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We investigate the process of an ultrarelativistic fluid accreted onto axisymmetric Kerr-Sen black holes
in Einstein-Maxwell-dilaton-axion theory. We obtain the solution describing the velocity potential of a
stationary irrotational fluid with a stiff equation of state and the solution for the streamlined diagram of the
quadrupolar flow. We also investigate how the solution’s coefficients and the stagnation points are affected
by the parameters. The injection rate, the ejection rate, and the critical angle are discussed in detail. We find
that with an increasing dilaton parameter the ratio of the ejection rate to the injection rate increases and that
the radiative efficiency is larger, while the redshift is lower, compared to the Kerr black hole.
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I. INTRODUCTION

Accretion of matter onto a black hole is the most
probable scenario for explaining the high-energy output
from active galactic nuclei and quasars. It is also provides
the most credible expositions for the high-energy outflow
from x-ray binaries and gamma-ray bursts [1]. The initial
exploration of accretion process onto celestial objects was
investigated by Hoyle and Lyttleton [2–5]. Subsequently,
Bondi and Hoyle focused on the accretion of gas without
pressure onto a moving star [6]. Bondi formulated the
theory of the transonic hydrodynamic accretion of the
adiabatic fluid in a stationary, spherically symmetric
spacetime [7]. This scheme for accretion process was
generalized to the Schwarzschild black hole by Michel [8].
Petrich formulated a relativistic framework for the sta-
tionary accreted fluid with an adiabatic equation of state
onto a Schwarzschild and Kerr black hole [9]. In recent
developments, researchers considered the accretion of
Vlasov gas, ignoring the backreaction of matter, and
analyzed its accretion rate [10–12]. Since then, a consid-
erable amount of literature has been dedicated to theoretical
and observational studies for accretion [13–25]. On the flip
side, the astrophysical jet represents another phenomenon,
where plasma is emitted in the form of an extended beam
along the rotation axis. The jet mechanisms proposed by
Blandford and Payne (BP) and Blandford and Znajek (BZ)
stand as the most widely accepted explanations in prior
studies [26,27]. The BP mechanism utilizes magnetic

centrifugation to extract energy and angular momentum
from a black hole accretion disk, whereas the BZ mecha-
nism involves rotational energy from a Kerr black hole.
These methods were commonly used in magnetohydrody-
namics and astrophysics explorations [28–31]. Afterward, a
new hydrodynamic accretion mechanism was proposed to
explain the effect of the steady-state axisymmetric partial
fluid flowing from the equatorial plane being ejected along
poles by the cytaster’s gravitational influence [32]. This
process was also generalized to the choked accretion
scenario of Schwarzschild and Kerr black holes [33,34].
The preceding discussions were primarily confined to

the general relativity (GR) framework. Similar accretion
and jet phenomena exist for black holes in alternative
gravity models [35–41]. In GR, the theoretical predict-
ability is broken by singularities associated with black
holes and by the big bang [42–44]. This suggests that GR
may not be a complete theory of gravity, highlighting the
necessity for modifications from a more comprehensive
theory that incorporates the quantum nature at very small
length scales [45]. From an observational standpoint, GR
encounters challenges in understanding the characteristics
of dark matter and dark energy, both essential for explain-
ing phenomena such as the rotation curves of galaxies and
the accelerated expansion of the Universe, respectively
[46–50]. Furthermore, recent developments suggest a
breakdown of GR in the low-acceleration regime, thereby
exerting profound influence on both the astrophysical and
cosmological domains [51,52].
Among many alternative theories to traditional GR,

the Einstein-Maxwell-dilaton-axion (EMDA) model has
attracted significant attention [53,54]. The model incorpo-
rates the dilaton field and the pseudoscalar axion, both of
which are connected to the metric and the Maxwell field.
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The origins of the dilaton and axion fields can be attributed
to string compactifications, giving rise to compelling
implications in the inflationary and late-time accelerated
cosmologies [55,56]. Therefore, it is valuable to investigate
the role of such a theory in astrophysical observations.
Within these string-inspired low-energy effective theories,
the parameters were constrained from observations; for
instance, a preferred value of r2 ≡ Q2

M ≈ 0.2M is determined
based on the optical continuum spectrum of quasars [57].
Additionally, a recent investigation gave an observational
constraint on the dilaton parameter (0.1M ≲ r2 ≲ 0.4M) by
analyzing the shadow diameters of M87* and Sgr A* [58].
Finally, a constraint on the dilaton parameter is obtained by
employing simulated data that replicates potential observa-
tions of the S2 star via a gravity interferometer [59]. It
demonstrated that enhanced astrometric accuracy can effec-
tively narrow down the acceptable range of dilaton param-
eter to r2 ≲ 0.066M.
The article is organized as follows: In Sec. II, the EMDA

model and the Kerr-Sen black hole will be briefly reviewed.
In Sec. III, for irrotational fluids, wewill derive an analytical
solution for the velocity potential Φ in the Boyer-Lindquist
coordinate system. In Sec. IV, the quadrupolar flow solution
will be used to analyze the variation of the coefficients with
parameters, and the streamline and the temperature dia-
grams will be displayed in the zero angular momentum
observer frame. In Sec. V, we will present the mechanism of
choked accretion, including the density ratio, the injection
rate, and the ejection rate, as well as the value range of the

reference point. Finally, we will analyze the variation of
radiative efficiency ϵ and redshift z with different param-
eters. For convenience, we will use geometrical units c ¼
G ¼ 1 and the signature convention ð−;þ;þ;þÞ for the
spacetime metric throughout the article.

II. KERR-SEN BLACK HOLE IN EINSTEIN-
MAXWELL-DILATON-AXION GRAVITY

The EMDA model is derived from the low-energy limit
behavior of heterotic string theory. It is composed of dilaton
field χ, gauge vector field Aμ, metric gμν, and pseudoscalar
axion field ξ [53,54,60]. The action of the EMDA model
can be formulated through the coupling of supergravity and
super-Yang-Mills theory, and it can be described by the
following form:

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x

�
R̃ − 2∂μχ∂

μχ −
1

2
e4χ∂μξ∂μξ

þ e−2χFμνFμν þ ξFμνF̃μν

�
; ð1Þ

where R̃ is the Ricci scalar, Fμν is the second-order
antisymmetric Maxwell field strength tensor with Fμν ¼
∇μAν −∇νAμ, and F̃μν is the dual tensor of the field
strength. The variation of the aforementioned four fields
yields the following motion equations:

□χ −
1

2
e4χ∇μξ∇μξþ 1

2
e−2χFμνFμν ¼ 0;

□ξþ 4∇μξ∇μξ − e−4χFμνF̃μν ¼ 0;

∇μF̃μν ¼ 0;

