this pattern. In Sec. V, we explore how to infer
the properties of a spacetime from those observables. We
conclude and discuss our results in Sec. VI.

II. SCHWARZSCHILD STAR

A. Metric

The Schwarzschild star, or the Schwarzschild interior
solution, describes a static spherically symmetric object
with a uniform energy density. Its line element reads
(G ¼ c ¼ 1) [22,23]

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞðdθ2 þ sin2θdϕ2Þ; ð1Þ

with

AðrÞ ¼
8<
:

�
3
2

ffiffiffiffiffiffiffi
HR

p
− 1

2

ffiffiffiffiffiffi
Hr

p �
2
; r < R

1 − Rs
r ; r ≥ R

; ð2Þ

BðrÞ ¼
8<
:

H−1
r ; r < R�
1 − Rs

r

�
−1
; r ≥ R

; ð3Þ

CðrÞ ¼ r2; ð4Þ

where the hypersurface r ¼ R connects the internal and
external spacetime, Rs ¼ 2M is the Schwarzschild radius,
M is the Arnowitt-Deser-Misner mass, and HR and Hr are
respectively defined as

HR ¼ 1 −
1

ζ
; ð5Þ

Hr ¼ 1 −
r2

ζR2
; ð6Þ

with ζ being the normalized radius as

ζ ¼ R
Rs

: ð7Þ

The Schwarzschild star gets more compact as ζ decreases. It
is easy to find that the metric (1) does not have an event
horizon since ζ > 1 and the inverse of BðrÞ is always
positive.
The pressure of the incompressible isotropic fluid

diagðϵ̄; p; p; pÞ that makes up the Schwarzschild star is
given by [26]

pðrÞ ¼ ϵ̄

� ffiffiffiffiffiffi
Hr

p
−

ffiffiffiffiffiffiffi
HR

p
3

ffiffiffiffiffiffiffi
HR

p
−

ffiffiffiffiffiffi
Hr

p
�
; ð8Þ

with ϵ̄ being the constant energy density as

ϵ̄ ¼
� 3

8πζR2 ¼ const; r < R

0; r ≥ R
: ð9Þ

From the metric (1) and the pressure (8), pðrÞ diverges
when AðR0Þ ¼ 0, in which R0 locates at [26]
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R0 ¼ 3ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9
ζ

r
Rs: ð10Þ

In the Buchdahl limit [28], we can have

ζB ¼ 9

8
: ð11Þ

For ζ ¼ ζB, Eq. (10) gives R0 ¼ 0 and the central pressure
pð0Þ diverges from Eq. (8). In this case, the Schwarzschild
star is unstable since it is hard to keep the state of
hydrostatic equilibrium, triggering a gravitational collapse
to form a Schwarzschild black hole [26–28]. For ζ > ζB,
Buchdahl’s theorem is satisfied. AðrÞ is always positive and
its root R0 is imaginary, and pðrÞ is thus positive and
regular everywhere. For ζ < ζB, Buchdahl’s theorem is
broken. AðrÞ is positive except at R0, and R0 is real and
belongs to ð0; RÞ. In this situation, pðrÞ is negative,
divergent and positive at 0 < r < R0, r ¼ R0 and
r > R0, respectively. The Schwarzschild star with ζ < ζB
is called the supercompact Schwarzschild star [26]. In the
case of R → Rþ

s (or equivalently ζ → 1þ) and R0 → R−
s ,

the interior region of the supercompact Schwarzschild star
becomes a modified de Sitter core with constant negative
pressure and can match the exterior metric as required by
the Israel junction conditions [27,35], providing a gravastar
explanation for the Schwarzschild star [32,33]. In such an
extreme context, it is shown that the interior is regular at
r ¼ 0, and pðrÞ diverges exactly at r ¼ R but can be
regularized through the Komar formula [25,27].

B. Geodesic motion of photon

In the Schwarzschild star spacetime, a photon has two
constants of motion, i.e., the energy and angular momen-
tum, given by

E ¼ AðrÞṫ; ð12Þ

L ¼ CðrÞϕ̇: ð13Þ

These two quantities are related to the impact parameter u
with

u≡ L
E
: ð14Þ

The photon travels along a geodesic with the following
equation of motion

AðrÞBðrÞṙ2 þ L2Veff ¼ E2: ð15Þ

The effective potential per L2 is defined as

Veff ¼
AðrÞ
CðrÞ : ð16Þ

Figure 1(a) shows the effective potential Veff with respect to
the radial coordinate r for several values of the normalized
radius ζ. It shows that the minimum of Veff approaches 0
when ζ → 1. As ζ increases, the maximum and minimum
of Veff get closer to each other, and finally merge when ζ
reaches 1.5. As shown in Fig. 1(a), R0 exists only if ζ < ζB
and it coincides with the location of the minimum of Veff .
In this work, we consider the photons with the following

conditions:
(i) their trajectories have radial turning points r0;
(ii) they are emitted by the sources located outside the

photon sphere, i.e. rS > rm, where rS and rm are the
radial coordinate of the source and the radius of
the photon sphere, respectively;

(iii) they are initially emitted in the radially inward
direction, ṙ < 0;

(iv) they can finally reach asymptotic observers”.
With ṙ ¼ 0 and L2Veffðr0Þ ¼ E2 at the turning point r0,
we can have the relation between r0 and the impact
parameter u as

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðr0Þ
Aðr0Þ

s
: ð17Þ

FIG. 1. (a) The effective potential Veff with respect to the radial
coordinates r for several normalized radii ζ. (b) The positions of
the photon sphere rm, the antiphoton sphere ra and the point of rc
with respect to ζ.
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A positive and finite impact parameter u demands r0 > R0

since AðR0Þ ¼ 0 directly causes u to diverge due to
Eq. (17). For the photons satisfying the aforementioned
conditions, they cannot enter the region r0 ≤ R0. These
photons’ geodesic, Eq. (15), is ill defined since ṙðr ¼ R0Þ
diverges. Meanwhile, the metric function AðR0Þ ¼ 0 indi-
cates that r ¼ R0 would be an infinite redshift surface, so
that an asymptotic observer cannot see the photons (ini-
tially emitted in the radially inward direction) passing
through this surface. However, these issues hold only for
the supercompact Schwarzschild star that breaks the
Buchdahl’s theorem and always has R0 ∈ ð0; RÞ, but is
free for the Schwarzschild star with ζ > ζB due to the fact
that its AðrÞ is positive when the Buchdahl’s theorem is
satisfied. In summary, one of the following two conditions
must be met to ensure that a lensed photon could reach an
observer: (1) ζ < ζB and r > R0; or (2) ζ > ζB.
Circular orbits play a vital role in the geodesic motion of

