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Core-collapse supernovae (CCSNe) are prime candidates for gravitational-wave detectors. The analysis
of their complex waveforms can potentially provide information on the physical processes operating during
the collapse of the iron cores of massive stars. In this work we analyze the early-bounce rapidly rotating
CCSN signals reported in the waveform catalog of Richers et al. 2017. This catalog comprises over 1800
axisymmetric simulations extending up to about 10 ms of postbounce evolution. It was previously
established that for a large range of progenitors, the amplitude of the bounce signal, D · Δh, is proportional
to the ratio of rotational-kinetic energy to potential energy, T=jWj, and the peak frequency, fpeak, is
proportional to the square root of the central rest-mass density,

ffiffiffiffiffi
ρc

p
. In this work, we exploit these relations

to suggest that it could be possible to use such waveforms to infer protoneutron star properties from a future
gravitational wave observation, but only if the distance and inclination are well known and the rotation rate
is sufficiently low. Our approach relies on the ability to describe a subset of the waveforms in the early
postbounce phase in a simple form—a master waveform template—depending only on two parameters,
D · Δh and fpeak. We use this template to perform a Bayesian inference analysis of waveform injections in
Gaussian colored noise for a network of three gravitational wave detectors formed by Advanced LIGO and
Advanced Virgo. We show that, for a Galactic event (D ∼ 10 kpc), it is possible to recover the peak
frequency and amplitude with an accuracy better than 10% for ∼80% and ∼60% of the signals, respectively,
given known distance and inclination angle. However, inference on waveforms from outside the Richers
catalog is not reliable, indicating a need for carefully verified waveforms of the first 10 ms after bounce of
rapidly rotating supernovae of different progenitors with agreement between different codes.

DOI: 10.1103/PhysRevD.109.063028

I. INTRODUCTION

Core-collapse supernova (CCSN) explosions are prime
astrophysical sources of transient gravitationalwaves (GWs;
see, e.g., [1,2] and references therein). If the explosions
occur sufficiently close (i.e., inside the galaxy or within the
local system of satellite galaxies) GWs from CCSNe could
be within reach [3–8] of the current network of ground-
based observatories Advanced LIGO [9], Advanced Virgo
[10], and KAGRA [11]. The most recent optically targeted
search for GW transients associated with CCSNe within a
source distance of 30 Mpc using data from the third
observing run of Advanced LIGO and Advanced Virgo
has been reported in [6]. No significant GW candidate was

announced. The rate of galactic CCSNe is 1–3 per century
(see Refs. [4,12] and references therein) and about 1%–10%
of all events may have significant rotation (see discussion in
[13]). The mechanism by which rapidly rotating progenitor
cores are formed is also poorly understood, since magnetic
and turbulent stresses can drive the star toward slower rigid
rotation (e.g., [14,15]). Despite their low intrinsic event rate,
CCSNe hold great scientific interest as the analysis of their
complex waveforms can potentially provide valuable infor-
mation about the underlying physical processes operating
during the gravitational collapse of the iron cores of
massive stars.
At the onset of collapse the iron core, where no nuclear

burning is taking place, is very close to axisymmetry. If the
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core is rotating sufficiently quickly, the dominant deviation
from spherical symmetry below the silicon burning shell is
produced by its rotation, which imprints an oblate shape into
the core, contributing to its mass quadrupole. The collapse
produces an acceleration of the infalling material and,
therefore, a nonzero second time derivative of the mass
quadrupole, inducing GW emission. The peak GW ampli-
tude is reached right before bounce, at which time the
nuclear equation of state (EOS) stiffens. This sharply halts
the collapse and produces a small re-expansion and a series
of oscillations of the newly formed proto-neutron star
(PNS), which are visible in the GW signal for a few
milliseconds. The maximum GW strain is related to the
degree of oblateness of the core at bounce, which is in turn
related to the rotation rate; hence, for nonrotating progeni-
tors the GW emission at bounce is zero. Numerical simu-
lations have shown that the frequency of the bounce
oscillations is in the range 100–1000 Hz [16,17]. These
oscillations are the result of the nonlinear excitation of an
axisymmetric f mode of the PNS whose frequency depends
on the local sound speed in this region [18]. Beyond∼10 ms
after bounce, the growth of hydrodynamical instabilities
breaks axisymmetry (see, e.g., [19]), and the GW signal,
with a typical duration of ∼1 s, becomes stochastic. In this
work we focus our attention in the bounce GW signal.
Since the seminal numerical study of [20] the bounce

signal has been extensively studied in a number of works
[16–18,21–24]. Richers et al. [17] performed over 1800 2D
(axisymmetric) numerical simulations of CCSNe that
include the collapse phase and up to about 10 ms of the
postbounce evolution. For such short postbounce time-
scales axisymmetry is a valid approximation because all
possible nonaxisymmetric instabilities (such as convection
and the standing accretion shock instability) develop in
longer timescales. The limiting factor is probably the
occurrence of prompt convection that for the typical values
of the Brunt-Väisälä frequency (∼100 ms) may develop in
timescales of ≳10 ms. Furthermore, the postbounce time-
scale covered in [17] is much shorter than the characteristic
timescale in which the PNS cools due to diffusing neutrinos
(≳100 ms), which renders unnecessary the incorporation of
neutrino transport for an accurate modelling, although the
equation of state is still sensitive to deleptonization of
infalling matter by neutrino emission. Regarding GW
emission, the axisymmetry of the system implies that the
GW signal is completely polarized. The study of [17] has
shown that, for a 12M⊙ progenitor and a large range of
EOS, the amplitude of the GW signal at bounce is
proportional to the ratio of rotational-kinetic energy to
gravitational potential energy, T=jWj, and the peak fre-
quency is proportional to the square root of the central rest
mass density,

ffiffiffiffiffi
ρc

p
. These relations break for sufficiently

large rotation rates, T=W > 0.06, in which case the
centrifugal forces have an impact in the dynamics of the
collapse and the bounce. These high rotation rates are

typically predicted only for progenitors of long gamma-ray
bursts in low-metallicity enviroments (see, e.g., [25]). The
relative rarity of extremely energetic supernovae (e.g., [26])
suggests that much more common are progenitors in which
only a part of the rotation is retained by the core leading to
values of T=jWj well below 0.06 (see, e.g., [14]).
Therefore, for the most common rotating CCSNe these
two phenomenological laws could allow us to infer some
PNS properties from a future GWobservation, which is the
main aim of this investigation.
Efforts to infer the rotational properties of newborn PNS

from the GW signal have been attempted in previous
works. In [27] the authors tried to estimate the distribution
of angular momentum in the PNS from the sign of the
second peak in the bounce signal. A matched-filtering
analysis method to infer the total angular momentum of the
core with 20%–30% accuracy using CCSN bounce signals
injected in Gaussian detector noise was developed by [23].
The main caveats of this work are the choice of source
orientation (optimal), the use of simulation waveforms as
templates (instead of parametric templates), and the inabil-
ity of the method to estimate errors associated with the
measurements. Additionally, several works [28–31] have
developed data analysis pipelines based on principal
component analysis (PCA) of the signal, capable of
performing Bayesian model selection. In particular, for
sufficiently close sources, these investigations were able to
distinguish between neutrino-driven and magnetorrota-
tional explosions, allowing one to assess the presence of
rotation in CCSNe. Similar classification approaches and
outcomes, but based on machine-learning techniques, have
been developed by [32,33]. For a limited set of simulations,
[34] were able to infer details on the progenitor core
structure combining information from the bounce and
postbounce GW signal. Reference [35] performed a
PCA decomposition of the simulation catalog of [17] to
determine the dominant features of the waveforms and
create a map between the measured properties of the
waveforms and the physical properties of the progenitor
star (i.e., T=jWj and peak frequency). Their analysis shows
that this is possible for Galactic CCSNe with current GW
detectors and up to 50 kpc with third generation detectors.
As in the case of [23], they use optimally oriented sources
for their analysis, which, as we show in this work, limits the
ability of the results to generalize to observations with
unknown orientation. Finally, an alternative signature of
rapid rotation is the presence of circular polarization in the
postbounce signal [36], which could be detectable within
5 kpc by current detectors [37].
The starting assumption of our work is the multimes-