∇μðe−2χFμν þ ξF̃μνÞ ¼ 0;

Gμν ¼ e2χð4FμρF
ρ
ν − gμνF2Þ − gμν

�
2∇μχ∇μχ þ 1

2
e4χ∇μξ∇μξ

�
þ∇μχ∇νχ þ e4χ∇μξ∇νξ: ð2Þ

These equations indicate that the dilaton field, the axion
field, the electromagnetic field, and the gravitational field
are observed to be coupled. The classical axisymmetric
solution, known as the Kerr-Sen solution, can be expressed
in Boyer-Lindquist coordinates as [61–63]

ds2 ¼ −
�
1−

2Mr

Σ̃

�
dt2 þ Σ̃

Δ̃
dr2 þ Σ̃dθ2 −

4aMr

Σ̃
sin2 θdtdϕ

þ sin2 θdϕ2

�
rðrþ r2Þ þ a2 þ 2Mra2 sin2 θ

Σ̃

�
; ð3Þ

with

Σ̃ ¼ rðrþ r2Þ þ a2 cos2 θ;

Δ̃ ¼ rðrþ r2Þ − 2Mrþ a2; ð4Þ

where M is the mass parameter of the black hole, the

dilaton parameter is defined as r2 ¼ Q2

M (Q represents the
electric charge), and a denotes the black hole’s angular
momentum per unit mass. Equation (3) indicates that when
the black hole’s rotation parameter is excluded, it results in
a spherically symmetric dilaton black hole composed of
mass, electric charge, and asymptotic value [64]. When the
dilaton parameter r2 vanishes, the Kerr-Sen solution reverts
to the Kerr black hole.
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The event horizon r� of the Kerr-Sen black hole is
determined by

rþ ¼ M −
r2
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M −

r2
2

�
2

− a2

s
;

r− ¼ M −
r2
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M −

r2
2

�
2

− a2

s
: ð5Þ

According to Eq. (5), the theoretical range of parameters
within which internal and external event horizons exist
can be determined as 0 ⩽ r2

M ⩽ 2ð1 − a
MÞ or −ð1 − r2

2MÞ ⩽
a
M ⩽ 1 − r2

2M. Since the spin parameter a cannot exceed the
black hole mass M, it can be deduced that the theoretical
effective range for the parameter r2 is 0 ⩽ r2

M ⩽ 2. In the
next section, we will consider a nonrelativistic, steady-
state, irrotational fluid accretion process in the spacetime
of a Kerr-Sen black hole.

III. ACCRETION SOLUTION FOR
ULTRARELATIVISTIC PREFECT FLUID

The primary objective of this section is to investigate
the ultrarelativistic perfect fluid accretion solution. Speci-
fically, the steady-state fluid with an ultrarelativistic stiff
equation of state which can be described as

P ¼ Kρ2; ð6Þ

where K is a constant and ρ and P are the proper mass
density and the proper pressure, respectively. Since the
perfect fluids satisfy the first law of thermodynamics: dh ¼
dP
ρ [65] (h represents the specific enthalpy defined as uþP

ρ

and u denotes the total energy density), substituting this
expression into the aforementioned formula, we obtain

h ¼ 2Kρ: ð7Þ

In hydromechanics, the speed of sound plays a crucial
role as a fundamental physical parameter for analyzing the
velocity of fluid. We derive the fluid’s sound speed

c2s ≡
ffiffiffiffiffiffiffiffi
∂ ln h
∂ ln ρ

q
¼ 1, which indicates that the fluid’s velocity

is subsonic. The basic equations for investigating the
evolution of the fluid are the continuity equation and
the energy-momentum conservation equation, which have
the following forms:

∇μJμ ¼ ∇μðρUμÞ ¼ 0;

∇μTμν ¼ ∇μðρhUμUν þ PδμνÞ ¼ 0: ð8Þ

Then we can derive the Euler equation by combining the
above two formulas with the first law

Uμ∇μðhUνÞ þ∇νh ¼ 0; ð9Þ

where Uμ ¼ dxμ
dτ is the four-velocity for fluid and satisfies

UμUμ ¼ −1. The relativistic vorticity tensor is [9]

ωμν ¼ ∇νðhUμÞ −∇μðhUνÞ: ð10Þ

Utilizing the projection operator Pμ
ν ¼ δμν þUμUν, we

project the vorticity tensor into its spatial component:

ω̃μν ¼ Pα
μP

β
ν ½∇βðhUαÞ −∇αðhUβÞ�: ð11Þ

Substituting (9) into the expression of (11), one can
demonstrate that, for an irrotational fluid with a zero vortex
tensor, hUμ can be expressed as the gradient of the velocity
potential Φ:

hUμ ¼ ∇μΦ: ð12Þ

Subsequently, the four-velocity normalization condition
requires h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∇μΦ∇μΦ
p

. Utilizing (8) and (12), we
obtain

∇μ

�
ρ

h
∇μΦ

�
¼ 0; ð13Þ

which is a nonlinear differential equation and can be
rewritten as

∇μ∇μΦ ¼ 0: ð14Þ

The issue of thermodynamics is entirely transformed into
the solution of a massless scalar field with boundary
conditions. Nevertheless, it is essential to note that not
all solutions to the equation are physically viable: A fluid’s
four-velocity must be required to be timelike. Within the
permissible ranges of parameters, the theoretical values for
the pressure and the specific enthalpy can be obtained by
calculating the solution of the field Φ.

A. The solution in Kerr-Sen spacetime

Petrich, Shapiro, and Teukolsky investigated the solution
of (14) in the Kerr spacetime under the assumption that the
boundary conditions were fulfilled. In this subsection, we
will follow their approach in the Kerr-Sen spacetime.
The analytical expression can be expressed as

−
Ã

Δ̃ Σ̃
∂
2
tΦþ 1

Σ̃
∂rðΔ̃∂rΦÞ þ 1

Σ̃ sin θ
∂θðsin θ∂θΦÞ

þ Δ̃ − a2 sin2 θ

Σ̃ Δ̃ sin2 θ
∂
2
ϕΦ −

4Mra

Δ̃ Σ̃
∂t∂ϕΦ ¼ 0; ð15Þ
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where Ã is defined as

Ã ¼ ½rðrþ r2Þ þ a2�2 − a2 sin2 θΔ̃: ð16Þ

According to the steady-state fluid accretion process, the
solution is

Φ ¼ e

�
−tþ

X
lm

RlmðrÞYlmðθ;ϕÞ
�
; ð17Þ

where the velocity potential Φ has decomposed by the
standard spherical harmonics which serve as a set of
complete basis. The positive e is related to the Bernoulli
constant (per unit mass) and can be solved by

e ¼ −hUμ

�
∂

∂t

�
μ

¼ −∂tΦ; ð18Þ

with the timelike Killing vector field ð ∂
∂tÞμ ¼ ð1; 0; 0; 0Þ.

