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Gravitational waves are emitted from deep within a core-collapse supernova, which may enable us to
determine the mechanism of the explosion from a gravitational-wave detection. Previous studies suggested
that it is possible to determine if the explosion mechanism is neutrino-driven or magneto-rotationally
powered from the gravitational-wave signal. However, long duration magneto-rotational waveforms, that
cover the full explosion phase, were not available during the time of previous studies, and explosions were
just assumed to be magneto-rotationally driven if the model was rapidly rotating. Therefore, we perform an
updated study using new 3D long-duration magneto-rotational core-collapse supernova waveforms that
cover the full explosion phase, injected into noise for the Advanced LIGO, Einstein Telescope and NEMO
gravitational-wave detectors. We also include a category for failed explosions in our signal classification
results. We then determine the explosion mechanism of the signals using three different methods: Bayesian
model selection, dictionary learning, and convolutional neural networks. The three different methods are
able to distinguish between neutrino-driven explosions and magneto-rotational explosions, even if the
neutrino-driven explosion model is rapidly rotating. However they can only distinguish between the
nonexploding and neutrino-driven explosions for signals with a high signal to noise ratio.

DOI: 10.1103/PhysRevD.109.063019

I. INTRODUCTION

In the last few years, current ground-based gravitational-
wave detectors Advanced LIGO [1], Advanced Virgo [2],
and KAGRA [3] have reached the sensitivities required for
the detection of gravitational waves from merging binary
black holes and neutron stars. A small population of
compact binary sources have now been detected [4–6].
However, there are many other potential sources for
ground-based, gravitational-wave detectors [7]. One of
the most promising is core-collapse supernovae (CCSNe)
[8,9]. To date, the optically targeted searches from the
LIGO-Virgo-KAGRA Collaborations have not made any
detections of gravitational waves from a CCSN [10,11].
The sensitivity to these sources will improve in future
gravitational-wave detectors, such as the proposed high
frequency detector NEMO [12], the Einstein Telescope
(ET) [13], and Cosmic Explorer [14].

Determining the astrophysical properties of CCSNe from
their gravitational-wave emission is difficult, as CCSN
signals have stochastic components, and generating wave-
forms from numerical simulations is computationally
expensive. However, there are clear deterministic aspects
of the signals that have enabled studies to ascertain the
astrophysical parameters of the gravitational-wave source.
Previous work on the estimation of CCSN parameters has
focused on the inference of properties such as the equation
of state or the rotation rate [15–19], or the mass and radius
of the proto-neutron star (PNS) [20–22]. There have also
been many efforts to try and determine the CCSN explosion
mechanism from the gravitational-wave emission [23–26].
Stars with a zero age main sequence (ZAMS) mass larger

than about 8M⊙ are expected to end their life as CCSNe.
Nuclear burning in the stellar core stops when it consists of
iron nuclei. The core will then collapse until it exceeds
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nuclear saturation density. The stiffening of the equation of
state due to repulsive nuclear forces leads to a rebound of
the core, and a shock wave is launched out from the core.
The shock quickly loses energy and stalls and must be
revived by depositing energy in the post-shock region to
make it propagate outward dynamically and power a CCSN
explosion. The method in which the shock wave gains
energy to power the full explosion is known as the CCSN
explosion mechanism. Numerical simulations suggest sev-
eral possible CCSN explosion mechanisms [27–29].
The majority of CCSNe are thought to explode by the

neutrino-driven explosion mechanism [30]. Neutrinos carry
most of the energy in a CCSN explosion. In the neutrino-
driven explosion mechanism, a very small fraction of the
neutrino energy is reabsorbed behind the shock to power
the explosion. The gravitational-wave signals from stars
that exploded by this mechanism contain most of their
energy in f- or g-modes whose frequencies depend on the
mass and radius of the PNS and are in general above
∼500 Hz [31–35]. They may also contain low-frequency
(below ∼500 Hz) modes due to the standing accretion
shock instability (SASI) [36,37]. The SASI typically stops
after the shock is revived, and is therefore usually a more
prominent feature before the shock revival time in explod-
ing models, or for a prolonged time in failed explosion
models.
Rapidly rotating CCSNe with powerful magnetic fields

may explode by the magneto-rotational explosion mecha-
nism [38–40]. This mechanism produces more powerful
explosions that may be associated with hypernovae or
gamma-ray bursts. The rotation produces a large broadband
spike in the gravitational-wave signal amplitude at the time
of the core bounce. The rotation and magnetic fields can
also change the relationship between the f-/g-modes and the
mass and radius of the PNS [41,42]. Other explosion
mechanisms may exist, such as explosions powered by a
hadron quark phase transition [43–45], however we do not
consider those potential mechanisms in this work.
In [46], the authors first showed how to distinguish

between two different supernova explosion models using
principal component analysis (PCA). The authors in [23]
then extended this work to combine PCA and Bayesian
model selection to distinguish between the neutrino-driven,
magneto-rotational and acoustic explosion mechanisms.
They used a single Advanced LIGO detector and wave-
forms from 2D CCSN simulations. This work was further
extended in [24] to include a network of gravitational-wave
detectors to analyse the same set of waveforms. However,
there can be significant differences between CCSN wave-
forms when computed using 2D or 3D simulations.
Therefore in [25], the authors updated the study in [24]
to incorporate waveforms from 3D simulations that include
both gravitational-wave polarizations. How well we can
determine the explosion mechanism in the next generation
of gravitational-wave detectors was explored in [47].