senger detection of a nearby CCSN. The first indication
from the occurrence of one such event would be provided
by the simultaneous observation of neutrinos and GWs.
Neutrino detectors such as SuperK [38] and IceCube [39]
are able to detectMeV neutrinos fromCCSNe at distances of
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about 100 kpc. In the case of an event, the network of
neutrino detectors would emit an alert by means of the
Supernovae Early Warning System [40,41]. These alerts
provide estimations of the time of bounce in 10 s windows.
However, a detailed analysis of the data from neutrino
detectors should allow one to estimate the time of bounce
within 10 ms [42,43]. On the other hand, online GW burst
searches such as coherentWave Burst (cWB [44]) used in the
current LIGO-Virgo-KAGRA network of advanced GW
detectors are capable of detecting GWs from nearby
CCSNe for the case of neutrino-driven explosions and up
to ∼100 kpc for extremely fast-rotating progenitors [5]. In
the case of a successfulGWdetection, it shouldbe possible to
obtain an accuratemeasurement of the time of bouncewithin
ms. Later on, on a timescale of minutes to days after bounce,
the electromagnetic signature of the supernovaewould allow
an accurate determination of the sky location and of the
distance to the source if linked to a known presupernova star.
Neutrino detections can provide complementary direction
and distance estimates (e.g., [41,45]).
For the purpose of this paper, we will assume that a GW

detection of a CCSN has been made and that an accurate
enoughmeasurement of the time of bounce, sky location, and
distancewas possible. Under these circumstances, our goal is
to develop a data analysis framework to infer the properties of
the characteristic bounce signal, signature of the presence of
rotation, as a first step toward inferring the rotation rate and
mean density of the PNS. For this purpose, in Sec. II we
develop a parametric waveform template based on the
numerical CCSN simulations of [17]. In Sec. III we describe
the additional numerical waveforms used for testing. In
Sec. IV we introduce the Bayesian method that we use to
perform the parameter estimation of the signal. The results of
this analysis for the case of a three-detector network with
Gaussian colored noise are shown in Sec. V. Finally, our
conclusions are presented in Sec. VI.
The work of [17] shows that for a large range of rotation

rates (T=W < 0.06), the two most relevant parameters
characterizing the waveform at bounce are the peak
amplitude (normalized by the distance to the source),
D · Δh, and the peak frequency, fpeak. The peak amplitude
is measured as the difference between the highest and
lowest points in the bounce signal strain assuming optimal
orientation. Correspondingly, the peak frequency is the
largest frequency measured from the signal in the first 6 ms
following the bounce. We show in this section that it is
possible to describe the waveforms in the early postbounce
phase in a simple form—a master waveform template—
depending only on these two parameters: D · Δh and fpeak.

II. BOUNCE SIGNAL CHARACTERIZATION

A. Waveform selection and renormalization

We employ data from the 1824 numerical-relativity
simulations carried out in [17]. (Note that this catalog is

publicly available in [46].) These simulations were per-
formed using the COCONUT code [21] in general relativity
(XCFC approximation [47]) and a leakage scheme [22] for
the neutrino transport. All simulations were performed with
the same 12M⊙ progenitor star, but different initial rotational
profile and rate, and using 18 different EOS (see Ref. [17] for
additional details). The simulations focused on the bounce
signal; therefore they were run only 50 ms after bounce.
For each simulation, the catalog provides the strain in

units of distance for an optimally oriented source, D · hoptþ
as a function of time after core bounce t − tb, the peak
frequency of the postbounce GWoscillations fpeak, the ratio
of rotational kinetic energy to gravitational potential energy
of the inner core at bounce T=jWj, and the maximum initial
precollapse rotation rate Ω0. The minimum and maximum
values of the first and second GW strain peak allow us to
obtain the peak amplitude, D · Δh. Since the system is
axisymmetric, the strain for different source orientations
can be computed simply as

hþ ¼ hoptþ sin2θ;

h× ¼ 0; ð1Þ

where θ is the inclination angle between the rotational axis
of the core and the observer’s line of sight. Note that in the
coordinate system of the source there is no dependence on
the azimuthal angle because of axisymmetry. Note also that
the strain in the coordinate system of the observer depends
on an additional polarization angle ψ measuring the
orientation of the projection of the rotation axis on the
sky with respect to the celestial meridian.
Some of the 1824 simulations performed in [17] do not

undergo core collapse within the simulation time as a
consequence of the initial values of the parameters describ-
ing the progenitors. For those models, the rotational kinetic
energy is large enough to yield sufficient centrifugal
support at the onset of collapse to prevent them from
collapsing. Those waveforms are listed in Table III of [17],
and they have been excluded from our analysis. In addition,
[17] observed that the waveforms of extremely fast-rotating
cores show no specific trend with D · Δh and fpeak.
However, if rotation is sufficiently slow (T=W < 0.06),
D · Δh increases linearly with T=jWj (see Fig. 6 of [17]),
due to the quadrupolar deformation of the core induced by
rotation. Taking this observation into account we restrict
the number of waveforms of our analysis to those for which
0.00 < T=jWj < 0.06. We note that within this limit there
is no particular dependence of fpeak with T=jWj. As
discussed in Sec. I, most CCSN progenitors are expected
to be in this range, and only those capable of producing
long gamma-ray bursts may be above the upper limit.
However, even with this limitation it could be possible to
devise algorithms able to determine whether a particular
observation is in this linear regime or not, based purely on
observations. Figure 1 shows the values of fpeak andD · Δh
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for all the models in [17]. Models with T=jWj < 0.06 (used
in our analysis) occupy a region of the parameter space
mostly disjoint to models with T=jWj > 0.06 (excluded of
our analysis). Therefore, measuring fpeak and D · Δh could
help determine whether a signal is in the linear regime or
not. We refer to this selection of waveforms as the Richers
et al. catalog, hereafter.
Each of the Richers et al. catalog waveforms has been

extracted from a particular simulation. The waveform
morphology at bounce, while similar, is still somewhat
diverse (see left panel of Fig. 2 for a few examples). The

work of [17] suggests that the main parameters describing
the waveforms areD · Δh and fpeak. Hence, it seems natural
to normalize all the waveforms by these two parameters to
try to suppress as much as possible all implicit dependen-
cies for each individual waveform. To do this, we first align
the time of bounce for all waveforms and renormalize the
value of the strain with D · Δh. Owing to the linear
dependence of D · Δh on T=jWj the result of this rescaling
is the effective elimination of the dependence of each
waveform on rotation. Additionally, we rescale the time by
multiplying by fpeak. Given the approximate linear depend-
ence of fpeak with 1=

ffiffiffiffiffi
ρc

p
(ρc being the mean central density

within the 0.2 ms after bounce), this rescaling effectively
removes the dependence of the waveform on ρc.
Let us denote by hnðtÞ the strain of the n-th waveform in

the catalog at optimal orientation and at a distance of
10 kpc, with n ¼ 1;…; NT and NT the total number of
waveforms. Its normalized version is thus defined as

Hnðt̂Þ¼
D ·hnððt− tbÞ ·fnpeakÞ

D ·Δhn
; t̂≡ ðt− tbÞ ·fnpeak; ð2Þ

where D · Δhn and fnpeak denote the corresponding values
for the n-th waveform. Note that we keep theD explicitly in
front of the strain quantities to have combinations of
quantities that are source properties independent of the
distance. The right panel of Fig. 2 shows the normalized
waveforms, Hnðt̂Þ, resulting from rescaling the waveforms
in the left panel. Once the dominant dependencies of the
waveform are eliminated, the shape of the main peak and
the first few oscillations match closely. At late times,
differences become larger due to the onset of hydrody-
namical instabilities in the PNS (e.g., convection) that have

FIG. 1. Waveform amplitude, D · Δh, vs peak frequency, fpeak,
for all models in the waveform catalog of [17]. Red (blue)
markers indicate models included (excluded) in our analysis. The
two kinds of models occupy regions of the parameter space that
are mostly disjoint.

FIG. 2. Strain as a function of time (left panel) and normalized strain as a function of the normalized time (right panel) for five
illustrative examples. These waveforms have been selected from simulations that are as different as possible from each other to display
the diversity of waveforms. The right panel shows the universality of the shape of the normalized waveform. The simulation model
names have the form AXwY_Z, indicating X the degree of differential rotation, Y the value of Ω0 in rad=s, and Z the EOS used (see more
details in [17]).
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a stochastic behavior. Nevertheless, overall the overlap is
acceptable for such a simple two-parameter normalization.
The most significant distinction between different nor-

malized waveforms is the presence of spurious, high-
frequency oscillations in some of them, in particular for
models with slow rotation rates. The source of these
oscillations is numerical noise in the calculation of the
GW signal using the quadrupole formula. In the limit of
decreasing rotation, Ω0 → 0, the object becomes spheri-
cally symmetric so the strain should vanish. However,
computationally this implies perfect numerical cancellation
of the integrals over the source necessary to evaluate the
quadrupole formula, which inevitably leads to numerical
noise. This noise, which is always present, ismore evident in
signals with lower amplitudes because the strain is compa-
rable to the noise. The normalization factor 1=ðD · ΔhÞ
amplifies the numerical noise for the case of slow rotation
progenitors. By visual inspection we have checked that this
numerical noise ceases to be relevant for cases with
Ω0 ≥ 3 rad=s. Therefore, all waveforms not fulfilling this
requirement have also been excluded from our analysis.