Substituting (17) back into (15), we can derive

d
dr

½Δ̃∂rRlmðrÞ� − lðlþ 1ÞRlmðrÞ þ
m2a2

Δ̃
RlmðrÞ ¼ 0: ð19Þ

To simplify the radial component of (19), we introduce a
new variable z to transform the equation for RlmðrÞ into the
Legendre equation:

z≡ r −M þ r2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM − r2
2
Þ2 − a2

q ;

ð1 − z2Þ d2

dz2
RlmðzÞ − 2z

d
dz

RlmðzÞ þ lðlþ 1ÞRlmðzÞ −
ðiαmÞ2
1 − z2

RlmðzÞ ¼ 0: ð20Þ

Following this, Eq. (17) can be formulated in a general form:

Φ ¼ e

�
−tþ

X
l

ðAlPlðzÞ þ BlQlðzÞÞYl0 þ
X
lm

ðAþ
lmP

imα
l ðzÞ þ A−

lmP
−imα
l ðzÞÞYlmðθ;ϕÞ

�
; ð21Þ

where α≡ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM−r2

2
Þ2−a2

p , m is a positive integer, and coefficients Al, Bl, A
þ
lm, and A−

lm could be determined by boundary

conditions. PlðzÞ, Pimα
l ðzÞ, and QlðzÞ are Legendre functions of the first and the second kind. Pimα

l ðzÞ can be described as a
hypergeometric function [66]:

Pimα
l ðzÞ ∝ eimXF

�
−l; lþ 1; 1 − imα;

1 − z
2

�
;

X ≡ α

2
ln
zþ 1

z − 1
¼ a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − r2

2
Þ2 − a2

q ln
r − r−
r − rþ

: ð22Þ

Using Eq. (12) and the normalization condition for the four-velocity, we obtain

hUt ¼ −e;

hUr ¼
e½PlðAlP0

lðzÞ þ BlQ0
lðzÞÞYl0ðθ;ϕÞ þ

P
lmðAþ

lmP
0imα
l ðzÞ þ A−

lmP
0−imα
l ðzÞÞYlmðθ;ϕÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM − r2
2
Þ2 − a2

q ;

hUθ ¼ e

�X
l

ðAlPlðzÞ þ BlQlðzÞÞ
∂Yl0ðθ;ϕÞ

∂θ
þ
X
lm

ðAþ
lmP

imα
l ðzÞ þ A−

lmP
−imα
l ðzÞÞ ∂Ylmðθ;ϕÞ

∂θ

�
;

hUϕ ¼ e

�X
lm

ðAþ
lmP

imα
l ðzÞ þ A−

lmP
−imα
l ðzÞÞ ∂Ylmðθ;ϕÞ

∂ϕ

�
; ð23Þ

with

FENG, WU, YANG, and MODESTO PHYS. REV. D 109, 063014 (2024)

063014-4



h2 ¼ 1

Δ̃ Σ̃

�
e2Ã − Δ̃2ðhUrÞ2 − Δ̃ðhUθÞ2 −

Δ̃ − a2sin2θ
sin2θ

ðhUϕÞ2 þ 4MraeðhUϕÞ
�
: ð24Þ

The prime denotes the derivative with respect to z and the analytical solution reveals a physical constraint: It must remain
finite at rþ, necessitating Aþ

lm to be 0 (since Pimα
l is divergent at rþ). Employing the limiting behavior as z → 1

(corresponding to r → rþ), we have

h2 →
½rþðrþ þ r2Þ þ a2�2e2 −

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − r2

2
Þ2 − a2

q P
lBlYlmðθ;ϕÞ

i
2

Δ̃ðrþÞΣ̃ðrþÞ
: ð25Þ

Analyzing the specific enthalpy with a focus on its
continuity at the horizon, we conclude that only B0

contributes, and the other terms Blðl > 0Þ vanish. This
implies that

B0 ¼
e½rþðrþ þ r2Þ þ a2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM − r2
2
Þ2 − a2

q ; ð26Þ

where Y00’s contribution is absorbed into B0. By using the
formula Q0ðxÞ ¼ 1

2
ln 1þx

1−x, the associated solution degener-
ates to

Φ ¼ e½−tþ ψðr; θ;ϕÞ�;

ψðr; θ;ϕÞ≡ rþðrþ þ r2Þ þ a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − r2

2
Þ2 − a2

q ln
r − r−
r − rþ

þ
X
l;m≥0

A−
lme

−imχF

�
−l; lþ 1; 1þ imα;

1 − z
2

�

× Ylmðθ;ϕÞ: ð27Þ

Since Φ is a real scalar field, a constraint is imposed:
A−
l−m ¼ ð−1ÞmðA−

lmÞ�. In the study of steady-state accretion
scenarios, it is common to assume an axisymmetric fluid
distribution and a reflection symmetry about the equatorial
plane. This allows us to focus on only modes with m ¼ 0,
and the angular quantum number l must be an even integer.
The coefficients A−

lm correspond to the distinctive structure
of the fluid, and its determination will be addressed
subsequently.
Equations (12), (23), and (27) give the exact analytical

formulas for Uμ and the specific enthalpy, which yields

hUt

e
¼ Ã

Δ̃ Σ̃
−
2Mra

Δ̃ Σ̃
∂ϕψ ;

hUr

e
¼ Δ̃

Σ̃
∂rψ ;

hUθ

e
¼ 1

Σ̃
∂θψ ;

hUϕ

e
¼ 2Mra

Δ̃ Σ̃
þ Δ̃ − a2 sin2 θ

Δ̃ Σ̃ sin2 θ
∂ϕψ ; ð28Þ

and

h2

e2
¼ Ã

Δ̃ Σ̃
−
Δ̃
Σ̃
ð∂rψÞ2 −

1

Σ̃
ð∂θψÞ2

−
Δ̃ − a2 sin2 θ

Δ̃ Σ̃ sin2 θ
ð∂ϕψÞ2 −

4Mra

Δ̃ Σ̃
ð∂ϕψÞ: ð29Þ

There are two inherent constraints in (28) and (29): The
first constraint is that the right-hand side of Eq. (29) must
be positive, as the four-velocity Uμ is required to be
timelike. It is evident that not every point r in Kerr-Sen
spacetime satisfies this criteria.
Nevertheless, this issue can be addressed by selecting

A−
lm small enough to ensure that h is well defined within the

spherical shell’s interval rþ ⩽ r ⩽ R (R is a spherical
radius). The second constraint is that UrðrþÞ < 0 for the
fluid to flow radially into the event horizon. Fortunately, it
can be demonstrated that this condition is automatically
satisfied by the accretion solution of the ultrarelativis-
tic fluid.

