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In dense astrophysical environments, notably core-collapse supernovae and neutron star mergers,
neutrino-neutrino forward scattering can spawn flavor conversion on very short scales. Scattering with the
background medium can impact collective flavor conversion in various ways, either damping oscillations or
possibly setting off novel collisional flavor instabilities (CFIs). A key feature in this process is the slowness
of collisions compared to the much faster dynamics of neutrino-neutrino refraction. Assuming spatial
homogeneity, we leverage this hierarchy of scales to simplify the description accounting only for the slow
dynamics driven by collisions. We illustrate our new approach both in the case of CFIs and in the case of
fast instabilities damped by collisions. In both cases, our strategy provides new equations, the slow-
dynamics equations, that simplify the description of flavor conversion and allow us to qualitatively
understand the final state of the system after the instability, either collisional or fast, has saturated.
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I. INTRODUCTION

Collective flavor oscillations in neutrino-dense environ-
ments are driven by neutrino-neutrino refraction that also
possesses off-diagonal flavor components [1]. The magni-
tude of the induced refractive energy shift is set by the
neutrino number density nν, and can roughly be measured
by the scale μ ¼ ffiffiffi

2
p

GFnν, with GF the Fermi constant;
everywhere in this work, we use natural units such that
c ¼ ℏ ¼ kB ¼ 1. For typical conditions of a supernova
(SN) and the remnant of a compact object binary, the
neutrino-neutrino interaction strength can be as large as
μ ¼ 105 km−1 in the vicinity of the neutrino decoupling
regions and can drive neutrino fast flavor conversions
(FFC) that operate on timescales of a few nanoseconds.
The timescale μ−1 is much smaller than the one of neutrino
slow oscillations

ffiffiffiffiffiffi
μω

p −1, where ω ¼ Δm2=2Eν; for a
typical neutrino energy of 15 MeV and the largest mass-
squared difference one finds ω ≃ 0.4 km−1. Since the
potentials span over a wide range, collective flavor oscil-
lation can also span over a wide range of time and length
scales, for recent reviews see Refs. [2–6].

Recently, there has been a surge of interest in the interplay
between the coherent forward scattering ð∝ GFÞ and the
incoherent scattering of neutrinos off matter ð∝ G2

FÞ.
Roughly, the ratio of coherent to incoherent rates is given
by Γ=μ ≃ GFE2

ν ∼ 10−9 for a 15 MeV average neutrino
energy; the regime where Γ ≪ μ is referred to as the weak-
damping regime. Otherwise, if Γ ∼ μ oscillations are gen-
erally damped, similarly to the quantum Zeno effect [7], but
such conditions never seem to occur in realistic astrophysical
or cosmological environments.
Conventional wisdom suggests that incoherent collisions

should damp the off-diagonal coherence required to exhibit
collective motion, and therefore destroy collective oscil-
lations. However, as realized recently, this is not always the
case if the collisional rates depend on energy or differ for
neutrinos and antineutrinos [8–14], which might trigger
novel collisional flavor instabilities (CFIs). Even if CFIs
have a subdominant role, collisions might still play a role in
damping the fast oscillations which likely occur in the inner
regions of SNe.
Investigating the impact of collisions on the final state of

flavor conversions requires an investigation of the non-
linear evolution of the latter. To tackle this issue, hierarchies
among different scales are one key to simplifying the
problem. As mentioned before, one such hierarchy is
Γ ≪ μ. Therefore, whether collisions drive instabilities
or simply damp the collective fast oscillations driven by
forward scattering, their dynamics is slow, and the sepa-
ration of these scales can be used to simplify the problem.
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A similar separation is key to understanding the tradi-
tional MSWeffect [15–17] where fast in-matter oscillations
separate from the slow change of density along the beam.
Likewise, in a dense medium, a large matter effect is often
lumped into a small effective in-medium mixing angle and
otherwise ignored because the fast oscillations can be
averaged out. On the other hand, for oscillations driven
by neutrino-neutrino refraction, such separation-of-scale
techniques have not been explored. This is a more
challenging scenario because even the rapid oscillations
are nontrivial, being driven by nonlinear dynamics.
Here we address precisely this problem. We show that

due to the hierarchy Γ ≪ μ, the dynamics of oscillations
impacted by collisions can be separated into a fast
dynamics, on timescales μ−1, and a slow dynamics,1 on
timescales Γ−1. In practice, the separation is performed by
averaging over the fast dynamics, and identifying a set of
physically relevant quantities that only change slowly. This
allows us to obtain a new set of equations, henceforth
referred to as slow-dynamics equations (SDEs), which do
not contain terms of order μ. Therefore, solving the SDEs
requires to follow the dynamics only over timescales of
order Γ−1, without keeping track of the fast motion which is
not relevant to the final flavor outcome of the evolution.
Admittedly, these new equations are still nonlinear and
coupled; yet, they can be solved much faster than the
original equations of motion (EOMs), while offering
significant advantages in terms of intuitive understanding.
We apply this approach to two complementary problems.

First, we investigate a homogeneous neutrino gas that
exhibits a CFI without a fast instability. Representing the
neutrino flavor coherence in terms of polarization vectors,
the fast dynamics is a simple precession of the polarization
vectors around the common flavor axis, so the amplitudes
and phases of this precession are left invariant by the fast
dynamics. The slow change of these quantities induced by
collisions is described by a set of SDEs. We verify that the
SDEs lead to the same evolution as the standard EOMs,
and we use them to conclude that after the instability has
saturated, flavor equipartition is reached for low energies
while no conversion is attained for high energies.
Second, we consider a homogeneous neutrino gas that

possesses a fast instability, subject to energy-independent
collisions. In this case, the fast dynamics, without colli-
sions, is pendular in nature [18,19]. Therefore, the slowly
varying quantities can be chosen as the pendulum param-
eters. In this case, the SDEs allow one to understand
immediately several features that had previously only
been recovered empirically, such as the observation that
the final outcome of the oscillation only depends on the
depth of the pendulum and not on any other parameter or
the collision rate [18].

The structure of the paper follows three main subjects.
In Sec. II, we consider a toy system consisting of an active
and a sterile neutrino species subject to oscillations and
collisions. This system has been thoroughly studied in the
literature and we use it as a simple introductory example for
fast dynamics, driven by oscillations, that can be cleanly
separated from a slow dynamics, driven by collisions. In
Sec. III, we discuss the SDEs for a homogeneous system
that exhibits CFIs. In Sec. IV, we discuss the SDEs for a
homogeneous system subject to a fast instability. Finally, in
Sec. V, we give a general discussion of our method and its
limitations.