The potential to infer the explosion mechanism has also
been explored using machine learning techniques. Several
studies have shown how to distinguish between different
types of CCSN signals using neural networks [48,49].
Another promising technique is dictionary learning. This
approach was applied in [50] to distinguish between the
neutrino and magneto-rotational explosion mechanisms
using 2D waveforms and a single gravitational-wave
detector.
Although inferring the CCSN explosion mechanism

from a gravitational-wave signal has already been exten-
sively studied, there is still further improvements needed to
be prepared for a real CCSN gravitational-wave event. The
biggest outstanding issue with previous studies is the lack
of waveforms available for the magneto-rotational explo-
sion mechanism. Those studies used waveforms that only
contain the core-bounce signal and were stopped before
they reached the time of the explosion. It is not possible
to know that the explosion would have truly been
magneto-rotationally powered if the simulation is stopped
before the shock revival time. Moreover, gravitational-
wave signals from stars that are rapidly rotating, but still
undergo neutrino-driven explosions, are very similar to
gravitational-wave signals from magneto-rotational explo-
sions [41]. Having more complete waveforms will make
distinguishing the two explosion mechanisms much more
difficult than in previous studies that only used very short
duration rapidly rotating waveforms to represent the
magneto-rotational mechanism, and only used nonrotating
waveforms for the neutrino-driven explosions. Previous
studies also used slightly different data, making it difficult
to carry out a direct comparison between the different
proposed classification methods.
Therefore, in this study, we use long-duration 3D

magneto-rotational explosion mechanism waveforms that
have recently become available, where we define a mag-
neto-rotational explosion model as a model where the
magnetic fields play either a supporting or leading role
in the shock revival. We also include a nonexploding class,
as stars that do not undergo shock revival still emit
gravitational waves before black hole formation. All of
our nonexploding models were nonrotating. We also
include rotating models in our neutrino-driven explosion
class, as they should be more difficult to distinguish from
the magneto-rotational explosion waveforms. We also carry
out the first direct comparison between three of the
previously used methods: Bayesian model selection, con-
volutional neural networks, and dictionary learning.
Moreover, we test our methods using three different
gravitational-wave detectors, which are Advanced LIGO,
Einstein Telescope and the proposed Australian high-
frequency detector NEMO. Our results show that we can
distinguish between neutrino-driven explosions and
magneto-rotational explosions, even when neutrino-driven
explosions occur in rotating progenitors. However, our
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methods struggle to distinguish between neutrino-driven
explosions and nonexploding models, as the prolonged
SASI component in nonexploding models is only visible at
high signal to noise ratios (SNR).
The paper is structured as follows: In Sec. II, we describe

all of the CCSN waveforms used in this study, and explain
the differences between the various explosion mechanisms.
In Sec. III, we give a brief description of the Bayesian
model selection, dictionary learning and convolutional
neural network methods we use to determine the explosion
mechanism. In Sec. IV, we describe how we produce the
noise and signals for the different gravitational-wave
detectors. In Sec. V, we describe the results for all three
methods, and a discussion and conclusions are given
in Sec. VI.

II. SUPERNOVA WAVEFORMS

We use four different classes of CCSN waveforms for
this project. They are nonexploding, neutrino-driven explo-
sions and magneto-rotational explosions. We also include a
chirplet class as an example of a generic phenomenological
waveform for cases when the gravitational-wave signal
does not match any of our proposed explosion mechanisms.
An illustration of one waveform from each of the four
classes is shown in Fig. 1. We describe next which
waveforms were used for training our algorithms and
which waveforms were used to obtain the results. It is
important to test our methods using waveforms that are not

included in the training, as a real CCSN signal will never
match exactly one of our simulated waveforms.

A. Nonexploding

In the nonexploding case, the shock is not revived, and in
some cases, the star can quickly form a black hole.
Gravitational waves are emitted from shortly after core-
bounce up to the time of black hole formation.
Nonexploding models often have less gravitational-wave
energy than exploding models. However, high mass stars
that do not fully explode can also have fairly large
gravitational-wave energies [52]. Models that do not
explode often have a more prolonged low frequency
component in the gravitational-wave emission due to the
SASI, in comparison to the neutrino-driven and magneto-
rotational explosion models. The low-frequency SASI
mode, which occurs below ∼500 Hz and rises in frequency
with time, is clearly visible in the nonexploding example
shown in the bottom-right panel of Fig. 1. All of the
nonexploding models used here are nonrotating.