photons near a compact object, which determine the
characteristics in electromagnetic wave observation. The
conditions for the photon circular orbits are given by ṙ ¼ 0
and V 0

effðrÞ ¼ 0, where the prime stands for the derivative
with respect to the radial coordinate r. V0

effðrmÞ ¼ 0 and
V 00
effðrmÞ < 0 define the unstable circular orbit of photons,

i.e., the photon sphere. According to Appendix A, we
find that if ζ < 1.5, the Schwarzschild star has a photon
sphere at

rm ¼ 3

2
Rs: ð18Þ

For ζ ≥ 1.5, no photon sphere exists for the Schwarzschild
star. In the limit r0 → rþm, a photon will wind several times
around the Schwarzschild star and then escape, forming
relativistic images outside the photon sphere finally.
Compared with the Schwarzschild black hole that has only
one circular photon orbit, the ultracompact Schwarzschild
star can have multiple photon and antiphoton spheres, see
Refs. [70,71] for other interesting cases.
V 0
effðraÞ ¼ 0 and V 00

effðraÞ > 0 define the stable circular
orbit, i.e., the antiphoton sphere. A stable circular photon
orbit might trigger nonlinear instabilities [72,73], causing
an ultracompact object to evolve into a less compact one or
a black hole [36]. We show that the antiphoton sphere ra
and R0 share the same expression (10) (see Appendix A).
For a photon emitted by a source located outside the photon
sphere, it can only propagate in the region r > ra ¼ R0

without an entrance to the region r ≤ ra ¼ R0. This
suggests that the antiphoton sphere plays no role, and thus
the strong deflection gravitational lensing by the super-
compact Schwarzschild star with ζ < ζB is still controlled
by the photon sphere rm whether its surface Rð> R0Þ is
electromagnetic transparent or not. Therefore, we expect
that the supercompact Schwarzschild star may produce
electromagnetic signals almost identical to those of the

Schwarzschild black hole. At this point, detection of its
gravitational wave would be a better way to distinguish
such a black hole mimicker [35].
In order to ensure that the Schwarzschild star has a

photon sphere and has distinguishable features from the
Schwarzschild black hole in the electromagnetic wave, we
focus on the following parameter space of ζ

D ¼
�
ζjζB < ζ <

3

2

�
: ð19Þ

It makes a real R0 vanish and an antiphoton sphere ra
exist at

ra ¼
ζ3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8ζ − 9

ζ − 1

s
Rs < R: ð20Þ

Due to the presence of the antiphoton sphere, there is a
rc < rm, which satisfies

AðrcÞ
CðrcÞ

¼ AðrmÞ
CðrmÞ

; ð21Þ

or uðrcÞ ¼ um ¼ uðrmÞ. For a Schwarzschild star, we can
find

rc ¼
3

ffiffiffi
3

p
ζ

16ζ3 þ 27
QðζÞRs; ð22Þ

where

QðζÞ ¼ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ4 − ζ3

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ζ4 − 216ζ þ 243

p
: ð23Þ

We show rm, ra and rc with respect to ζ in Fig. 1(b). It also
demonstrates that R0 coincides with ra for ζ < ζB. The
presence of rc leads to the fact that a photon with its impact
parameter less than um may have its turning point r0 inside
the photon sphere. Therefore, a photon entering the photon
sphere might escape from the interior, as long as the surface
of the Schwarzschild star does not absorb it. Here, following
Refs. [21,74],we assume that the Schwarzschild star does not
emit electromagnetic waves itself and has an electromag-
netically transparent surface with relatively high absorption
rate in its interior, which satisfy currently observational
constraints on M87* and Sgr A* from Event Horizon
Telescope [12,18]. In the limit r0 → r−c , it was found that
a light ray can also be strongly deflected to from a series of
relativistic images inside the photon sphere [64], a phe-
nomenon not generally found in black hole spacetime
(see [70,71] for counterexamples).
For gravitaional lensing in the spacetime (1), the change

in the azimuthal angle of the photon satisfying the con-
ditions (i)–(iv) can be obtained as [75]
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Δϕ ¼
X
i¼S;O

Z
ri

r0

ϕ̇

ṙ
dr

¼
X
i¼S;O

Z
ri

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0AðrÞBðrÞ

CðrÞ½A0CðrÞ − AðrÞC0�

s
dr; ð24Þ

where the subscript “0” represents functions evaluated at
r0, and rS and rO are the radial coordinates of the source
and the observer, respectively. In general, rO locates in the
asymptotically flat region of the spacetime and thus we
have rO ≫ Rs. For a photon that can be received by the
observer, its source might be located anywhere as long as
rS ≥ r0. As r0 → rþm or r0 → r−c , we reach the strong
deflection limit of the gravitational lensing, which allows
us to deal with the integral (24) analytically [63,64].
The relation among the source, the observer, the gravi-

tational lens and images is described by the lens equation.
Taking the gravitational lens as the origin of the coordi-
nates, the lens equation in the strong deflection gravita-
tional lensing reads [37]

Δϕ ¼ ϕO ∓ ϕS þ 2nπ; ð25Þ

where ∓ accounts for images appearing on the same (−) or
opposite side (þ) of the source, n denotes the winding
number, ϕS and ϕO stand for the azimuthal angle of the
source and the observer, respectively. Without loss of
generality, we set ϕO ¼ π in the following parts of this work.

III. RELATIVISTIC IMAGES OF
SCHWARZSCHILD STAR

A. Outer relativistic images

In the strong deflection limit r0 → rþm, a photon with
impact parameter u → uþm will wind several times before
being reception the observer and finally form an outer
relativistic image outside the photon sphere. The change in
the azimuthal angle (24) for this image can be analytically
found as [58]

Δϕ ¼ −āþ log
ϵþ
zOzS

þ b̄þ þ π

þO½ðu − umÞ logðu − umÞ�; ð26Þ

where

ϵþ ¼ u
um

− 1; ð27Þ

zO ¼ 1 −
rm
rO

; zS ¼ 1 −
rm
rS

; z ¼ 1 −
rm
r
; ð28Þ

āþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2BmAm

C00
mAm − CmA00

m

s
; ð29Þ

b̄þ ¼ −π þ āþ log

	
r2m

�
C00
m

Cm
−
A00
m

Am

�


þ
�Z

zO

0

þ
Z

zS

0

�
g1ðzÞdz; ð30Þ

g1ðzÞ ¼
rm

ð1 − zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CmAðzÞBðzÞ
½AmCðzÞ − AðzÞCm�CðzÞ

s
−
āþ
jzj : ð31Þ

The subscript “m” represents quantities evaluated at r ¼ rm.
Both the Schwarzschild star and the Schwarzschild black
hole have āþ ¼ 1.
Combing the change in the azimuthal angle (26) with the

lens equation (25), we can obtain [58]