II. ACTIVE-STERILE NEUTRINO CONVERSION

The simultaneous appearance of fast and slow dynamics
is more general than phenomena in collective neutrino
oscillations. A first example for such a separation of
timescales is the production of sterile neutrinos νs from
a population of active ones νa in the early Universe [20–27]
or in SN cores [28–37]. Even in the standard cosmological
model, averaging over the rapid oscillations has proven a
good strategy to simplify the numerical solution of the
flavor evolution of the neutrino plasma [38,39]. For
illustration, we use the simplest toy model, a homogeneous
gas of νa and νs, no cosmic expansion, and only νa
interacting with the ambient plasma. The νs production
rate is considerably simplified by the oscillation rate being
much faster than the νa collision rate. This simplification is
analogous to the slow-dynamics approximation that we will
use in the later collisional and fast instabilities examples.
The neutrino radiation field of this simple two-flavor

system is described, in the mean-field approximation, by a
2 × 2 density matrix ρpðtÞ for every momentum mode p.
Assuming also isotropy, it depends only on p ¼ jpj and we
write it in the form

ρp ¼
�

faðp; tÞ fasðp; tÞ
fsaðp; tÞ fsðp; tÞ

�
; ð1Þ

where the time dependence of ρp is not explicitly shown.
The entries are the usual occupation numbers, defined as
fαβðpÞ ¼ ha†β;paα;pi with α; β ¼ a or s, i.e., the expectation
values of number operators, where the mixed off-diagonal
elements encode flavor coherence. For the diagonal ele-
ments, we do not show the repeated flavor index and we
note that the matrix is Hermitian with fsaðp; tÞ ¼ f�asðp; tÞ.
In the absence of collision, ρp evolves by flavor

oscillations caused by masses and flavor mixing and
modified by refractive effects of the ambient medium.
Without spelling out the details of the latter, we simply
assume for every p a Hamiltonian 2 × 2 matrix H0

p for
every mode that drives flavor oscillations according to

ρ̇p ¼ i½ρp;H0
p�: ð2Þ

1It should not be confused with the slow flavor conversion
phenomenon which is characterized by the

ffiffiffiffiffiffi
μω

p −1 timescale.
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(We use sans-serif letters such as H to denote matrices in
flavor space.) We assume that H0

p does not depend on the
neutrino medium itself so that this EOM is indeed linear
in ρp. In this case, it is explicitly solved by

ρpðtÞ ¼ e−iH
0
ptρpð0ÞeiH0

pt; ð3Þ

which can be spelled out analytically becauseH0
p itself does

not depend on time.
The eigenstates 1 and 2 of H0

p are the propagation
eigenstates, which for simplicity we call mass eigenstates,
with the energies E1;2 ¼ ðp2 þm2

1;2Þ1=2 − p ≃m2
1;2=2p,

where the effective masses depend on p, the relativistic
approximation was taken, and we have removed the
common p from the definition of H0

p. The diagonalization
of H0

p is enacted by the in-medium mixing angle θ through

1

2p

�
m2

1 0

0 m2
2

�
¼

�
cos θ sin θ

− sin θ cos θ

�
H0

p

�
cos θ − sin θ

sin θ cos θ

�
;

ð4Þ

where it is understood that θ and m1;2 depend on p.
In addition, the active states interact with the medium,

breaking νa–νs flavor coherence. We model this effect by a
scattering rate Γp→p0 between νa states and denote with
Γp ¼ P

p0 Γp→p0 the total loss rate. With the matrix

B ¼
�
1 0

0 0

�
¼ 1þ σz

2
; ð5Þ

the modified EOMs are [40]

ρ̇p ¼ i½ρp;H0
p� þ

X
p0

Γp0→pBρp0B −
Γp

2
fB; ρpg; ð6Þ

where we neglect Pauli blocking factors.
The separation of fast and slow timescales naturally

happens if the scattering rates are much slower than the
oscillations induced by H0

p; more precisely, we require
that Γp→p0 is much smaller than the difference between
the eigenvalues of H0

p, i.e., Δm2=2p ≫ Γp. In this case,
neutrinos oscillate many times between collisions and we
can significantly simplify the equations. Based on the no-
collision solution of Eq. (3) we first pass to the interaction
representation by

ϱpðtÞ ¼ eiH
0
ptρpðtÞe−iH0

pt; ð7Þ

where the density matrix ϱp in the interaction representa-
tion would be constant in the absence of collisions.
Including collisions, the EOM becomes

ϱ̇p ¼
X
p0

Γp0→peiH
0
ptBe

−iH0

p0 tϱp0e
iH0

p0 tBe−iH
0
pt

−
Γp

2
feiH0

ptBe−iH
0
pt; ϱpg: ð8Þ

We can now perform an average over many periods of the
rapidly oscillating exponentials. In the mass basis, this
means that the off-diagonal entries of any matrix average to
zero. For the density matrices, this means explicitly

ϱp ¼
�
f1ðpÞ 0

0 f2ðpÞ

�
; ð9Þ

where f1ðpÞ and f2ðpÞ are the distribution function of the
two mass eigenstates. After inserting this parametrization in
the EOM (8), we obtain finally

ḟ1ðpÞ ¼ −Γpf1ðpÞ cos2 θ
þ
X
p0

Γp0→p½f1ðp0Þ cos4 θ þ f2ðp0Þ sin2 θ cos2 θ�;

ð10aÞ

ḟ2ðpÞ ¼ −Γpf2ðpÞ sin2 θ
þ
X
p0

Γp0→p½f1ðp0Þ sin2 θ cos2 θ þ f2ðE0Þ sin4 θ�:

ð10bÞ

These equations refer to themass-basis distribution functions,
which coincide with the flavor-basis distributions if the
mixing angle is small. In this case, if the νa are in equilibrium,
one finds that the νs production rate equals the νa scattering
rate times a factor sin2 θ cos2 θ ¼ sin2ð2θÞ=4. True equilib-
rium, however, can only obtain in the mass basis.
The main feature of this formulation is that the right-

hand side of Eqs. (10) only contains the scale set by the
collision rate. The terms depending on the rapid oscillations
have disappeared after we have averaged them out
over many periods of oscillation. In the remainder of this
paper, we will apply the same strategy to the much more
complicated case in which the rapid oscillations are
induced by neutrino-neutrino refraction.

