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The AMS-02 experiment has observed new properties of primary cosmic rays (CRs) categorized into
two groups: He-C-O-Fe and Ne-Mg-Si-S, which are independent of CR propagation. In this study, we
investigate the unexpected properties of these nuclei using a spatial propagation model. All nuclei spectra
are accurately reproduced and separated into primary and secondary contributions. Our findings include:
1. Primary CR spectra are identical. 2. Our calculations align with AMS-02 results for primary-dominated
nuclei within a 10% difference, but show significant discrepancies for the secondary-dominated nuclei.
3. The primary element abundance at around 200 GeV is presented and compared with previous solar and
Galactic results. We hope that future DAMPE experiments can provide more experimental observational

evidence to validate our model calculations.
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I. INTRODUCTION

The discovery of cosmic rays (CR) has spanned over a
hundred years, yet their origin, acceleration, and propaga-
tion remain ambiguous. Primary CR nuclei are generally
believed to be accelerated by astrophysical sources, such as
supernova remnants [1], or pulsars [2]. Secondary CRs are
produced through spallation reactions taking place at the

*yaoyh @cqu.edu.cn
"guoyq@ihep.ac.cn
*cuisw @hebtu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(6)/063027(8)

063027-1

production site or in the interstellar medium on their way to
Earth. The CR spectrum and chemical composition, for
both primaries and secondaries, provide the most important
clues to cosmic-ray origin and propagation [3,4]. They can
trace effects within CR sources by probing the average CR
residence time and gas density inside accelerating sites, and
can also trace a change in the diffusion coefficient between
the Galactic disc and halo. Elemental abundance can also
give essential clues to the acceleration sites and timescales.

The latest generation of experiments is currently delving
into the intricate details of CR phenomenology. An observed
and confirmed hardening from the uniform power-law of the
CR spectrum for all elements around a rigidity of a few
hundred GeV has sparked significant interest [5—12]. Various
models, primarily categorized as sources [13], propagation
[14-16], and reacceleration [17,18], have been proposed
to provide explanations. Simultaneously addressing the
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measured positron excess [19] and the diffuse gamma-ray
hardening in the Galactic disk [20], the propagation effects
with a nearby source are strongly favored [21,22]. In the case
of a nearby source, it is likely that all the indices of primary
components are identical, particularly when the energy is
higher than several hundred GeV, as the interactions during
transportation mainly affect the spectra of lower energy.

The precise measurements and large statistics provided by
AMS-02 have unveiled new properties in the nuclei spectra.
The primary and secondary components for heavy
nuclei from carbon to iron fluxes are estimated by performing
fit to the weighted sum of the flux of primary CR oxygen
(silicon) and the flux of secondary CR flux boron (fluorine)
[10,11,23]. It calibrate their abundance of primary and
secondary components independently from models,
revealing that primary He-C-O-Fe are distantly different
from Ne-Mg-Si-S and there are at least two classes of
secondary components [10,23-26]. The study by [27]
investigated the consistency of injected spectra among differ-
ent groups of nuclei, assuming spatially uniform propagation,
indicating intrinsic differences in the injection spectra.

In this study, we have utilized the spatially dependent
propagation model [21,22], which was extended and devel-
oped based on the two-halo propagation model proposed
by [14], to examine the relative contributions of primary and
secondary components in each nuclei spectrum. The struc-
ture of this paper is organized as follows: we initially
introduce the spatially dependent propagation model, fol-
lowed by the presentation of the results pertaining to each
nucleon spectrum and the corresponding abundance out-
comes, and ultimately, we provide our concluding remarks.

II. METHODOLOGY

In this section, we describe the propagation setup that
will be used throughout the paper, which is based on the
model settings presented in [21,22]. CR dynamics in the
Galaxy is generally described by a differential equation
[28-31] that includes acceleration, loss, and transport
terms, described as
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where Q(r, p) is the source function, D, and D, are the
spatial diffusion coefficient and diffusion coefficient in the
momentum-space, respectively. V.. is the convection veloc-
ity, 7, and 7, are the characteristic timescales used to
describe the fragmentation and radioactive decay.
Spatially dependent diffusion is considered with source-
calibrating diffuse coefficient, which is further support by
the observation of slow diffusion region around the source
[32,33]. Both CR sources and interstellar medium chiefly
spread within the Galactic disk, causing a much slower
propagation process close to the Galactic disk (|z| < £zp).
While regions far way from the disk (|z] > £z) particles

transport as the traditional assumption. The spatial distri-
bution of CR sources [34] is parametrized as

flr.2)= (—o> T [—%O_O)} exp (-'f') @)

where rg = 8.5 kpc and z; = 0.2 kpc.
The propagation coefficient is anticorrelated with the
source density and is described as

R\ SoF(r.z)
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where the function F(r, z) is defined as:

F(r.z)= {WZ) +[1-9(r2)] (£)".
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with g(r, z) = N,,/[1 + f(r, z)]. The distributions of F(r, z)
with respect to the radial distance r and vertical height z
could be referenced from the work in [22].