ϵþn;� ¼ uþn;�
um

− 1 ¼ zOzSe
b̄þ�ϕS−2nπ

āþ ; ð32Þ

where the subscript “þn” denotes quantities of the nth-
order outer relativistic images, and “�” accounts for the
image appearing on the same (þ, positive parity) or
opposite (−, negative parity) side of the source. For an
observer located in the asymptotically flat region, the
angular separation between the image and the lens is
ϑ ¼ u=DOL. So we can have the angular position of the
nth-order outer relativistic images as [58]

ϑþn;� ¼ um
DOL

ð1þ ϵþn;�Þ ¼ θ∞ð1þ ϵþn;�Þ; ð33Þ

where θ∞ is the apparent radius of the photon sphere.
Moreover, the size of an image itself is also a vital
observational characteristic. A relativistic image appears
as an extremely thin tangentially elongated arc [76], and
can be decomposed into the tangential length and the radial
thickness. The tangential length of the source ΔϑS remains
unchanged by gravitational lensing, which indicates that
Δϑimage ¼ ΔϑS for different images, and for a spherical
source we have ΔϑS ¼ ΔrS=ðrS sinϕSÞ [58]. The radial
thickness of the nth-order outer images can be found by
differentiating Eq. (33) as [58]

Δϑþn;� ¼ θ∞Δϵþn;� ð34Þ

where

Δϵþn;� ¼
�
ΔϕS

āþ
þ rm

r2S

	
1

zS
þ g1ðzSÞ

āþ



ΔrS

�
ϵþn;�: ð35Þ

To separate the contributions of the source and lens, we can
rewrite Eq. (34) as [58]

Δϑþn;� ¼ Δϑ0ϵþn;�; ð36Þ

where Δϑ0 is the geometric factor

INTERFEROMETRIC PATTERN OF THE RELATIVISTIC … PHYS. REV. D 109, 063030 (2024)

063030-5



Δϑ0 ¼
θ∞
āþ

ΔϕS þ θ∞
rm
r2S

	
1

zS
þ g1ðzSÞ

āþ



ΔrS; ð37Þ

and it contains the source information such as its radial
angular diameter ΔrS and its azimuthal angle diameter
ΔϕS ≈ ΔrS=rS.

B. Inner relativistic images

In the strong deflection limit r0 → r−c , a photon with
u → u−m can enter the region inside the photon sphere, but
unlike the Schwarzschild black hole, this photon may not
be absorbed by the horizonless Schwarzschild star. With
the presence of the antiphoton sphere, it is still possible for
the photon to reach the observer after winding several times
in the nearby region within the photon sphere, and
eventually generate an inner relativistic image inside the
photon sphere. In the context of a source at infinity,
Ref. [64] proposed a method to calculate observables of
the inner relativistic images. However, the source may be
practically located in the vicinity of the gravitational lens,
such as a hot cloud produced by the tidal disruption of a star
[58]. Due to the absence of the source distance, larger
relative errors in the strong deflection limit formula for its
relativistic images may emerge. Therefore, we generalize
the method proposed by Ref. [64] to account for the effect
of finite source distance on gravitational lensing.
We find that Δϕ in the strong deflection limit of r0 → r−c

is given by

Δϕ ¼ ID þ IR

¼ −ā− log
ϵ−ffiffiffiffiffiffiffiffiffi
zOzS

p þ b̄− þ π

þO½ðu2m − u2Þ logðu2m − u2Þ�; ð38Þ

where

ϵ− ¼ u2m
u2

− 1; ð39Þ

ā− ¼ 2rmffiffiffiffiffiffi
ηm

p ¼ 2āþ; ð40Þ

b̄− ¼ −π þ 2āþ log

	
2r2m

�
C00
m

Cm
−
A00
m

Am

��
rm
rc

− 1

�


þ
�Z

zO

1−rm
rc

þ
Z

zS

1−rm
rc

�
g2ðzÞdz; ð41Þ

g2ðzÞ ¼
rm

ð1 − zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CcAðzÞBðzÞ
½AcCðzÞ − AðzÞCc�CðzÞ

s
−
āþ
jzj : ð42Þ

Its detailed derivation is give in Appendix B. From the
definition (21) of rc, we know

g1ðzÞ ¼ g2ðzÞ: ð43Þ

Due to the dependence of zS and zO, our result of
Eq. (38) can more accurately approximate the change in the
azimuthal angle of the photon propagating from the source
at r ¼ rS > rm to the observer at r ¼ rO > rm than the one
of Ref. [64]. In the limit rS; rO → ∞ or zS; zO → 1, Eq. (38)
recovers the result in Ref. [64]. It can be used to study the
finite distance effect of both the source and the observer on
the strong deflection gravitational lensing near the anti-
photon sphere.
For a Schwarzschild star with ζ ¼ 5=4, Fig. 2 illustrates

relative errors of both our result of Eq. (38) and the formula
of Ref. [64] with respect to numerical results for some
sources with finite distances. It demonstrates that our result
of Eq. (38) has smaller relative errors, basically below
1.5%, and is thus better when taking the finite distance
effect into account. On the other hand, the interferometric

FIG. 2. (a) Relative errors of both our approximation (38) (blue
lines) and the one in Ref. [64] (orange lines) with various impact
parameters are shown by fixing the observer distance rO ¼ 5 ×
105Rs and considering the source distance either rS ¼ 10Rs
(dashed lines) or rS ¼ 50Rs (solid lines). The three gray dotted
lines from left to right represent respectively the impact param-
eters u ≃ 2.24Rs; 2.58Rs and 2.59Rs, corresponding to Δϕ ¼
3π; 5π and 7π without taking the finite distance effect into
account. (b) Relative errors of our approximation (38) (blue
lines) and of the one in Ref. [64] (orange lines) with respect to the
source distance are shown by fixing u ¼ 2.24Rs and ζ ¼ 5=4.
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signals of relativistic images can be significantly affected
by the source characteristics, such as the intensity, shape
and size [58]. To study the influence of these character-
istics, it is important to introduce the finite distance effect.
Therefore, we will use Eq. (38) to approximate the change
in the azimuthal angle Δϕ later.
For the inner relativistic images, the lens equation (25)

still holds. Combining Eqs. (38) and (25), we can obtain

ϵ−n;� ¼ u2m
u2−n;�

− 1 ¼ ffiffiffiffiffiffiffiffiffi
zOzS

p
e
b̄−�ϕS−2nπ

ā− ; ð44Þ

where “−n” denotes the nth-order inner relativistic images,
and the angular position of the nth-order inner relativistic
images as