1. Training

For the nonexploding training data, we employ 7 differ-
ent waveforms. For each waveform, we use the signal as
measured at the equator and the pole. The first is model
s40 NR from Pan et al. [34]. The model was simulated with
the code FLASH and has a 40M⊙ progenitor star, and the
waveform has a duration of 0.77 s. We also use three

FIG. 1. An example of each of the four types of CCSN waveforms used in this study, shown with time-frequency plots (or
spectrograms). Top left is an example chirplet from the training set with a frequency of 600 Hz and quality factorQ 300. Top right is the
neutrino driven explosion mechanism waveform model y20 from [41]. Bottom left is the magneto-rotational mechanism waveform
model A39 from [51]. Bottom right is the nonexploding waveform model mesa20_pert from [33].
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models from O’Conner and Couch [33]. They are simu-
lations of a 20M⊙ progenitor star with the SFHo equation
of state (EoS), and we use the mesa20_gw, mesa20_
pert_gw, and mesa20_LR_gw models. The fifth non-
exploding model we use is the 13M⊙ progenitor model
from Radice et al. [32], which has the SFHo EoS. The last
two models are the z100 models from Powell et al. [52]
simulated with the CoCoNut code. They have the
same 100M⊙ progenitor, but two different EoS, SFHo,
and SFHx.

2. Injections

We add two different nonexploding models into the
detector noise to test our methods. The first one is the
s18npmodel from Powell and Müller [41], simulated with
the CoCoNut code. It is a nonrotating 18M⊙ progenitor
model simulated with the LS220 EoS. Perturbations were
excluded from the model to make it more difficult for the
shock to revive. As a result, the model has a strong low-
frequency SASI component. The waveform has a duration
of 0.56 s. The second waveform is the C15 model from
Mezzacappa et al. [35]. It corresponds to a 20M⊙ non-
rotating progenitor star simulated with the Chimera code. The
model has a strong low-frequency SASI component and the
highest frequency mode reaches frequencies of above
1000 Hz.

B. Neutrino-driven explosions

Neutrino-driven explosions are thought to occur in most
regular CCSNe [30]. The most common gravitational-wave
feature from stars that explode by this mechanism is the
appearance of high-frequency g/f-modes. Their spectro-
grams may also reveal a SASI component before the shock
is revived. In recent years, a large number of 3D simu-
lations have produced waveforms for this explosion mecha-
nism. In the following subsections, we list which
waveforms we use for our training sets and which ones
are injected into the noise.

1. Training

The first waveform in the training set is the fast rotating
model s40_FR from Pan et al. [34]. It is the same
progenitor model as we used in the nonexploding training
set. However, the rapid rotation added to the model results
in shock revival ∼200 ms after core bounce. In addition, we
use several neutrino-driven explosion models from Radice
et al. [32] with a variety of different gravitational-wave
energies. They are the 10M⊙, 11M⊙, 19M⊙, and 60M⊙
progenitor models.
The next waveform in the training set is the y20 model

from Powell and Müller [41]. The progenitor is a Wolf-
Rayet star with a helium core mass of 20M⊙. The model is
nonrotating and has the LS220 EoS. The simulation is 1.2 s
long and the shock is revived about 200 ms after core

bounce. The gravitational-wave emission attains a high
amplitude for only the first 0.6 s after core bounce. We also
use two neutrino-driven models from Powell et al. [52].
They are the 85M⊙ models with the SFHo and SFHx EoS.
Both models undergo a neutrino-driven explosion before
forming a black hole, which results in a sharp cut off in the
gravitational-wave emission. The z85_SFHomodel forms
a black hole 0.36 s after core bounce, and the z85_SFHx
model forms a black hole at 0.59 s after core bounce. Both
z85 models have a strong SASI component in the
gravitational-wave signal before the shock revival.

2. Injections

For the injected waveforms, we use the nonrotating
18M⊙ model from Powell and Müller [31]. It has the
LS220 EoS and a duration of 0.89 s. We also use the first
0.54 s of the nonrotating 12M⊙ model from Radice et al.
[32]. The third injected waveform is the rapidly rotating
model m39 from Powell and Müller [41]. We choose this
model because rapid-rotation results in a core-bounce
signal that is similar to what is observed in rapidly rotating
magneto-rotational explosions. Therefore, we expect this
model to be more difficult to classify as a neutrino-driven
explosion than the nonrotating neutrino-driven explosion
models. The progenitor star has an initial helium star
mass of 39M⊙, and an initial surface rotational velocity
of 600 km s−1, and a pre-collapse core rotation rate of
0.54 rad s−1. The duration of the waveform is 0.98 s. As
well as the spike at core bounce, the rotation also increases
the amplitude of the high frequency g-mode.

C. Magneto-rotational explosions

In the magneto-rotational explosion mechanism, the
energy to revive the shock comes from the energy produced
by the rotation of the PNS, which is amplified by a strong
magnetic field. They are thought to be less common than
neutrino-driven explosions. Very rapid rotation and strong
magnetic fields are required for an explosion to be powered
by this mechanism. Rotation alone significantly increases
the amplitude of gravitational-wave emission. Both rotation
and magnetic fields combined increase the amplitude even
further, resulting in a much larger maximum detection
distance than for neutrino-driven explosions. Rapid explo-
sions mean that these signals often do not have a strong
SASI component to the gravitational-wave signal. Rotation
results in a spike in the time-series of the gravitational-wave
emission that occurs at the core bounce time in the plus
polarization only if the viewing angle is from the equator.