B. Master template

After the model selection discussed in the previous
section we are left with a total of NT ¼ 402 different
waveforms whose normalized strain, Hnðt̂Þ, depends
weakly on the particular simulation. We use the average
value of allHnðt̂Þ to create a master functionHTðt̂Þ that can
be utilized for constructing waveform templates through
the straightforward procedure of rescaling by D · Δh and
fpeak (in addition to the dependence on D and θ).
The first necessary step is thus the averaging of all

waveforms. The time coordinate of the signals in the
waveform catalog is different depending on the simulation,
and after the rescaling this becomes more evident in the

normalized signals. Therefore, before doing any averaging
it is necessary to perform an interpolation to a common grid
of normalized times, t̂. We create this common grid within
the interval t̂∈ ½−4; 6�, since for t̂ < −4 there are no events
of interest and for t̂ > 6 the divergence of the waveforms is
too severe. We use a cubic interpolation with 1000 points in
the interval.
For all waveforms we compute the average and standard

deviation of Hn for each value of t̂, obtaining a triplet
t̂ − H̄ − Σ that defines the master waveform:

HTðt̂Þ≡ 1

NT

XNT

n¼1

Hnðt̂Þ; ð3Þ

Σ2ðt̂Þ≡ 1

NT

XNT

n¼1

jHn −HT j2: ð4Þ

The standard deviation Σ accounts for the error made when
performing inference over the master template. However,
all our estimations have been done without considering this
error. The master waveform template is shown in Fig. 3
together with the 2Σ interval corresponding to a ∼95%
confidence level.
The master template (MT hereafter) is expected to apply

to a wide range of parameters and to allow us to construct a
parametrized template, suitable for performing Bayesian
inference. Our phenomenological waveforms depend on
D · Δh, fpeak, D and θ, and can be expressed as

hþðtÞ ¼ HTðt · fpeakÞ
D · Δh · sin2θ

D
; h×ðtÞ ¼ 0: ð5Þ

We note that to keep explicit the dependence on the
combination D · Δh we have to divide by D. Additionally,
for a fixed distance and fpeak, the strain amplitude is

FIG. 3. Master template. Left panel shows HTðt̂Þ for the master template (red line) together with the 402 waveforms used for its
construction. Right panel shows the same master template with the 2-σ (∼95%) confidence interval computed using Σðt̂Þ (dashed lines).
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proportional to the combination D · Δh · sin2 θ. In the next
section we discuss the importance of this combination as a
parameter.

III. CORE COLLAPSE WAVEFORMS

In addition to the waveforms from [17] we use in this
work a series of GW templates from other authors that
serve as a test base for our Bayesian inference procedure.
The waveforms considered correspond to some models
from [48–54], and their details are reported in Table I (CC
waveforms hereafter). This selection is not meant to be
complete among all possible existing numerical simula-
tions of fast rotating cores and serves only as a testbed of
our approach. However, note that the minimum value of Ω0

that we admit from the Richers catalog isΩ0 ¼ 3 rad=s, but
the maximum value for the CCwaveforms isΩ0 ¼ 2 rad=s.
Although none of these supernovae are rotating extremely
quickly and we expect the template to be suitable through-
out, future multidimensional simulations with more rapid
rotation will benefit this analysis.
The simulations from [48] were performed using the

FORNAX code [55] with a mutigroup M1 neutrino transport.
References [49,50,52,54] used the AENUS-ALCAR code [56]
with a mutigroup M1 neutrino transport. Reference [53]
uses the FLASH code with IDSA neutrino transport [57,58].

Reference [51] uses the COCONUT code [21] and the fast
multigroup neutrino transport method [59]. All the codes,
except COCONUT, use pseudorelativistic gravity [60]. Gravity
in COCONUT is general relativistic using the XCFC approxi-
mation [47]. Gravitational waves were extracted using the
quadrupole-formula in all cases [61,62].
Among the models there are full three-dimensional

simulations (3D) and axisymmetric simulations (2D).
Different from the simulations from [17], these models
include the postbounce evolution for several hundred
milliseconds, showing additional features in the gravita-
tional wave signal such as g-mode excitation and, in some
cases, the standing accretion shock instability. However,
these occur on timescales longer than the window used in
the analysis of the bounce signal and have little conse-
quence for the present study. The values of fpeak andD · Δh
are estimated from the waveforms following the same
procedure outlined in [17].

IV. METHODOLOGY

A. Bayesian inference

The inference of parameters of our CCSN waveforms
is achieved through Bayesian analysis, which is briefly
reviewed next.
Let H be an uncertain hypothesis (the presence of a

bounce signal that can be modeled by our master template),

TABLE I. List of CCSN simulations used for testing the Bayesian inference algorithm. MZAMS refers to the zero-age main-sequence
mass of the progenitor star.

Source Model
Dimension of
the simulation EOS MZAMS ðM⊙Þ Ω0 ðrad=sÞ D · Δh ðcmÞ fpeak ðHzÞ

Morozova et al. (2018) [48] M13_SFHo_rotating 2D SFHo 13.0 0.2 3.81 538.0

Bugli et al. (2020) [49] l1_r2M 2D LS220 35.0 2.0 49.9 821.3
l2_r2M 2D LS220 35.0 2.0 48.3 800.1
l3_r2M 2D LS220 35.0 2.0 46.7 803.1
l4_r2M 2D LS220 35.0 2.0 45.7 802.2
hydro_2d 2D LS220 35.0 2.0 42.5 819.0
hydro_3d 3D LS220 35.0 2.0 163.8 894.6

Obergaulinger and
Aloy (2020)

[50] 35OC-RO 2D LS220 35.0 2.0 71.0 734.9
35OC-RO2 2D LS220 35.0 2.0 42.6 816.5
35OC-Rp2 2D LS220 35.0 2.0 42.6 640.7
35OC-Rp3 2D LS220 35.0 2.0 40.1 713.6
35OC-Rp4 2D LS220 35.0 2.0 44.5 709.7
35OC-Rs 2D LS220 35.0 2.0 54.3 797.4

35OC-RRw 2D LS220 35.0 4.0 95.0 717.6

Powell et al. (2020) [51] m39 3D LS220 39.0 0.54 142.0 739.1

Obergaulinger and
Aloy (2021)

[52] O 3D LS220 35.0 2.0 200.4 809.1
W 3D LS220 35.0 2.0 237.1 734.6

Pan et al. (2021) [53] s40_FR 3D LS220 40.0 1.0 212.6 897.5

Obergaulinger et al. (2022) [54] A08 2D SFHo 8.0 0.2 2.7 966.9
A13 2D SFHo 13.0 0.2 4.1 655.3
A20 2D SFHo 20.0 0.2 5.0 816.7
A39 2D SFHo 39.0 0.2 7.3 964.3
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Θ the set of source parameters that we want to constrain or
estimate, and d the observational data. Bayes’s theorem
states that (see, e.g., [63,64])

pðΘjd;HÞ ¼ pðΘjHÞpðdjΘ; HÞ
pðdjHÞ ; ð6Þ

where pðΘjd;HÞ is the probability distribution of the
parameters Θ given both the data and the hypothesis
(posterior distribution), pðΘjHÞ gives the expectation of
the parameters given the hypothesis (prior distribution),
pðdjHÞ is the expectation of the observed data given the
hypothesis (evidence), and pðdjΘ; HÞ is the probability
distribution of observing the data, given the parameters and
hypothesis (the likelihood, L).
We use the Bayesian inference library BILBY [65], which

is an open-source, MIT-licensed PYTHON code developed
by the LVK Collaboration, that provides the parameter
estimation infrastructure that we need to analyze our data.
We model the observed signal at each detector, sðtÞ, as a
linear combination of the actual GW signal, hðtÞ, and the
detector’s noise, nðtÞ; i.e., sðtÞ ¼ hðtÞ þ nðtÞ. Based on
this assumption, we use a Gaussian likelihood of the
form [64]

logL ¼ −
2

T

X
IFOs

XN=2

i¼1

jŝi − ĥij2
Sn i

; ð7Þ

T being the duration of the signal, N the number of
samples, ŝi the Fourier transform of the signal, ĥi the
Fourier transform of the template, and Sni the power
spectral density (PSD) of the detector’s noise. The sum-
mation sign IFOs means a sum over all GW interferometers
in the network. The Fourier transforms are computed from
the discrete Fourier transform as