B. Mass accretion rate for ultrarelativistic stiff fluid

The accretion rate of a black hole is one of the most
significant concepts in astronomy. It is derived from the
mass conservation flow and describes how rapidly the
black hole absorbs surrounding fluids. The constraint from
stationary accretion is internally consistent with the follow-
ing conditions: (i) the accreted matter is light-weight fluid,
and (ii) the growth rate of black hole mass is slow
[13,67,68]. Generally speaking, based on considerations
by previous researchers on black hole accretion, it can be
stated that these two conditions are generally satisfied due
to the difficulty of the accreted matter’s mass reaching the
order of the black hole’s mass. Therefore, when addressing
the accretion of ordinary matter from the interstellar
medium onto a sufficiently massive black hole, we can
neglect the impact of backreaction.
The conserved quantities of physical system are deter-

mined by the number of Killing vector fields. Given that the
Kerr-Sen black hole exhibits symmetries in the t and ϕ
coordinates, we can define the conservation flow
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Jμε ¼ −Tμ
ν

�
∂

∂t

�
ν

;

JμL ¼ Tμ
ν

�
∂

∂ϕ

�
ν

; ð30Þ

which correspond to the energy, the angular momentum,
and the mass flow Jμ ¼ ρUμ, respectively. Combining (12)
with the stiff equation of state yields the deduced conserved
current as follows:

Jμ ¼ ρ

h
∇μΦ;

Tμ
ν ¼ ρ

h

�
∇μΦ∇νΦ −

1

2
δμν∇σΦ∇σΦ

�
: ð31Þ

The mass flow through the surface of a sphere with a certain
radius is referred to the mass accretion rate, which yields

Ṁ ¼ −
Z
S
Jr

ffiffiffiffiffiffi
−g

p
dθdϕ; ð32Þ

with the dot denoting the time derivative and Smeaning any
sphere of radius r. In particular, it should be emphasized
that Ṁ is independent of the position chosen during the
steady-state accretion process. Therefore, we select the
surface r ¼ rþ. In order to have an explicit expression for

the accretion rate, we solve Ṁ by substituting Jr ¼ ρeΔ̃
Σ ∂rψ

and (27) into (32):

Ṁ ¼ −
ρe
h

Z
r¼rþ

Δ̃∂rψ sin θdθdϕ

¼ 4πρe
h

½rþðrþ þ r2Þ þ a2�: ð33Þ

It appears that the ultrarelativistic fluid with ρ
h ¼ 1

2K can be
moved outside of the integral. The energy accretion rate Ṁ
and angular momentum accretion rate J̇ could be
expressed as

Ṁ ¼ −
Z
r¼rþ

JrεΣ̃ sin θdθdϕ ¼ eṀ;

J̇ ¼ −
Z
r¼rþ

JrLΣ̃ sin θdθdϕ ¼ 0: ð34Þ

The formulas indicate that both the mass accretion rate and
energy accretion rate remain constant. The transformation
of angular momentum is zero, which implies that the
steady-state fluid is axisymmetric (m ¼ 0) in the Boyer-
Lindquist coordinate system. The ratio of the accretion rate
for the Kerr-Sen black hole to that of the Kerr black hole is
depicted in Fig. 1. Both figures indicate that within the
theoretically permissible range of parameters, as a and r2
increase, the accretion rate of the Kerr-Sen black hole
decreases significantly, comparing with that of the Kerr
black hole.

IV. THE QUADRUPOLAR FLOW SOLUTION
IN ZAMO FRAMEWORK

To investigate the relative velocity in three dimensions, it
is more convenient to adopt the zero angular momentum
observer (ZAMO) framework [69,70]. The observer’s four-
velocity depends on ∂

∂t þΩ ∂

∂ϕ (Ω ¼ 2Mar
Ã

is the angular
velocity). On the background of the Kerr-Sen black hole,
the four orthogonal basis vectors could be expressed as

et̂ ¼
ffiffiffiffiffiffiffi
Ã

Σ̃ Δ̃

s
ð1;0;0;ΩÞ; er̂ ¼

ffiffiffiffi
Δ̃
Σ̃

s
ð0;1;0;0Þ;

eθ̂ ¼
1ffiffiffĩ
Σ

p ð0;0;1;0Þ; eϕ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σ̃
Ãsin2 θ

s
ð0;0;0;1Þ: ð35Þ

According to the coordinate transformational relation Uμ̂ ¼
eμ̂βU

β, the four-velocities within ZAMO framework are

FIG. 1. The ratio of the accretion rate for the Kerr-Sen black hole to that of the Kerr black hole is illustrated with a ¼ 0, 0.1, 0.3, 0.5,
0.8, 0.9 M and r2 ¼ 0, 0.3, 0.8, 1.2, 1.6, 1.9 M.
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h
e
Ut̂ ¼

ffiffiffiffiffiffiffiffi
Ã

Σ̃ Δ̃

s
ð1 −Ω∂ϕψÞ;

h
e
Ur̂ ¼

ffiffiffiffi
Δ̃
Σ̃

s
∂rψ ;

h
e
Uθ̂ ¼ 1ffiffiffĩ

Σ
p ∂θψ ;

h
e
Uϕ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ̃

Ãsin2θ

s
∂ϕψ : ð36Þ

The Lorentz factor is Γ≡Ut̂ ¼ 1ffiffiffiffiffiffiffiffi
1−V2

p , and the additional

three-velocity corresponding to Eq. (36) can be defined as

Vr̂ ¼ Ur̂

Ut̂
¼ Δ̃∂rψffiffiffiffĩ

A
p

ð1 −Ω∂ϕψÞ
;

V θ̂ ¼ Uθ̂

Ut̂
¼

ffiffiffiffi
Δ̃

p
∂θψffiffiffiffĩ

A
p

ð1 −Ω∂ϕψÞ
;

Vϕ̂ ¼ Uϕ̂

Ut̂
¼ Σ̃

ffiffiffiffi
Δ̃

p
∂ϕψ

Ã sin θð1 − Ω∂ϕψÞ
; ð37Þ

with

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVr̂Þ2 þ ðV θ̂Þ2 þ ðVϕ̂Þ2

q
: ð38Þ

Evidently, these representations of three- and four-velocities
lead to variety of relevant conclusions. The timelike

characteristic of four-velocity requires V < 1 (Ut̂ > 0).
Therefore, we can constrain the three-velocity highlighted
above according to the following two conditions:

Ω∂ϕψ < 1 ð39Þ

and

V2 ¼ 1

Ãð1 −Ω∂ϕψÞ2
�
ðΔ̃∂rψÞ2 þ Δ̃ð∂θψÞ2

þ Δ̃Σ̃2

Ãsin2θ
ð∂ϕψÞ2

�
< 1: ð40Þ

The case of ðl; mÞ ¼ ð2; 0Þ, which is the essential solution
utilized to characterize choked accretion, also constitutes
the solution for the axisymmetric quadrupolar flow.
This solution inherently satisfies the constraint equa-
tion (39) (∂ϕψ ¼ 0). The restriction imposed by (40) will
be explained in more detail later. Specifically, the Bondi-
Michel-type accretion corresponds to l ¼ 0 and the wind
accretion was accompanied by l ¼ 1, both extensively
explored in [71,72]. We extend hypergeometric series
near the horizon and obtain quadrupolar flow’s velocity
potential Φ:

Φ ¼ e

�
−tþ rþðrþ þ r2Þ þ a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − r2

2
Þ2 − a2

q ln
r − r−
r − rþ

þ NFðr; θ;ϕÞ
�
;

Fðr; θ;ϕÞ ¼ ð3cos2θ − 1Þ
�
3r2 − 6Mrþ 2M2 þ a2 − 2Mr2 þ 3rr2 þ

1

2
r22

�
; ð41Þ

where N represents the coefficient A−
20. Inserting Eq. (41) into Eqs. (36) and (37), we can derive

Vr̂ ¼ Δ̃NF;r − 2Mrþffiffiffiffĩ
A

p ;

V θ̂ ¼
ffiffiffiffi
Δ̃
Ã

s
NF;θ;

Vϕ̂ ¼ 0; ð42Þ

and

h2

e2
¼ Ãð1 − V2Þ

Σ̃ Δ̃
¼ 1

Σ̃

�
Ã

Δ̃
− Δ̃

�
NF;r −

2Mrþ
Δ̃

�
2

− N2F2
;θ

�
; ð43Þ

with

F;r ¼ ð3 cos2 θ − 1Þð6r − 6M þ 3r2Þ;

F;θ ¼ −6 cos θ sin θ
�
3r2 − 6Mrþ 2M2 þ a2 − 2Mr2 þ 3rr2 þ

1

2
r22

�
: ð44Þ
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The fluid distribution is entirely defined by Eq. (42). By
resolving the stagnation point, we can figure out its
morphological structure. The stagnation related to V θ̂ ¼ 0

could be resolved with θ ¼ 0, π
2
, and π, while Vr̂ ¼ 0 will

ultimately determine the location of the stagnation point.
Since the flow is symmetric in the equatorial plane, there are
two scenarios.
Case 1 ðθ ¼ 0; πÞ: N > 0 with inflow traveling through

the equatorial plane ðθ ¼ π
2
Þ and outflow along the polar

axis.—On the polar axis, the stagnation point r ¼ rs is
symmetrical distribution and fulfills

N ¼ Mrþ
ð6rs − 6M þ 3r2Þðrs − rþÞðrs − r−Þ

: ð45Þ

Case 2 ðθ ¼ π
2
Þ: N < 0 is associated with inflow entering

at both ends of the polar axis and outflow along the

equatorial plane.—In this case, the stagnation point exists
symmetrically in the equatorial plane:

N ¼ −
2Mrþ

ð6rs − 6M þ 3r2Þðrs − rþÞðrs − r−Þ
: ð46Þ

When the black hole’s parameters remain constant, the
coefficients in the potential function entirely determines the
location of the stationary point. In the quadrupolar flow
situation, the constraint in (40) is equivalent to the
positivity of the right-hand side of the last term in (43).
It follows that

G≡ g0ðrÞ cos4 θ þ g1ðrÞ cos2 θ þ g2ðrÞ > 0; ð47Þ

with

g0ðrÞ ¼ 9N2ð2a2 þ 4M2 þ 6r2 þ 6rr2 þ r22 − 4Mð3rþ r2ÞÞ2 − 9N2ð6r − 6M þ 3r2Þ2Δ̃;
g1ðrÞ ¼ 12NMrþð6r − 6M þ 3r2Þ þ 6N2ð6r − 6M þ 3r2Þ2Δ̃þ a2

− 9N2ð2a2 þ 4M2 þ 6r2 þ 6rr2 þ r22 − 4Mð3rþ r2ÞÞ2;
g2ðrÞ ¼ −N2ð6r − 6M þ 3r2Þ2Δ̃ − 4NMrþð6r − 6M þ 3r2Þ þ r2 þ rr2 þ 2Mrþ 4M2

rþ rþ
r − r−

: ð48Þ

As the streamline is minimally influenced by the black hole
parameter a, we fix a ¼ 0.5M (corresponding to the
constrained range: 0 < r2

M < 1) and examine how the
coefficient N affects the streamline. The physical solution
relies on the four-velocity’s timelike restrictions shown in
the isothermal diagram Fig. 2. The horizontal axis indicates

angle θ, and the vertical axis represents the dimensionless
value of r. We observe that the coefficient N has an impact
within the confined physical regions of parameters. The
diagram becomes narrower as N increases, until there is no
longer a desirable region. Therefore, the value of N must be
small enough to guarantee that the requirement for the fluid

FIG. 2. The above contour maps represent G with a ¼ 0.5M, r2 ¼ 0.5M, some values of N, and NM ¼ 0.01 and 0.02, respectively.
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being timelike is satisfied within a sufficiently large
radius R.
The streamline and isocontour diagram of the non-

relativistic stiff fluid determined by (42) are shown in
Fig. 3. The isocontour of three-velocity are represented by
the dashed line, the streamline is shown by the black arrow,
and the stagnation point is symbolized by the blue area.
The diagram illustrates that part of the fluid flows into the
black hole, while other parts flow toward the poles or the
equatorial plane. We will select R ¼ 10M as the outer
radius for investigation in the following discussions, since
the timelike characteristic of velocity is assured in the
interval ðrþ; RÞ. It is worth noticing that the black hole
domain is symbolized by the hole in the middle, which also
highlights that Φ is not well defined in the ZAMO frame.