1. Training

The first model in the training set is model m39_B10
from Powell and Müller [40], which is a 39M⊙ model with
a pre-collapse magnetic field strength of 1010 G, and the
same rotation rate as the m39 neutrino-driven explosion
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model. The gravitational-wave signal is only 0.33 s long
due to a short simulation time. The shock is revived
∼150 ms after the core-bounce. The gravitational-wave
frequency peaks at around 1500 Hz.
The next fivemodels in the training set are based on a low-

metallicity star with 35M⊙ which at the time of collapse is
rotating rapidly. The models O, P, and W from [39] and
l1_90d and l2_gB from [51] differ in the precollapse
magnetic fields and, as a consequence, in their evolution.
They all produce explosions in which the magnetic field and
rotation at least play a supporting role. The initial field of
model O is taken from the progenitor model, has an off-
center maximum field strength of ∼1012 G. The core
explodes at about 0.2 s after bounce. Its gravitational-wave
signal has a duration of about 0.8 s. Model P differs from
model O by a multiplication of the initial poloidal field by a
factor 3, while the energetically dominant toroidal compo-
nent is the same. At ∼ 0.15 s, an explosion starts which
develops bipolar jets. The gravitational-wave signal has a
duration of about 1.5 s. Instead of the progenitor field,model
W starts with a weak dipolar initial field normalized to
1010 G. As a consequence, the influence of the magnetic
field on the dynamics is modest. An explosion drivenmostly
by neutrino heating starts at a similar time as in model O. We
use about 0.8 s of gravitational-wave data for this model.
Models l1_90d and l2_gB are initialized with a

dipolar field tilted by 90° with respect to the rotational
axis, i.e., with the magnetic poles in the equatorial plane,
and with a quadrupolar field aligned with the rotational
axis, respectively. In both cases, the field strength is
normalized to a maximum value of 1012 G. In both models,
the explosion is driven by the magnetic fields. It sets in
about 0.1 s after bounce and gives rise to jets. About 0.65 s
and 0.88 s of the gravitational-wave signal are available for
l1_90d and l2_gB, respectively. As all models have the
same rotational profiles, the maximum amplitudes of the
gravitational-wave emission at bounce are similar. Later on,
they develop different waveforms, though usually showing
features with frequencies increasing beyond 1 kHz.
The final two models of the training set, models A26 and

A39, have progenitors of initial masses of 26 and 39M⊙,
respectively, from model series B produced by [53] under
the assumption of chemically homogeneous evolution.
Both progenitor models include profiles of the rotation
and magnetic field, which we directly use as initial data for
the simulations. The initial models contain alternating
magnetized and unmagnetized shells. In both cases, the
maximum field strength (≈1011 G) is reached in small
regions off-centre. Explosions set in at about 0.6 s and 0.3 s
after bounce, respectively. They are strongly affected by
rotation and the magnetic fields. We use a span of about
1.4 s and 0.87 s of gravitational-wave data from A26 and
A39, respectively. The maximum signal amplitudes are
lower than for the models based on progenitor 35OC, while
the frequency range is similar.

2. Injections

The first model used for the injections is m39_B12
from Powell and Müller [40]. Is it also a simulation of
the same 39M⊙ progenitor model, however this one has a
stronger magnetic field strength of 1012 G, but the same
rapid rotation rate. The model undergoes shock revival
at ∼150 ms, as in model m39_B10. However the
gravitational-wave signal is much longer as the simulation
ended 0.68 s after the core-bounce. The model reaches a
maximum frequency of above 2000 Hz. The second model,
A13, belongs to the series of chemically homogeneous
stars of [53]. It has an initial mass of 13M⊙ and a maximum
initial magnetic field strength of ≈1011 G. Magnetically
driven shock revival sets in at ≈0.3 s after bounce and leads
to jet formation. We use a gravitational-wave signal with a
1.5 s duration. The bounce signal is at ≈25 cm weaker than
in m39_B12. Later on, we find modes of up to ∼1500 Hz
and strong contributions to the signal below ≈1000 Hz.

D. Chirplets

As mentioned before, we add a fourth model category to
show what happens when the gravitational-wave signal
does not belong to any of our three potential explosion
mechanisms. We choose a chirplet model, as it is similar in
a spectrogram to a real CCSN signal. The equation for the
chirplet is given by,

h ¼ hrss expð−dt2=τ2Þ cosð2πfdtþ πḟdt2Þ ð1Þ

where hrss is the root sum squared amplitude, dt is each
time step, f is the central frequency, ḟ is the rate of change
of frequency, and τ is the duration, which is defined as
τ ¼ Q=2πf, where Q is the quality factor.

1. Training

For the chirplets used for the training, we use a variety of
values for both frequency and quality factor. They are given
in Table I. The frequency and Q values are chosen so that
they will produce gravitational-wave signals that are similar

TABLE I. The parameter values of the chirplet signals used for
training the three different classification methods.