The injection spectrum of sources is assumed to be a
broken power-law form, whose power indexes and flux
normalization factors are listed in Table I.

CR species spectra is obtained by extending DRAGON
[31] to solve the general diffusion-loss transport equation.
The corresponding transport parameters are given in
Table II. The force-field approximation [35] is adopted
to for solar modulation effect.

TABLE I. Spectral injection parameters and solar modulation
energy for each element.
Normalization Ennoau [GeV/
Element [GeV™'m™2s!sr™!] 1, Abundance nucleon]
H 435 x 1072 245 941 x10° 0.85
He 2.54 x 1073 236 55000 0.75
C 9.48 x 1073 238 2050 0.7
N 5.09 x 107° 2.38 110 0.7
0] 1.29 x 107# 2.40 2800 0.6
Ne 1.74 x 1073 2.41 377 0.55
Na 2.31 x 1077 241 5 0.75
Mg 2.31 x 107 241 500 0.6
Al 1.99 x 10°° 2.41 43 0.45
Si 243 x 1073 242 525 0.65
S 3.93 x 107° 2.42 85 0.6
Fe 2.59 x 1073 2.43 560 0.8

al/l = 2-37Rbr = 6 GCV

TABLE II. Parameters for the SDP propagation model.

Dy [em™2s7!] 5, N, £ n v, [kms™!] zy [kpc]
5% 10%8 0.58 024 0.082 4.0 6 5

*Reference rigidity is 4 GV.
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III. RESULTS

The propagated spectra of nuclei (ranging from helium to
iron), including their primary and secondary components,
are presented as functions of per nucleon kinetic energy.
Firstly the boron and fluorine flux are presented in Fig. 1,
which are thought purely secondary CRs produced by
primary ones during their journal to the Earth. It can be seen
that the model-calculated ratios are consistent with the
observational data from experiments.

Oxygen and silicon fluxes are given in Fig. 2, as well as
their primary, secondary contributions. The primary compo-
nent represents the injection part and the secondary one
mainly stems from the fragmentation of heavier elements. The
lower panel of figures illustrate the partitioning of the primary
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component in relation to the total proton, as a function of
energy. It is evident that oxygen is predominantly dominated
by the primary component, whereas a relatively small portion
(approximately 10%) at the energy of 10 GeV of the silicon
spectra originates from secondary production. The silicon
fluxes show a decreasing secondary component and an
increasing primary component with increasing energy. In
the study of AMS abundance ratios at the source [23], the
oxygen and silicon fluxes are considered to be purely
contributed by primary CRs. However, our study reveals
that the silicon flux is not as purely primary as that of oxygen.

Figure 3 demonstrates fluxes of primary, secondary, and
total flux of helium, carbon, as well as the previously
claimed distinct classes nickel, magnesium, and sulfur,
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Fluorine and boron CRs, with AMS-02 measurements [9,26].
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FIG. 2. Left: The oxygen flux, compared with data from [36]. Right: silicon flux, compare with data from [10]. The primary and
secondary component contributions are shown by the dark green and light green shading, respectively. The lower panel of each figure

presents the primary-to-total flux ratios.
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FIG. 3. From top to bottom, and from left to right, they are helium, carbon, iron, nickel, magnesium, and sulfur, with AMS-02
measurements [10,11,23,36,37]. The primary and secondary component contributions are shown by the dark green and light green
shading, respectively. The lower panel of each figure presents the primary-to-total flux ratios, compared with ratios from [23].

revealing that all their primary-to-total flux ratios are  and the reason for this is that the observed silicon flux
similar to each other. Additionally, the solid and dashed  contains not negligible secondaries.