III. COLLISIONAL INSTABILITY

A. Setup of the problem

As a first nontrivial example of the slow/fast dynamics
separation, we consider a homogeneous neutrino gas
without a fast instability which exhibits CFIs with
energy-dependent collisions. We consider the limit of
vanishing neutrino masses, i.e., ω ¼ Δm2=2p → 0, which
are not required for driving the CFI dynamics. We limit
ourselves to an isotropic, two-flavor setting with neutrinos
subject to mutual forward scattering and number-changing
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processes with an external medium. In the limit of vanish-
ing neutrino masses and for a homogeneous and isotropic
system, the refractive matter term is eliminated by a
uniform rotation around the flavor axis. Moreover, the
Δm2 → 0 limit also implies the absence of vacuum mixing.
Of course, we still imagine that the mass term provides an
initial seed for the CFI.
As in Sec. II, the system is described by density matrices

ρEðtÞ for the flavors e and x, where the latter stands for μ or
τ or an admixture of both. We here use E ≃ jpj to label the
modes and in addition, we use a negative sign for E to
denote the density matrices for antineutrinos. On the other
hand, we do not use the flavor isospin convention, i.e., the
upper left entry of ρE is the νe or ν̄e occupation number. In
the language of polarization vectors to be used later, this
convention means that a given PE pointing in the positive z-
direction means νe or ν̄e, depending on the sign of E, and
pointing down the other flavor. The evolution of the system
in the absence of collision is now ruled by the equation

ρ̇E ¼ i
ffiffiffi
2

p
GF

Z þ∞

−∞

E02dE0

2π2
½ρE; sE0ρE0 �; ð11Þ

where sE0 ¼ signE0 needs to be explicitly included. In order
to avoid cluttering notation, and to connect with the definition
of a typical energy scale, we define μ ¼ ffiffiffi

2
p

GFn0ν, where
n0ν ¼ 3T3ζ3=4π2 is the equilibrium number density of a
neutrino population at the temperature T of the thermal
bath. We then define a sum over energies with a modified
measure

P
E ¼ R

E2dE=ð2π2n0νÞ. Therefore, the density
matrix for the full ensemble is

ρðtÞ ¼
X
E

sEρEðtÞ: ð12Þ

With these definitions, in the absence of collisions, the EOM
for every mode has the usual form ρ̇E ¼ iμ½ρE; ρ�; μ is a
typical energy scale associated with the self-interaction,
while the sum over energies, as well as ρE, is now
dimensionless. Notice that, as defined here, μ does not fully
coincide with the usual definition in terms of the total
neutrino number density nν (see Sec. I); in the context of
CFIs such a definition cannot be adopted, since the number of
neutrinos is not conserved.
To model the collisional effect, we envision a SN

medium where νe and ν̄e are efficiently absorbed or emitted
by beta processes, whereas the x flavor does not interact at
all. In this sense, our setup is similar to the active-sterile
system of Sec. II. The EOM with beta processes included
can be written in the form [41]

ρ̇E ¼ iμ½ρE; ρ� þ
1

2
fPE; 1 − ρEg −

1

2
fAE; ρEg

¼ iμ½ρE; ρ� þ PE|{z}
2QEB

−
1

2
fAE þ PE|fflfflfflfflffl{zfflfflfflfflffl}

2ΓEB

; ρEg; ð13Þ

where in the flavor basis the production and absorption
matrices PE and AE have only upper-left entries like B in
Eq. (5), relevant for νe and ν̄e.
Here, QE is the spontaneous emission rate of νe by the

medium, ΓE the reduced absorption rate, and analogous
for ν̄e. Ignoring temporarily the matrix structure and
considering only the e-flavor, the collision equation is
ḟe ¼ QEð1 − feÞ − Γ0

Efe, where Γ0
E is the absorption rate.

Collecting the terms linear in fe, this is ḟe ¼ QE − ΓEfe
with ΓE ¼ Γ0

E þQE the “reduced” absorption rate,
although it is actually enhanced, the terminology deriving
from photon radiative transport, where the Bose stimulation
factor has the opposite sign from the Pauli blocking factor.
Moreover, if the medium is in thermal equilibrium, detailed
balance implies for νe (positive E) QE ¼ Γ0

Ee
−ðE−μνe Þ=T and

thus ΓE ¼ Γ0
E½1þ e−ðE−μνe Þ=T �, where μνe is the νe chemical

potential implied by the properties of the medium. Using
ΓE as our primary parameter for the damping strength, the
production rate is

QE ¼ ΓE

e�ðE−μνe Þ=T þ 1
; ð14Þ

where� refers to νe and ν̄e. In our convention, the latter are
denoted by negative E and have the opposite chemical
potential. Also, for negative E, ΓE is the reduced absorption
rate for antineutrinos.
The equations are most conveniently expressed in terms

of the total number P0
E ¼ TrρE ¼ feðEÞ þ fxðEÞ of neu-

trinos in mode E and the polarization vectors PE, such that

ρE ¼ P0
E

2
þ PE · σ

2
: ð15Þ

In terms of these variables, the EOMs become

ṖE ¼ μP × PE − ΓEPE þ ð2QE − ΓEP0
EÞez; ð16aÞ

Ṗ0
E ¼ 2QE − ΓEP0

E − ΓEP
z
E: ð16bÞ

Here ez identifies the direction of the flavor axis, and
P ¼ P

E sEPE.
It will prove convenient to express them in terms of a

modified neutrino density NE ¼ P0
E − 2QE=ΓE, a quantity

that need not be positive. In thermal and chemical equi-
librium, both e and x flavors are occupied with the Fermi-
Dirac distribution fe;xðEÞ ¼ 1=½eðE−μνe Þ=T þ 1� and P0

E ¼
feðEÞ þ fxðEÞ with Eq. (14) reveals that NE is the
deviation from equilibrium. Finally,

ṖE ¼ μP × PE − ΓEðPE þ NEezÞ; ð17aÞ

ṄE ¼ −ΓEðNE þ Pz
EÞ ð17bÞ

is the set of EOMs that we plan to solve.
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B. Slow-dynamics equations (SDEs)

We now proceed to integrate out the fast dynamics in the
spirit of our earlier discussion. When ΓE ¼ 0, the exact
solution consists of a fast precession of each PE around P.
This motion is simple to understand and has many con-
served quantities. In the absence of collisions, the total
P ¼ P

