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We present a significant extension of the quark-mass density-dependent model (QMDDM), initially
revised in our prior study [Phys. Rev. D 107, 043025 (2023)], where thermodynamic inconsistencies
were addressed. Our current work enriches the QMDDM by incorporating excluded volume effects, as a
step toward a more realistic representation of the quark matter equation of state (EOS) at zero
temperature. We introduce the concept of “available volume” in the Helmholtz free energy formulation,
accounting for the space excluded by each quasiparticle due to its finite size or repulsive interactions. We
present a methodology to modify the EOS for pointlike particles, allowing for a simple and direct
incorporation of excluded volume effects. This is first addressed in a simple one-flavor model and then
extended to a more realistic three-flavor system, incorporating both mass and volume dependencies on
the baryon number density. We examine various Ansätze for the excluded volume, ultimately adopting
one that aligns with the asymptotic freedom behavior of quantum chromodynamics. The EOS for
electrically neutral systems in chemical equilibrium is computed, focusing on self-bound and hybrid
matter scenarios. We show that the incorporation of excluded volume effects renders the EOS stiffer and
that excluded volume effects are essential to align the mass-radius relation of self-bound and hybrid stars
with modern astrophysical constraints.
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I. INTRODUCTION

In recent years, the study of quark matter at extreme
densities has attracted significant attention within the field
of nuclear physics and astrophysics, primarily due to its
implications in understanding the properties of neutron
stars and heavy ion collisions. At the core of these
investigations is the equation of state (EOS), which
provides a crucial link between microscopic theories of
strong interactions and macroscopic observables. Unfort-
unately, first-principle calculations for deconfined quark
matter are unavailable at present in the high-density, low-
temperature conditions expected within the interiors of
neutron stars (NSs). Consequently, while perturbative
QCD imposes certain indirect constraints on the EOS at
NS densities [1], most insights into quark matter in the NS
regime rely on phenomenological models. These models,
drawing inspiration from QCD, incorporate key properties
of quarks, such as color confinement, asymptotic freedom,
and chiral symmetry breaking/restoration, into the EOS.

Within this context, the quark-mass density-dependent
model (QMDDM) has been a topic of discussion in the
literature for decades (see, e.g., [2–15] and references
therein). In the baseline version of the model, the system is
conceptualized as a noninteracting gas of quasiparticles,
each characterized by a mass that varies depending on the
baryon number density nB. This approach hypothesizes
that key features of the nonperturbative regime of QCD
can be effectively encapsulated through these density-
dependent variations in quark masses.
The QMDDM thermodynamic consistency is an aspect

that has generated considerable debate in the literature,
prompting multiple reformulations of the model over the
years. In Ref. [14], a fully self-consistent thermodynamic
approach for the QMDDM was introduced. This work was
further elaborated and extended in a subsequent paper [15],
with special focus on the issue of thermodynamic con-
sistency. Their approach involves the simultaneous use of
both the canonical and grand canonical ensembles. More
recently, Ref. [16] provided a new comprehensive analysis
of the QMDDM. This analysis demonstrated that address-
ing thermodynamic consistency is more straightforward
when working directly within the canonical ensemble.
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Additionally, a general version of the QMDDM applicable
to any mass formula was introduced, with a particular focus
on two specific mass formula cases: flavor-blind mass and
flavor-dependent mass. Most recently, we have verified
that, despite dissimilar treatments and differences in the
representative formulas in the aforementioned articles, the
resulting equations of state are identical (cf. Refs. [14,16]).
The model presented in Ref. [16] is a baseline formu-

lation focusing solely on the variation of quark masses
with the density. However, it is necessary to incorporate
several other aspects for the model to realistically represent
known features of cold and dense matter, such as its
remarkable stiffness, as suggested by the observation of
very high-mass compact stars [17–21]. This feature is
related to the potential existence of repulsive interactions
in quark matter that would render the EOS stiffer. One way
to account for this within the QMDDM is by considering
the “excluded volume” of quasiparticles, akin to the Van
der Waals equation of state [22–25]. The concept of
excluded volume arises when particles in close proximity
effectively “exclude” a certain region around them due to
repulsive interactions with each other emerging from a
combination of nonperturbative effects related to confine-
ment, higher-order perturbative QCD interactions, and the
dynamic nature of the strong coupling constant. This
reduction in available space for other quasiparticles leads
to deviations from the behavior predicted by models
assuming pointlike particles [26–29].
In this study, we introduce the effect of excluded volume

into the QMDDM. To ensure thermodynamic consistency,
we incorporate the excluded volume within the framework
of the canonical ensemble. As our focus is on cold compact
stellar objects, we proceed with our analysis at zero
temperature (T ¼ 0). This paper is structured as follows:
In Sec. II, we develop a methodology for incorporating the
effects of excluded volume into a zero-temperature EOS,
initially formulated for pointlike particles. We focus on a
system consisting of a single particle species, with the key
assumption that the excluded volume around each particle is
quantified by a function bðnÞ, where n is the particle
number density. We show how the standard equations for
energy density, pressure, and chemical potential, applicable
to pointlike particles, can be adapted to include volume
exclusion effects. For a quick reference, the summary of our
findings in this context can be found in Sec. II C. In Sec. III,
we apply the insights from the previous section to refor-
mulate the one-flavor QMDDM within the canonical
ensemble, incorporating excluded volume effects using
various Ansätze for b ¼ bðnÞ. This section is primarily
pedagogical, aimed at identifying which prescriptions for
bðnÞ are physically viable. Section IVextends the formalism
from Sec. II to a generic EOS involving multiple particle
species. The method for incorporating excluded volume
effects into an EOS for a mixture of pointlike particles is
summarized in Sec. IV C. In Sec. V, we expand the

three-flavor QMDDM, as presented in Ref. [16], to take
into consideration excluded volume effects, assuming a
generic formula for the excluded volume b ¼ bðnBÞ.
Finally, in Sec. VI, we present our numerical results using
an Ansatz that is consistent with the asymptotic freedom
behavior of QCD. We calculate the EOS under the
assumption that matter is electrically charge neutral and
in equilibrium under weak interactions, for two different
choices of the EOS parameters: one representing self-bound
matter and the other hybrid matter. The structures of self-
bound and hybrid stars are studied using these EOS.

II. INCORPORATING EXCLUDED VOLUME
EFFECTS IN A GENERIC ONE-FLAVOR EOS

In this section, we develop a methodology for incor-
porating the effects of excluded volume into a zero-
temperature EOS, originally formulated for pointlike
particles. For simplicity, we consider a system comprising
a single particle species. Our key assumption is that the
excluded volume surrounding each particle, attributed to
its finite size or repulsive interactions, is quantified by a
function bðnÞ, where n is the particle number density. We
will show that the equations for energy density, pressure,
and chemical potential, applicable to pointlike particles,
can be straightforwardly adapted to encompass the effect
of volume exclusion. For those seeking a concise over-
view, we direct attention to the summary of our findings in
Sec. II C.

A. EOS for pointlike particles

Below, we provide a summary of some standard defi-
nitions and results of thermodynamics that will be useful
throughout the text. We will examine a system of N
particles within a volume V at absolute zero temperature.
Let us assume that, without excluded volume effects, the
system can be described by a Helmholtz free energy
function denoted as FplðV;NÞ, where the subindex “pl”
refers to pointlike particles. As we are considering the case
of T ¼ 0, the internal energy is equivalent to F, and thus
the energy density is identical to the Helmholtz free energy
per unit volume,

ϵpl ¼
FplðV;NÞ

V
: ð1Þ

All other thermodynamic quantities of the system of
pointlike particles are derived directly from FplðV;NÞ.
The pressure is given by

pplðV;NÞ ¼ −
∂FplðN;VÞ

∂V

����
N

ð2Þ

and the chemical potential by
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μplðV;NÞ ¼ ∂FplðN;VÞ
∂N

����
V
: ð3Þ

Taking advantage of the homogeneity properties of
thermodynamic functions, the aforementioned quantities
can be expressed solely as a function of the particle density
n≡ N=V. On one hand, the Helmholtz free energy is a
first-order homogeneous function of the extensive param-
eters. This means that, if all extensive parameters of a
system are scaled by a factor α, the free energy of the
resulting system will be scaled by the same factor,
according to [30]

αFðV;NÞ ¼ FðαV;αNÞ: ð4Þ

By substituting α ¼ V−1 into Eq. (1), the energy density
can be rewritten as

ϵplðnÞ ¼
FplðV;NÞ

V
¼ Fpl

�
V
V
;
N
V

�
¼ Fplð1; nÞ: ð5Þ

On the other hand, pressure and chemical potential
are intensive quantities, meaning they are zero-order
homogeneous functions, as expressed by the following
relations [30]:

pðαV; αNÞ ¼ pðV;NÞ; ð6Þ

μðαV; αNÞ ¼ μðV;NÞ: ð7Þ

Introducing α ¼ V−1 in Eqs. (2) and (3), we obtain

pplðnÞ ¼ ppl

�
1;
N
V

�
; ð8Þ

μplðnÞ ¼ μpl

�
1;
N
V

�
: ð9Þ

B. EOS with excluded volume effects

To incorporate the effects of excluded volume, one
substitutes the system’s volume V with the available
volume Ṽ, defined as

Ṽ ¼ V − bðnÞN; ð10Þ

in the Helmholtz free energy FplðV;NÞ of pointlike
particles. In the above equation, b represents the volume
that would be excluded by each particle if it were treated as
a rigid sphere. To maintain generality, we allowed b to
depend on the particle’s number density n. Once we replace
V with Ṽ, the resulting function FplðṼ; NÞ becomes the
starting point for the thermodynamic description that
incorporates excluded volume effects.