ĥk ¼
XN
j¼1

hðtjÞe−2πi
N ðj−1Þðk−1ÞΔt; k ¼ 1;…; N: ð8Þ

We consider the waveform template model described in
Sec. II [see Eq. (5)], which, in principle, depends on four
intrinsic parameters: fD · Δh; fpeak; D; θg. In a general
situation, the actual GW strain observed in a detector
depends on the source location and on the polarization of
the waves, which is taken into account by defining the so-
called antenna response, Fðα; δ;ψÞ, such that

h ¼ Fþðα; δ;ψÞhþ þ F×ðα; δ;ψÞh×: ð9Þ

Here, α and δ are the right ascension and declination of the
source, respectively, and ψ is the polarization angle, which
describes the orientation of the projection of the progeni-
tor’s rotation axis onto the plane of the sky (see discussion
in Sec. II A). BILBY combines the source location and

orientation with detector characteristics to calculate Fþ and
F×, and therefore determine each detector’s observed
waveform.
For our analysis we will consider that the sky location (α

and δ), the distanceD, and the time of bounce tb are known
to arbitrary accuracy (see discussion in Sec. I). Hence, they
are kept fixed to the values of the injection. The combi-
nation D · Δh · sin2 θ appears in Eq. (5) as proportional to
the waveform amplitude, so the parameters D · Δh and θ
will be degenerate. Therefore, we use the combination
D · Δh · sin2 θ for our parameter estimation. We discuss in
Sec. VI possible ways of breaking this degeneracy. This
means that we will perform our Bayesian inference for
three unknown parameters Θ ¼ fD · Δh · sin2θ; fpeak;ψg.
In practice this is done by performing inference for D · Δh
at fixed θ (different for each injection) and then computing
D · Δh · sin2 θ itself. For D · Δh we consider a uniform
prior for its logarithm in the interval [0.01, 1000] cm (recall
thatD · Δh is intrinsic to the source and does not depend on
distance). This range spans from a value sufficiently small
to represent the nonrotation limit to the upper limit found in
the simulations by [17]. For fpeak we use a uniform prior
in the range [300, 1500] Hz, that includes the range found
in the simulations by [17], ∼½650; 1050� Hz, with a buffer
of several 100 Hz to account for uncertainties about the
EOS. For ψ we use a uniform prior in the range ½0; π�.
All waveforms of our catalog are injected in simulated,

zero-mean, colored Gaussian noise using the PSDs of
Advanced LIGO and Advanced Virgo [66,67]. We use
the three detector network formed by Advanced Virgo and
the two Advanced LIGO detectors. The signals are injected
in 1 s long segments with a sampling rate of 8192 Hz. Since
the signals are shorter than 1 s, they are padded with zeros
to fill the length. We use BILBY’s dynesty sampler with
2000 live points.
To measure the quality of our inferred posteriors we

compute the Bayes factor, B, defined as

logB ¼ logPðdjHÞ − logPðdjH0Þ

¼ −
2

T

X
IFOs

XN=2

i¼1

�jŝi − ĥij2 − jŝij2
Sn i

�
; ð10Þ

where PðdjHÞ is the evidence of the signal and PðdjH0Þ is
the evidence of the noise, defined as the expectation of the
observed data given the hypothesis that there is no signal
(null hypothesis, H0). A value of logB < 0 implies that the
observed data are more consistent with being noise than a
signal; however, logB > 0, does not immediately imply
that there is a matching signal, but rather just that the model
is a better one than Gaussian noise. In a network with
several detectors, the terms corresponding to the different
detectors are added so that if all of them are positive/
negative the value of logB gets more positive/negative.
Therefore, adding more detectors to the network increases
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the confidence in the validation of the hypothesis. In the
next section we discuss the significance of the values of
logB in terms of the matched-filter signal to noise ratio
(SNR) of the detectors network, which is defined as [68]

network SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
IFOs

SNR2
r

: ð11Þ

SNR here is the optimal SNR of each detector defined as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

T

XN=2

i

jĥij2
Sni

vuut ; ð12Þ

with Δt being the sampling time of the signal.

B. Error estimation

Assuming supernovae behave in nature as they do in
simulations, a detected waveform will differ from a
template waveform for two reasons. First, our template
is an imperfect model of the simulation results. Second, the
measured signal will contain contributions from detector
noise. Here we propose a method of quantifying both.
We differentiate between the intrinsic parameters of the

master template, Θint;MT ¼ ffpeak;MT; ðD · Δh · sin2 θÞMTg
and the real values of the waveform, Θint;real ¼ ffpeak;real;
ðD · Δh · sin2 θÞrealg (i.e., the signal actually measured in
the detector). There will be error in the inferred MT
parameters due to both the imperfect template and detector
noise. The posterior probability for the inference of the real
parameters is

pðΘrealjd;HÞ ¼ pðΘint;realjΘint;MT; H0ÞpðΘMTjd;HÞ; ð13Þ

where Θreal and ΘMT are the full sets of parameters
including the corresponding intrinsic parameters.
pðΘint;realjΘint;MT; H0Þ is the probability of a waveform
having intrinsic parameters Θint;real given a match to a
template with parameters Θint;MT and a model H0 for the
relation between Θint;real and Θint;MT (naturally, we use as
model (H0) that Θint;real ¼ Θint;MT.). This is precisely the
term including the information about the error associated
with the master template itself.
pðΘint;realjΘint;MT; H0Þ can be estimated using the Bayes’

theorem as a function of the likelihood pðΘint;MTjΘint;realÞ.
Given that we have no a priori information about the prior
probability pðΘint;MTÞ we use a uniform distribution, and
hence pðΘint;realjΘint;MT; H0Þ ∝ pðΘint;MTjΘint;real; H0Þ. To
compute the likelihood of the MT parameters given the
real, pðΘint;MTjΘint;real; H0Þ, we follow the procedure in
Appendix A. We perform this analysis using only the 402
waveforms of [17] and not including the 12 signals from
Table I. The result is that this model is consistent with the
data and that the likelihood (and hence the posterior

distribution) can be modeled as a normal distribution with
a mean given by the modelH0 and with standard deviations
σf ¼ 0.024 · fpeak and σΔ ¼ 0.065 ·D · Δh · sin2 θ for
fpeak and D · Δh · sin2 θ, respectively.
In practice, this means that we can perform our inference

algorithm using the master templates as described in
Sec. IVA and then add the contribution of the additional
error to the posterior distribution. In order to propagate
error, we generate a random number Nspawn of additional
values for each sample of the original posterior distribution
using the values of the original sample as mean and the
standard deviation values given above. The collection of
values form a blurred posterior distribution including an
estimate of the errors of the master template. We have tried
values of Nspawn ¼ 1, 10, 50 but all produce very similar
posterior distributions. Therefore, in this work we use
Nspawn ¼ 1 to not increase the computational cost of the
analysis.
One alternative to this procedure would be to estimate

directly the physical parameters of the system (and their
errors) using the relations suggested by [17] between ρc and
fpeak, and between T=jWj and D · Δh. In this case we want
to infer a set of physical parameters Θint;phys, so the
procedure is identical as the one described above but using
Θint;phys instead of Θint;real. The detailed analysis can be
found in Appendix A. In this case we use as a modelH0 the
result of the linear fits of the parameters ρc and T=jWj sin2 θ
as a function of the master template parameters fpeak and
D · Δh · sin2 θ, respectively, which results in

ρc ¼
�
7.3 ×

fpeak
1000 Hz

− 1.67

�
× 1014 g cm−3; ð14Þ

T=jWjsin2θ ¼ ð1.1 ×D · Δh · sin2θ þ 17Þ × 10−4: ð15Þ

Since the amplitude of the waveform depends on the
inclination angle θ, we can put constraints only on the
combinationT=jWj sin2 θ, but not onT=jWj. The likelihood,
pðΘint;physjΘint;MTÞ can be modeled as a normal distribution
with mean given by the values above and standard deviation
σρc ¼ 0.07 · ρc and σT=W ¼ 0.08 · T=jWj.
Another alternative would be to directly use the esti-

mated error for the master template (see Sec. II B) to add
the uncertainty at the time of sampling, i.e., our model
would return a waveform randomly drawn from the
distribution obtained for the master template. That would
incorporate automatically these systematic errors in the
posteriors of the Bayesian inference. This interesting
possibility may be explored in our future work.