E sEPE is conserved, reflecting total lepton-number
conservation. Furthermore, each PE moves uniformly
around P on a cone with a fixed angle. To write the general
motion explicitly, we introduce a right-handed coordinate
system fe1; e2; e3g, where e3 is along P, whereas e1 ¼
ez × P=jez × Pj is orthogonal to both P and the flavor
direction ez, and finally e2 ¼ e3 × e1. In other words, e1
and e2 span the plane transverse to P. The projection of PE
on the direction of P is expressed through αE ¼ PE · e3=P,
whereas the length in the transverse plane is
bE ¼ jPE × e3j. In this way, the explicit solution is

PEðtÞ ¼ αEPþ bE½cos ðΦt þ ϕEÞe1 þ sin ðΦt þ ϕEÞe2�;
ð18Þ

where the ϕE are fixed individual phases and Φt ¼ μPt
the common oscillation phase. When we later assume
that P slowly changes, it will be Φt ¼ μ

R
t
0 dt

0Pðt0Þ.
The solution is entirely specified by the conserved
quantities P, the projection αE of each PE on the
precession axis, the amplitude of precession bE, and
the phase ϕE. Because P ¼ P

E sEPEðtÞ, these quantities
are constrained by

P
E sEαE ¼ 1,

P
E sEbE cosϕE ¼ 0,

and
P

E sEbE sinϕE ¼ 0.
Collisions cause these quantities to slowly evolve

over timescales given by the inverse damping rate. By
the assumption of weak damping, each PE performs many
precession cycles over this timescale and therefore the
precession itself can be averaged out. In analogy to Sec. II,
we replace the form of the solution Eq. (18) in the full
EOMs with damping, where we now consider the param-
eters P, αE, bE, e1, e2, and ϕE as dynamical quantities.
Notice that the directions e1, e2 and P themselves depend
on time and therefore must be differentiated as well. To
average over the rapidly varying phase Φt, we use
hsinΦti ¼ hcosΦti ¼ 0, hcos ðΦt þ αÞ cos ðΦt þ βÞi ¼
hsin ðΦt þ αÞ sin ðΦt þ βÞi ¼ 1

2
cosðα − βÞ, and the mixed

hcos ðΦt þ αÞ sin ðΦt þ βÞi ¼ 1
2
sinðβ − αÞ. Performing

these averages directly provides us with the SDEs:

α̇E ¼ αE
X
E0

sE0ΓE0

�
αE0 þ NE0Pz

P2

�
− ΓE

�
αE þ NEPz

P2

�

−
bE
P2

X
E0

sE0ΓE0bE0 cosðϕE − ϕE0 Þ; ð19aÞ

ḃE ¼ αE
X
E0

sE0ΓE0bE0 cosðϕE − ϕE0 Þ − ΓEbE; ð19bÞ

bEϕ̇E ¼ −αE
X
E0

sE0ΓE0bE0 sinðϕE − ϕE0 Þ ð19cÞ

Ṗ ¼ −
X
E0

sE0ΓE0 ðNE0ez þ αE0PÞ; ð19dÞ

ṄE ¼ −ΓENE − ΓEαEPz: ð19eÞ
These equations are admittedly not much simpler than the
original EOMs; they are still nonlinear and couple neu-
trinos of all energies. However, they offer some practical
and conceptual advantages. There is no term of order μ and
thus a numerical solution requires only a relatively coarser
grid, with a step of order Γ−1 that mirrors the scale over
which the quantities change. More importantly, the new
equations provide some intuitive understanding of the role
of damping, by cleaning the dynamics of the complicated
precession terms.
As a first step, we can eliminate the phase variables ϕE.

From Eq. (19c) we see that the phases follow a Kuramoto-
like dynamics [42–44], with the damping term tending to
synchronize the phases of precession and make all the
polarization vectors coplanar. If two vectors PE and PE0

have identical phases ϕE ¼ ϕE0 , one can see from Eq. (18)
that at a given time they lie in the plane spanned by P and
cosðΦt þ ϕEÞe1 þ sinðΦt þ ϕEÞe2. (Notice that for a two-
beam case the two vectors are necessarily co-planar, so one
can exactly set ϕ ¼ 0.) One can always choose the initial
condition such that all PE are exactly coplanar, and the
subsequent dynamics likely does not depend on this choice,
since anyway they would soon become coplanar because of
phase locking. In the following, we simply choose ϕE ¼ 0
for every E.
We can now understand the existence of two separate

branches of CFIs from the SDEs directly. Starting from
Eq. (19d), let us first consider the component transverse to
the flavor direction,

ṖT ¼ −
X
E

sEΓEαEPT: ð20Þ

Thus, the evolution of the transverse component is driven
by the effective damping rate

P
E sEΓEαE. If initially this

expression is negative, it becomes an effective growth rate,
leading to an instability and coincides with one of the two
branches of instability that have been identified in the
literature [8–10].
Even when this branch corresponds to damping, an

instability can still arise from the growth of the individual
precession amplitudes bE. To see how this can happen, we
take the simplest case of a two-bin model with b̄ ¼ b and
ᾱ ¼ α − 1, where we denote by α, b, and Γ the quantities
for monochromatic neutrinos, and by ᾱ, b̄, and Γ̄ the
ones for antineutrinos. Equation (19) then simplifies to
ḃ ¼ αðΓ − Γ̄Þb − Γb that can be written as

ḃ ¼ ðαΓ̄ − ΓᾱÞb: ð21Þ
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If the expression in brackets is positive, b grows, corre-
sponding to the second branch of instability identified in
the previous literature. In the two-bin model, the first
branch corresponds to ðᾱ Γ̄−ΓαÞ being positive (growth) or
negative (damping). Thus, for this simple two-bin system,
we recover the linear stability results for the isotropic,
nonresonant collisional instability [11,12].
The identification of the instability allows one to

provide a clearer criterion for the applicability of the
SDE approach. So far, we have schematically required a
hierarchy of the form μ ≫ Γ, but since the interaction
rate ΓE is actually energy-dependent, this requirement
should be made more specific. The typical timescale
over which the CFI evolves is indicated by the collective
growth rate, which we denote by γ, determined by linear
stability analysis. On the other hand, the precession of
the polarization vectors happens on typical timescales
of the order of μPzðt ¼ 0Þ. Therefore, a more concrete
criterion for the applicability of the SDEs is that
μPzðt ¼ 0Þ ≫ γ.