1. Excluded volume effects in the energy density

At T ¼ 0, the energy density is equivalent to the
Helmholtz free energy per unit volume,

ϵ ¼ FplðṼ; NÞ
V

: ð11Þ

By applying the homogeneity property from Eq. (4) with
α ¼ Ṽ−1 to Eq. (11), the energy density can be reformu-
lated as

ϵ ¼ Ṽ

Ṽ

FplðṼ; NÞ
V

¼ Ṽ
V
Fpl

�
Ṽ

Ṽ
;
N

Ṽ

�
: ð12Þ

We now introduce the available volume fraction q,
defined as

qðnÞ≡ Ṽ
V
¼ 1 − nbðnÞ; ð13Þ

which depends solely on the postulated Ansatz for the
excluded volume per particle bðnÞ. Note that q satisfies
0 < q < 1 since 0 < Ṽ < V. The ratio N=Ṽ in Eq. (12) can
be rewritten as

N

Ṽ
¼ N

V
V

Ṽ
¼ n

qðnÞ : ð14Þ

Thus, Eq. (12) can be reformulated as

ϵðnÞ ¼ qðnÞFpl

�
1;

n
qðnÞ

�
; ð15Þ

which is exclusively a function of n.
In Eq. (15), we recognize the energy density for pointlike

particles, as described by Eq. (5), as a function of n=q.
Consequently, we can express the energy density account-
ing for excluded volume effects in terms of ϵpl,

ϵðnÞ ¼ qðnÞϵpl
�

n
qðnÞ

�
: ð16Þ

This equation provides a clear method to obtain the energy
density with excluded volume corrections. The procedure
involves initially expressing ϵpl for pointlike particles,
which is assumed to be known, as a function of the
adjusted variable n=qðnÞ. Subsequently, by multiplying
this expression by the correction factor qðnÞ, defined in
Eq. (13), one can straightforwardly derive the energy
density with excluded volume effects. It is important to
note that qðnÞ is dependent solely on the selected Ansatz for
the excluded volume per particle, denoted by bðnÞ.
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2. Pressure

As noted earlier, we account for excluded volume effects
by substituting Ṽ ¼ V − bðnÞN into the Helmholtz free
energy formula for pointlike particles. With this substitu-
tion, F continues to be a function of V and N, but the
dependency on volume is now exclusively represented
through the auxiliary function Ṽ ¼ ṼðV;NÞ. To determine
the pressure of the system, we must compute the following
derivative:

p ¼ −
∂FplðṼ; NÞ

∂V

����
N
: ð17Þ

This derivative can be expressed as

p ¼ −
∂Fpl

∂Ṽ

����
N

∂Ṽ
∂V

����
N
−
∂Fpl

∂N

����
Ṽ;N

∂N
∂V

����
N
: ð18Þ

Using the fact that ∂N=∂VjN ¼ 0 and defining

δ≡ ∂Ṽ
∂V

����
N
¼ ∂ðV − bNÞ

∂V

����
N
¼ 1þ n2

db
dn

; ð19Þ

Equation (18) takes the following form:

p ¼ −δðnÞ ∂FplðṼ; NÞ
∂Ṽ

����
N
: ð20Þ

The derivative in the previous equation has the same
functional form as the derivative in Eq. (2), with the only
difference being that it is now evaluated at Ṽ instead of at
V. Consequently, we can identify such derivative as being
pplðṼ; NÞ, i.e.,

pplðṼ; NÞ ¼ −
∂FplðṼ; NÞ

∂Ṽ

����
N
: ð21Þ

Replacing Eq. (21) into Eq. (20) we find that the pressure
for the system with excluded volume effects can be
obtained from the pressure of pointlike particles as

p ¼ δðnÞpplðṼ; NÞ: ð22Þ

Pressure is an intensive quantity, which means it is a
homogeneous function of degree zero, that is, pðαV; αNÞ ¼
pðV;NÞ, for arbitrary α [30]. By setting α ¼ Ṽ−1, we get

pplðṼ; NÞ ¼ ppl

�
Ṽ

Ṽ
;
N

Ṽ

�
¼ ppl

�
1;
n
q

�
; ð23Þ

where we have used the fact that N=Ṽ ¼ ðN=VÞ×
ðV=ṼÞ ¼ n=q.

Therefore, the pressure for the system with excluded
volume effects can be obtained from the pressure of
pointlike particles as

pðnÞ ¼ δðnÞppl

�
n
q

�
: ð24Þ

Once more, we have established a simple approach to
compute the pressure with corrections accounting for
excluded volume. This method begins by representing
the known expression ppl for pointlike particles in terms
of the variable n=qðnÞ. Subsequently, by multiplying it
with the correction factor δðnÞ, we obtain the pressure
incorporating the effect of excluded volume. The correction
factors qðnÞ and δðnÞ are exclusively determined by the
chosen Ansatz bðnÞ for the excluded volume per particle.

3. Chemical potential

To obtain the chemical potential we start from

μ ¼ ∂FplðṼ; NÞ
∂N

����
V
: ð25Þ

This derivative can be expressed as

μ ¼ ∂FplðṼ; NÞ
∂Ṽ

����
N

∂Ṽ
∂N

����
V
þ ∂FplðṼ; NÞ

∂N

����
Ṽ
: ð26Þ

As already shown, the derivative of F appearing in the
first term of the previous equation is −pplðṼ; NÞ. On the
other hand, the derivative of the second term has the same
functional form as the derivative in Eq. (3), with the only
difference being that it is now evaluated at Ṽ instead of at
V. Consequently, we can identify it as being μplðṼ; NÞ, i.e.,

μplðṼ; NÞ ¼ ∂FplðṼ; NÞ
∂N

����
Ṽ
: ð27Þ

Additionally, we define

−λ≡ ∂Ṽ
∂N

����
V
¼ ∂ðV − bNÞ

∂N

����
V
¼ −

�
bþ n

db
dn

�
: ð28Þ

Replacing ppl, μpl, and λ in Eq. (26) we obtain

μ ¼ λðnÞpplðṼ; NÞ þ μplðṼ; NÞ: ð29Þ

The chemical potential is an intensive quantity; thus, using
the same reasoning that led to Eq. (23) we get

μplðṼ; NÞ ¼ μpl

�
1;
n
q

�
: ð30Þ

Therefore, Eq. (29) reads
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μðnÞ ¼ λðnÞppl

�
n
q

�
þ μpl

�
n
q

�
: ð31Þ

Similar to the case of Eq. (24), the above expression takes
advantage of the already known expressions μpl and ppl for
pointlike particles as functions of the variable n=qðnÞ,
along with the correction factor λðnÞ.

4. Assessing thermodynamic consistency via Euler’s
relation verification

To confirm the thermodynamic consistency of the model
incorporating excluded volume effects, we will check if the
Euler relation is verified. We begin by assuming that the
system of pointlike particles is thermodynamically con-
sistent and satisfies the Euler relation,

ϵplðV;NÞ ¼ −pplðV;NÞ þ μplðV;NÞN
V
: ð32Þ

This relation holds for any system volume, including the
volume Ṽ. Consequently, we obtain

ϵplðṼ; NÞ ¼ −pplðṼ; NÞ þ μplðṼ; NÞN
Ṽ
; ð33Þ

which, upon reformulation, yields

ϵplðṼ; NÞ ¼ −pplðṼ; NÞ þ μplðṼ; NÞ n
q
: ð34Þ

The preceding equation can be reformulated as follows.
First, each term is multiplied by q ¼ 1 − bn. Then, we add
and subtract the term ppln2 db

dn. Finally, the terms are
rearranged, leading to the following equation:

qϵpl ¼ −ppl − ppln2
db
dn

þ nμpl þ ppl

�
n
db
dn

þ b

�
n; ð35Þ

which simplifies to

qϵpl¼−
�
1þn2

db
dn

�
pplþn

�
μplþppl

�
n
db
dn

þb

��
: ð36Þ

This expression incorporates the previously defined factors
δ and λ, along with the expressions presented in Eqs. (16),
(24), and (31), culminating in the result

ϵðṼ; NÞ ¼ −pðṼ; NÞ þ μðṼ; NÞn: ð37Þ

In summary, if the Euler relation is valid for a system of
pointlike particles, it is also valid for the system with
excluded volume effects, thus confirming the thermody-
namic consistency of the formalism.