ϑ−n;� ¼ θ∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ−n;�

p
¼ θ∞

�
1 −

ϵ−n;�
2

�
þOðϵ2−n;�Þ: ð45Þ

The radial thickness of the nth-order images inside the
photon sphere can be derived by differentiating Eq. (45) as

Δϑ−n;� ¼ Δϑ00
ϵ−n;�

ð1þ ϵ−n;�Þ3=2
ð46Þ

¼ Δϑ00ϵ−n;� þOðϵ−n;�Þ2; ð47Þ

where

Δϑ00 ¼
θ∞
2

ΔϕS

ā−
þ θ∞

2

rm
r2S

	
1

2zS
þ g2ðzSÞ

ā−



ΔrS: ð48Þ

From Eqs. (37), (40), (43) and (48), we can have

Δϑ00 ¼
1

4
Δϑ0: ð49Þ

Although Δϑ00 for the inner relativistic images is only a
quarter of Δϑ0 for the outer relativistic images, the
magnitude of ϵ−n;� is usually much larger than the one

of ϵþn;�. Therefore, the radial thickness of the nth-order
inner relativistic image is still larger than that of the nth-
order outer one in most instances.

IV. INTERFEROMETRIC PATTERN OF
RELATIVISTIC IMAGES

With the position and size of the inner and outer
relativistic images, we will study the interferometric pattern
of these images. In this section, we consider a static source
that is far enough away from the lens. In this situation the
misalignment caused by the time delay between different
images can be negligible, i.e., all images lie on the same
line [58]. When the source is sufficiently distant, the
gravitational redshift effect can also be ignored, and all
images share the same intensity I0. Denoting ðx; yÞ as the
celestial coordinates of the relativistic images, we follow
Ref. [58] and assume that the inner and outer relativistic
images has a Gaussian intensity distribution with the
maximum locating at ðϑ�n;�; 0Þ, radial thickness Δϑ�n;�
in the x direction and tangential length ϑ�n;�ΔϑS in the y
direction. Then we can write the intensity distribution
Iðx; yÞ for the inner and outer relativistic images as

Iðx; yÞ ¼ I0
X
p¼�

Xþ∞

n¼1

½e
−ðx−pϑþn;pÞ2

2Δϑ2þn;p e
− y2

2ϑ2þn;pΔϑ
2
S

þ e
−ðx−pϑ−n;pÞ2

2Δϑ2−n;p e
− y2

2ϑ2−n;pΔϑ
2
S �: ð50Þ

Leaving aside the second term in the bracket of (50), we
recover the case of the Schwarzschild black hole discussed
in Ref. [58].
The two-dimensional Fourier transform of the intensity

distribution Iðx; yÞ gives the complex visibility of the
relativistic images [77]

Vðu; vÞ ¼
Z Z

Iðx; yÞe−j2πðuxþvyÞdxdy; ð51Þ

where ðu; vÞ is the two-dimensional spatial frequency. With
Eq. (50), we can obtain

Vðu; vÞ ¼ 2πI0
X
p¼�

Xþ∞

n¼1

ΔϑS½ϑþn;pΔϑþn;pe
−2π2Δϑ2þn;pu

2−j2πpϑþn;pue−2π
2ϑ2þn;pΔϑ

2
Sv

2

þ ϑ−n;pΔϑ−n;pe−2π
2Δϑ2−n;pu2−j2πpϑ−n;pue−2π

2ϑ2−n;pΔϑ2Sv
2 �; ð52Þ

where ϑþn;�Δϑþn;�, ϑþn;�ΔϑS, ϑ−n;�Δϑ−n;� and ϑ−n;�ΔϑS
depend on either ϵþn;� or ϵ−n;�. In the strong deflection limit,
since higher-order terms decay rapidly, we can only consider
the lowest order terms in ϵþn;� or ϵ−n;� [58] and have

ϑþn;�ΔϑS ≃ θ∞ΔϑS; ð53Þ

ϑ−n;�ΔϑS ≃ θ∞ΔϑS; ð54Þ
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ϑþn;�Δϑþn;� ≃ θ∞Δϑ0ϵþn;�; ð55Þ

ϑ−n;�Δϑ−n;� ≃
1

4
θ∞Δϑ0ϵ−n;�: ð56Þ

With above approximations, Vðu; vÞ can be simplified as

Vðu; vÞ ¼ NðvÞ
X
p¼�

Xþ∞

n¼1

ðVþn;p þ V−n;pÞ; ð57Þ

where

Vþn;p ¼ ϵþn;pe
−2π2Δϑ2þn;pu

2

e−j2πpϑþn;pu; ð58Þ

V−n;p ¼ ϵ−n;p
4

e−2π
2Δϑ2−n;pu2e−j2πpϑ−n;pu: ð59Þ

NðvÞ follows the definition in Ref. [58] as

NðvÞ ¼ 2πI0θ∞Δϑ0ΔϑSe−2π
2ϑ2∞Δϑ2Sv

2

; ð60Þ

which contains information about the intensity, location and
shape of the source, and is the same for all relativistic images.
Normalizing Vðu; vÞ with respect to Vð0; vÞ, we can remove
NðvÞ. The residual is directly related to the properties of each
relativistic image. Unless stated otherwise, we will focus on
the normalized visibility. The (normalized) overall modulus
of Vðu; vÞ can be obtained from Eq. (57), which contains
contributions from the inner and outer relativistic images
around the Schwarzschild star. The (normalized) visibility
modulus of an individual relativistic image can be derived
from Eqs. (58) and (59).
By taking the supermassive compact object M87* as the

gravitational lens and considering a spherically symmetric
source located at rS ¼ 100Rs with size ΔrS ¼ 5Rs, Fig. 3
shows the overall visibility modulus jVðu; vÞj of the inner
and outer relativistic images with respect to several values
of ϕs and ζ. To clarify the contribution from individual
relativistic images, we also show the individual visibility
modulus jV�n;pðu; vÞj of the first- and second-order inner
and outer images in the second, fourth and sixth rows. From
Fig. 3, we can have three findings. First, the overall
jVðu; vÞj of the Schwarzschild star depends on both ζ
and ϕS, while jVðu; vÞj of the Schwarzschild black hole is
only determined by ϕS, independent of ζ, since the inner
relativistic images depend on ϵ−n;� while the outer ones
depend on ϵþn;�. As ζ increases, jVðu; vÞj of the
Schwarzschild star gradually approaches that of the
Schwarzschild black hole. Second, the structure of
jVðu; vÞj for both the Schwarzschild star and the
Schwarzschild black hole is staircaselike. However, since
the Schwarzschild star has unique inner relativistic images,
its jVðu; vÞj gains more steps than the Schwarzschild black
hole. More relativistic images also produce more interfer-
ence, blurring the staircaselike structure of jVðu; vÞj of the