C. Waveform injection

In order to test systematically our parameter estimation
method we perform a series of injections under different
conditions with random values of the parameters. Each of

CARLOS PASTOR-MARCOS et al. PHYS. REV. D 109, 063028 (2024)

063028-8



the series consists of 1000 injections in randomly generated
Gaussian noise of a three-detector network corresponding
to the two Advanced LIGO detectors and Advanced Virgo
at design sensitivity [67]. Injections are performed at
random locations in the sky (constant probability per solid
angle in the sky), random luminosity distance, D, in the
range 0.1–1000 kpc, random inclination angle, θ, of the
rotation axis (constant probability per solid angle), and
random polarization angle, ψ . Signals from 3D simulations
(see Sec. III) depend on an additional azimuthal angle with
respect to the rotation axis, ϕ, describing the orientation of
the source. In those cases we a use random angle in the
range ½0; 2π�. This angle can not be inferred from our
analysis as the templates do not contain this dependence.
While ϕ only produces a significant effect on the wave-
forms after bounce since the bounce dynamics is mainly
axisymmetric, we vary ϕ for good measure. For each of the
injections we perform the Bayesian inference analysis
described in Secs. IVA and IV B for the parameters
fpeak, D · Δh · sin2 θ and ψ assuming that the location in
the sky, distance, and time of bounce are known.
We carry out four main series of injections depending on

the type of waveforms selected:
(1) Noise: Null injections with zero amplitude that serve

as a reference for cases in which there is only noise
and no signal.

(2) Signal MT: Waveforms using the master template to
generate signals with random values of fpeak in the
range [600, 1000] Hz and D · Δh in the range
[0, 700] cm.

(3) Signal Richers: Waveforms chosen ramdomly
among the 402 waveforms selected from the catalog
of [17] using the procedure of Sec. II.

(4) Signal CC: Waveforms chosen randomly among the
12 core collapse signals of Table I as discussed in
Sec. III.

V. RESULTS

A. Significance of the inferred values

Before discussing in detail each of the different injec-
tion cases separately we first consider in more general
grounds the quality of the inferred values by computing
the Bayes factor, B. Figure 4 shows the dependence of
log10 B for the different series of injections as a function of
the distance to the source. For signal injections, the
maximum of log10 B approximately scales with 1=D2

(dashed gray line). This upper limit corresponds to
injections with optimal inclination and sky location, as
well as the highest amplitude D · Δh. Below this line we
find injections with nonoptimal configurations and lower
amplitudes. Note that even for small distances some
signals can have very low values of the Bayes factor.
Since the injected values of fpeak are close to the maximum
sensitivity of the detectors, the dependence of the

sensitivity on frequency is fairly flat and does not produce
any observable systematic influence in the value of
log10 B, for the range of frequencies considered.
To try to interpret the value of the Bayes factor, and in

particular to understand which signals would be detectable
and which would be hidden in the detector noise, we
perform a series of injections with pure noise. For those
injections we obtain values of log10 B close to zero. There is
a small dependence on the distance to the source, which
appears because the distance (which is considered to be
known in the analysis) affects the priors. For large
distances, the expected amplitude of the signal is small;
therefore the analysis cannot conclude whether there is an
unobserved signal in the noise or if it is instead pure noise,
which results in a log10 B ≈ 0. For small distances the
model predicts a high signal amplitude for most orienta-
tions. Therefore, in the latter case, there is a tendency to
obtain log10 B < 0, i.e., to reject the presence of a signal
given that there is only noise. To model the effect of the
detector noise we fit log10 B as a function of logD with a
second-order polynomial (violet line in Fig. 4). Next we
perform a linear fit of the quadratic difference between this

FIG. 4. Logarithm of the Bayes factor as a function of the
distance of the injected signal. Both signal (blue and green
markers) and noise (red dots) injections are plotted. The violet
solid line (only visible in the bottom panel since it has negative
values) and violet area display the mean value for noise injections
and the 99% confidence interval (see main text for details on the
noise model). The gray dashed line in the top plot shows the 1=D2

dependence. The lower panel shows a detailed view of the region
with low values of the Bayes factor in linear scale.
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noise model and the values for different injections; this
linear fit gives us an estimate of the variance of log10 B as a
function of logD. Since the distribution is clearly non-
Gaussian, instead of using this variance directly, we rescale
it by a constant value to estimate the 0.5th and 99.5th
percentiles. The resulting 99% confidence interval (i.e., the
region interval within which a signal is consistent with
noise) is displayed as a violet area in Fig. 4. In those cases
the posteriors obtained from the Bayesian analysis are
uninformative and essentially follow the priors, except for
D · Δh · sin2 θ, which tends to be close to zero. In general,
any signal with log10 B > 0.5 will fulfill the criterion of
being above the noise. However, this does not imply that
those signals are detectable or that one could extract
meaningful information. We also note that this threshold
could increase significantly if we were to use real detector
noise, in which nonstationary noise (glitches) is present.
Although a proper analysis of the detectability of this kind
of signal is out of the scope of this paper, we can make an
estimate based on the SNR. Previous studies on the
performance of the cWB pipeline [4,5] for CCSN wave-
forms (in particular for waveforms similar to those con-
sidered here) have shown that typically more than 50% of
the events with SNR > 20 are detectable when real detector
noise is considered [5]. However, in this work we place the
threshold on log10 B since it offers a clearer separation
between noise and true signal in our tests. In Fig. 5 we show
the dependence of the Bayes factor on the network SNR.
The maximum value of log10 B is proportional to the square
of the network SNR (shown as a dashed gray line). All
injections resulting in log10 B > 100 have a SNR > 20.
Therefore, for practical purposes, we will use this threshold
on the value of the Bayes factor as a conservative estimate

of the detectability of a signal based only on observed
data (i.e., assuming high-SNR, low-B signals to be
undetectable).
If it were possible to detect CCSN signals using

(optimal) matched-filtering techniques, the detection
threshold would lower to SNR > 8, which is satisfied
for all signals with log10 B > 16. Table II shows the
fraction of injections that pass the various thresholds
considered for the different series of injections performed.
There can be interpreted as an approximate comparison of
the detectability of the different classes of waveforms.
However, the fraction of detectable waveforms depends on
the distribution of inherent amplitudes of the generated
waveforms, which is not uniform across the datasets. The
Richers dataset has a slightly higher fraction of detectable
events than the MT dataset because it skews more to high-
amplitude events, even though the injected MT signals are
generated from the same template as is used in the inference
procedure. However, the mismatch with the CC waveforms
is large enough to significantly decrease the number of
detectable events.

B. Master template signal injections

In the case of master template injections, the templates
used for the inference and for the injections are obviously
the same. This means that, for the appropriate parameters,
the template is a perfect match for the waveform injected.
As a result, the accuracy of the inferred values will improve
as the SNR of the injected signal increases. Figure 6 shows
an illustrative example of the posterior probability distri-
bution obtained for a case with a relatively high SNR of
27.5. We are able to recover the parameters of the injected
signal within the 1-σ confidence interval with a relatively
low error (0.3%, 11%, and 1.4% for fpeak, D · Δh · sin2 θ
and Ψ, respectively).
Figure 7 shows the median values and errors of the

inferred posteriors depending on the injected values for the
three quantities of the analysis. For signals with high
significance (log10 B > 100, red dots) the relative differ-
ence between the inferred median and injected values is
almost always smaller than 2.3%, 14%, and 7% for fpeak,
D · Δh · sin2 θ and ψ , respectively. Only in one case the

FIG. 5. Logarithm of the Bayes factor as a function of the
network SNR for different types of injections. The dashed gray
line shows a quadratic dependence with the network SNR. The
violet area corresponds to values of log10 B < 0.5, which ap-
proximately corresponds to the 99% confidence interval of the
noise injections.

TABLE II. Fraction of injections of the different series with a
logarithm of the Bayes factor above a certain threshold. Thresh-
old SNR values are estimated for the MT signals, though Richers
and CC injections have SNR values below this threshold.