C. Understanding the nonlinear outcome

1. Simplified equations of motion

The second instability, in the two-bin case represented by
Eq. (21), corresponds to the presence of more νe than ν̄e,
and νe more strongly damped, which is the situation in a SN
core with regard to beta processes. Therefore, we focus on
this case and gather some physical intuition about its
impact on the flavor evolution. This case corresponds to
damping for the first type of mode, i.e., damping in
Eq. (19d) so that P never develops a large transverse
component if we begin with all PE aligned with the
z-direction except for a small seed. Therefore, we can
simplify our equations by taking P ¼ Pz.
We can further simplify the EOMs by writing them in

terms of dimensionless parameters through NE ¼ νEP and
bE ¼ βEP. The interpretation of the new parameters is that
for every E, αE is the dimensionless z component of PE, βE
the dimensionless amplitude of precession, and νE repre-
sents the dimensionless number of neutrinos in that mode.
We further define

A ¼
X
E

sEΓEαE; ð22aÞ

B ¼
X
E

sEΓEβE; ð22bÞ

N ¼
X
E

sEΓEνE: ð22cÞ

The EOMs of the dimensionless variables are then

α̇E ¼ ðN þ A − ΓEÞαE − ΓEνE þ BβE; ð23aÞ

β̇E ¼ ðN þ A − ΓEÞβE þ BαE; ð23bÞ

ν̇E ¼ ðN þ A − ΓEÞνE − ΓEαE; ð23cÞ

whereas

Ṗ ¼ −ðN þ AÞP ð24Þ

regulates the dynamics of P.
For the absorption rates we assume a quadratic energy

dependence Γ0
E ¼ ΓðE=3TÞ2 for νe (positive E) and

Γ̄ðE=3TÞ2 for ν̄e (negative E), where Γ and Γ̄ are positive
parameters. As explained in the text above Eq. (14), the
reduced damping parameters then have the form

ΓE ¼ Γ
�
E
3T

�
2

½1þ e−ðE−μνe Þ=T � for E > 0; ð25aÞ

ΓE ¼ Γ̄
�
E
3T

�
2

½1þ eþðE−μνe Þ=T � for E < 0; ð25bÞ

where μνe is the νe chemical potential defined by the
medium properties. Here Γ and Γ̄ are the damping rates for
typical νe or ν̄e energies.
Our simplified EOMs immediately reveal that the final

state only depends on the ratio Γ̄=Γ because all damping
parameters are linear in ΓE so that Γ can be pulled out and
absorbed in the definition of the units of time.

2. Numerical example

To build some intuition, we now turn to a specific
example, for which we solve numerically the newly derived
SDEs 23. As initial distributions, we choose thermal ones
for νe and ν̄e

dnν
dϵ

¼ 1

2π2
ϵ2

eðϵ−μνÞ=T þ 1
; ð26Þ

corresponding to the distribution of beta equilibriumwith the
medium. Here we use ϵ ¼ jEj as a positive energy variable.
For νx and ν̄x, we assume that their initial population
essentially vanishes, so they can only be produced by flavor
conversion. The numerical values chosen for the parameters
are listed in Table I. We also show the initial number
densities that follow from Eq. (26). The number density of
neutrinos with vanishing chemical potential for T ¼ 4 MeV
is n0ν ¼ 5.864 MeV3. With our definition of the sum over

TABLE I. Parameters used for the numerical simulation.

Species T [MeV] μν [MeV] nν [MeV3] nν=n0ν

νe 4 2 9.146 1.564
ν̄e 4 −2 3.678 0.629
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energies, the initial value of the total polarization vector
is Pzð0Þ ¼ 1

2
ðnνe − nν̄eÞ=n0ν ¼ 0.468.

As discussed earlier, the absolute values of Γ and Γ̄ are
irrelevant, and only their relative values to one another
matter, as long as we are in the weak-damping regime
Γ; Γ̄ ≪ μ. We choose the ratio Γ̄=Γ ¼ 0.1 and measure time
in units of Γ−1.
We initialize the system with seeds of small randomly

chosen off-diagonal components Px
E and Py

E (jPx
E; P

y
Ej≲

10−3Pz
E for all energies). As a reference comparison, we

solve the SDEs and compare them with the solution of
the full EOMs for μ ¼ 50Γ. Linear stability analysis shows
that the growth rate of the CFI is γ ≃ 0.39Γ, so that
μPzð0Þ ≃ 122γ, justifying the applicability of the SDE
approach.
As an example of the simplification induced by the

SDEs, we show in Fig. 1 the evolution of the squared
transverse component ðPx

EÞ2 of a specific polarization
vector, corresponding to an energy E ¼ 9.5 MeV, where
the νe spectrum peaks, both solving the full EOMs and the
SDEs. For the latter, from Eq. (18) we see that, since P
remains aligned with the z axis, the mean squared compo-
nent is simply hðPx

EÞ2i ≃ b2E=2. This has a simple inter-
pretation; since bE is the amplitude of the precession
around the z axis, the squared amplitude along a specific
direction is simply one-half of the transverse squared
amplitude. The comparison in Fig. 1 shows that the solution
of the SDEs tracks the average of the exact solution of the
EOMs over the very rapid oscillations.
Figure 2 shows the evolution of this system, as predicted

from the SDEs, as well as the final state reached after the

CFI saturates. The final νe and ν̄e distributions are identical
to the initial ones, both corresponding to beta equilibrium
with the medium, but during the evolution they deviate. By
assumption, there is no initial population of νx and ν̄x. The
dashed lines show the distributions at the intermediate stage
chosen at the instant when Pz is maximal as indicated by
the vertical dashed line in the right panels.
The CFI is manifested in the growth of the in-plane

components of the polarization vectors, namely of the
parameters βE introduced above. Correspondingly, the
collective amplitude B ¼ P

ϵ sEΓEβE grows exponentially
in time. We easily check that the instability for these
conditions belongs to the second branch identified above,
since the in-plane components Px and Py never grow, so the
total polarization vector remains aligned with the z axis. Its
magnitude initially grows exponentially. After the insta-
bility grows nonlinear, both Pz and B return to their original
value; in the case of B, this means that the polarization
vectors return to align with the z axis. We also show the
evolution of the function A defined in Eq. (22a); the
complementary function N defined in Eq. (22c) remains
always essentially identical to N ≃ −A. As the instability
grows, the νe and ν̄e population are temporarily depleted
since they convert into νx and ν̄x, as visible from the dashed
lines in Fig. 2.
After the instability has saturated, νe and ν̄e return to

their initial spectrum. This is only to be expected since the
equilibrium state of the e flavor is determined by thermal
and chemical equilibrium with the medium and is enforced
by the collisional term. On the other hand, νx and ν̄x do not
interact with the medium, and therefore their final amount
is not so trivially understood. The simulation reveals that

FIG. 1. Comparison of the solution of the full EOMs (solid thin) and the solution of the SDEs (dashed thick) for the squared transverse
component of the polarization vector corresponding to an energy E ¼ 9.5 MeV.
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their final distributions are characterized by an equipartition
of νe and νx for low energies. At high energies, the νx
remain unpopulated and are not efficiently produced by
flavor conversion.