C. Summary of Sec. II

This section presented a methodology for taking into
account the effects of excluded volume into a preexisting
zero-temperature EOS, initially designed for pointlike
particles, within the framework of the Helmholtz repre-
sentation. Beginning with the established formulas for
energy density (ϵpl), pressure (ppl), and chemical potential
(μpl) of pointlike particles, which are functions of the
particle number density (n), the process unfolds as follows.
One first reformulates ϵpl, ppl, and μpl by replacing n with
the modified variable n=q, where q is defined by the
expression given in Eq. (13),

qðnÞ ¼ 1 − nbðnÞ: ð38Þ

In this framework, bðnÞ symbolizes the per-particle
excluded volume, introduced into our model as a phenom-
enological Ansatz. Then, we derive the correction factors
δ and λ, which stem from the specific function assigned to
bðnÞ and were defined in Eqs. (19) and (28), respectively,

δðnÞ ¼ 1þ n2
db
dn

; ð39Þ

λðnÞ ¼ bþ n
db
dn

: ð40Þ

Finally, the new expressions for energy density, pressure,
and chemical potential, now accounting for the effects of
excluded volume, are

ϵðnÞ ¼ qðnÞ × ϵpl

�
n
q

�
; ð41Þ

pðnÞ ¼ δðnÞ × ppl

�
n
q

�
; ð42Þ

μðnÞ ¼ λðnÞ × ppl

�
n
q

�
þ μpl

�
n
q

�
; ð43Þ

as shown in Eqs. (16), (24), and (31).

III. ONE-FLAVOR QMDDM: THE IMPACT
OF EXCLUDED VOLUME EFFECTS

We will now present a reformulation of the QMDDM at
T ¼ 0 focusing on a system with a single particle species.
We will account for excluded volume effects by employing
various Ansätze for b ¼ bðnÞ. As discussed in the previous
section, we will utilize the thermodynamic expressions
from the standard QMDDM [16], evaluate them as a
function of n=q, and incorporate the correction factors
q, δ, and λ. For reference, Appendix A summarizes the
expressions for the one-flavor QMDDM for pointlike
particles as derived in Ref. [16].
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To calculate the energy density, we start by using
Eq. (A5) in terms of the variable n=qðnÞ. To simplify
the notation, we introduce an auxiliary variable ñ defined as

ñ≡ n
q
: ð44Þ

In terms of this new variable we have

ϵplðñÞ ¼ gM̃4χðx̃Þ; ð45Þ

where the function χ is given in Eq. (A4), g is the particle’s
degeneracy, and

M̃ ≡MðñÞ ¼ mþ C

ña=3
; ð46Þ

x̃≡ xðñÞ ¼ 1

M̃

�
6π2ñ
g

�
1=3

: ð47Þ

In these equations,m represents the current mass, while the
constants a and C are treated as free parameters (see
Ref. [16] for details).1

Replacing ϵplðñÞ in Eq. (41) we obtain the final expres-
sion for the energy density with excluded volume effects,

ϵðnÞ ¼ qðnÞgM̃4χðx̃Þ: ð48Þ

To determine the pressure, we employ Eq. (A7) as a
function of ñ,

pplðñÞ ¼ pFGðñÞ − BðñÞ; ð49Þ

being

pFGðñÞ≡ gM̃4ϕðx̃Þ; ð50Þ

BðñÞ≡ −gM̃3ñ
∂M̃
∂ñ

βðx̃Þ > 0; ð51Þ

∂M̃
∂ñ

¼ −
C
3

a

ña=3þ1
: ð52Þ

The functions ϕ and β are provided in Eqs. (A11) and
(A12), respectively. Substituting pplðñÞ into Eq. (42), we

obtain the expression for the pressure that accounts for
excluded volume effects,

pðnÞ ¼ δðnÞ½pFGðñÞ − BðñÞ�: ð53Þ

Finally, for the calculation of the chemical potential, we
begin with Eq. (A14) expressed in terms of ñ,

μplðñÞ ¼ μFGðñÞ − BðñÞ
ñ

; ð54Þ

where μFGðñÞ≡ M̃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2 þ 1

p
. The chemical potential with

excluded volume effects is obtained by substituting μplðñÞ
in Eq. (43) and reads

μðnÞ ¼ λðnÞ½pFGðñÞ − BðñÞ� þ
�
μFGðñÞ − BðñÞ

ñ

�
: ð55Þ

In the following subsections, we focus on different
models for b ¼ bðnÞ.

A. Constant excluded volume

The simplest expression for b ¼ bðnÞ is to take it as a
constant. Although this choice is in contradiction with the
asymptotic freedom behavior of QCD, because volume
exclusion does not vanish as n → ∞, we will consider it in
the following as a starting point.
From Eqs. (38)–(40), the functions qðnÞ, δðnÞ, and

λðnÞ read

q ¼ 1 − nb; ð56Þ

δ ¼ 1; ð57Þ

λ ¼ b: ð58Þ

From Eqs. (48), (53), and (55), we find

ϵðnÞ ¼ ð1 − nbÞgM̃4χðx̃Þ; ð59Þ

pðnÞ ¼ pFGðñÞ − BðñÞ; ð60Þ

μðnÞ ¼ b½pFGðñÞ − BðñÞ� þ
�
μFGðñÞ − BðñÞ

ñ

�
; ð61Þ

with

ñðnÞ ¼ n
1 − nb

: ð62Þ

These new expressions contain excluded volume correc-
tions through ñ. The chemical potential is additionally
corrected by an extra term.
In Fig. 1 we show the effective quasiparticle mass M for

different values of b. Note that, while the mass formula

1The term C=na=3B in the mass formula accounts for the
nonperturbative effects of QCD, primarily arising from the linear
confinement of quarks for a ¼ 1. An additional term, represent-
ing the leading contribution of perturbative interactions, has been
incorporated into the mass formula [15,31]. For a ¼ 1, the mass
formula with excluded volume effects, as used in Eq. (46), can be
expanded in a series as follows: M ∝ C

nB
þ 1

9
Cb2nB þ � � �. Note

that the expansion contains a term which increases with the
baryon number density, representing a similar effect to the one
studied in [15,31].
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predicts M to diverge as n → 0, in practice, M has a
maximum finite value at zero pressure and approaches the
current quark mass m at large pressures and/or densities.
Excluded volume effects decrease the effective mass at a
constant density, but at a specific pressure, M remains
constant for all values of b. This overlapping is due to the
fact that both M and p depend directly on ñ without any
explicit dependence on the constant b [cf. Eqs. (46)
and (60)].
In Fig. 2 we show the EOS of a one-component gas for

different values of b. Increasing values of the parameter b

result in a stiffer EOS. Note that the curves tend to overlap
at zero pressure and clearly separate as the particle density
or energy density increases. This behavior arises from the
fact that the excluded volume is constant; this means that
the role of the excluded volume becomes proportionally
less significant when the particles are widely separated (low
density). The minimum of ϵ=n occurs at p ¼ 0 as required
by thermodynamic consistency. Notably, the curve for ϵ=n
as a function of pressure is independent of b. The above
mentioned overlapping results from both ϵ=n and p having
a direct dependence with ñ, without any explicit depend-
ency on b [note that combining Eqs. (59) and (62) one
finds ϵ=n ¼ gM̃4χðx̃Þ=ñ].
We also show the speed of sound cs defined by

c2s ¼
∂p
∂ϵ

: ð63Þ

At densities above a certain threshold, the speed of sound
exceeds the speed of light for b ≠ 0.
Finally, notice that Eq. (62) can be rewritten in terms of

the specific volumes v≡ 1=n and ṽ≡ 1=ñ as

ṽ ¼ v − b: ð64Þ

The available volume per particle ṽ cannot be negative, as
that would mean that rigid spheres of volume b occupy a
volume larger than the system’s volume. Therefore,
excluded volume effects are no longer physically mean-
ingful for v < b. As a consequence, the EOS is no longer
valid at particle number densities exceeding 1=b. For
b ¼ 0.1 fm3, this threshold density is around 62n0, while
for b ¼ 0.3 fm3 it is approximately 20n0 (being n0 the
nuclear saturation density). Moreover, it must be noticed
that the causality condition cs < c is violated at much
smaller densities, as seen in Fig. 2(d). Additionally, cs does
not approach the conformal limit of 1=

ffiffiffi
3

p
at asymptotically

high densities.
The above discussion shows that the Ansatz with con-

stant b is not satisfactory. In the following subsection, we
will explore other formulas for bðnÞ that fulfill causality
and the asymptotic freedom condition of QCD.