Model name f (Hz) Q ḟ ðHz=sÞ
Chirplet 1 600 300 3183
Chirplet 2 600 380 3183
Chirplet 3 650 300 3183
Chirplet 4 650 380 3183
Chirplet 5 750 300 3183
Chirplet 6 750 380 3183
Chirplet 7 800 300 3183
Chirplet 8 800 380 3183
Chirplet 9 850 300 3183
Chirplet 10 850 380 3183
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to the time-frequency morphology and duration of the other
CCSN waveforms from the other explosion mechanisms.

2. Injections

For the chirplets injected into the data, we use the same
parameters for every injected gravitational-wave signal. The
injected signals have a frequency of 700.0 Hz, an ḟ of
3183 Hz=s, and aQ ¼ 351.53. The amplitude parameterhrss
is scaled to give the required signal to noise ratio (SNR).

III. PIPELINES

We perform our analysis using three different methods.
This section gives a brief description of each of them,
including any changes made since previous publications.

A. Bayesian model selection

The Supernova Model Evidence Extractor (SMEE)
[23–25,47] uses principal component analysis (PCA) and
Bayesian model selection to determine the CCSN explo-
sion mechanism. When PCA is applied to the set of training
waveforms, it produces Principal Components (PCs) which
represent the most common features of the waveforms in
the training set. A linear combination of the first few PCs
can then be used as the signal model for each mechanism.
By applying PCA to the waveforms, the data can be
factored so that

D ¼ UΣVT ð2Þ

where D is a matrix containing the original waveforms, U
and V are matrices whose columns consist of the eigenvec-
tors of DDT and DTD, respectively, and Σ is a diagonal
matrix with elements that correspond to the square root of
the eigenvalues of matrixD. TheUmatrix contains the PCs.
The main features of thewaveforms are contained in just the
first few PCs. Each waveform hi in the dataset can be
reconstructed using a linear combination of the PCs,
multiplied by their corresponding PC coefficients β ¼ ΣVT ,

hi ¼ A
Xk

j¼1

Ujβj ð3Þ

where A is the amplitude of the signal. The priors on the β
coefficients are determined by taking the dot product
between the PCs and the original waveform matrix. We
use a uniform in volume prior on the amplitude, and we
assume the sky positions of the CCSN signals are known.
We analyse 2 s of data for each CCSN waveform injection.
After PCA is used to create the signal models, we then

apply the Bayesian model selection. Previous SMEE
studies used Bayesian model selection and nested sampling
in MATLAB [23] and then with C [24,25,47]. In this study,
we add the PCA signal model to the Python parameter

estimation and model selection code Bilby [54]. We use the
dynasty sampler within the Bilby framework.
We make our PCs in the time domain, using the noise-

free training waveforms, and use the standard Bilby

gravitational-wave likelihood function described in [54].
To select the number of PCs we employ the explained
variance method. We choose the number of PCs required to
represent 80% of the total variance of the dataset. This
corresponds to 5 PCs for the neutrino-driven explosion
mechanism, 4 PCs for the nonexploding models, 3 PCs for
the magneto-rotational explosion mechanism models, and 3
PCs for the chirplet model.
The data is whitened by Bilby before we begin the

analysis. For LIGO and ET, we carry out our analysis
with a minimum frequency of 30 Hz and a maximum
frequency of 1900 Hz. For the NEMO detector, we use a
minimum frequency of 100 Hz instead, due to the poor low-
frequency sensitivity for NEMO.

B. Dictionary learning

The Dictionary Learning pipeline is based on the concept
of a dictionary, i.e., a matrix of prototype signals stored as
columns, also called atoms. By linearly combining their
atoms with the adequate conditions, dictionaries can be
used for two purposes, denoising and classification. The
pipeline used in this work uses both types of dictionaries to
obtain optimum classification results. The algorithm serves
as a continuation of the initial work presented at [50,55],
along with [56,57].
The denoising dictionary D∈Rn×m is an overcomplete

matrix, i.e. the number of atoms m is greater than their
length n, where the atoms are random fragments of
waveforms of the training set. It is applied to the whitened
data to recover most of the original waveform from the rest
of the data before performing the classification. Assuming
that gravitational waves u are embedded into the detector’s
noise n following the linear degradation model f ¼ uþ n,
the reconstructed waveform can be expressed as a linear
combination of atoms of the dictionary, u ∼Dα. Such a
combination is found enforcing the coefficients vector α to
be sparse while producing a reconstruction as close to the
original signal f as possible. This translates into solving the
LASSO problem [58],

α ¼ argmin
α

fkf −Dαk22 þ λkαk1g; ð4Þ

where λ is the regularization (hyper-)parameter that balan-
ces the importance between the fidelity term kf −Dαk22
and the sparsity of α. Its value is optimized empirically to
produce the reconstructions of the injected training set
closest to their original clean waveforms. The quality of the
reconstructions can be further improved by training the
dictionary over the set of training clean data (without
background noise), which modifies the dictionary
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iteratively to become a better representation of the whole
training dataset. This means solving the double minimi-
zation problem