V. CHOKED ACCRETION

The choked accretion is a hydrodynamic mechanism that
has been applied to the investigations of accretion onto
Schwarzschild or Kerr black holes [33,34,73]. The mecha-
nism describes that the fluid is injected radially along the
equatorial plane. If the injection velocity is excessively
high, the anisotropic density distribution fluctuates dra-
matically, leading to the deviation of part of the fluid from
its original orbit and subsequent ejection along the poles.
This process is reversible, as seen in cases 1 and 2,
respectively. We focus on N > 0 (case 1) in this section.
It was mentioned previously that to fulfill the timelike

requirements for four-velocity a spherical surface with a
radius of R must be supplied. Physical values within the
spherical shell are well defined. Simultaneously, it is crucial
to establish a reference point for measuring physical
quantities. The injection rate V0 is set at ðR; π

2
Þ in the

equatorial plane, and ejection rate Vej is determined at
ðR; 0Þ; both can be represented as

V0 ¼ Vr̂

�
R;

π

2

�
¼ Δ̃0ð6R − 6M þ 3r2ÞN þ 2Mrþffiffiffiffiffi

Ã0

p ;

Vej ¼ Vr̂ðR; 0Þ ¼ 2V0

ffiffiffiffiffi
Ã0

p
− 6Mrþ

RðRþ r2Þ þ a2
; ð49Þ

with

Δ̃0 ¼ ðR − rþÞðR − r−Þ;
Ã0 ¼ RðRþ r2Þða2 þ R2 þ Rr2Þ þ 2MRa2: ð50Þ

Since the fluid is subluminal and it flows out along both
ends of the polar axis, we must require ð0 < Vej < 1Þ to
acquire the range of the initial velocity V0 as

3Mrþffiffiffiffiffi
Ã0

p < V0 <
RðRþ r2Þ þ a2 þ 6Mrþ

2
ffiffiffiffiffi
Ã0

p : ð51Þ

Up to this point, we have not determined the stagnation
point or the value of the coefficient N, in principle.
Therefore, boundary constraints must be imposed. It can
be concluded from (37) that

e ¼ hΓ

ffiffiffiffiffiffiffiffi
Σ̃ Δ̃
Ã

s
¼ h0Γ0

ffiffiffiffiffiffiffiffiffiffiffi
Σ̃0Δ̃0

Ã0

s
; ð52Þ

where

Γ0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
0

p ;

Σ̃0 ¼ RðRþ r2Þ: ð53Þ

Using (7) and substituting (52) into (37), we can derive

FIG. 3. Two figures correspond to the streamline (solid arrow) and the isocontour (dotted line). The magnitude of the three-velocity is
entirely determined by the change in color. The diagram use cylindrical-like coordinate transformation: r̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ, z ¼ r cos θ.
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h
h0

¼ ρ

ρ0
¼ Γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ̃0Δ̃0Ã

p
Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ̃ Δ̃ Ã0

p ; ð54Þ

where the density ρ0 ¼ ρðR; π
2
Þ and the specific enthalpy

h0 ¼ hðR; π
2
Þ are determined by the parametersM, a, and r2

with values at the reference point. According to (49), it
follows that

N ¼ V0

ffiffiffiffĩ
A

p
0 − 2Mrþ

Δ̃0ð6R − 6M þ 3r2Þ
: ð55Þ

Simultaneously, the two equivalent conditions (45) and
(55) give the location of the stagnation point:

rs ¼ M −
r2
2
þ

0
B@λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 −

ðM2 − a2 −Mr2 þ 1
4
r22Þ3

27

s 1
CA

1
3

þ

0
B@λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 −

ðM2 − a2 −Mr2 þ 1
4
r22Þ3

27

s 1
CA

1
3

; ð56Þ

with

λ≡MrþðR − rþÞðR − r−ÞðR −M þ r2
2
Þ

2ðV0

ffiffiffiffiffi
Ã0

p
− 2MrþÞ

: ð57Þ

The stagnation point, the black hole event horizon, the ratio
of accretion rate, and the ejection rate are presented in
Table I. The initial column in the table delineates the
scenario of the Kerr black hole. The tabulated data
demonstrate that the dilaton parameter r2 increases within
the range allowed by the model, and a reduction is observed
in the location of the stagnation point. In contrast to this
pattern, the jet ejection rate exhibits an augmentation with
escalating value of the parameter.

A. Distribution of the density and the streamlines

With Eq. (54), we define a quantity δ that describes
the relative deviation of the density taking the ejection’s
value at ðR; 0Þ from taking the injection’s value at ðR; π

2
Þ,

which yields

δρ≡ 1−
ρðR;0Þ
ρðR; π

2
Þ

¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−V2

ejÞRðRþ r2ÞðRðRþ r2Þþa2Þ
ð1−V2

0ÞðRðRþ r2Þða2þR2þRr2Þþ 2MRa2Þ

s
:

ð58Þ

We observe that the density of location ðR; 0Þ tends to zero
for δρ ¼ 1, while the density of the ejection point is
equivalent to the injection point for δρ ¼ 0. The inferences
derived from the final row in Table I and Fig. 4 indicate that
in the black hole an increasing parameter r2 leads to an

FIG. 4. The relative density ratio as a function of r2=M (the left figure) or a=M (the right figure) with V0 ¼ 0.4, R ¼ 10 M, and some
values of the parameter a or r2.

TABLE I. The location of stagnation point, the black hole event horizon, the ratio of accretion rate, the relative density ratio, and the
ejection rate are shown in the table with a ¼ 0.5 M, R ¼ 10 M, and V0 ¼ 0.4.

a ¼ 0.5 M, R ¼ 10 M, V0 ¼ 0.4
r2
M 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rs
M 4.410 4.287 4.160 4.030 3.895 3.754 3.605 3.444 3.267 3.056
rþ
M 1.866 1.758 1.648 1.537 1.425 1.310 1.190 1.065 0.932 0.780
ṀKerr−Sen
ṀKerr

1.000 0.942 0.883 0.824 0.763 0.702 0.638 0.571 0.499 0.418

Vej 0.687 0.695 0.702 0.710 0.717 0.725 0.732 0.740 0.748 0.756
δρ 0.479 0.492 0.504 0.517 0.529 0.541 0.554 0.566 0.579 0.594
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increased relative density ratio while a lower density ratio
for the Kerr-Sen black hole, compared to the Kerr
black hole.
Eventually, we obtain a streamlined diagram which can

depict the trajectories of fluid. Applying Eq. (42) to
eliminate time t, we derive

α¼ cosθ

2
641þ sin2θðr− rþÞðr− r−Þ

�
r−Mþ r2

2

�
2ðrs− rþÞðrs − r−Þ

�
rs−Mþ r2

2

�
3
75; ð59Þ

where α is the constant of integration. Streamlines with
jαj ¼ 1 are connected to the stagnation point, whereas those
with jαj > 1 escape via the bipolar outflow, and those with
jαj < 1 are absorbed into the black hole. The streamlines are
described in Fig. 5. In the left diagram, we observe that the
whole diagram is symmetrically distributed along the line
θ ¼ π

2
(the middle solid line); the dashed lines depict the

trajectories of streamline which differ from each other with
different values of jαj. It is straightforward to notice that the
dividing line (jαj ¼ 1) indicates whether the fluid is
absorbed into or ejected from the black hole. The right
streamlined diagram is shown in the cylindrical-like coor-
dinate system (r; z). Similarly, the boundary of the blue
region is the line with jαj ¼ 1 denoted by the dotted line.