Schwarzschild star. Third, given the length of the baseline,
it would be much easier to detect an Schwarzschild star
than a Schwarzschild black hole. For the Schwarzschild
star, it might be possible to detect the jVðu; vÞj steps
generated by the first- and second-order positive-parity
inner images by using baselines comparable with the Earth-
Moon distance and the Sun-Earth Lagrangian point L2
level, respectively. But for the Schwarzschild black hole
[58], baselines with length up to the level of the Sun-Earth
Lagrangian point L2 might be required to resolve the
jVðu; vÞj step generated by the first-order positive-parity
outer image at best. To detect its jVðu; vÞj step generated by
the second-order positive-parity outer image, the station
needs to be built in the Jupiter orbit [58].
For both the Schwarzschild star and the Schwarzschild

black hole, their staircaselike jVðu; vÞj have three character-
istics, i.e., the step height, the step width and the interfer-
ence oscillations in the step, which will be discussed in
more detail in the following subsections.

A. Step height

The step height of jVðu; vÞj is an estimator of the
observational flux and tells the sensitivity required to
observe those images. For the nth-order inner and outer
relativistic images, if the baseline is not long enough to
distinguish their radial thicknesses, i.e., Δθ�n;�u ≪ 1, then

e−2π
2Δθ2�n;�u

2

→ 1, so that the step height can be approxi-
mated by the amplitude of the complex visibility [58]. The
heights of the nth-order inner and outer images are
respectively

h−n;� ¼ 1

4
NðvÞϵ−n;�; ð61Þ

hþn;� ¼ NðvÞϵþn;�: ð62Þ

As shown in Fig. 3, h−n;� and hþn;� (and their correspond-
ing visibility modulus) are almost constant in this regime.
h−n;� depend on both ζ and ϕS since they are propor-

tional to ϵ−n;�, while hþn;� only rely on ϕS due to its
dependence of ϵþn;�. This suggests that compared with the
Schwarzschild black hole, the step heights of relativistic
images around the Schwarzschild star have more compli-
cated characteristics.

1. Comparison of step heights between
the inner/outer relativistic images

The inner relativistic images directly make the visibility
of the Schwarzschild star different from that of the
Schwarzschild black hole. Since the step heights of the
outer relativistic images can be found in Ref. [58], we focus
on the step heights of the inner relativistic images.
According to definitions of ϵ�n;� (32) and (44), the step

heights h∓n;� decrease as the order n increases, and we have
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FIG. 3. The normalized visibility modulus jVðu; vÞj of the relativistic images of the Schwarzschild star and the Schwarzschild black
hole for several values of the source azimuthal angle ϕS and the normalized radius ζ by taking M87* as the gravitational lens. The source
distance is rS ¼ 100Rs with size ΔrS ¼ 5Rs. The observed wavelength is λobs ¼ 1 mm. The three gray vertical lines represent baselines
equal to the distances between Earth and Moon (u ∼ 3.8 × 108 m), the Sun-Earth Lagrangian point L2 (u ∼ 1.5 × 109 m) and the Jupiter
semimajor axis (u ∼ 7.8 × 1011 m), respectively.
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h∓n;þ ≥ h∓n;− ≥ h∓ðnþ1Þ:þ ≥ h∓ðnþ1Þ;−: ð63Þ

For the inner/outer relativistic images, we find

h∓n;þ
h∓n;−

¼ e
2ϕS
ā∓ ; ð64Þ

and

h∓n;−

h∓ðnþ1Þ;þ
¼ e

2π−2ϕS
ā∓ : ð65Þ

We can see that due to the relation ā− ¼ 2āþ ¼ 2, these two
ratios depend on ϕS only. As shown in Fig. 3, when ϕS ¼ 0,
thenth-order positive-parity and negative-parity images have
the same step height

h∓n;þ ¼ h∓n;−: ð66Þ

When ϕS ¼ π=2, we can obtain

h∓n;þ
h∓n;−

¼ h∓n;−

h∓ðnþ1Þ;þ
¼ e

π
ā∓ : ð67Þ

When ϕS ¼ π, the nth-order negative-parity images and the
(nþ 1)th-order positive-parity images have the same step
height

h∓n;− ¼ h∓ðnþ1Þ;þ: ð68Þ

With the relation ā− ¼ 2āþ, it is easy to find the relations
between the step height ratios of the inner and outer
relativistic images as

h2−n;þ
h2−n;−

¼ hþn;þ
hþn;−

; ð69Þ

and

h2−n;−
h2−ðnþ1Þ;þ

¼ hþn;−

hþðnþ1Þ;þ
: ð70Þ

Note that the above discussions are only valid for the
comparison between the step heights of the inner/outer
relativistic images. It is also necessary to understand the
relations of step heights between the inner and outer
relativistic images.

2. Comparison of step heights between the
inner and outer relativistic images

For the Schwarzschild star, the step height relation
among its inner and outer relativistic images varies with
ϕS and ζ, as shown in Fig. 3. For example, as ϕS ¼ 0 or
π=2, we can find h−1;þ > h−2;þ > hþ1;þ for ζ ¼ 1.13 and

1.25, while h−1;þ > hþ1;þ > h−2;þ for ζ ¼ 1.49, see Fig. 3
(e–g) and (m–o). However, when ϕS increases to π, we
have hþ1;þ > h−2;þ for ζ ¼ 1.13 and 1.25 and hþ1;þ >
h−1;þ for ζ ¼ 1.49, see Fig. 3 (u–w). There is no strict
sequence among the step heights of the inner and outer
relativistic images since they are determined by ζ as well
as ϕS.
In addition to the step height, the step width of jVðu; vÞj

is also an observable that is directly related to the baseline
length.