Injection
series

log10 B > 0.5
(SNR > 2)

log10 B > 16
(SNR > 8)

log10 B > 100
(SNR > 20)

MT 0.64 0.53 0.44
Richers 0.67 0.57 0.48
CC 0.51 0.41 0.32
Noise 0 0 0
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inferred value of D · Δh · sin2 θ has a larger relative error
(∼40%, see the outlier red dot in the middle panel of Fig. 7)
albeit within the 3-σ limit, which is expected for 1000
injections. The error in the median values are mostly
confined within the 2-σ confidence interval.

To evaluate the quality of the posterior distributions we
show in Fig. 8 a P-P plot. For this plot we performed an
ad hoc set of 1000 injections with the same distribution of
the parameters D · Δh · sin2 θ, fpeak and ψ as the priors
used for the Bayesian analysis. This plot compares the
observed cumulative probability distribution of the
deviation of the inferred values from the injected ones
(vertical axis) with the expected cumulative distribution
obtained when comparing the posterior distribution of
each injection with the corresponding injected value. A
straight line (equal probability) indicates that the posterior
describes properly the results obtained, i.e., it is a good
estimator of the error associated with the inference process.
Deviations from this equal probability line would indicate
an excess or scarcity of events at certain confidence level.
The results obtained for master template signals show that
the posterior follows closely the equal probability line for
all quantities, and therefore the analysis can be used with
high confidence in its results.

C. Richers et al. signal injections

Next we discuss our results when injecting waveforms
from the Richers et al. catalog [17]. In this case we have to
postprocess the posteriors given by the Bayesian inference
algorithm to take into account the intrinsic error of themaster
templates (see Sec. IV B). Figure 9 shows an illustrative
example of the posterior probability of a loud signal with a
SNR of 57. The plot shows both the posterior probability
obtained directly with the Bayesian inference process (blue)
and after postprocessing the posteriors to incorporate the
error of the master template (black). Since the SNR is high,
the predicted error associatedwith the detector noise (blue) is
relatively low, and the master template error has a significant

FIG. 6. Corner plot of the posterior probability distribution for a
master template injection. The network SNR of the signal is 27.5
and log10 B ¼ 157. Contours show 1-σ, 2-σ and 3-σ levels.
Dashed blue lines show the 1-σ confidence intervals, and orange
lines correspond to the injected values. The correlation between ψ
and DΔh · sin2 θ is a result of the particular sky location and
detector orientation.

FIG. 7. Bayesian inference for master template injections. Upper panels: Median of the inferred posteriors for fpeak (left panel),
D · Δh · sin2 θ (middle panel), and ψ (right panel) as a function of the true value of the injected waveform. Colors indicate the logarithm
of the Bayes factor. Values of log10 B > 100 are indicated in red and log10 B < 0.5 in gray. The blue solid line in the diagonal of all plots
corresponds to equal true and inferred values. Lower panels: error in the inferred values in term of standard deviations. Horizontal
dashed lines indicate the 2-σ interval.
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contribution to the final posteriors offpeak andD · Δh · sin2 θ
(black). Note thatψ is unaffected. For this particular case, the
injected value falls at the edge of the 3-σ confidence interval
before the inclusion of the template errors butwithin 1-σ after
its inclusion. At sufficiently high SNR the contribution of
noise diminishes, and the final posteriors are essentially
dominated by themaster template errors (the transition seems
to happen at SNR ∼ 20 in this work). Correspondingly, at
sufficiently low SNR the noise becomes dominant to the
point that the posterior is insensitive to the template error
contribution.
Figure 10 depicts the inferred values depending on the

injected values and their errors. The observed behavior for
all three parameters is similar to the case of master template
injections discussed before. However, we note now a larger
dispersion of the inferred values due to the intrinsic error of
the templates. Of the five outliers visible in fpeak (top panel,
red circles) three of them correspond to injections of the
same waveform (A634w3.00_SFHo_ecapture_0.1,
according to the naming convention in [17]), which is a
model with artificially decreased electron capture rates. The
Fourier transform of this waveform presents a secondary
peak at about the frequency that is recovered by our
analysis (see Fig. 11). That hints that, for some models,
secondary modes may be excited at bounce that would need
to be included in the model for more accurate results.
The errors shown in Fig. 10 lay mostly in the 2-σ interval,

although the number of injections outside this interval is
larger than for the master template case. This could be an
effect of the assumption that the error due to the master
template follows a normal distribution (see Sec. IV B). This
could be corrected by using a more accurate description for
that distribution and should be the subject of future studies.

D. Core collapse signal injections

We turn now to consider signal injections with the
waveforms from Table I, i.e., waveforms which were not
employed to build the master template. The inferred values
and errors are displayed in Fig. 12. In this case, there are
clear mismatches between the inferred and the true values.
The worst results are obtained for fpeak, for which the
inferred value is systematically underestimated. This is an
extreme case of the pathology commented in the previous
section affecting most signals instead of only a few: The
postbounce evolution of the CCSN signals from Table I is
more complex than those from [17] and cannot be modeled
so faithfully by our master template waveform (see
Fig. 11). In particular, the Fourier transform of the strain
near bounce presents multiple peaks, whereas the Richers
waveforms generally only show one. The presence of
additional peaks has been discussed in [18], and may be
related to overtones of the fundamental f mode, to non-
linear couplings, or to the presence of g modes. This
produces a double confusion in the algorithm: (i) it is
difficult to evaluate what the nominal injected value of fpeak

FIG. 8. P-P plot for master template injections: Observed
cumulative probability distribution of the deviation of the inferred
values from the injected values vs the expected cumulative
distribution when comparing the posterior distribution of each
injection with the corresponding injected value. For this analysis
we consider a set on injections in which the parameter distribu-
tion of the injections matches the priors. Dashed black line
indicates equal probability.

FIG. 9. Corner plot of the posterior probability distribution for
an example injection of the Richers et al. catalog. The network
SNR of the signal is 57 and log10 B ¼ 463. Blue contours show
the posterior distribution computed by the Bayesian analysis and
black contours, the corresponding distribution after incorporating
the error in the template. Contours show 1-σ, 2-σ, and 3-σ levels.
Dashed black lines display the 1-σ confidence intervals, and
orange lines correspond to the injected values.
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FIG. 10. Bayesian inference of fpeak, D · Δh · sin2 θ and ψ as a function of the true value of the injected waveform, when using
injections from the Richers et al. catalog. See Fig. 7 for details.

FIG. 11. Normalized Fourier transform of the bounce signal (between 5 ms before to 6 ms after bounce) as a function of the frequency
normalized to the peak frequency, for all the waveforms used from the Richers et al. catalog (right) and for all the waveforms from
Table I (left). The latter show in general a richer structure with multiple peaks compared to the former. Highlighted in red the waveform
A634w3.00_SFHo_ecapture_0.1, mentioned in the text, which also has a secondary peak.

FIG. 12. Bayesian inference of fpeak, D · Δh · sin2 θ and ψ as a function of the true value of the injected waveform, when using
injections from Table I. The description of the plots is as in Fig. 7.
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is and (ii) the Bayesian algorithm could be fitting the wrong
oscillation mode. This is a strong indication that further
work is needed to converge on a realistic bounce signal and/
or our master template needs improvement possibly by
adding secondary frequencies.
Regarding D · Δh · sin2 θ, the results seem to follow the

right behavior for values of D · Δh · sin2 θ < 250. Above
that point, however, the inferred value is systematically

underestimated. The results for ψ are better but in many
cases there are still large deviations. Both effects could be
attributed to the strong mismatch in fpeak, but the presence
of additional unaccounted modeling dependencies on these
two parameters cannot be dismissed. This highlights the
potential for future investigations to systematically examine
these dependencies, while also considering possible
improvements to the waveform models.