D ¼ argmin
α;D

1

n

Xp

i¼1

fkui −Dαik22 þ λkαik1g; ð5Þ

using the algorithm proposed by Mairal et al. [59].
While the denoising is a powerful tool to get rid of most

of the background noise and improve results, it might limit
some methods of data augmentation, like injecting the same
waveform into different backgrounds at high SNR. In this
regard, it is worth noting that after applying the denoising
the majority of the copies of the test dataset were seen by
this pipeline as the same signal, thus decreasing the
statistical significance of the classification results. As an
example, if a waveform was injected 10 times with different
(but high enough) SNR, and the original one happened to
be misclassified, all 10 of them would potentially be
misclassified.
The second and last step is to classify the denoised

waveforms using the second kind of dictionary learning
technique, named LRSDL by [60], specifically developed
for classification purposes. It generalizes the well-known
Fisher discrimination dictionary learning (FDDL) [61] by
also characterizing shared components between different
classes of waveforms. This method was shown to perform
well in conditions where the available training samples are
scarce, and outperform other dictionary-based algorithms
in terms of computational resources. The structure of the
LRSDL dictionary is more complex than that of the
denoising dictionary. It consists on two matrices corre-
sponding with the class-specific D and shared parts D0,
respectively. Given an input waveform Y, it tries to replicate
it by linearly combining atoms in both parts such that

Y ≈DX þD0X0; ð6Þ

imposing different restrictions to each part of the
dictionary. For the class-specific it imposes the FDDL
constraints, and for the shared part it enforcesD0 to be low-
rank. This results in a total of six hyper-parameters; half of
them are the physical size of the matricesD andD0, and the
other half are regularization parameters which have been
optimized for classification after setting the values of the
first ones. Finally, LRSDL by default will always classify
an input waveform into one of the known classes regardless
of how different it might be. It is not able to tell when a
waveform does not belong to any of the known classes. In
order to overcome this, as a first approach an empirical
threshold has been set at the final value of the loss function
of the dictionary. Above this threshold the dictionary is
considered to not be confident enough, and the input signal
is marked as foreign (unclassified). In this work, this

corresponds to the fourth category of waveforms, the
chirplets.
We use two different training datasets to train our

pipeline. The first one is applied to the denoising dic-
tionary, focused at producing the best reconstruction of any
gravitational wave like transient, which means distinguish-
ing the original signal from the detector’s background
noise. The second one is applied to the classification
dictionary, hence focused at optimizing the classification
of the explosion mechanism by the morphology of the
reconstructed waveform.
The first training dataset consists of a single collection of

all gravitational waveforms without noise (that is, all
morphologies except the chirplets). From this, we select
10,000 random windows of 2048 samples (0.5 s) contain-
ing at least 512 nonzero samples of strain, which are used to
initialize and learn the denoising dictionary as described
in Eq. (5).
The second training dataset is divided into our 4 classes

(comprising 3 explosion mechanisms and chirplets). For
each detector, all waveforms are injected into their respec-
tive background noise frame multiple times; at different
SNR values (as described in Sec. IV), and at two different
GPS times. Finally, they are whitened using an averaged
estimation of the ASD, but without applying any frequency
filter. This approach, diverging from the other pipelines, is
aimed to make this pipeline as agnostic as possible to the
detector’s sensitivity, thus eliminating the need to find
specific values of dictionaries’ hyper-parameters for each
new detector.

C. Convolutional neural networks

The 2D convolutional neural networks (CNN) pipeline,
previously implemented in [49] and [62], classifies signals
into a CCSN explosion category based on their character-
istics in the time-frequency domain. The CNN model
achieves this through a supervised learning procedure,
which allows it to catch relevant signal features by applying
convolution and pooling operations to the data and produce
feature maps. Stacking convolutional layers allows the
learning of features on different scales.
Toproduceour trainingdataset,wewhiten thegravitational-

wave strain data in the time domain using the wavelet
detection filter [49]. A band pass filter is applied with a
high frequency cut off of 1900 Hz, and a low frequency cut
off of 30 Hz for LIGO and ET and 100 Hz for NEMO. This
operation allows the reduction of the amplitude of the strain
data in the frequency regions dominated by the noise
background. After whitening, we build and store spectro-
grams of the CCSN signals injected into the noise back-
ground choosing a custom resolution in time and frequency.
The 2D CNN model is composed of three convolutional
layers composed respectively of 32, 64, and 128 filters with
kernel sizes 3 × 3, each followed by a max pooling layer.
We use the same padding for the convolutions. We apply
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global average pooling after the last convolutional layers,
then we flatten the output and pass it through a fully
connected layer with 128 nodes. The output of the fully
connected layer is passed to a final layer with a softmax
activation function to output classification probabilities for
the four CCSN explosion mechanism classes.
The training data is produced by injecting the associated

CCSN waveforms into the detectors simulated background
noise, with SNRs in the range of 10 to 50. We separate 15%
of the training data for validation. We train the model by
minimizing the cross-categorical loss function. For the
process we use the Adam optimizer with an initial learning
rate of 0.001. The learning rate is reduced by a factor 0.5 if
the validation loss stalls into a plateau for 10 epochs.