lines in the lower panel of each figure represent our model- The nitrogen, sodium, and aluminum fluxes are displayed
calculated ratios and our model-calculated ratios times a  from left to right in Fig. 4. These ratios are notably distinct
factor to match the AMS abundance ratios at the source  from those shown in Fig. 3 due to their substantial secondary
[23], respectively. It is evident that out model-calculated  components. Additionally, the primary-to-total flux ratios
ratios are all lower than those based on experimental data,  in the lower panel of each figure indicate significant
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FIG. 4. From left to right, they are: nitrogen, sodium, aluminum, with the data from [25]. The lower panel of each figure presents the
primary-to-total flux ratios, compared with ratios from [25].
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FIG. 5. Left: the fluxes of cosmic nuclei from primary and secondary contributions. For display purposes only, the fluxes were
rescaled as indicated. Given that fluorine and boron cosmic rays in Fig. 1 are purely secondary, and oxygen is almost primary in Fig. 2,
the model results are compared with AMS-02 observed fluxes [9,26,36] here as well. Right: relative abundances of high-energy
(200 GeV /nucleon) cosmic rays, compared to the low-energy (0.2 GeV /nucleon) cosmic rays and the present-day solar system, which

from [38]. Abundances are normalized to Si = 10°.

differences between our calculations and results based on
observational secondary and primary components. This
suggests that there may be a greater secondary contribution
to the spectra of these secondary-dominated nuclei than
previously estimated [25].

The left panel of Fig. 5 displays the primary and
secondary components of nuclei from helium to iron.
The fluxes are rescaled as indicated for display purposes
only. It can be observed that all primary components are
mostly the same, which is also evident from the injected
spectral index listed in Table I. However, there are marginal
differences between the secondary components in the lower
energy range, mainly due to the cross-section differences in
secondary production. The right panel of Fig. 5 presents the
relative abundances of high-energy (200 GeV/nucleon)
cosmic rays, normalized to Si = 10’ and compared to
the low-energy (0.2 GeV/nucleon) cosmic rays and the
present-day solar system from [38]. It is evident that there
are significant differences for each element compared to
those in the solar system, especially for the Z-odd ones.

Here we investigate the spectra of different nuclei
primarily based on the AMS-02 data, as the target energy
range in this study exceeds tens of GeV, where it is free
from solar modulation. The model calculations compared
with measurements for each nucleus at low energies
outside the solar system by Voyager-1 [39] are presented
in the Appendix. It is evident that there are significant
deviations between the model calculations without solar
modulation and Voyager’s observations. The origin of this
discrepancy may be due to Voyager still being within the
influence of the solar magnetic field, or it could be
attributed to the accuracy of solar modulation in this

work. These two aspects will be addressed in our future
work, although they do not impact the conclusions drawn
in this paper.

IV. SUMMARY

This work is aimed at understanding the primary and
secondary components of each CR species recently
observed by AMS. We took advantage of SDP propagation
model, tracing the spectra from originate from sources and
production during the transportation. We found that boron
and fluorine are purely secondaries while the silicon spectra
is not as pure primary as the oxygen. The primary
component of CR species (He-C-O-Ne-Mg-Si-S-Fe) are
the same class, N-Na-Al are secondary-dominated. All
primary component are increasing with energy. When
particle energies are above TeV, diffuse propagation domi-
nates and particle interaction is negligible. If they were one
group, they would stay together with higher energy. Future
more precise measurements above TeV could test if there
are significant spectral differences and validate our model
calculations. The primary abundance of CR nuclei pre-
sented differs from that of the solar system. This clean
dataset of primary and secondary component could help us
to check the consistency between the observed data and the
CR model.
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APPENDIX: COMPARISON BETWEEN MODEL DATA
AND THE LOCAL INTERSTELLAR OBSERVATIONS

The model calculations extended to MeV per nucleon, compared with measurements for each nucleus at low energies
outside the solar system by Voyager-1 [39], are presented in Figs. 6,7, and 8.
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FIG. 6. Fluorine, boron, oxygen, and silicon CRs, with AMS-02 [9,10,26,36] and the Voyager-1 [39] observations. The model data in
this figure is the same as in Fig. 1 and Fig. 2, except that in this figure, the low-energy range is extended to tens of MeV per nucleon for
comparison with Voyager’s observations.
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FIG. 7. From top to bottom, and from left to right, they are helium, carbon, iron, nickel, magnesium, and sulfur, with AMS-02
[10,11,23,36,37] and Voyager-1 [39] observations. The model data in this figure is the same as in Fig. 3, except that in this figure, the
low-energy range is extended to tens of MeV per nucleon for comparison with Voyager’s observations.
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FIG. 8. From left to right, they are: nitrogen, sodium, aluminum, with the data from AMS-02 [25] and Voyager-1 [39] observations.
The model data in this figure is the same as in Fig. 4, except that in this figure, the low-energy range is extended to tens of MeV per
nucleon for comparison with Voyager’s observations.
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