B. Density-dependent excluded volume

Now, we adopt an Ansatz for b in agreement with the
asymptotic freedom behavior of QCD, i.e., a formula that
allows b to vanish as n → ∞. To this end, b will be
expressed as

b ¼ κn−l; ð65Þ

where κ and l are positive constants. Note that while this
formula predicts b to diverge as n → 0, in practice b has a
maximum finite value at zero pressure.

FIG. 1. Constant excluded volume Ansatz: Effective quasipar-
ticle massM depicted as a function of (a) particle number density
n=n0, (b) chemical potential, and (c) pressure. Parameters used
are m ¼ 5 MeV, a ¼ 2, and C ¼ 100, with units assigned such
that n is in fm−3 and M is in MeV.

FIG. 2. EOS for a one-component gas employing the constant
excluded volume Ansatz. (a) Total pressure p plotted against
particle number density n in units of the nuclear saturation
density n0. (b) Energy per particle ϵ=n as a function of p.
(c) Pressure versus energy density. (d) Speed of sound as a
function of n=n0.
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The values of the parameters κ and l are in fact
interconnected. At n ∼ n0, we expect that repulsive inter-
actions will have a range smaller than about L ∼ 1 fm,
leading to an excluded volume not larger than approx-
imately 4

3
πL3 ∼ 4 fm3. Consequently, if we significantly

increase the parameter l, the constant κ cannot be exces-
sively large, as that would result in an overly extensive
excluded region. Taking l ¼ 1 as a reference, Eq. (65)
gives κ ¼ bn, yielding a maximum value of κ ≈ 0.64 for
n ¼ 0.16 fm−3. This upper limit is more stringent than the
absolute limiting value for κ coming from the condition that
the available volume cannot be larger than the total volume;
i.e., in Eq. (64) ṽ=v must be < 1, meaning that for l ¼ 1, κ
cannot be larger than 1.
In the remainder of this section, we will adopt the

following parameter values: κ ¼ 0, 0.16, and 0.64 together
with l ¼ 1. The excluded volume per particle reads

bðnÞ ¼ κ

n
; ð66Þ

and, using Eqs. (38)–(40), the functions qðnÞ, δðnÞ, and
λðnÞ are

q ¼ 1 − κ; ð67Þ

δ ¼ 1 − κ; ð68Þ

λ ¼ 0: ð69Þ

From Eqs. (48), (53), and (55), we find

ϵðnÞ ¼ ð1 − κÞgM̃4χðx̃Þ; ð70Þ

pðnÞ ¼ ð1 − κÞ½pFGðñÞ − BðñÞ�; ð71Þ

μðnÞ ¼ μFGðñÞ − BðñÞ
ñ

; ð72Þ

with

ñðnÞ ¼ n
1 − κ

: ð73Þ

Notice that the functional forms of the pressure and energy
density resemble those for pointlike particles. The main
differences are the introduction of an overall correction
factor 1 − κ and the evaluation of the functions at ñ rather
than n. The expression for the chemical potential remains
the same as for pointlike particles, with the sole distinction
being that it is now evaluated at ñ.
In Fig. 3, we display the effective quasiparticle massM as

a function of density, chemical potential, and pressure. We
considered different κ values with a constant exponent
l ¼ 1. The mass M exhibits the same qualitative behavior
as that of pointlike particles; that is, it has a finite maximum

value at zero pressure and gradually approaches the current
massm at extremely high pressures or densities. For specific
density or pressure values, M is always lower for higher κ.
Interestingly, the mass curves for different κ values match
when plotted against the chemical potential. This is because
both M and μ depend directly on ñ without any explicit
dependence on κ, as shown in Eqs. (46) and (72).
In Fig. 4, we present the EOS for various values of κ. The

pressure behavior displayed in Fig. 4 is qualitatively differ-
ent from that in Fig. 2. As seen in Figs. 4(a) and 4(c), the
curves for different κ values are separated at all densities.
The curves do not overlap at low n because the excluded
volume is inversely dependent on the density. As a result,
the volume exclusion effect becomes more significant at
lower densities. As density increases, volume exclusion

FIG. 3. Effective quasiparticle massM in the density-dependent
excluded volume Ansatz. (a)–(c) Organization is the same as in
Fig. 1, with identical choices for the parameters m, a, and C.

FIG. 4. EOS for a one-component gas with the density-
dependent excluded volume Ansatz. (a)–(d) Organization is the
same as in Fig. 2, with identical choices for the parameters
m, a, and C.
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vanishes, and the separation between the curves tends to
remain constant, as observed in Fig. 4(c). For the same
reason, all the speed of sound curves converge to the
conformal limit of cs ¼ 1=

ffiffiffi
3

p
for asymptotically large

densities. Another relevant aspect of the EOS is its increas-
ing stiffness as κ rises, as seen in Figs. 4(a) and 4(c). As seen
in Fig. 4(b), the minimum of ϵ=n occurs at p ¼ 0, as
required for thermodynamic consistency. Contrary to the
case of Sec. III A, the curves no longer overlap.
In summary, in contrast to the constant excluded-volume

approach discussed in the previous subsection, the density-
dependent Ansatz provided by Eq. (66) yields a viable
quark matter EOS, in agreement with qualitative aspects
of QCD.

IV. EXCLUDED VOLUME EFFECTS
IN A GENERIC THREE-FLAVOR EOS

For applications in astrophysics, the most relevant state
of quark matter involves an electrically neutral mixture of
up (u), down (d), and strange (s) quarks together with a
minor proportion of electrons (e), with all components in a
state of chemical equilibrium due to the influence of weak
interactions. Below, we will expand upon the equations
presented in Sec. II to accommodate the scenario involving
all three quark flavors.

A. EOS for pointlike particles

Assuming the absence of excluded volume effects, let the
Helmholtz free energy function be denoted as FplðV; fNjgÞ,
where pl represents pointlike particles. Here, fNjg repre-
sents the set fNu; Nd; Nsg, with Nu, Nd, and Ns being the
total number of particles for the u, d, and s quarks,
respectively. At T ¼ 0, the energy density is identical to
the Helmholtz free energy per unit volume,

ϵpl ¼
FplðV; fNjgÞ

V
: ð74Þ

All other thermodynamic quantities of the system of point-
like particles are derived directly from FplðV; fNjgÞ. The
pressure is given by

pplðV; fNjgÞ ¼ −
∂FplðV; fNjgÞ

∂V

����
fNjg

ð75Þ

and the chemical potential by

μpl;kðV; fNjgÞ ¼
∂FplðV; fNjgÞ

∂Nk

����
V;fNj≠kg

: ð76Þ

Using the extensivity of F and the intensivity of the
pressure and chemical potential [30], i.e.,

FplðαV; fαNjgÞ ¼ αFplðV; fNjgÞ; ð77Þ

pplðαV; fαNjgÞ ¼ pplðV; fNjgÞ; ð78Þ

μpl;kðαV; fαNjgÞ ¼ μpl;kðV; fNjgÞ; ð79Þ

we can express all thermodynamic quantities in terms of the
particle number densities ni ≡ Ni=V. By setting α ¼ V−1

the equations transform into

ϵplðfnjgÞ ¼
FplðV; fNjgÞ

V
¼ Fpl

�
V
V
;

�
Nj

V

	�
¼ Fplð1; fnjgÞ; ð80Þ

pplðfnjgÞ ¼ ppl

�
1;

�
Nj

V

	�
; ð81Þ

μpl;kðfnjgÞ ¼ μpl;k

�
1;

�
Nj

V

	�
: ð82Þ

B. EOS with excluded volume effects

To account for excluded volume effects, we replace the
system’s volume V by the available volume Ṽ. Since
volume exclusion is the result of repulsion associated with
strong interactions, the natural generalization of the one-
flavor expression given in Eq. (10) is the following flavor-
independent formula:

Ṽ ¼ V − bðnBÞNB; ð83Þ

where NB is the total baryon number of the system and b
represents the volume that would be excluded by each
particle if it were treated as a rigid sphere. To maintain
generality, we allow b to depend on the baryon number
density nB, which is given by

nB ¼ 1

3
ðnu þ nd þ nsÞ: ð84Þ

Once we replace V with Ṽ in the Helmholtz free energy
FplðV; fNigÞ of pointlike particles, the resulting function
FplðṼ; fNigÞ becomes the fundamental starting point for
the thermodynamic description that incorporates excluded
volume effects.