IV. DETECTOR NOISE AND INJECTIONS

We use 4096 s of data from the LIGO Livingston
detector during the third observing run, starting at GPS

time 1238179840. The data was downloaded from the
Gravitational Wave Open Science Center (GWOSC) [63].
The sample rate is 4096 Hz. For the LIGO and ET
detectors, we recolor the real LIGO detector noise to the
detectors expected design sensitivities. We do this so that
the impact of real noise transients that occur in the data will
be included in our study. We use simulated Gaussian noise
for the NEMO detector. This is because of the significant
differences in the frequency sensitivity between the real
LIGO observing run noise and the NEMO frequency band.
The noise curves used to produce the detector noise are
shown in Fig. 2. For ET, we use the ET-D configura-
tion [13].
After creating the noise for each detector, we add the

signals in 10 second intervals into the data. In total there are
368 signals in each detector. There are a total of 92
nonexploding signals, 138 neutrino-driven explosions,
92 magneto-rotational explosions and 46 chirplets. Before
adding the signals into the noise, we resample them to
4096Hz, we filter out the frequencies below 30Hz for LIGO
and ET, and 100 Hz for NEMO, and scale the amplitude for
the signal to noise ratio (SNR) that we require. We use SNR
values of 25, 30, 35, 40, and 45, as a reasonably high SNR is
required for CCSN signals to be detected by gravitational-
wave burst searches [9].

V. RESULTS

A. Advanced LIGO

The results for all the waveforms injected into the LIGO
detector noise are shown in Fig. 3. All methods were able to
classify 100% of the chirplets correctly. This shows that our
techniques are able to tell when a similar gravitational-
wave signal does not fit into one of our CCSNe explosion
mechanism categories.
The magneto-rotational explosion mechanism signals

were correctly classified with a high accuracy by the
Bayesian model selection and the 2D CNN method, over

FIG. 2. The amplitude spectral density (ASD) curves for the
Advanced LIGO design sensitivity [1], Einstein Telescope [13]
and NEMO [12] gravitational-wave detectors. Einstein Telescope
has a similar frequency band to LIGO but it is more sensitive.
NEMO has good high frequency sensitivity, but it has poor
sensitivity at low frequencies.

FIG. 3. The classification results for the LIGO detector. From left to right are the results for Bayesian model selection, dictionary
learning, and 2D CNN. The Bayesian model selection and 2D CNN methods were able to correctly classify every chirplet signal. The
dictionary learning method produces the best results for the nonexploding models.
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75%. The dictionary learning method only classified 52%
of the magneto-rotational explosion mechanism signals
correctly, and the majority of the rest of the signals were
mixed into the chirplet class.
The neutrino-driven explosion models were classified

with over a 70% accuracy by the Bayesian model selection
and dictionary learning methods. This shows that the two
methods are able to correctly determine that the m39
rapidly rotating model was a neutrino-driven explosion
even though the rapid rotation results in very similar
features to the magneto-rotational explosion models.
This was not the case for the 2D CNN method, as 48%
of the neutrino-driven explosion waveforms were classified
into the magneto-rotational waveform class.
For the nonexploding waveform class, the dictionary

learning method has the best results with 88% of the
waveforms correctly classified. For the Bayesian model
selection method, the nonexploding waveforms that were
incorrectly classified were mainly mixed in with the
neutrino-driven explosions. Those signals were the ones

with the lowest SNR, where it is more difficult to detect the
lower amplitude SASI components of the gravitational-
wave signal. The 2D CNN classifies half of the nonexplod-
ing waveforms into the neutrino-driven explosion class.

B. Einstein Telescope

The results for the ET detector, shown in Fig. 4, are
similar to those obtained for Advanced LIGO. For the
Bayesian model selection method, the accuracy is slightly
better for ET. However, there is still some mixing between
the nonexploding and neutrino-driven explosion classes.
For the dictionary learning method, almost every non-

exploding waveform is correctly classified. This increase in
accuracy may be due to the increased low frequency
sensitivity of the ET detector. However, the accuracy is
reduced for the neutrino, magneto-rotational and chirplet
classes. This may be due to the pipeline’s hyper-parameters
being optimized using the LIGO detector noise. There is a
large computational effort required to redo the optimization

FIG. 4. The classification results for the ET detector. From left to right are the results for Bayesian model selection, Dictionary
Learning, and 2D CNN. The results for all three methods are similar to those obtained for Advanced LIGO.

FIG. 5. The classification results for the NEMO detector. From left to right are the results for Bayesian model selection, dictionary
learning, and 2D CNN. In the NEMO detector, the magneto-rotational waveforms and the chirplets are classified with a high accuracy. It
is more difficult to distinguish between neutrino and nonexplosions as the SASI modes are not visible due to the detectors poor low
frequency sensitivity.
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of the hyper-parameters for different detectors noise, but
our results show that retraining on the latest noise data
may be necessary to obtain the best results for a real
gravitational-wave detector.
The 2D CNN results for ET are also similar to those

obtained for Advanced LIGO. The 2D CNN classifies the
chirplet and magneto-rotational models with a high accu-
racy, however there is a lot of mixing between classes for
the neutrino-driven explosions and nonexploding models.