3. Low-energy behavior

To show that these main features identified in the
numerical solution descend naturally from the SDEs,
we begin with the low-energy behavior. Beginning with
Eq. (23), we first perform the transformation

αE ¼ α̃E exp

�Z
t

0

dt0½Nðt0Þ þ Aðt0Þ − ΓE�
�
; ð27Þ

and a similar transformation for βE and νE. In terms of the
new variables, the equations become

˙̃αE ¼ −ΓEν̃E þ Bβ̃E; ð28aÞ
˙̃βE ¼ Bα̃E; ð28bÞ
˙̃νE ¼ −ΓEα̃E: ð28cÞ

We now notice that the behavior of the system is critically
different according to whether the ratio ΓE=B is very large
or very small. Since the function B depends on time and is

initially very small, clearly for all polarization vectors we
have initially B ≪ ΓE. However, as time progresses, B
grows exponentially until a maximum value Bmax; for the
numerical example analyzed earlier, Bmax ≃ 0.35Γ, as seen
from the right panel of Fig. 2.
The coefficients ΓE have a quadratic energy depend-

ence, while the Fermi-Dirac factor does not have a
dramatic impact, so we can approximately identify a
range of energies E≲ 3T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bmax=Γ

p
for neutrinos and

E≲ 3T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bmax=Γ̄

p
for antineutrinos. For these energies,

we may get a qualitative insight by considering the limit

ΓE → 0, where Eqs. (28) result in ð ˙̃αE − ˙̃βEÞ ¼ −Bðα̃E −
β̃EÞwhich implies that α̃E − β̃E decreases exponentially in

time as e−
R

t

0
Bðt0Þdt0 . Therefore, in this low-energy range,

αE and βE are maintained approximately equal. Since βE
finally reaches the value of zero, after the transverse
motion has exhausted, we conclude that in this low-
energy range, we must finally have αE ¼ 0, i.e., equi-
partition among the e and x flavor. Our numerical
simulation completely verifies this prediction, as seen
in Fig. 2. Notice that this allows us to conclude that the
maximum energy at which equipartition is reached for
neutrinos and antineutrinos, Ẽν and Ẽν̄ respectively, are
related by Ẽν=Ẽν̄ ≃

ffiffiffiffiffiffiffiffiffi
Γ̄=Γ

p
, a conclusion that is verified by

our numerical simulation.

FIG. 2. Numerical solution of the SDEs for the model system described in the text. Left: final (solid) and intermediate (dashed)
spectrum of νe and νx (ν̄e and ν̄x are shown on the negative energy axis). For νe and ν̄e, the final spectrum is identical to the initial one,
corresponding to beta equilibrium with the medium. The intermediate spectrum corresponds to the instant in time when Pz is maximum,
identified by the dashed line in the right panels. The vertical dotted line identifies the energy of the polarization vector whose dynamics is
illustrated in Fig. 1. Right: time evolution of the integrated quantities Pz, B, and A, as defined in the main text.

FIORILLO, PADILLA-GAY, and RAFFELT PHYS. REV. D 109, 063021 (2024)

063021-8



4. High-energy behavior

At high energies, such that ΓE ≫ Bmax, the qualitative
behavior of the solution can be understood for the limit
B → 0, where we find ðα̃2E − ν̃2EÞ to be constant at all times
with α̃E; ν̃E ∝ e−iΓEt. Moreover, βE never becomes large,
and in turn, no large flavor conversion occurs; neutrinos
remain pinned to their initial configuration. This prediction
is again confirmed by Fig. 2, where we see a clear break to a
region where flavor equipartition is not reached, and at
sufficiently large energies (E≳ 20 MeV), the νx spectrum
is hardly populated.

IV. DAMPED FAST FLAVOR PENDULUM

A. Setup of the problem

A somewhat more complex situation arises when the fast
dynamics, unperturbed by collisions, is not simply a
precession. One obvious example is the fast flavor pen-
dulum [18,45,46], which in its simplest manifestation arises
in a homogeneous, anisotropic, azimuthally symmetric, and
monoenergetic neutrino system. In the absence of colli-
sions, if the angular distribution of the lepton number has
crossings obeying a certain criterion [47], the system
possesses a fast instability and, due to the presence of
an infinite number of integrals of motion [19,45], exhibits a
pendulumlike dynamics.
We now add a collisional damping term which is taken to

be equal for neutrinos and antineutrinos, a case that was
previously examined numerically [14] (see also Ref. [48]
for a discussion of the impact of collisions on fast
instabilities). We will see that our separation of fast/slow
dynamics applied to this system directly recovers the earlier
features. In this case, the polarization vectors Pv and P̄v
for neutrinos and antineutrinos depend on the velocity
−1 < v < 1 along the axis of azimuthal symmetry.
The dynamics is entirely driven by the lepton number
Dv ¼ Pv − P̄v. If the damping rate is Γ, the EOMs are

Ḋv ¼ ðD0 − vD1Þ ×Dv − Γez × ðDv × ezÞ; ð29Þ

where D0 ¼
P

v Dv and D1 ¼
P

v vDv and ez the flavor
direction. The EOM for D0 is

Ḋ0 ¼ −Γez × ðD0 × ezÞ; ð30Þ

corresponding to damping of its component transverse to
the flavor direction.
In the absence of collisions, no direction in flavor space

is singled out and the conserved D0, given by initial
conditions, defines the z-direction. Collisions with the
background medium, for example beta processes, intro-
duce a flavor direction and define ez. If the small seeds
chosen to start the motion imply that D0 is not exactly
parallel to ez, this deviation is quickly damped but

otherwise, this small misalignment has no further impact
and we may assume that D0 is conserved, simplifying the
EOMs. In this case we may remove the term D0 ×Dv
in the EOMs by a uniform corotation. After these
simplifications,

Ḋv ¼ −μvD1 ×Dv − Γez × ðDv × ezÞ ð31Þ

are the EOMs to be solved.