B. Step width

As the spatial frequency u increases, the observational
resolution gets improved, and the factor e−2π

2Δθ2�n;�u
2

in the
visibility (57) decreases. When the baseline is long enough
to distinguish the radial thicknesses of the relativistic
image, i.e., u−1 ∼ Δθ�n;�, the factor e−2π

2Δθ2�n;�u
2

begins
to decay rapidly, which results in a drop of jVðu; vÞj. When
the height of one step is equal to that of the next step,
continuing to increase u will reach the next step. In other
words, for two adjacent steps, the end point of one step is
the starting point of the next step.
For the nth-order relativistic image, we can define the

step width Δ�n;� as the difference between the end point
and the starting point of its jVðu; vÞj step as

Δ�n;� ¼ uend�n;� − ustart�n;�; ð71Þ

which is valid for all ϕS ∈ ½0; π�. For the Schwarzschild
black hole, according to Ref. [58], we can find

Δþn;þ ≤ Δþn;− ≤ Δþðnþ1Þ;þ: ð72Þ

For the Schwarzschild star, the existence of the inner
relativistic images has a significant impact on the
step width.
In order to clarify the phenomena contained in the step

width of the relativistic images around the Schwarzschild
star, we select the three highest steps and study their widths.
Since the observational resolution is limited by the base-
line, these images are more likely to be detected in the
future [60].
For the inner and outer relativistic images around the

Schwarzschild star, their step widths depend on both ϕS and
ζ, similar to the step heights, as shown in Fig. 3. For example,
when ϕS ¼ 0, the three highest steps come from the
relativistic images ϑ−1;�; ϑ−2;� and ϑþ1;�, and we can find
Δ−1;� < Δ−2;� < Δþ1;� for ζ ¼ 1.13 and 1.25, while
Δþ1;� < Δ−2;� for ζ ¼ 1.49, see Fig. 3 (e–g). When
ϕS ¼ π=2, these step widths satisfy Δ−1;þ < Δ−1;− <
Δ−2;þ for ζ ¼ 1.13, 1.25 and 1.49. Besides, we haveΔ−2;þ ≈
Δþ1;þ for ζ ¼ 1.25 as well as Δ−1;þ ≈ Δþ1;þ and Δ−2;þ ≈
Δþ1;− for ζ ¼ 1.49, see Fig. 3 (m–o). Finally, when ϕS ¼ π,
these widths satisfy Δ−1;þ < Δ−2;þ < Δ−2;− for ζ ¼ 1.13,
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1.25 and 1.49.We haveΔ−2;þ ≈ Δþ1;þ for ζ ¼ 1.13 and 1.25
as well as Δ−1;þ ≈ Δþ1;þ and Δ−2;− ≈ Δþ2;þ for ζ ¼ 1.49,
see Fig. 3 (u–w). These results suggest that there is no strict
sequence among the step widths of the inner and outer
relativistic images. Therefore, under the influence of ζ and
ϕS, the step widths of all the relativistic images around the
Schwarzschild star are more complicated.

C. Interference oscillations in the step

In addition to the heights and widths, the oscillating
behavior of the staircaselike jVðu; vÞj is another observable
of the relativistic images interferometric signals.
As shown in Fig. 3, jV�n;pj of an individual relativistic

image is independent of the phase factor e−j2πpϑ�n;pu, see
Eq. (57). Thus it behaves as a smooth curve with no
oscillations. However, the overall jVðu; vÞj will mix the
visibility functions of different relativistic images
together, creating additional interference patterns such
as cos½2πuðϑþn;þ þ ϑþn;−Þ� to appear in jVðu; vÞj, which
results in the oscillations shown in Fig. 3.
For the relativistic images around the Schwarzschild

black hole, their jVðu; vÞj generally consist of the flat and
falling parts, where jVðu; vÞj oscillates with the frequencies
νþn;þ and νþn;−, respectively [58]. These two frequencies
might be extracted if the visibility would be available. It
was found that [58]

νþn;þ ¼ θ∞ð2þ ϵþn;þ þ ϵþn;−Þ; ð73Þ

νþn;− ¼ θ∞ð2þ ϵþn;− þ ϵþðnþ1Þ;þÞ; ð74Þ

and νþn;þ > νþn;−. Increasing n reduces the step frequency
νþn;�. Based on νþn;�, we can infer the strong deflection
coefficient b̄þ and the apparent radius of the photon sphere
θ∞ for the Schwarzschild black hole [58].
For jVðu; vÞj of the relativistic images around the

Schwarzschild star, there are some unique step frequencies,
ν−n;þ generated by the interference of ϑ−n;þ and ϑ−n;−, and
ν−n;− generated by the interference of ϑ−n;− and ϑ−ðnþ1Þ;þ.
We find

ν−n;þ ¼ ϑ−n;þ þ ϑ−n;−

¼ θ∞

�
2 −

ϵ−n;þ
2

−
ϵ−n;−
2

�
; ð75Þ

ν−n;− ¼ ϑ−n;− þ ϑ−ðnþ1Þ;þ

¼ θ∞

�
2 −

ϵ−n;−
2

−
ϵ−ðnþ1Þ;þ

2

�
; ð76Þ

and ν−n;þ < νþn;þ. In contrast to νþn;�, decreasing n
reduces the step frequency ν−n;�. Similar to the step heights
and widths, ν−n;� depends on ζ and ϕS.

Setting M87* as a Schwarzschild star and the gravita-
tional lens, Fig. 4 shows the step frequency ν−1;� with
respect to ϕS and ζ, where ζ∈D. It shows that (1) for a
given ϕS, as ζ increases, ν−1;þ and ν−1;− increase but the
difference between them decreases; (2) for a given ζ, as ϕS
increases, ν−1;þ and ν−1;− decrease and the difference
between them also reduces.
jVðu; vÞj of the Schwarzschild star has more step

frequencies than that of the Schwarzschild black hole.
As an example, in Fig. 5(a) we replot Vðu; vÞ in the range
ð1.5 × 1011; 1013Þλobs of Fig. 3(b). The flat region I and the
falling region II correspond to the visibility modulus

FIG. 4. Setting M87* as a Schwarzschild star and the gravi-
tational lens, the step frequencies ν−1;� with respect to the
normalized radius ζ∈D for some source azimuthal angle ϕS
are shown.

FIG. 5. The visibility modulus of the relativistic images around
the Schwarzschild star in the range u∈ ð1.5 × 1011; 1013Þλobs.
(a) The original jVðu; vÞj of the first- and second-order positive-
parity inner images. (b) jVðu; vÞj after the contributions of ν−1;þ
and ν−2;þ are eliminated. (c) jVðu; vÞj after contributions of all the
step frequencies generated by the relativistic image interferences
are eliminated.
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of ϑ−1;þ, and the flat region III corresponds to ϑ−2;þ. In
Fig. 5(b), after subtracting both the interference oscillations
of ϑ−1;þ and ϑ−1;− with frequency ν−1;þ and of ϑ−2;þ and
ϑ−2;− with frequency ν−2;þ, we can see that oscillations in
regions I and III are significantly suppressed. In Fig. 5(c),
we further subtract all other interference oscillations from
ϑ−1;�; ϑ−2;� and ϑþ1;�, making the visibility nearly smooth.
It demonstrates that the interference oscillations in the flat
regions I and III are dominated by ν−1;þ and ν−2;þ, while
residual oscillations consists of other step frequencies.
The Schwarzschild star has more complicated step

heights, widths and oscillations than those of the
Schwarzschild black hole, and observations of its inter-
ferometric pattern can in principle be used to infer its strong
deflection coefficients and the apparent radius of its photon
sphere [58].