B. Injection rate, ejection rate, and critical angle

The inflow or outflow of fluid should be accompanied by
the injection rate or the ejection rate, respectively. When
combined with the mass accretion rate, they constitute the
entire concept of choked accretion. These three rates are
connected as follows:

Ṁin ¼ Ṁþ Ṁout; ð60Þ

where the mass accretion rate is decided by Eq. (32). It can
be described as

Ṁ ¼ 8πMrþρ0Γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðRþ r2ÞΔ̃0

Ã0

s
: ð61Þ

For r2 ¼ 0, Eq. (61) reverts to the accretion rate of the Kerr
black hole. It is obvious that the accretion rate is restricted
by the parameters chosen and the bounding sphere radius
R. Now we must identify the critical angle at which the
fluid moves toward the black hole in the interval
ðθc; π − θcÞ. In this interval, the projection of the tangent
vector of the streamline along the radial direction of the
black hole is negative. The critical angle θc could be
determined by using Vr̂ in (42), and the flow is absorbed by
the black hole with Vr̂ < 0; it follows that

θc ¼ arccos

�
3

�
1 −

2Mrþ
V0

ffiffiffiffiffi
Ã0

p ��
−1
2

: ð62Þ

Then Ṁin associated with the critical angle is

Ṁin ¼ −2
Z π

2

θc

ρUrΣ̃ sinθdθdϕ¼ 8πqρeMrþ
h

¼ qṀ;

q≡ 2 cos3 θc
3 cos2 θc − 1

¼
ffiffiffiffiffi
Ã0

p
V0

3
ffiffiffi
3

p
Mrþ

 
1−

2Mrþ
V0

ffiffiffiffiffi
Ã0

p
!−1

2

: ð63Þ

Similarly, the ejection rate could be obtained as Ṁout ¼
ðq − 1ÞṀ by using (60). The physics relating to Ṁin ¼
Ṁ is that all fluids are dragged into black hole while

FIG. 5. For two figures: r2 ¼ 0.8 M, a ¼ 0.5 M, and rs ¼ 4 M. The solid line in the left figure denotes the line with θ ¼ π
2
, while the

isocontour lines are represented by dashed lines. The coordinate transformations r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ and z ¼ r cos θ are adopted in the

right figure, and the center empty region represents the interior of the Kerr-Sen black hole.
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the critical angle θc ¼ 0 (q ¼ 1). The condition θc ¼ 0

provides V0 ¼ 3Mrþffiffiffiffi
Ã0

p by (62). This is in accordance with

the constraint from (51), as illustrated by the following
condition:

Ṁin ¼
8<
:

Ṁ; V0 ⩽
3Mrþffiffiffiffi

Ã0

p ;

qṀ; 3Mrþffiffiffiffi
Ã0

p ⩽ V0 ⩽
RðRþr2Þþa2þ6Mrþ

2
ffiffiffiffi
Ã0

p ;
ð64Þ

and

Ṁout ¼
8<
:
0; V0 ⩽

3Mrþffiffiffiffi
Ã0

p ;

ðq− 1ÞṀ; 3Mrþffiffiffiffi
Ã0

p ⩽ V0 ⩽
RðRþr2Þþa2þ6Mrþ

2
ffiffiffiffi
Ã0

p :
ð65Þ

Since the range of V0 changes, Ṁin steadily increases,
leading to the maximum value θmax calculated by the
formula below:

1

3 cos θ2max
¼ RðRþ r2Þ þ a2 þ 2Mrþ

RðRþ r2Þ þ a2 þ 6Mrþ
; ð66Þ

and maximum value of injection accretion rate Ṁinmax ¼
qmaxṀ, where

qmax ¼
2 cos3 θmax

3 cos2 θmax − 1
: ð67Þ

When R is large, the maximum angle θmax ≈ 54.7°
(qmax → ∞) corresponds to the boundary case. To

FIG. 6. For these figures: V0 ¼ 0.4 and R ¼ 10 M. The figure in the upper left corner describes the evolution of η with respect to r2,
and the figure in the upper right corner illustrates the dependence of a. The critical angles with variable parameters are displayed in the
lower figures.

TABLE II. Assuming that a ¼ 0.5 M, R ¼ 10 M, and V0 ¼ 0.4, some values for the ratio of injection rate, the ejection rate, and the
accretion rate, and cos θc, cos θmax, and qmax are shown in the table.

a ¼ 0.5 M, R ¼ 10 M, V0 ¼ 0.4
r2
M 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ṀKerr−Sen
ṀKerr

1.000 0.942 0.883 0.824 0.763 0.702 0.638 0.571 0.499 0.418

ṀinKerr−Sen
ṀinKerr

1.000 1.007 1.013 1.020 1.026 1.032 1.039 1.045 1.051 1.057

ṀoutKerr−Sen
ṀoutKerr

1.000 1.026 1.052 1.078 1.104 1.131 1.160 1.187 1.217 1.248

cos θc 0.606 0.604 0.602 0.600 0.598 0.596 0.594 0.592 0.590 0.588
cos θmax 0.598 0.596 0.596 0.594 0.592 0.591 0.590 0.588 0.587 0.585
qmax 5.950 6.322 6.748 7.240 7.820 8.513 9.368 10.463 11.956 14.267
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comprehend the transformation of accretion rate ratio, we

depict the ratio of accretion rate Ṁout

Ṁin
≡ η from different

black holes and cos θc in Fig. 6. In Table II, we calculate
some values for the ratio of injection rate, the ratio of
ejection rate, the ratio of accretion rate, cos θc, cos θmax,
and qmax.
In Fig. 6, we illustrate the influence of the parameters r2

and a on the accretion rate ratio for Kerr and Kerr-Sen holes.
When V0 and R are fixed, we observe that the ratio ηKerr−Sen

ηKerr
rapidly increases as r2 grows. However, with different fixed
values of the dilaton parameter r2, we find that the variation
of ηKerr−SenηKerr

with respect to a is not obvious. In Table II, it also
indicates that, as the parameter r2 in the Kerr-Sen black hole
increases, it amplifies the ejection rate and the injection rate
and simultaneously reduces the value of the critical angle
and the maximum critical angle. Consequently, this leads to
most of the fluid escaping from the black hole, while a very
small portion flows into the black hole.