B. Pendulum dynamics

In the absence of collisions, for a fast-unstable system
with a single crossing, the motion of the polarization
vectors is periodic and can be expressed in terms of three
fundamental vectors only. The dynamics of these three
vectors is identical to that of a spherical pendulum [18,19].
In other words, we can introduce a fictitious system of three
polarization vectors Pα, with three velocities vα, obeying
the EOMs

Ṗα ¼ −μvαP1 × Pα; ð32Þ

with P1 ¼
P

α vαPα. The original polarization vectors can
be now expressed in terms of this fictitious system using the
connection [19]

Di ¼
X
α

vαPα

vi − vα
: ð33Þ

The two systems have identical dynamics, provided they
obey the matching condition

X
i

viDi ¼
X
α

vαPα; ð34Þ

this condition needs only be satisfied at the initial time, and
it will be automatically true at all later times.
What is surprising is that, for the special choice of the

isotropic collisional term we consider for this work, the
equivalence between the full system Di and the three-beam
system Pα is rigorously true also in the presence of
collisions. Indeed, by explicit substitution, we find that
if Pα obey the EOMs

Ṗα ¼ −μvαP1 × Pα − Γez × ðPi × ezÞ; ð35Þ

the associate polarization vectors Di automatically satisfy
the correct EOMs. Therefore, without loss of generality we
restrict our discussion to a system of three velocity
beams only.
The dynamics of three beams in the absence of collisions

can always be reduced to a pendulum dynamics. We do this
by introducing the variables D0 ¼

P
α Pα, D1 ¼

P
α vαPα,
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J ¼ P
α vαðs − vαÞPα with s ¼ P

α vα, which obey the
EOMs

Ḋ0 ¼ −Γez × ðD0 × ezÞ; ð36aÞ

Ḋ1 ¼ μD1 × J − Γez × ðD1 × ezÞ; ð36bÞ

J̇ ¼ μpD1 ×D0 − Γez × ðJ × ezÞ; ð36cÞ

with p ¼ Q
α vα. For Γ ¼ 0, these indeed coincide with the

EOMs of a spherical pendulum.

C. Slow dynamics evolution of flavor pendulum

The unperturbed pendulum motion, for Γ ¼ 0, is char-
acterized by the invariants of motion D1, Jz ¼ J · ez,
α ¼ J ·D1=D1, and E ¼ 1

2
J2 þ pD0 · D1. Collisions lead

to a slow evolution of these quantities. Therefore, just as in
the case of CFIs, we can now obtain the SDEs describing
only the slow change of these quantities over timescale
∼Γ−1, rather than the fast pendular motion over timescales
∼μ−1. As in the case of CFI, we need to average the right-
hand side of the corresponding equations over many
periods of the fast motion induced by the self-interaction
term, which here is the pendular motion performed by D1.
From the EOMs, we derive the following evolution

equations

J̇z ¼ 0; ð37aÞ

Ḋ1 ¼ −ΓD1ð1 − X2Þ; ð37bÞ

dðαD1Þ
dt

¼ −2ΓD1ðα − JzX̄Þ; ð37cÞ

dE
dt

¼ −Γð2E − J2z − 2pD0D1X̄Þ; ð37dÞ

where X ¼ cos θ ¼ D1 · ez=D1 is the deviation of the
pendulum from the flavor direction and the overline
denotes the average over a pendulum period.
This set of equations can be simplified by introducing the

quantity Φ ¼ αD0D1p − JzE, whose derivative is obtained
from the previous set as

Φ̇ ¼ −2ΓΦ − ΓJ3z : ð38Þ

Since Jz is conserved, this tells us that Φ relaxes to its
asymptotic value exponentially. However, if the pendulum
is initially in its upright position, as we always assume, and
E ¼ 1

2
J2z þ pD0D1, and so Φð0Þ ¼ − 1

2
J3z . Therefore, Φ is

conserved throughout the whole motion and is an adiabatic
invariant, which means that

E ¼ J2z
2
þ α

Jz
D0D1p ð39Þ

at every instant. Finally we have only two variables, α and
D1, because Jz is constant and E is determined at each
instant by the conserved Φ. To simplify the equations, we
express everything in dimensionless variables a ¼ α=Jz
and d1 ¼ D1=D1ð0Þ. Initially, both a and d1 are equal to 1.
We redefine time units such that Γ ¼ 1. Now a and d1

obey the equations

ȧ ¼ −að1þ X2Þ þ 2X̄; ð40aÞ

ḋ1 ¼ −d1ð1 − X2Þ; ð40bÞ

From the energy conservation equations, we find

Ẋ2 ¼ J2z

��
1 − a2 þ d1ða − XÞ

1þ cos θmin

�
ð1 − X2Þ − ð1 − aXÞ2

	
:

ð41Þ

Here cos θmin is the maximum depth of flavor conversion,
namely the cosine of the minimum zenith angle reached by
the pendulum in its unperturbed state, defined as

cos θmin ¼ −1þ Jz
2pD0D1ð0Þ

: ð42Þ

Therefore, we define

In¼
Z

XndXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
1−a2þ d1ða−XÞ

1þcosθmin

i
ð1−X2Þ−ð1−aXÞ2

r ; ð43Þ

where the integral is taken only over the region where the
square root argument is positive and −1 < X < 1; one can
check that this implies the integration range

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4d21ξ

2 − 4ad1ξ
p

2d1ξ
< X < a; ð44Þ

where ξ ¼ ð1þ cos θminÞ−1. With this definition, we write

Xn ¼ In
I0
: ð45Þ

This expresses the averages in Eqs. (40) explicitly in terms
of a and d1. The dynamics of a and d1 is now expressed in
the form of a closed set of equations, where at every next
instant the new pendulum parameters depend only on the
pendulum parameters at the previous instant, and on the
control parameter cos θmin.
Once more, the SDEs cannot be solved analytically,

but offer considerable insight about the solutions. First, no
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terms of order μ appear in the equations. Second, only two
quantities remain, namely the length of D1 and the
projection of the angular momentum over the pendulum
length α, which completely characterize the motion. Most
of the original parameters of the problem have disappeared,
including the collision rate Γ. This confirms the empirical
findings of Ref. [14] that, provided Γ ≪ μ, the precise value
of Γ only determines the evolutionary speed toward a
stationary state, but not the final state itself. Similarly, the
SDEs depend only on the single parameter cos θmin. This
proves the empirical finding that the final state only
depends on cos θmin.
The SDEs determine directly the evolution of the