V. SPACETIME INFERENCE FROM
INTERFEROMETRIC PATTERN

Based on the observational characteristics of the rela-
tivistic images’ visibility modulus, we might deduce the
properties of the lens. For the Schwarzschild black hole,
the jVðu; vÞj steps follow a clear height relation and can be
easily used to infer its spacetime [58]. Unlike the
Schwarzschild black hole, since the inner relativistic
images rely on ζ and ϕS, it would be more difficult to
infer the spacetime of a Schwarzschild star.
Recently, it was found that the relativistic images of a

source around the compact object are more visible for
ϕS ¼ 0 [58,59]. In this case, the coincidence of the nth-
order positive- and negative-parity inner/outer images can
simplify the staircaselike structure of the visibility modu-
lus. Besides, as the observational resolution gets improved,
the relativistic images with three highest steps are more
likely to be resolved in the future [60]. Therefore, we only
focus on jVðu; vÞj of these three images with ϕS ¼ 0.
For the Schwarzschild black hole, when ϕS ¼ 0, it was

shown that whether the actual measured value of
hþ1;þ=hþ2;þ deviates from e2π can be treated as a criterion
for testing the Schwarzschild metric, and using the step
frequencies νþ1;þ and νþ1;−, one can obtain b̄þ and θ∞ [58].
For the Schwarzschild star, its jVðu; vÞj depends on both

inner and outer relativistic images. In the case of ϕS ¼ 0,
we find that the relativistic images with three highest
steps are always ϑ−1;�; ϑ−2;� and ϑþ1;�. However, although
h−1;� > h−2;� always holds, the relation among h−1;�;
h−2;� and hþ1;� varies with ζ, see Fig. 3 (e–g).
Assuming these images might be practically observed,
we must first identify the step heights of ϑ−1;�, ϑ−2;� and
ϑþ1;�, which can be achieved by using the step height
ratios.
From the step heights h−1;�; h−1;� and hþ1;�, we notice

that the step height ratio h−1;�=h−2;� has a fixed value
independent of ζ, i.e.,

h−1;�
h−2;�

¼ e2π=ā− ¼ eπ: ð77Þ

Based on this unique property, we can first identity h−1;�
and h−2;� in the observed three step heights, and further
determine hþ1;�. After this, we can extract the oscillations
in the flat part of the visibility step to infer b̄− and θ∞.
As discussed in Sec. IV C, it is easiest to extract ν−1;þ

and ν−2;þ among all the step frequencies. Using these two
step frequencies, we can derive b̄− and θ∞ as

ffiffiffiffiffiffiffiffiffi
zOzS

p
e
b̄−−2π
ā− ¼ 2e

2π
ā−ðν−2;þ − ν−1;þÞðΞ−Þ−1; ð78Þ

θ∞ ¼ ½2ðe2π
ā− − 1Þ�−1Ξ−; ð79Þ

where

Ξ− ¼ e
2π
ā−ν−2;þ − ν−1;þ: ð80Þ

To measure ν−1;þ and ν−2;þ, we need to detect jVðu; vÞj of
ϑ−1;� and ϑ−2;�, requiring a baseline length equivalent to
the Sun-Earth Lagrangian point L2. After b̄− is known, we
will be able to determine ζ from Eq. (41).
Although it is convenient to implement, this method is

valid only for ϕS ¼ 0. The general case of ϕS ≠ 0 might be
our next move.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we investigate the interferometric pattern of
the Schwarzschild star in VLBI observations. Taking the
finite distance of a source into account, we generalize the
strong deflection limit method for an ultracompact object
proposed in Ref. [64], and analytically obtain the complex
visibility of the inner and outer relativistic images around
the Schwarzschild star. We find that like the Schwarzschild
black hole [58], the visibility modulus of the relativistic
images around the Schwarzschild star also has a staircase-
like shape, characterized by the step heights, widths and
oscillation frequencies, but is much more complicated.
Assuming that the source, the gravitational lens and the
observer are perfectly aligned, we also present a prelimi-
nary approach to infer the strong deflection coefficients
and the apparent radius of the photon sphere of the
Schwarzschild star from the interferometric pattern.
To make the Schwarzschild star a black hole mimicker

but with distinguishable features, we have assumed that the
Schwarzschild star has an electromagnetically transparent
surface and relatively high absorption rate in its interior.
This configuration can in principle generate an image of a
circular ring with an interior brightness depression, satisfy-
ing the observational constraints on M87* and Sgr A* at
the present stage [12,18]. However, what kinds of matter
can realize such a configuration is still unknown to our
knowledge, calling for further study.

YUAN-XING GAO and YI XIE PHYS. REV. D 109, 063030 (2024)

063030-12



We do not consider the spin of a Schwarzschild star in
this work. The slowly rotating Schwarzschild star [26] and
some Kerr interior solutions [78–81] were known.
However, the spin effect on the shadow circularity is
demonstrated to be small [82], thus we expect that those
rotating alternatives are not significantly different from
their spherically symmetric counterparts. On the other
hand, to date there is still no completely analytical method
to describe the relativistic images of a rotating ultracompact
object. Together with the work on the analytical analysis for
Kerr black hole lensing [83], our results may provide some
preliminary understandings about the interferometric pat-
tern of a rotating ultracompact object.
As another important case that this work does not cover,

photons might be initially emitted in the radially outward
direction inside the photon sphere of an accreting compact
object, and they might also be highly lensed, forming the
relativistic images [67–69,75]. Their interferometric pattern
is still unknown and deserves future work.
In practice, due to the presence of the unique inner

relativistic images, the staircaselike structure in the inter-
ferometric pattern of relativistic images in the Schwarzschild
star spacetime might be less obvious. Its step heights and
oscillation frequencies are affected by the source azimuthal
angle and the normalized radius of the Schwarzschild star.
Therefore, to ensure the accuracy and reliability of the results
from observations, it is necessary to develop sophisticated
techniques for statistical inference.
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APPENDIX A: PHOTON SPHERE AND
ANTIPROTON SPHERE OF THE

SCHWARZSCHILD STAR SPACETIME

From the circular-orbit conditions of a photon that ṙ ¼ 0
and ̈r ¼ 0, we can have V 0

effðrÞ ¼ 0, which gives

A0ðrÞCðrÞ − AðrÞC0ðrÞ
C2ðrÞ ¼ 0: ðA1Þ

For the Schwarzschild star (1), it may have some distinct
roots that

(i) When r ≥ R, Eq. (A1) reduces to

2r − 3Rs

rðr − RsÞ
¼ 0; ðA2Þ

which has only one real root

rm ¼ 3

2
Rs: ðA3Þ

It can be confirmed that V 0
effðrmÞ ¼ 0 and

V 00
effðrmÞ < 0, thus r ¼ rm is the unstable circular

orbit of a photon and is defined as the photon sphere.
Note that V 00

effðrmÞ < 0 holds only if ζ < 1.5.
(ii) When r < R, Eq. (A1) leads to

9H2R2 þ 3

ffiffiffiffiffiffiffi
HR

Hr

s
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HRHr

p
¼ 10; ðA4Þ

with HR and Hr given by Eqs. (5) and (6). We can
find

ra ¼ 3ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9
ζ

r
Rs ðA5Þ

for the supercompact Schwarzschild star with
ζ < ζB, and

ra ¼
ζ3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8ζ − 9

ζ − 1

s
Rs ðA6Þ

for the Schwarzschild star with ζ > ζB.
From Fig. 6, we know that V 00

effðraÞ > 0 for
1 < ζ < 1.5, thus the circular orbit at r ¼ ra is
stable and defined as the antiphoton sphere.