1. Energy density

At T ¼ 0, the energy density is equivalent to the
Helmholtz free energy per unit volume,

ϵ ¼ FplðṼ; fNjgÞ
V

: ð85Þ
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By applying the homogeneity property from Eq. (77) with
α ¼ Ṽ−1 to Eq. (85), the energy density can be reformu-
lated as

ϵ ¼ Ṽ

Ṽ

FplðṼ; fNjgÞ
V

¼ Ṽ
V
Fpl

�
Ṽ

Ṽ
;

�
Nj

Ṽ

	�
: ð86Þ

We now introduce the available volume fraction q,
defined as

qðnBÞ≡ Ṽ
V
¼ 1 − nBbðnBÞ; ð87Þ

which depends solely on the postulated Ansatz for the
excluded volume per particle bðnBÞ. Note that q satisfies
0 < q < 1 since 0 < Ṽ < V. The ratio Nj=Ṽ in Eq. (86)
can be rewritten as

Nj

Ṽ
¼ Nj

V
V

Ṽ
¼ nj

qðnBÞ
: ð88Þ

Thus, Eq. (86) can be reformulated as

ϵðfnjgÞ ¼ qðnBÞFpl

�
1;

�
nj

qðnBÞ
	�

; ð89Þ

which is exclusively a function of fnjg.
In Eq. (89), we identify the energy density for pointlike

particles, as depicted by Eq. (80), expressed as a function of
fnj=qg. This allows us to obtain the energy density that
incorporates excluded volume effects in terms of ϵpl,

ϵðfnjgÞ ¼ qðnBÞϵpl
��

nj
qðnBÞ

	�
: ð90Þ

This equation provides a straightforward procedure to
calculate the energy density with excluded volume cor-
rections. The process begins by expressing ϵpl for pointlike
particles, which we assume as a known quantity, as a
function of the modified variables fnj=qðnBÞg and then
multiplying the result by the correction factor qðnBÞ
defined in Eq. (87). As emphasized earlier, qðnBÞ depends
solely on the chosen Ansatz for the excluded volume per
particle bðnBÞ.

2. Pressure

As discussed before, excluded volume effects are taken
into account by substituting Ṽ ¼ V − bðnBÞNB into the
Helmholtz free energy for pointlike particles. With such
replacement, F will still be a function of V and fNjg, but
the dependence on volume occurs only through the auxiliary
function Ṽ ¼ ṼðV; fNjgÞ. To determine the pressure of the
system, we follow the same procedure as in Sec. II B 2. We
start with the pressure definition

pðV; fNjgÞ ¼ −
∂FplðṼ; fNjgÞ

∂V

����
fNjg

; ð91Þ

which can be expressed as

∂Fpl

∂V

����
fNjg

¼ ∂Fpl

∂Ṽ

����
fNjg

∂Ṽ
∂V

����
fNjg

þ
X
i

∂Fpl

∂Ni

����
Ṽ;fNj≠ig

∂Ni

∂V

����
fNjg

: ð92Þ

Using the fact that ∂Ni=∂VjfNjg ¼ 0 and defining δ as

δ≡ ∂Ṽ
∂V

����
fNjg

¼ ∂ðV − bNBÞ
∂V

����
fNjg

¼ 1þ n2B
db
dnB

; ð93Þ

we can reformulate Eq. (92) in the following manner:

p ¼ −δðnBÞ
∂FplðṼ; fNjgÞ

∂Ṽ

����
fNjg

: ð94Þ

The derivative in the previous equation has the same
functional form as the derivative in Eq. (75), but it is now
evaluated at Ṽ instead of at V. Therefore, it can be identified
as the pointlike pressure −pplðṼ; fNjgÞ. Consequently,
Eq. (94) reads

pðV; fNjgÞ ¼ δðnBÞpplðṼ; fNjgÞ: ð95Þ

Given that pressure is an intensive quantity, it satisfies
the condition pðαV; αNÞ ¼ pðV;NÞ, for arbitrary α [30].
Setting α ¼ Ṽ−1, we obtain

pplðṼ; fNjgÞ ¼ ppl

�
Ṽ

Ṽ
;

�
Nj

Ṽ

	�

¼ ppl

�
1;

�
nj
q

	�
; ð96Þ

where we have used the fact that Nj=Ṽ ¼ ðNj=VÞ×
ðV=ṼÞ ¼ nj=q.
Therefore, the pressure for the system with excluded

volume effects can be obtained from the pressure of
pointlike particles as

pðfnjgÞ ¼ δðnBÞppl

��
nj
q

	�
: ð97Þ

Once again, we arrive at a straightforward procedure for
calculating the pressure with excluded volume corrections.
We begin with the known expression for the pressure ppl

for pointlike particles, rewrite it in terms of the variable set
fnj=qg, and multiply by the factor δ. Both q and δ are
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uniquely determined by the chosen Ansatz bðnBÞ for the
excluded volume per particle.

3. Chemical potential

To obtain the chemical potential, we proceed as in
Sec. II B 3. We start from

μkðV; fNjgÞ ¼
∂FplðṼ; fNjgÞ

∂Nk

����
V;fNj≠kg

; ð98Þ

which can be expressed as

μk ¼
∂Fpl

∂Ṽ

����
fNjg

∂Ṽ
∂Nk

����
V;fNj≠kg

þ
X
i

∂Fpl

∂Ni

����
Ṽ;Nj≠i

∂Ni

∂Nk

����
V;fNj≠kg

: ð99Þ

As already shown, the derivative of F appearing in the first
term of the previous equation is −pplðṼ; fNjgÞ. On the
other hand, the derivative of F in the second term has
the same functional form as the derivative in Eq. (76), with
the only difference being that it is now evaluated at Ṽ
instead of at V. Consequently,

μpl;kðṼ; fNjgÞ ¼
∂FplðṼ; fNjgÞ

∂Nk

����
Ṽ;fNj≠kg

: ð100Þ

Additionally, we define

−λ≡ ∂Ṽ
∂Nk

����
V;fNj≠kg

¼ ∂ðV − bNBÞ
∂Nk

����
V;fNj≠kg

¼ −
1

3

�
bþ nB

db
dnB

�
: ð101Þ

Replacing the prior expressions in Eq. (99), we obtain

μk ¼ λðnBÞpplðṼ; fNjgÞ þ μpl;kðṼ; fNjgÞ: ð102Þ

The chemical potential is an intensive quantity; thus, using
the same reasoning that led to Eq. (96) we get

μpl;kðṼ; fNjgÞ ¼ μpl;k

�
1;

�
nj
q

	�
: ð103Þ

Therefore, Eq. (102) reads

μkðfnjgÞ ¼ λðnBÞppl

��
nj
q

	�
þ μpl;k

��
nj
q

	�
: ð104Þ

Similar to the case of Eq. (97), the above expression takes
advantage of the already known expressions μpl and ppl for

pointlike particles as functions of the variable set fnj=qg,
along with the correction factor λ.

4. Thermodynamic consistency: A look at Euler’s relation

To verify the thermodynamic consistency of the for-
mulas incorporating excluded volume effects, we begin
by postulating that the system of pointlike particles is
thermodynamically consistent and satisfies the Euler
relation (cf. Sec. II B 4),

ϵplðV; fNjgÞ ¼ −pplðV; fNjgÞ þ
X
k

μpl;kðV; fNjgÞ
Nk

V
:

ð105Þ

This relation holds for any system volume, including the
volume Ṽ. Consequently, we obtain

ϵplðṼ; fNjgÞ ¼ −pplðṼ; fNjgÞ þ
X
k

μpl;kðṼ; fNjgÞ
Nk

Ṽ
:

ð106Þ

Using Nk=Ṽ ¼ nk=q and reorganizing the previous expres-
sion one obtains

qϵplðṼ; fNjgÞ ¼ −qpplðṼ; fNjgÞ þ
X
k

μpl;kðṼ; fNjgÞnk:

ð107Þ

We first substitute q with 1 − bnB. Next, we add and
subtract the term ppln2B

db
dnB

to the equation. After rearrang-
ing the terms, the final form of the equation is

qϵpl ¼ −ppl − ppln2B
db
dnB

þ
X
k

nkμpl;k

þ ppl

�
nB

db
dnB

þ b

�
nB; ð108Þ

which simplifies to

qϵpl ¼ −
�
1þ n2B

db
dnB

�
ppl

þ
X
k

nk

�
μpl;k þ ppl

1

3

�
nB

db
dnB

þ b

��
: ð109Þ

This expression incorporates the previously defined factors
δ and λ, along with the expressions presented in Eqs. (90),
(97), and (104), culminating in the result

ϵðṼ; fNjgÞ ¼ −pðṼ; fNjgÞ þ
X
k

μkðṼ; fNjgÞnk: ð110Þ
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In summary, if the Euler relation is valid for a system of
pointlike particles, it is equally valid for the system with
excluded volume effects, thus confirming the thermody-
namic consistency of the formalism.