pendulum parameters, without need to solve the EOMs
for all polarization vectors. The evolution from integrating
the SDEs is shown in Fig. 3. The dynamics for a few
selected values of cos θmin is shown in the left panel.
Initially, all curves start from aðt ¼ 0Þ ¼ 1 (pendulum in
the upright position) and d1ðt ¼ 0Þ ¼ 1. For θmin very
small, the pendulum is always damped to a vertical position
with reduced length; in the final state, a → 1, implying that
the pendulum ends up vertical. As θmin increases, the final
length d1 eventually reaches 0. As θmin increases further,
the final outcome is to invert the direction, which is vertical
but points downward compared to the original direction.
This is signaled by a → −1 in the final state.
The entire evolution can be compactly represented in

the a–d1 plane, as in the right panel of Fig. 3. All curves
start from the upper right corner (a ¼ 1, d1 ¼ 1), and
their subsequent path depends on θmin. The final length

d1ðt → ∞Þ can be directly obtained, for each value of θmin,
by identifying the intersection of each path with the axis
a ¼ 1 or a ¼ −1, corresponding to the pendulum finally
damped to the vertical position, either upward or downward
respectively. By integrating the SDEs, we recover the linear
relation between the final height of the pendulum and
cos θmin that was found in Ref. [14], as we show in the inset
of Fig. 3.
At each instant, the pendulum parameters can be used to

recover the angular distribution of the (anti)neutrino den-
sity matrices. The practical procedure is outlined in
Appendix D of Ref. [47]. Because the damped pendulum
is always pushed toward its vertical position during flavor
evolution, the off-diagonal terms of the final-state density
matrices always vanish, as expected. Nevertheless, the
specific shape of the ELN angular distribution is in most
cases non-trivial and specific scenarios need to be system-
atically explored in a full multiangle framework; particular
examples with ELN angular crossings are shown in Fig. 2
of Ref. [14].

V. CONCLUSIONS

We have presented a novel, approximate approach to
solving the collective evolution of a homogeneous neutrino
system that is subject to collisions with a background
medium. The key element is the separation of the fast
dynamics implied by the large scale μ of neutrino-neutrino
refraction and the slow dynamics caused by the collision
rate Γ. The justification for the separation of scales is the

FIG. 3. Evolution of the pendulum parameters obtained from the SDEs. Left: dynamical evolution of the pendulum spin along the axis
a ¼ J · D1=D1Jz and the dimensionless pendulum length d1 ¼ D1=D1ð0Þ. Different colors correspond to different values of θmin, as
identified in the right panel. Right: evolution of the pendulum parameters in the a − d1 plane for various values of θmin; we show in gray
a sampling of the paths for uniformly sampled values of θmin. In the inset, we show the final value of the pendulum height, ad1, as a
function of cos θmin.
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weak-damping limit Γ ≪ μ that applies in all practical
cases and means that between collisions, the system
performs many oscillations, allowing one to use oscilla-
tion-averaged density matrices (or polarization vectors) to
follow the slow evolution caused by collisions. One tradi-
tional example is the production of sterile neutrinos in the
early universe or in SN cores, where the fast dynamics can
be analytically integrated out. We have presented this case
as a first warm-up exercise.
The novelty of our work consists in applying this method

to much more complicated systems, where integrating out
the fast dynamics leads to new slow-dynamics equations
that we call SDEs, which themselves are nonlinear equa-
tions that require numerical solution, yet provide insights
about the evolution and final state that are otherwise
obscured by the fast dynamics.
The approach of separating fast from slow dynamics

in a controlled way by averaging over the cycle of a fast
periodic motion, in the mechanical domain similar to
Kapitza’s pendulum [49], differs from other attempts to
remove unnecessary detail from the EOMs. In statistical
mechanics, one removes the motion of the microscopic
degrees of freedom and studies macroscopic quantities
such as temperature or pressure. Coarse graining over the
microscopic degrees of freedom of a fast flavor system may
lead to analogous simplifications [50], but the underlying
assumption of the system relaxing to thermal equilibrium
remains for the moment a conjecture.
We have studied two nontrivial applications, the colli-

sional flavor instability (CFI) and the fast flavor pendulum
with an energy-independent collision term. There are three
main advantages compared to a full solution: (i) A much
coarser numerical step size. (ii) A smaller number of
variables in the slow dynamics; this shows up most clearly
in the fast flavor pendulum, where the large set of
polarization vectors reduce to two coupled differential
equations for the pendulum length and spin. (iii) Most
importantly, the SDEs reveal certain aspects of the final
state without actually solving them.
Notably in the case of CFIs, this approach allowed us to

deduce the main features of the final distributions, namely
equilibrium between the e and x flavor at low energies, and
no flavor conversion at high energies. For the fast flavor
pendulum, we proved that the final flavor composition
depends only on the depth of the unperturbed pendulum,
and not on Γ or any other property, a conclusion that had
been previously reached empirically.
For the CFI, there is a subtle point about the scale of

fast dynamics. Usually, the scale of the neutrino-neutrino
interaction energy is estimated as μ ¼ ffiffiffi

2
p

GFnν. On the

other hand, the relevant scale for the CFI derives from the
length of the initial overall polarization vector and thus
initially, μCFI ¼

ffiffiffi
2

p
GFðnνe − nνe − nν̄x þ nνxÞ is the rel-

evant scale. Therefore, our method applies only when
Γ ≪ μCFI, whereas the opposite case μCFI ≪ Γ is some-
times termed the resonancelike regime [9] in which a
complete flavor swap may occur [51]. Conceivably, even in
this case, our method could be applied in a later phase when
the z component of the global polarization vector has
acquired a significant length.
In practice, our approach requires one to understand

exactly the fast dynamics in the absence of collisions, so
that the slow dynamics only touches those quantities that
would be left invariant by the fast dynamics. This is why we
had to restrict ourselves to homogeneous, azimuthally
symmetric setups, for which the dynamics without colli-
sions can be expressed analytically. However, if one were
able to develop an understanding of the fast dynamics in
inhomogeneous systems, our method could be applied to
this more practically interesting case as well.
The impact of collisional flavor instabilities cannot be

gauged by the limited information provided by linear
stability analysis. A self-consistent solution should care-
fully incorporate matter-neutrino collisions and a multidi-
mensional treatment of neutrino advection. Given the
present difficulties in estimating flavor evolution in such
complex environments, one possible way forward could be
the approach presented in this work, where slowly-chang-
ing quantities can leverage some of the technical difficulties
in the nonlinear regime. This new framework could pave
the road toward understanding CFI in more complex
systems that go beyond the common assumptions of
isotropy and homogeneity.
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