VI. RADIATIVE EFFICIENCY AND REDSHIFT
FACTOR FROM THE CONTINUUM SPECTRUM

The continuum spectrum emitted by the accretion disk
around a black hole is responsive to the background metric,
providing a scheme for observing the Kerr-Sen black hole.
In this section, we will calculate the radiative efficiency
and the redshift factor from the accretion disk within the
permissible interval 0 < r2

M < 0.4. This analysis will allow
us to investigate the observable effect of the Kerr-Sen black
hole and provide a approach to differentiate it from the Kerr
black hole. We use the fundamental feature of the Novikov-
Thorne model [74] provided for delineating the continuum
spectrum. The model incorporates several key assumptions:
(i) The primary contribution to the continuum spectrum
arises from the electromagnetic emission originating from
the accretion disk surrounding the black hole; (ii) the
spacetime around the central massive object is both sta-
tionary and axisymmetric; (iii) the mass of the accretion
disk does not influence the background metric; (iv) the
accretion disk is characterized as geometrically thin, and
vertical size is considered negligible compared to its
horizontal size; (v) particles around the compact central
object traverse between the outer edge (rout) and the radius
of the innermost stable circular orbit (risco) defined as the
inner edge of the disk; and (vi) the accretion disk is situated
in the equatorial plane of the accreting compact object,
namely, the spin of the black hole perpendicular to the disk
surface.
The innermost stable circular orbit radius can be deter-

mined from the effective potential Veff [74,75]. For a black
hole, the effective potential takes the form

Veff ¼
E2gϕϕ þ 2ELgtϕ þ L2gtt

g2tϕ − gttgϕϕ
; ð68Þ

where E and L are the specific energy and the specific
angular momentum of the test particle, respectively, and
they can be calculated with the following formulas:

E ¼ −gtt − ωgtϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2ωgtϕ − ω2gϕϕ

q ;

L ¼ gtϕ þ ωgϕϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2ωgtϕ − ω2gϕϕ

q ; ð69Þ

where the angular velocity of the test particle ω in the
equatorial plane (θ ¼ π

2
) is

ω ¼ dϕ
dt

¼
−gtϕ;r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−gtϕ;rÞ2 − gϕϕ;rgtt;r

q
gϕϕ;r

: ð70Þ

The radius of the innermost stable circular orbit risco
corresponds to the inflection point (Veff ¼ Veff;r ¼
Veff;rr ¼ 0) [76,77]. Consequently, the determination of
risco from the continuum spectrum could constrain the
geometry of spacetime. In particular, if we assume the
background to be a Kerr black hole, this measurement can
be utilized to predict the angular momentum of the black
holes [78].
During the accretion process, the efficiency of matter

accretion and the redshift factor are important measurement
quantities. The redshift factor is associated with the
alteration in frequency of a photon as it traverses from
the emitting source to the observer. The maximum effi-
ciency ϵ is determined by the specific binding energy at the
marginally stable orbit risco. These two physical quantities
are given by

ϵ¼ 1−EiscoðriscoÞ;

g≡ 1þ z¼ 1−ωrd sinϕ sin γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðrdÞ− 2ωðrdÞgtϕðrdÞ−ω2ðrdÞgϕϕðrdÞ

q ;

ð71Þ

where Eisco is the specific energy of the test particle at risco.
The parameters γ and rd represent the inclination angle of
the accretion disk and the distance from the observer to the
disk, respectively. The variation of these quantities with
parameters are illustrated in Fig. 7. The upper two figures
illustrate the variation in radiative efficiency ϵ with the
dilaton parameter r2 (or spin parameter a) for different
values of a (or r2). The lower figures explain the variations
in redshift z with the observational distance with different
values of the parameters.
In Fig. 7, we observe that the radiative efficiency of the

Kerr-Sen black hole increases as the parameter r2 (or the
parameter a) grows, while the redshift decreases with an
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increasing observational distance. Furthermore, it is
observed that the radiative efficiency of the Kerr-Sen black
hole exceeds that of the Kerr black hole with fixed
parameter a, and the redshift is lower compared to the
Kerr black hole. This insight will enhance our under-
standing of these two black holes through observations.

VII. CONCLUSION AND DISCUSSION

In this work, we initially explored the choked accretion
process of ultrarelativistic fluid onto an axisymmetric Kerr-
Sen black hole in EMDA gravity. Based on the procedure
mentioned by Petrich, Shapiro, and Teukolsky, we calcu-
lated the solution describing the velocity potential field Φ
of a stationary, irrotational ultrarelativistic fluid in the
Boyer-Lindquist coordinates system. We discussed the
analytical expression of four-velocity and converted it to
the ZAMO framework to give three-velocity. The mass
accretion rate, the energy accretion rate, and the angular
momentum increase rate were also determined. We found
that the increase rate of the angular momentum is zero,
indicating that the fluid has an axisymmetric distribu-
tion (m ¼ 0).
Second, as a result of the axial symmetry of perfect fluid

and the reflection symmetry in the equatorial plane, we
gave the lowest-order (2,0) solution, commonly known
as quadrupolar flow. We investigated the character of
quadrupolar flow and demonstrated that one of the two
constraints is automatically satisfied and the timelike

requirement of the four-velocity is also resolved once an
appropriate region is chosen. Subsequently, we examined
the correlation between dilaton parameters r2 and stagna-
tion point rs. From the table, it is evident that an increasing
dilaton parameter leads to a decreasing position of the
stationary point of the Kerr-Sen black hole. Then, we
introduced the choked accretion model and restricted the
physical region as ðrþ; RÞ to ensure that the solution is
reasonable. We also calculated the stagnation point analytic
formulas based on the boundary values. Within the per-
missible range of the parameters, the initial velocity V0 at
the reference point enables us to depict its dependency on
the parameters. The connection between the density ratio
at the end point and at the initial point was also evaluated.
Additionally, we presented the streamline diagram in
cylindrical-like coordinates and discovered that the stream-
line associated with α ⩽ 1 indicates that the fluid was
absorbed into the black hole, whereas the streamline with
α > 1 represents the flow ejected along poles. The injection
rate and the ejection rate were discussed in detail at the end
of the article. It also indicates that, as the parameter r2 in the
Kerr-Sen black hole increases, both the ejection rate and the
injection rate are amplified.
Finally, we explored the accretion process in a thin disk

around the Kerr-Sen black hole by employing the
Novikov-Thorne model. Our study focused on analyzing
the radiative efficiency and the redshift factor. The results
highlight the impact of the dilaton parameter r2 and the
spin parameter a on the radiative efficiency and the redshift

FIG. 7. The upper figures illustrate the variation of the radiative efficiency theoretically derived from the accretion disk. The lower
figures illustrate the variation of redshift zwith observational distance at r2 ¼ 0.2 M (or a ¼ 0.5 M) under an inclination angle of γ ¼ 0.
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within the framework of the EMDA model. These results
will also contribute to exploring and distinguishing a
Kerr-Sen black hole from a Kerr black hole through
observations.
In future work, we will try to solve the choked accretion

issue of curled fluid numerically and provide numerical
results by merging it with the equation of motion with
boundary via the coupling between spacetime and matter
field. We will consider the reaction of matter and explore

the full accretion issue for dark energy or dark matter as
accreted fluid.
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