C. Summary of Sec. IV

In this section, we showed how to straightforwardly
incorporate excluded volume effects into any zero-
temperature EOS already formulated for pointlike particles
in the Helmholtz representation. We begin by considering
the established expressions for the energy density ϵpl, the
pressure ppl, and the chemical potentials μpl;i of pointlike
particles, which depend on the set of particle number
densities fnjg. Initially, we rewrite ϵpl, ppl, and μpl;i using
the modified variable set fnj=qg, where q is defined as

qðnBÞ ¼ 1 − nBbðnBÞ; ð111Þ

in accordance with Eq. (87). In this context, bðnBÞ
represents the excluded volume per particle and is incorpo-
rated into the model as a phenomenological Ansatz. Next,
we determine the correction factors δ and λ, which are
defined in Eqs. (93) and (101), respectively,

δ ¼ 1þ n2B
db
dnB

; ð112Þ

λ ¼ 1

3

�
bþ nB

db
dnB

�
: ð113Þ

These factors are derived directly from the specified
function for bðnBÞ. Finally, as shown in Eqs. (90), (97),
and (104), the energy density, pressure, and chemical
potentials, incorporating excluded volume effects, are
expressed as follows:

ϵðfnjgÞ ¼ q
X
i

ϵpl;iðfnj=qgÞ; ð114Þ

pðfnjgÞ ¼ δ
X
i

ppl;iðfnj=qgÞ; ð115Þ

μkðfnjgÞ ¼ λðnBÞppl

��
nj
q

	�
þ μpl;k

��
nj
q

	�
: ð116Þ

V. THREE-FLAVOR QMDDM WITH EXCLUDED
VOLUME EFFECTS: FORMALISM

In this section, we use the formalism presented in Sec. IV
to incorporate excluded volume effects in the three-flavor
QMDDM EOS developed in Ref. [16]. For completeness,
we provide in Appendix B a summary of the relevant
equations of the EOS for pointlike particles. The mass of
the quark quasiparticle of flavor i is given by

Mi ¼ mi þ
C

na=3B

; ði ¼ u; d; sÞ; ð117Þ

where C and a are positive flavor-independent free
parameters.
In order to calculate the energy density, we start from the

expression for pointlike particles given in Appendix B,

ϵpl ¼
X
i

gM4
i χðxiÞ; ð118Þ

where the variable xi is defined in Eq. (B4) and the function
χ is given in Eq. (A4).
Excluded volume effects are incorporated by writing the

previous expression in terms of the set of variables fnj=qg
and including the correction factor q, as indicated in
Eq. (114). To simplify the notation, we will use from
now on the auxiliary variable

ñi ¼
ni

qðnBÞ
: ð119Þ

After this procedure, the energy density reads

ϵ ¼
X
i

qðnBÞgM̃4
i χðx̃iÞ; ð120Þ

where g ¼ 6 is the quark degeneracy and

M̃i ≡MiðñBÞ ¼ mi þ
C

ña=3B

; ð121Þ

x̃i ≡ xðñiÞ ¼
1

MiðñBÞ
�
6π2ñi
g

�
1=3

; ð122Þ

ñB ≡ NB=Ṽ ¼ 1

3
ðñu þ ñd þ ñsÞ: ð123Þ

Adding the contribution of electrons to Eq. (120) we
obtain the complete energy density with excluded volume
corrections,

ϵ ¼
X

i¼u;d;s

qðnBÞgM̃4
i χðx̃iÞ þ ϵe; ð124Þ

where electrons are described as pointlike particles, i.e.,
ϵe ¼ gem4

eχðxeÞ, ge ¼ 2, xe ¼ m−1
e ð6π2ne=geÞ1=3, with me

being the electron’s mass.
To determine the pressure, we start from the expression

for pointlike particles given in Appendix B,

ppl ¼
X
i

½gM4
iϕðxiÞ − Bi�; ð125Þ

where ϕ is defined in Eq. (A11) and the “bag constant” Bi
is given by Eq. (B8).
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To take into account excluded volume effects, we use
Eq. (115), i.e., we rewrite Eq. (125) in terms of ñi and add
the correction factor δ. The complete expression for the
pressure is obtained by adding the contribution of electrons.
The result is

p ¼ δðnBÞ
X

i¼u;d;s

½gM̃4
iϕðx̃iÞ − B̃i� þ pe; ð126Þ

where pe ¼ gem4
eϕðxeÞ and B̃i ≡ BðñiÞ.

Finally, for determining the chemical potential we start
from the expression for pointlike particles given in
Eq. (B10),

μpl;i ¼ Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
−

1

3nB

X
j

Bj: ð127Þ

To take into account excluded volume effects, we use
Eq. (116), i.e., we rewrite Eqs. (125) and (127) in terms of
ñi and include the correction factor λ. The result is

μi ¼ λðnBÞ
X

i¼u;d;s

½gM̃4
iϕðx̃iÞ − B̃i�

þ M̃i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2i þ 1

q
−

1

3ñB

X
i¼u;d;s

B̃i: ð128Þ

VI. THREE-FLAVOR QMDDM WITH EXCLUDED
VOLUME EFFECTS: NUMERICAL RESULTS

A. The EOS

Now, we adopt an Ansatz for b consistent with the
asymptotic freedom behavior of QCD, i.e., we adopt a
formula that allows b to approach zero at asymptotically
large densities. Based on the prescription of Eq. (65) with
l ¼ 1, the excluded volume will be expressed as2

b ¼ κ

nB
; ð129Þ

with κ being a positive constant.
Using Eqs. (111)–(113), the functions q, δ, and λ are

qðnBÞ ¼ 1 − κ; ð130Þ
δðnBÞ ¼ 1 − κ; ð131Þ

λðnBÞ ¼ 0: ð132Þ

Replacing these parameters in Eqs. (124), (126), and
(128), we obtain

ϵ ¼
X

i¼u;d;s

ð1 − κÞgM̃4
i χðx̃iÞ þ ϵe; ð133Þ

p ¼
X

i¼u;d;s

ð1 − κÞðgM̃4
iϕðx̃iÞ − B̃iÞ þ pe; ð134Þ

μi ¼ M̃i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2i þ 1

q
−

1

3ñB

X
j

B̃j: ð135Þ

In the context of cold dense quark matter found in
typical neutron star conditions, the preceding expressions
need to be supplemented with the requirements of charge
neutrality and chemical equilibrium under weak inter-
actions. Assuming that neutrinos leave freely the system
ðμνe ¼ 0Þ, the chemical equilibrium conditions read

μd ¼ μu þ μe; ð136Þ

μs ¼ μd; ð137Þ

while charge neutrality is given by

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0: ð138Þ

In Figs. 5–7, we present results for the EOS calculated
with two different sets of parameters a and C, along with
three values of κ.
In Fig. 5, we depict the Gibbs free energy per baryon,

G=nB ¼ ðϵþ pÞ=nB, against pressure. Depending on the
selected parameters a, C, and κ, the value of G=nB at p ¼ 0

FIG. 5. Gibbs free energy per baryon of two- and three-flavor
quark matter in bulk for different choices of the EOS parameters
a, C, and κ. In (a), results are shown for a parameter choice
leading to strange matter, while in (b) they are for a parameter
choice yielding hybrid matter (see the main text for further
details).

2It is noteworthy to observe the results at μB ¼ 0 along the
finite-temperature (T) axis, which make use of lattice QCD data
at imaginary chemical potential [32]. A detailed examination of
Fig. 3 of Ref. [32], which illustrates the parameter b fitted to
lattice data as a function of T, reveals a scaling of 1=T3 at high
temperatures. Considering that densities scale with T3 at high
temperatures, this suggests that b scales inversely with the density
(∼1=n) also in the T direction.
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can either exceed or remain below the energy per nucleon of
the most tightly bound atomic nucleus, 62Ni, approximately
930 MeV. Consequently, two distinct scenarios are pre-
sented in Figs. 5(a) and 5(b). For the parameter set yielding
G=nB < 930 MeV at vanishing pressure and temperature,
as illustrated in Fig. 5(a), we are in the domain of self-bound
quark matter, i.e., bulk quark matter in vacuum remains
stable and does not transition into hadronic matter. When
this self-bound matter encompasses three flavors at
p ¼ T ¼ 0, it is designated as strange quark matter
(SQM). Under these conditions, nature would allow the
existence of compact stars completely constituted of quark
matter, known as self-bound quark stars.3 Conversely,
Fig. 5(b) shows the situation where G=nB > 930 MeV.
This is referred to as hybrid matter due to its transition from
a hadronic state at lower pressures to a deconfined state at
higher pressures. In such scenarios, stars with quark matter
manifest as hybrid stars with a quark core surrounded by
hadronic matter. For the parameter selection illustrated in
Fig. 5(b), the uds curves consistently appear below their ud
counterparts, indicating that quark matter encompasses all
three flavors. The Gibbs free energy curves exhibit signifi-
cant sensitivity to variations in the parameter κ. Nonetheless,
we always observe SQM in Fig. 5(a) and hybrid matter in
Fig. 5(b) for all our choices of κ.
In Fig. 6 we show the total pressure p and the bag

constant B as a function of the energy density for the same
parameter choices of Fig. 5. In all cases, the pressure
becomes negative at finite energy density due to the effect
of B. The bag constant depends on density, always being a
decreasing function of ϵ. At asymptotically large densities
B tends to zero and the system behaves as a free Fermi gas
of electrons and quarks with Mi ¼ mi. The EOS is notably
sensitive to changes in the parameter κ, invariably leading
to an increase in the stiffness of the EOS as κ increases. As
κ rises, the bag constant decreases, which in turn shifts the

energy density at which the matter pressure becomes zero
to lower energy density values. Since the excluded volume
is inversely dependent on the baryon number density, the
excluded volume effect vanishes at high densities, causing
the curves with different κ values to converge with
each other.
The speed of sound cs is shown in Fig. 7 for the same

parameter choices of previous figures. In all cases, cs is a
decreasing function of the baryon number density and tends
asymptotically to the conformal limit cs ¼ 1=

ffiffiffi
3

p
. Since the

pressure tends to zero at a finite density, the curves are
truncated at the point where p ¼ 0. As the value of the
parameter κ increases, the speed of sound decreases for a
given density. This difference vanishes at asymptotically
high densities, at which point all curves converge with
each other.