C. NEMO

The results for the NEMO detector are shown in Fig. 5.
For the Bayesian model selection method, the chirplet
signals and the magneto-rotational signals are classified
with a high accuracy. The accuracy for the nonexploding
class is reduced for NEMO. This is likely due to the poor
low frequency sensitivity of the NEMO detector. The main
difference between the neutrino-driven and nonexploding
models is the longer and stronger low frequency SASI
component in the nonexploding models, but this part of the
signal is not as visible in the NEMO frequency band.
The NEMO results for the dictionary learning method

are similar to those for ETand LIGO. A large number of the
magneto-rotational waveforms are incorrectly classified
(about 53%). However the chirplet, neutrino-driven and
nonexploding waveforms are all classified with a high
accuracy.
The 2D CNN method is able to classify the chirplet and

magneto-rotational waveforms with a high accuracy
(95.3% and 100%, respectively). However, as for the other
two detectors, most of the neutrino-driven and nonexplod-
ing waveforms are mixed between the different classes.

VI. CONCLUSIONS

A gravitational-wave detection from a CCSN may
enable us to determine the mechanism that powered the
explosion. Currently, most typical CCSN explosions are
thought to be powered by absorption of some of the energy
from neutrinos. The explosion of more energetic CCSNe
are expected to be powered by the combined effects of
rotation and magnetic fields.
Previous studies have tried to determine if we can use a

gravitational-wave detection to distinguish between these
two explosion mechanisms [23–25,50]. However, at the
time of these previous studies, there were no long duration
waveforms available for the magneto-rotational explosion
mechanism. Waveforms were assumed to be magneto-
rotational explosions if they were rapidly rotating.
However, it is possible for a rapidly rotating star to still
undergo a neutrino-driven explosion. Therefore, in this
paper we have carried out an updated study that uses long
duration gravitational waveforms in which rotation and
magnetic fields play either a supporting role or a leading
role in driving the explosion. We have also added a

nonexploding category to our mechanism classifications.
Nonexploding models are very similar to neutrino-driven
explosions, but they usually display some extra features in
spectrograms, such as longer duration low-frequency mode
from the SASI. It is possible that some models that were
only simulated for a short duration may have undergone a
neutrino-driven explosion eventually if they were contin-
ued for a longer time. The boundary between nonexploding
and exploding stars is further blurred by the fact that black
hole formation can occur not only in failed CCSNe, but also
may be preceded by a neutrino-driven explosion [52].
We have used noise for three different gravitational-wave

detectors: Advanced LIGO, Einstein Telescope and NEMO
with noise levels given by the expected design sensitivities.
The Advanced LIGO and ET detectors have a similar
frequency band, but the ET detector is significantly more
sensitive. The NEMO detector has a better high frequency
sensitivity than the other gravitational-wave detectors. We
have injected a total of 368 CCSN gravitational-wave
signals into the noise of each detector with SNR values
between 25 and 45. We have then classified all of the
injected signals with three different methods that have been
used previously for the classification of CCSN signals.
They are Bayesian model selection, dictionary learning and
a 2D CNN.
The results have shown that, regardless of the method,

we are able to distinguish between rapidly rotating
neutrino-driven explosions and magneto-rotational explo-
sions, and in general we can distinguish our new long-
duration magneto-rotational explosion waveforms from the
other types of CCSN explosion models. We have also found
that we can accurately classify chirplet signals as not being
from any one of our explosion mechanisms. Distinguishing
between neutrino-driven explosions and nonexploding
models is more difficult, as expected. The nonexploding
models are expected to have a more prolonged SASI signal
component than most neutrino-driven explosion models,
however this is only visible at high SNR. For the LIGO and
ET detectors, correctly classifying a waveform as being
nonexploding is only possible when the SNR is high and
the SASI component in the gravitational-wave signal is
clearly visible. For the NEMO detector it is even more
difficult, due to the detector’s poor sensitivity in the
low-frequency band where the SASI produces the most
gravitational-wave energy. In the future, the results could be
improved for the ET detector by including the memory
component of the gravitational-wave signal, which is only
present in exploding models. The memory component of
the gravitational-wave signal occurs at frequencies too low
for current ground based gravitational-wave detectors
and NEMO.
In the event of a CCSNe occurring in the near future, we

would be able to use every waveform available to us for the
training, as we would not need to keep some spare for
testing. Having the extra waveforms available would
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increase our accuracy, and we will also include any new
waveforms that are continuously being produced in
numerical simulations. The magneto-rotational explosion
mechanism still only has a small number of full 3D
waveforms available. As more sensitive gravitational-wave
detectors become available, our sensitivity to CCSNe
signals will increase. However the increased sensitivity
will also result in extra data analysis challenges that will
need to be addressed in future work, for example the CCSN
overlapping with a binary black hole signal.
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