FIG. 13. Left panels: relative error in the inference of fpeak (top), D · Δh · sin2 θ (middle), and ψ (bottom) as a function of the network
SNR for both master template injections (green symbols) and injections from the Richers et al. catalog [17] (blue symbols). Dashed
vertical lines mark the approximate detection threshold of SNR ¼ 20. Right panels: fraction of injections at a given distance with a
relative error smaller than a certain threshold (10%, 1% and 0.1%) for the three parameters studied.
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E. Dependence with SNR and distance

We next discuss the dependence of the results on the
network SNR and on the distance to the source. In so doing
we only consider the master template and the Richers et al.
waveforms, leaving out of the analysis the additional
CCSN waveforms of Table I because of the poor match
between these waveforms and the template. Figure 13
shows both the relative error of the inferred values as a
function of the network SNR (left panels) and the fractions
of injections below a certain relative threshold as a function
of the distance to the source (right panels). As a reference
we show in the right panels the distance to the Galactic
Center (∼8.5 kpc) and to the Large Magellanic Cloud
(49.6 kpc, [69]) that hosted SN 1987A.
For master template injections the relative error (green

symbols in left panels) decreases with increasing SNR, as
expected. The green lines in the right panels show the
fraction of injections at a given distance that are recovered
within a given error (regardless of the Bayes factor). For a
Galactic event (D ∼ 10 kpc), both fpeak and D · Δh · sin2 θ
could be recovered with less than 10% error for ∼80% and
∼60% of the cases, respectively. For the case of fpeak this
accuracy could be maintained for half of the events up to
∼100 kpc. For signals with low significance (low value of
log10 B), the analysis recovers systematically very low
values of D · Δh · sin2 θ. This is because the observation
is compatible with noise, i.e., with an observation of a zero-
amplitude waveform.
For injections from the Richers et al. catalog, the relative

error (blue symbols in left panels) decreases with the
network SNR in the regime in which it is dominated by
the detector noise (network SNR < 20, vertical dashed
line). However, for values of the network SNR associated
with an unambiguous detection (network SNR > 20) the
relative error remains fairly constant, and it is dominated by
the error in the template. This limits the accuracy of the
analysis to a few percentages for fpeak and to ∼10% for
D · Δh · sin2 θ. For a Galactic event, it is still possible to
infer fpeak with a relative error smaller than 10% (see the
green curves in the top right panel of Fig. 13). However, the
accuracy of the recovery of D · Δh · sin2 θ degrades, with
about 25% of the events showing a relative error larger than
10%. Given that ψ is mostly unaffected by the master
template error, the relative error keeps decaying at larger
SNR, saturating at values larger than ∼100, consistent with
the discussion in Sec. V C.
Regarding the dominant source of error in the inference

process,we compare the injections inwhich only the detector
noise is considered in the analysis with those which also
incorporate the systematic error in the template. The metric
that we use for this comparison is the ratio of the sizes of the
1-σ uncertainty intervalswith andwithout including template
errors, minus one. Values larger (smaller) than one indicate
that the template (noise detector) error dominate. At large

distances (lowSNR) the error is dominated by detector noise,
while at short distances (high SNR) it is dominated by the
template systematic error. The transition point can be
determined as the distance or SNR at which the error in
half of the injections is dominated by detector noise. For
measurements of fpeak (D · Δh · sin2 θ), we find that tem-
plate systematic errors are dominant within 11 kpc (4 kpc) or
for network SNR higher than 22 (68). At a typical Galactic
distance of 10 kpc, the systematic error dominates in 60%
and 17% of the cases for fpeak and D · Δh · sin2 θ, respec-
tively. Therefore, systematic errors in the templates are very
relevant for a Galactic event and should not be neglected.

F. Waveform reconstruction

The determination of the parameters of a signal allows
reconstruction of the injected signal using the median
values of the posterior distribution to generate a waveform
using the master template. Figure 14 shows an example of
waveform reconstruction from the Richers et al. catalog
(same example as in Fig. 9). We have estimated the error of
the waveform in two ways: First, using the standard
deviation of the master template (see Sec. II) we have
evaluated the 2-σ confidence interval (purple region). This
estimation only considers the master template error and
works well for this particular case with a high network SNR
of 57. In general, however, it underestimates the error for
cases dominated by detector noise errors (lower SNR).
Second, we plot a selection of master template waveforms
(cyan curves) generated using 100 random samples from
the posterior distribution. This procedure could be used to
evaluate confidence intervals in a more accurate way,
incorporating both template and detector noise errors. In
both cases the injected template is within the error interval.

FIG. 14. Reconstructed (blue) and injected (orange) signal for
the same case shown in Fig. 9. Purple region is the 2-σ confidence
interval estimated with the error of the master templates. Cyan
curves correspond to waveforms generated with 100 random
samples of the posterior distribution (including template errors).
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G. Inference of physical parameters

Finally, we use the procedure outlined in Sec. IV B to
estimate the physical parameters ρc and T=jWj sin2 θ from
the waveform. This estimation is exclusively carried out for
the waveforms in the Richers et al. catalog. The master
template waveforms do not come from numerical simu-
lations, and so they do not have associated physical
parameters. There is only partial information about the
CC waveforms publicly available, so while we could still
perform the analysis, we would not be able to compare with
the injected values. Furthermore, we need bounce signals
consistent with the template in order to reliably infer the
physical parameters ρc and T=jWj sin2 θ, which is not the
case for these models as shown in Sec. III.
Figure 15 shows the inferred values versus the injected

ones. Regarding ρc, the inferred values have a large scatter
around the true values. The combined effect of the errors
coming from the detector noise, the master template errors,
and the dispersion in the ρc vs fpeak relation, results in a
large scatter of the inferred values in the range 3 − 4 ×
1014 g=cm3 over the entire range of the injected ones.
Moreover, the fact that the range of possible values for ρc is
relatively narrow does not help, raising the degree of
accuracy necessary to obtain a meaningful physical result.
The results are significantly better for T=jWj sin2 θ. The

dispersion is larger than in the case ofD · Δh · sin2 θ due to
the imperfect mapping between waveform amplitude and
rotation rate, but its value can be recovered with ∼25%
accuracy in most cases. Notice that the value that we infer
includes the dependence on θ, which is not a physical
parameter of the system. If one desires to remove the
dependence on θ without any previous knowledge of its
value, then the results obtained become automatically lower
limits. Note that a low Bayes factor event (gray dots) is
equivalent to a nondetection. In that case, the inferred

values are usually zero, meaning that the only information
that we can extract from a nondetection is that T=jWj ≥ 0,
i.e., it is completely uninformative. In Sec. VI we discuss
possible ways of determining θ independently to break the
existing degeneracy.

VI. CONCLUSIONS AND OUTLOOK

In this work we have proposed a procedure to infer
proto-neutron star properties from future gravitational-
wave observations. We have focused on the early-time
(bounce) GW signal from the collapse of stellar cores for
fast rotating progenitors. Despite the complex and stochas-
tic character of CCSN signals, the bounce part of the signal
is rather regular and depends on a simple form on two
parameters: the bounce amplitude, D · Δh, and the peak
frequency, fpeak. The main interest of these two quantities is
that their values correlate with the physical properties of the
PNS and, in particular, with the ratio of rotational-kinetic
energy to potential energy, T=jWj, and the central density,
ρc, at bounce [17]. The main goal of this investigation has
been to provide estimates for such two parameters directly
from the bounce GW signal.
We have developed a simple parametric waveform

template (master template) to model the bounce. This
template has been constructed using a carefully selected
set of 402 models from the Richers et al. waveform catalog
[17], which globally comprises over 1800 axisymmetric
simulations extending up to about 10 ms of postbounce
evolution. Using the master template, we have performed
Bayesian inference on signals injected in Gaussian colored
noise of a three-detector network of advanced GW inter-
ferometers (Advanced LIGO and Advanced Virgo). We
have performed this analysis making use of the Bayesian
inference library BILBY [65]. We have been able to
propagate the errors due to the master template inaccuracies

FIG. 15. Bayesian inference of ρc and T=jWj sin2 θ as a function of the true value of the injected waveform, when using injections from
the Richers et al. catalog [17]. See Fig. 7 for details.
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into the final posterior distributions, generating error
estimates for the inferred values that include Gaussian
detector noise and model uncertainties.
Our procedure has been tested with four datasets: (i) null

injections (pure noise), (ii) master template injections,
(iii) bounce signals from [17], and (iv) other CCSN
waveforms from the literature. Injected template wave-
forms are recovered with better accuracy than injected
waveforms from the training set, which in turn are
recovered better than injected waveforms from other
simulations. While master injections are only affected by
detector noise error, more realistic signals are affected by
the fact that the master template itself is an imperfect
representation of simulation waveforms. Using the bounce
signals of [17], we have been able to recover the injected
parameters, namely fpeak, D · Δh · sin2 θ, and ψ , with an
accuracy better than 10% for more than 50% of the
detectable events. While for waveforms outside of the
training catalog the accuracy and confidence of the results
worsens, it is still possible to obtain valid information for
sufficiently loud signals. Inferences of the physical param-
eters of the PNS, T=jWj and ρc, have similarly low
accuracies for the same reason. Since modeling uncertainty
plays such a large role in the otherwise very regular signals,
there is a significant opportunity for future work to address
these modeling uncertainties with relatively short-duration
simulations.
We have identified the main limitations of our procedure

that presently are preventing us from reaching a higher
accuracy for inferred parameters. Addressing the following
issues will be the subject of future investigations:
(1) We model the errors due to the master template

inaccuracies with a simple normal distribution. This
may be responsible for an excess of injections
outside the 2-σ confidence interval. The solution
is relatively simple and would consist of using the
complete distribution that we obtain from the analy-
sis of the errors.