B. Astrophysical applications

Finally, we analyze stellar configurations based on the
two main parameter sets discussed in the previous section,
representing strange quark matter and hybrid matter. This
paper does not aim for a comprehensive investigation of
stellar structure; a more detailed exploration is planned for
a future publication. Our primary goal here is to show that
the presented model can produce stellar configurations,
both strange and hybrid, consistent with current astrophysi-
cal constraints.
Let us first consider strange star configurations shown in

Fig. 8. For pointlike quarks (κ ¼ 0), the maximum mass
does not reach the required 2M⊙ constraint and the mass-
radius curve does not fulfill the astrophysical constraints
set by NICER [20,21,33,34] observations. Upon account-
ing for the excluded volume of quarks, the EOS stiffens as
described in the previous section. Consequently, the
maximum mass rises, and the stellar radii increase for a
given mass. The maximum mass increases significantly,
approaching close to 2.5M⊙ for κ ¼ 0.5.
In Fig. 9 we analyze the properties of the hybrid matter

EOS and its implications on the mass-radius relationship of
compact objects. The hybrid EOS shown in Fig. 9(a) was
constructed using the relativistic Brueckner-Hartree-Fock

FIG. 6. (a),(b) Total pressure p and bag constant B as a function
of the energy density for the same parameter choices of Fig. 5.

FIG. 7. (a),(b) Speed of sound as a function of the baryon
number density for the same parameter choices of Fig. 5.

3Note that, as shown in the analysis of Fig. 4 from Ref. [16], it
is possible that two-flavor matter may be more stable than three-
flavor matter for a specific choice of parameters. However, this
specific case will not be analyzed in this study.
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hadronic EOS known as MPA1 [36] (red curve) together
with quark matter characterized by parameters a ¼ 3 and
C ¼ 75, with different levels of volume exclusion (black
curves). The plateaus represent sharp first-order phase
transitions between hadrons and quarks. Increasing κ
diminishes the transition pressure as well as the energy
density jump between both phases. The quark EOS
becomes stiffer as κ increases. In Fig. 9(b), we show the
mass-radius relationship, resulting from the aforemen-
tioned EOS. It should be noted that, for quark matter
composed of pointlike particles (κ ¼ 0), all dynamically
stable configurations (i.e., to the right of the maximum
mass point) are hadronic. Hybrid stars appear only beyond
the maximum mass object and are dynamically unstable for
κ ¼ 0. As the transition pressure decreases with an increas-
ing value of κ, it becomes possible for dynamically stable
hybrid stellar configurations to emerge, satisfying modern
astrophysical constraints. Notice that the maximum mass
decreases as κ increases. Specifically, for the value κ ¼ 0.6,
the maximum mass is around 2M⊙, and for κ ¼ 0.6 it is
around 2M⊙. It is important to emphasize that finding
parametrizations of the EOS that yield hybrid stars with
Mmax > 2M⊙ is challenging when considering pointlike
particles. In this regard, the inclusion of excluded volume
effects is essential for the emergence of dynamically stable
models of hybrid stars consistent with astrophysical
requirements.
The main conclusion from the preceding analysis is that

the QMDDM with excluded volume effects is not only
viable from an astrophysical standpoint, but that excluded
volume effects play a crucial role in making the model
consistent with astrophysical constraints. A more in-depth
examination is reserved for a future study.

VII. SUMMARY AND CONCLUSIONS

In our previous study [16], we revisited the QMDDM,
adopting the canonical ensemble framework in place of the
usual grand canonical ensemble. This methodological
change was essential for resolving the thermodynamic
inconsistencies that had persisted in the model for decades.
The QMDDM is based on the idea that some relevant
aspects of the strong interaction between quarks, particu-
larly in the high-density, low-temperature regime, can be
effectively modeled by treating the system as a gas of
quasiparticles, wherein the effective masses of these quarks
depend on the local density. As a natural consequence of
this density-dependent quark mass, a “bag” term naturally
arises in the pressure, resulting in quark confinement.
Clearly, not all qualitative features of strong interactions
can be faithfully replicated through the simple introduction
of density-dependent masses. Improved versions of the
model are necessary to better capture some phenomeno-
logical aspects of nonperturbative QCD. In this present

FIG. 9. (a) The EOS for hybrid matter with parameters a ¼ 3
and C ¼ 75. The red curve represents the hadron matter EOS
according to the MPA1 model. The black curves depict the quark
matter EOS for pointlike quasiparticles (κ ¼ 0) and with ex-
cluded volume effects with κ ¼ 0.3 and κ ¼ 0.5. (b) The corre-
sponding mass-radius relationship for these EOS. The colored
bands in the lower diagram denote the observational constraints
introduced in Fig. 8.

FIG. 8. Mass-radius relationship for strange quark stars with
parameters a ¼ 3 and C ¼ 58. Curves represent different values
of the parameter κ. Colored bands correspond to the 95% con-
fidence intervals for the mass and radius of the millisecond
pulsars PSR J0030þ 0451 [33,34] and PSR J0740þ 6620
[20,21] measured recently by the Neutron Star Interior Compo-
sition Explorer (NICER) and the 90% confidence intervals for the
merging event GW170817 [35] (LIGO/Virgo).
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study, we focused our efforts in that direction, incorporat-
ing the influence of repulsive interactions. We approached
this by departing from the assumption of pointlike particles,
instead considering particles as entities endowed with an
excluded volume in their vicinity. The present approach
aims to bring a more realistic representation of the quark
matter EOS of dense matter at vanishing temperature.
To account for the influence of excluded volume, we

introduced the available volume, Ṽ ¼ V − bðnÞN, in the
Helmholtz free energy FplðV;NÞ for pointlike particles,
where V is the system’s volume. The parameter b, which
can be a function of the particle’s number density n,
represents the volume that each particle would exclude if
it were considered a rigid sphere. Once V is replaced with
Ṽ, the resulting function FplðṼ; NÞ becomes the starting
point for describing the system with excluded volume
effects.
In Secs. II and III, we focused on a simple one-flavor

model and showed that it is possible to incorporate excluded
volume corrections into the existing expressions of pointlike
particles in a straightforward manner, achieving a quite
practical approach. The procedure involves substituting the
particle density n that appears in the expressions for
pointlike particles with a density n=q where the correction
factor q is defined in Eq. (38) and takes into account the
available volume in the system. Additionally, multiplicative
correction factors arise in the energy density [Eq. (41)],
pressure [Eq. (42)], and the chemical potential [Eq. (43)].
Using the aforementioned equations, we analyzed two
different Ansätze for the excluded volume. Initially, we
considered a scenario where particles always exclude the
same volume regardless of the matter density. This
assumption, as depicted in Fig. 2(d), is not satisfactory
as the speed of sound becomes acausal with increasing
density. A more adequate prescription must account for the
asymptotic freedom of particles, requiring them to behave as
free pointlike particles as density increases. To incorporate
this behavior, we adopted an Ansatz for the excluded
volume that is inversely proportional to density, causing
it to decrease and tend toward zero as density approaches
infinity. This assumption cures the unphysical behavior of
the speed of sound, causing it to asymptotically approach
the conformal limit cs ¼ 1=

ffiffiffi
3

p
, as illustrated in Fig. 4(d).