We also find that the radius of the antiphoton sphere (A5)
for the supercompact Schwarzschild star is just R0 (10).
Photons are forbidden to enter the region of r ≤ R0 ¼ ra.
Therefore, we focus on the Schwarzschild star with
ζ∈ ðζB; 1.5Þ only.

FIG. 6. The second derivative of the effective potential V 00
eff

evaluated at r ¼ ra with respect to ζ after setting M ¼ 1.
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The presence of the antiphoton sphere results in the
occurrence of rc, satisfying Eq. (21). We find

rc ¼ −
3

ffiffiffi
3

p
ζ

16ζ3 þ 27
QðζÞRs; for ζ <

9

8
; ðA7aÞ

rc ¼
3

ffiffiffi
3

p
ζ

16ζ3 þ 27
QðζÞRs; for ζ >

9

8
; ðA7bÞ

where QðζÞ is given by Eq. (23). In the parameter space
ζ∈ ðζB; 1.5Þ, Eq. (A7b) is adopted.

APPENDIX B: DERIVATION
OF THE FORMULA (38)

We begin with the variable z from the definition (28)
and rewrite the expression for the change in the azimuthal
angle (24) as

Δϕ ¼
X
i¼S;O

Z
zi

1−rm
r0

rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðz; r0Þ

p dz; ðB1Þ

where

Gðz; r0Þ ¼ ð1 − zÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðzÞ
BðzÞ

	
A0CðzÞ
C0AðzÞ

− 1


s
: ðB2Þ

For a small z, we can further expand Gðz; r0Þ as

Gðz; r0Þ ∼ γ þ δzþ ηz2; ðB3Þ

where

γ ¼ Cm

Bm

�
A0Cm

C0Am
− 1

�
; ðB4Þ

δ ¼ γ

	
rm

�
C0
m

Cm
−
B0
m

Bm

�
− 4



; ðB5Þ

η ¼ γ

	
−rm

�
3þ B0

mrm
Bm

��
C0
m

Cm
−
B0
m

Bm

�

þ r2m
2

�
C00
m

Cm
−
B00
m

Bm

�
þ 6




þ r2m
2

Cm

Bm

A0Cm

C0Am

�
C00
m

Cm
−
A00
m

Am

�
: ðB6Þ

In the limit r0 → r−c , we find

γ → 0; ðB7Þ

δ → 0; ðB8Þ

η → ηm; ðB9Þ

where

ηm ¼ r2m
2

Cm

Bm

�
C00
m

Cm
−
A00
m

Am

�
: ðB10Þ

The behaviors of γ, δ and η indicate Gðz; r−c Þ ∼ ηmz2 and
thus the integrand in Eq. (B1) is proportional to z−1, which
causes Δϕ to diverge logarithmically at r0 → r−c .
In order to isolate this logarithmic divergence, we can

split Δϕ into a divergent part ID and a regular part IR that

Δϕ ¼ ID þ IR; ðB11Þ

with

ID ¼
X
i¼S;O

Z
zi

1−rm
r0

rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ δzþ ηz2

p dz; ðB12Þ

IR ¼
X
i¼S;O

Z
zi

1−rm
r0

	
rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðz; r0Þ
p −

rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ δzþ ηz2

p 

dz: ðB13Þ

After direct integration, ID becomes

ID ¼
X
i¼S;O

rmffiffiffi
η

p log
�
δþ 2ηzþ 2

ffiffiffi
η

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ δzþ ηz2

q ����zi
1−rm

r0

:

ðB14Þ

In the limit r0 → r−c , it can be expanded by treating γ and δ
as small parameters as

ID ¼ 2rmffiffiffiffiffiffi
ηm

p log
	
4ηm

ffiffiffiffiffiffiffiffiffi
zOzS

p
γ

�
rm
r0

− 1

�


þO
	�

A0Cm

C0Am
− 1

�
log

�
A0Cm

C0Am
− 1

�

: ðB15Þ

According to the definition of γ (B4), we can have

γ ¼ Cm

Bm

�
A0
c

Ac
−
C0
c

Cc

�
ðr0 − rcÞ þOðr0 − rcÞ2; ðB16Þ

where the subscript “c” represents quantities evaluated at
r ¼ rc. Plugging it into Eq. (B15), we can obtain

ID ¼ −
2rmffiffiffiffiffiffi
ηm

p log

�
rc − r0ffiffiffiffiffiffiffiffiffi
zOzS

p
�

þ 2rmffiffiffiffiffiffi
ηm

p log
	
4ηm

Bm

Cm

�
rm
rc

− 1

��
C0
c

Cc
−
A0
c

Ac

�
−1



þO½ðrc − r0Þ logðrc − r0Þ�: ðB17Þ

With the relation given by Eqs. (B4) and (B16) that
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r0 ¼ rc −
�
C0
c

Cc
−
A0
c

Ac

�
−1
�
u2m
u2

− 1

�
; ðB18Þ

we can connect ID in terms of the impact parameter u as

ID ¼ −
2rmffiffiffiffiffiffi
ηm

p log

�
u2m=u2 − 1ffiffiffiffiffiffiffiffiffi

zOzS
p

�

þ 2rmffiffiffiffiffiffi
ηm

p log

	
4ηm

Bm

Cm

�
rm
rc

− 1

�


þO½ðu2m − u2Þ logðu2m − u2Þ�: ðB19Þ

For the regular part IR, we have

IR ¼ IRðrcÞ þO½ðu2m − u2Þ logðu2m − u2Þ�; ðB20Þ

where

IRðrcÞ ¼
X
i¼S;O

Z
zi

1−rm
rc

	
rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðz; rcÞ
p −

rmffiffiffiffiffiffi
ηm

p jzj


dz: ðB21Þ

Bringing all things together, we can finally obtainEq. (38).
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