(2) In some of the CC bounce waveforms (i.e., not in the
catalog of [17]) we have identified multiple oscillat-
ing frequencies in the bounce signal that cannot be
modeled by a single peak frequency. It is unclear
whether the origin of these other peaks is modeling
deficiencies or differing choices of initial conditions.
Therefore, it may be necessary to incorporate addi-
tional degrees of freedom in the templates (e.g., a
secondary frequency) and converge on unified wave-
forms produced by multiple codes. A more detailed
analysis of the bounce signal under more realistic
conditions (e.g., treatment of deleptonization, heavy
nuclei, progenitor profiles, fully dynamical space-
time) and different numerical methods would be
necessary to implement this improvement.

(3) All the waveforms in the Richers et al. catalog
employed to create the master template make use of

the same 12M⊙ progenitor star. Using waveforms
from a wider variety of progenitors (e.g., [70]) could
allow for the creation of master templates that better
approximate realistic CCSN waveforms from any
core collapse with significant rotation. Additionally,
we would obtain improved error estimates and better
estimators of the physical properties.

One of the main caveats of our analysis is the degeneracy
of the measurement of D · Δh (or T=jWj) with the value of
the inclination angle θ. In order to break this degeneracy we
would need an independent measurement of constraint on
the value of θ. Some possibilities are as follows.
(1) It has been shown [36] that the stokes parameters of

the gravitational wave signal of the postbounce
evolution carry information about the PNS rotation
if nonaxisymetric deformations are present. These
deformations could appear systematically in the
form of bar mode or spiral instabilities for suffi-
ciently high rotation rates [53,71–76]. In this case it
should be possible to constrain the inclination angle
by measuring the ratio of the different stokes
parameters.

(2) Long term observations of the supernova remnant
could allow one to measure the velocity field of the
ejecta and their asymmetries. If those asymmetries
are significant and related to the presence of strong
rotation (e.g., bipolar flows), the inclination angle
could be estimated.

(3) Very quickly rotating progenitors are a possible
source of long gamma ray bursts (GRBs). In those
cases the collimated jet producing the GRB is
expected to be aligned with the angular momentum
of the system. Therefore its observation could
constrain the inclination angle.

While our results provide a possible way to infer PNS
properties from GW observations of CCSNe, they should
be taken with care as there are a number of simplifying
assumptions in our model that could have an impact on the
inferred waveforms and physical parameters should they be
relaxed. Perhaps the most important simplification has been
the use of zero-mean, colored Gaussian noise into which
the injections have been made. An immediate extension
of the present work would be to account for actual (non-
Gaussian) detector noise. In addition, we should explore
the impact in the analysis on the number of detectors in the
network (e.g., with only the two aLIGO detectors it may not
be possible to recover the polarization angle) or the use of
next generation detectors such as the Einstein Telescope
[77], Cosmic Explorer [78], or NEMO [79]. Results
incorporating those elements will be presented elsewhere.
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APPENDIX: COMPUTATION OF THE ERRORS
ASSOCIATED TO THE MASTER TEMPLATE

As described in Sec. V B, we need to relate the values
inferred for the master template,Θint;MT, with the real values,
Θint;real, by means of the probability pðΘint;MTjΘint;real; H0Þ.
In order to compute this probability, first we find the
master template parameters, Θint;MT, that match best with
each waveform from the Richers et al. catalog, i.e., those

parameters that maximize the waveform likelihood
given by

logLwaveform ¼ −
PN=2

i¼1 jĥMT
i − ĥRici j2PN=2

i¼1 jĥRici j2
: ðA1Þ

Second,we consider that the resultingmaximizedparameters
for all thewaveforms in the catalog constitute samples of the
distribution that we want to measure, pðΘint;MTjΘint;real; H0Þ.
Note that the denominator of Eq. (A1) is just a

normalization constant and does not affect the computation
of the maximum. The estimation has been performed using
θ ¼ 0, ψ ¼ 0, D ¼ 10 kpc; however, the analysis does not
depend on the arbitrary choice of these extrinsic parame-
ters. We compute the maximum likelihood using the
Nelder-Mead simplex algorithm [80] implemented in the
SciPy PYTHON library [81].
Figure 16 shows the relation between the value of Θint;MT

computed as themaximum likelihood for eachwaveformand
the real values in the template. We have performed linear
regressions for both parameters fpeak andD · Δh · sin2 θ, and
in both cases they result in good fits (R values of 0.88 and
0.98, respectively) with a slope compatible with unity.
We test two alternatives as a model for H0: one case in
which we assume that the slope is 1 (identity model, with
Θint;real ¼ Θint;MT) and a second model in which we use the
result of the fit (fit model). The relative errors with respect to
the models can be found in the lower panels of Fig. 16. In
both cases errors are very similar, so we will consider the
identity model hereafter for simplicity. The distribution of
relative errors for both variables can be modeled as a normal
distribution with zero mean and standard deviations 0.024
and 0.065 for fpeak andD · Δh · sin2 θ, respectively. Dashed
lines in lower panels show the 2-σ confidence interval.

FIG. 16. Upper panels show the parameters Θint;real for each template (real value) as a function of the value of the maximum likelihood
of Θint;MT (MT value) for this template, for the parameters fpeak (left panel), andD · Δh · sin2 θ (right panel). Dashed lines indicate equal
value of the MT and real values (identity model) and the blue line, the result of a linear regression (fit model). Lower panels show the
corresponding relative errors considering the identity and fit models. Dashed lines show 2-σ confidence interval for the fit model.
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Note that for the case of D · Δh · sin2 θ, there is an
outlier at 4.7 sigmas from the mean. The corresponding
waveform has a high frequency artifact close to the
maximum amplitude, which could be related to a numerical
artifact. In any case, removing this outlier has very little
impact on the results of the analysis, so we have kept it for
simplicity.
To compute the errors associated to the estimation of the

physical parameters Θint;phys from the template parameters
Θint;MT, we assume, following [46], a linear dependence of
ρc and T=jWj sin2 θ on fpeak and D · Δh · sin2 θ, respec-
tively. We compute the parameters of the linear function by
performing fits to the data, as shown in Fig. 17. The results
of the fits, which serve as model H0, are

ρc ¼
�
7.3 ×

fpeak
1000 Hz

− 1.67

�
× 1014 g cm−3; ðA2Þ

T=jWj sin2 θ ¼ ð1.1 ×D · Δh · sin2 θ þ 17Þ × 10−4; ðA3Þ

with R values 0.71 and 0.97, respectively. The relative error
with respect to this model (lower panels in Fig. 17) can be
modeled as normal distributions with standard deviations
0.07 and 0.08 for ρc and T=jWj sin2 θ, respectively.

A closer inspection of the model for T=jWj sin2 θ reveals
that there are four outliers outside the 4-σ confidence
interval. The numerical simulations corresponding to these
four outliers were performed using an artificially increased
electron capture rate (a factor 10) that was used by [17] to
test the influence of this parameter on the waveform.
Reference [17] showed that the electron capture rate
treatment can change the slope of the relation between
T=jWj and the peak amplitude (see their Fig. 16), therefore
modifying the slope of Eq. (A3). However, they showed
that the effect of the EOS in the slope is much smaller (see
their Fig. 6). In this sense, it is reasonable to think that using
models with much tighter constrained electron capture rates
would lead to a better model for T=jWj sin2 θ with no
outliers present.
Regarding the model for ρc, the low value of R is related

to the large scatter in the data. This is a clear indication that
the relation in this case may be depending on other
parameters. In particular, [17] pointed out the influence
of the EOS on the slope of Eq. (A2) (see their Fig. 8,
bottom panel).
For the current work we will consider the data as it is

without further restrictions. This will lead to more
conservative results and larger errors than in the case of
a particular EOS and a model for electron capture rates.

FIG. 17. Upper panels show the values of the maximum likelihood of Θint;MT (MT value) for a template with parameters Θint;phys

(physical value), for the parameters ρc (left panel), and T=jWj sin2 θ (right panel). The blue line shows the result of a linear regression.
Lower panels show the corresponding relative errors with respect to the fit. Dashed lines show the 2-σ confidence interval for the fit. The
visible groups of points correspond to models with the same initial rotation rate but different rotation law.
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