Moreover, the EOS becomes significantly stiffer, as shown
in Fig. 4(c).
In Secs. IVand V, we extended the EOS to a three-flavor

system. In this context, we assumed that both the mass and
the excluded volume depend on the baryon number density.
Similar to the single-flavor case, we can directly incorpo-
rate the excluded volume corrections into the existing EOS
for pointlike particles, as summarized in Sec. IV C. By
applying these formulas to the model outlined in Ref. [16],
we derived explicit expressions for the energy density
[Eq. (124)], pressure [Eq. (126)], and chemical potential

[Eq. (128)] of a system composed by quarks u, d, s and
electrons.
In Sec. VI we adopted an Ansatz for the excluded volume

that mimics the asymptotic freedom behavior of QCD.
Similar to the single-species case, we assumed that the
excluded volume per baryon is inversely proportional to the
baryon number density [Eq. (129)]. For this specific choice,
the EOS takes the form given in Eqs. (133)–(135). Given
our focus on astrophysical applications, our numerical
computations of the EOS are centered on an electrically
neutral system in chemical equilibrium under weak inter-
actions. To represent the two most relevant astrophysical
scenarios, we adopt sets of parameters a and C to
characterize self-bound matter and hybrid matter. For the
parameter κ, we adopt values that correspond to different
excluded volume sizes.
In both the self-bound and hybrid cases, based on the

chosen parameter set, the uds composition consistently
exhibits the lower G=nB, being energetically preferred. It is
worth noting that the Gibbs free energy curves display a
remarkable sensitivity to changes in the parameter κ (see
Fig. 5). The EOS is substantially affected by changes in the
parameter κ, leading to an increase in the stiffness as κ
increases. At high densities, the excluded volume effect
vanishes and the curves with different κ values converge
with each other (see Fig. 6). The speed of sound (see Fig. 7)
exhibits a decreasing trend with increasing baryon number
density, ultimately approaching the conformal limit asymp-
totically. At a specific density, the excluded volume effect
tends to diminish the speed of sound. However, this
distinction becomes negligible at very high densities, where
all curves converge with each other.
Finally, we studied stellar configurations for the two-

parameter sets representing self-bound and hybrid matter. In
the first case, shown in Fig. 8, we found that stellar
configurations are compatible with all current astrophysical
constraints only for a significant amount of volume exclu-
sion. Since the EOS becomes remarkably stiffer as excluded
volume increases, the maximum mass of self-bound stars
significantly rises for large κ approaching close to 2.5M⊙
for κ ¼ 0.5. Recently, evidence has been found that suggests
that the extremely tiny and light compact object HESS
J1731-347 may in fact be a self-bound star with a mass
around 0.77M⊙ and a radius of ∼10 km [37]. As shown in
Fig. 8, the mass-radius curves of self-bound objects natu-
rally cross the credibility contours of HESS J1731-347 if a
substantial amount of excluded volume is incorporated in
the EOS. If confirmed, this object could be a strange star
candidate. We also explored hybrid star configurations
using a representative hadronic EOS and various para-
metrizations of the QMDDM. From our calculations, we
learn that the constraint of 2M⊙ is fulfilled only for very stiff
hadronic EOS together with a QMDDM EOS incorporating
a substantial degree of volume exclusion. In Fig. 9, it can be
seen that the hybrid curves composed by the MPA1
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hadronic EOS and the QMDDMwith κ ¼ 0.3 and 0.5 are in
agreement with all the modern multimessenger constraints.
In conclusion, we have extended the QMDDM, which

was previously modified in an earlier paper to ensure
thermodynamic consistency, to incorporate the effects of
excluded volume. These effects phenomenologically re-
present repulsive interactions between quasiparticles. The
incorporation of these effects leads to stiffer EOS increas-
ing the masses of compact objects, aligning them more
closely with recent astrophysical observations. A compre-
hensive analysis of stellar structure using this model is
planned as the focus of our future research.
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APPENDIX A: SUMMARY OF THE ONE-
FLAVOR QMDDM EOS FOR POINTLIKE

PARTICLES

For the sake of completeness, we summarize below all
the expressions derived in Ref. [16] for the QMDDM in the
one-flavor case. As discussed in the main text, these
expressions describe a system of pointlike particles. The
Helmholtz free energy is given by

F ¼ gVM4χðxÞ; ðA1Þ

where

MðnÞ ¼ mþ C

na=3
; ðA2Þ

xðnÞ ¼ 1

M

�
6π2n
g

�
1=3

; ðA3Þ

χðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
ð2x2 þ 1Þ − arcsinhðxÞ

16π2
; ðA4Þ

with g being the particle’s degeneracy, M the density-
dependent mass, and x the dimensionless Fermi momentum.
The energy density at T ¼ 0 is given by ϵ ¼ F=V and

reads

ϵðnÞ ¼ gM4χðxÞ: ðA5Þ

The pressure is given by

pðnÞ ¼ n2
∂ðϵ=nÞ
∂n

; ðA6Þ

which results in

pðnÞ ¼ pFGðnÞ − BðnÞ; ðA7Þ
being

pFGðnÞ ¼ gM4ϕðxÞ; ðA8Þ
.

BðnÞ ¼ −gM3n
∂M
∂n

βðxÞ > 0; ðA9Þ

∂M
∂n

¼ −
C
3

a

na=3þ1
; ðA10Þ

ϕðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
ð2x2 − 3Þ þ 3arcsinhðxÞ

48π2
; ðA11Þ

βðxÞ ¼ 1

4π2
½x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
− arcsinhðxÞ�: ðA12Þ

The pFG contribution takes the same mathematical form as
the pressure of a Fermi Gas (FG) composed of free
particles, each with a mass M. The quantity B serves as
a bag constant, inducing negative pressure at sufficiently
low densities, mimicking the effects of quark confinement.
Finally, the chemical potential is

μðnÞ ¼ ∂ϵðnÞ
∂n

¼ g
∂½M4ðnÞχðxÞ�

∂n
: ðA13Þ

As shown in Eq. (40) of Ref. [16] the latter derivative
results in

μðnÞ ¼ μFGðnÞ − BðnÞ
n

; ðA14Þ

with

μFGðnÞ ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
: ðA15Þ

APPENDIX B: SUMMARY OF THE THREE-
FLAVOR QMDDM EOS FOR POINTLIKE

PARTICLES WITH A FLAVOR-BLIND MASS
FORMULA

In this appendix, we present a synopsis of the QMDDM
EOS for pointlike quarks, as developed in Ref. [16]. We
concentrate on the parametrization of the QMDDM with a
flavor-independent mass formula. Specifically, we assume
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that the mass of the quark quasiparticle of flavor i depends
on the baryon number density nB as follows:

Mi ¼ mi þ
C

na=3B

; ði ¼ u; d; sÞ; ðB1Þ

where C and a are free parameters, and nB ¼
1
3
ðnu þ nd þ nsÞ. The flavor dependence ofMi comes only

from the different values of the current masses mi.
We will describe the system as a mixture of noninteract-

ing quarks with effective massesMi and free electrons. The
total Helmholtz free energy is simply the sum of the
contribution of each species,

FðV; nBÞ ¼
X

i¼u;d;s;e

Fi; ðB2Þ

where

Fi ¼
(
gVM4

i χðxiÞ ði ¼ u; d; sÞ;
geVm4

eχðxeÞ ðelectronsÞ; ðB3Þ

with g ¼ 6 and ge ¼ 2. The function χðxÞ is defined in
Eq. (A4) and

xi ¼
1

Mi

�
6π2ni
g

�
1=3

ði ¼ u; d; sÞ; ðB4Þ

xe ¼
1

me

�
6π2ne
ge

�
1=3

ðelectronsÞ: ðB5Þ

The energy density is ϵ ¼ P
i¼u;d;s;e ϵi, where

ϵi ¼
(
gM4

i χðxiÞ ði ¼ u; d; sÞ;
gem4

eχðxeÞ ðelectronsÞ: ðB6Þ

The total pressure is p ¼ P
i¼u;d;s;e pi, being

pi ¼
(
gM4

iϕðxiÞ − Bi ði ¼ u; d; sÞ;
gem4

eϕðxeÞ ðelectronsÞ; ðB7Þ

where ϕðxÞ is defined in Eq. (A11) and the bag constant Bi
is given by

−Bi ¼ gβðxiÞM3
i

X
j

nj
∂Mi

∂nj
; ðB8Þ

with βðxÞ defined in Eq. (A12). Taking into account the
flavor-blind nature of the mass formula, Eq. (B8) can be
rewritten as follows:

−Bi ¼ gβðxiÞM3
i nB

∂Mi

∂nB
: ðB9Þ

In our previous publication [16], an error was identified in
the definition of the bag constant. Equation (B8) represents
the accurate expression for any mass formula, while
Eq. (B9) applies specifically to the flavor-blind scenario.
Finally, for any mass formula, the chemical potential of

u, d, and s quasiparticles is given by the following
expression:

μi ¼ Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
þ
X
j

gM3
j

∂Mj

∂ni
βðxjÞ: ðB10Þ

In the flavor-blind scenario, the latter equation simplifies to

μi ¼ Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
−

1

3nB

X
j

Bj: ðB11Þ

For the electron component, the chemical potential is
given by

μe ¼ me

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e þ 1

q
: ðB12Þ

It is important to note that the second term of Eq. (B11)
differs from the expression presented in Eq. (88) of
Ref. [16] due to an error in that earlier work.
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