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Searching for gravitational-wave signals is a challenging and computationally intensive endeavor
undertaken by multiple independent analysis pipelines. While detection depends only on observed noisy
data, it is sometimes inconsistently defined in terms of source parameters that in reality are unknown, e.g.,
by placing a threshold on the optimal signal-to-noise ratio (SNR). We present a method to calibrate
unphysical thresholds to search results by performing Bayesian inference on real observations using a
model that simultaneously parametrizes the intrinsic network optimal SNR distribution and the effect of
search sensitivity on it. We find consistency with a fourth-order power law and detection thresholds of
10.5þ2.1

−2.4 , 11.2
þ1.2
−1.4 , and 9.1þ0.5

−0.5 (medians and 90% credible intervals) for events with false-alarm rates less
than 1 yr−1 in the first, second, and third LIGO-Virgo-KAGRA observing runs, respectively. Though event
selection can only be self-consistently reproduced by physical searches, employing our inferred thresholds
allows approximate observation-calibrated selection criteria to be applied when efficiency is required and
injection campaigns are infeasible.

DOI: 10.1103/PhysRevD.109.063013

I. INTRODUCTION

Assembling the LIGO–Virgo–KAGRA (LVK) [1–3]
gravitational-wave (GW) catalogs [4–7] requires searching
for signals. Classification of a signal as being of astro-
physical origin typically involves information from several
detectors, including the matched-filter signal-to-noise ratio
(SNR) optimized over large template banks, coincidence
analyses, data-quality checks, and estimates of the expected
noise and astrophysical population. Searches with the
multiple independent pipelines are therefore computation-
ally expensive [8–11].
Instead of imposing a selection threshold based on data-

dependent quantities such as the observed signal-to-noise
ratio (SNR), false-alarm rate (FAR), or probability of
astrophysical origin (pastro), it is common to take ranking
statistics that are far more simple to compute but that
additionally depend on the true binary source parameters,
such as the optimal SNR [12,13]. This approach is
inconsistent with the data generation process because real
searches never have access to the true source properties due

to parameter degeneracies and detector noise [14].
Nevertheless, it has led to several approximations for
rapidly computing selection effects [15–19], and has been
employed for population inference (e.g., [20–23]) and to
process population-synthesis simulations (e.g., [24–28]).
Doing so requires selecting a threshold value for the chosen
ranking statistic that should well represent the full searches
that produce observational GW catalogs.
One approach is to generate a set of fake GW signals,

inject them into the search pipelines [29], filter the
injections with the physical data-dependent threshold,
and optimize the approximate threshold such that the
resulting distribution of sources most closely matches
the filtered injections. This necessitates running the search
pipelines on a large set of sources which carries a
significant computational cost, which the goal of approxi-
mating selection effects was to avoid (though injection sets
generated for other uses can be repurposed [30]). Another
approach is to analytically approximate the noise distribu-
tion and its effects on physical ranking statistics such as the
observed SNR [30], which can be used as an efficient
threshold in place of full search pipelines [31,32].
We present a different approach that instead makes use of

observational GW catalogs to which the real searches have*mmould@mit.edu
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already been applied. Given a set of astrophysical sources
that pass the pipeline threshold and their associated param-
eter uncertainties, we use the likelihood that the GW data
were detected by the real searches but subsequently para-
metrize detection in terms of a ranking statistic such as
the network optimal SNR. We simultaneously infer the
detectable and intrinsic properties of the population of this
ranking statistic, thus calibrating the unphysical detection
threshold against full searches on real signals while
accounting for the systematic uncertainties between the
two and the statistical uncertainty in each event. Modelers
who wish to apply selection effects with an unphysical
model such as a threshold in the network optimal SNR can
therefore use our inference, which is fully consistent with
the aforementioned injection-calibration method [30], to
ensure the application of selection effects is representative
of full searches.
In Sec. II we describe our Bayesian approach to

simultaneous inference of the detectable and intrinsic
properties of the ranking-statistic distribution, in this case
the network optimal SNR. The results are presented in
Sec. III and a concluding discussion is made in Sec. IV.

II. INFERENCE

In the following, we use π to denote prior distributions,L
to denote likelihoods (i.e., data distributions), P to denote
discrete distributions (e.g., for detectability which has a
binary outcome), P for posteriors, and p for mixed
distributions of observed and latent variables.

A. Hierarchical posterior

We consider the joint hierarchical distribution over
detectable data fdetn;dngNn¼1 and latent variables fρngNn¼1,
where the data for eachGWevent is labeled with a flag “det”
denoting that it has been included in the catalog according to
some criterion. Each ρn is drawn from a common underlying
population πðρjλÞ characterized by global parameters λ.
While a physical model defines detectability in terms of the
data alone to produce the catalog, we subsequently model
detection as depending on ρ and additional global param-
eters κ. For example, if detection is taken as a step function in
ρ, the parameter κ could indicate the location of the
threshold.
Assuming the data from each event are independent, the

GW population likelihood [33,34] is

pðfdetn; dn; ρngjκ; λÞ ∝ Pðdet jκ; λÞ−N

×
YN
n¼1

Pðdetnjρn; κÞLðdnjρnÞπðρnjλÞ; ð1Þ

where fxng is shorthand for fxngNn¼1. Note that unlike
a physically-motivated model for detection, i.e.,
Lðdet; djρÞ ¼ Pðdet jdÞLðdjρÞ, detection-dependent terms

Pðdet jρ; κÞ are retained above due to the assumed
dependence on the parameters ρn and κ. This is equivalent
to a modification of the prior πðρjλÞ, whereby regions
of support are explicitly downweighted or truncated
a priori [14], according to Bayes’ theorem:

πðρj det; κ; λÞ ¼ Pðdet jρ; κÞ
Pðdet jκ; λÞ πðρjλÞ: ð2Þ

Consequently, the global detection probability

Pðdet jκ; λÞ ¼
Z

Pðdet jρ; κÞπðρjλÞdρ ð3Þ

does not depend on the noise model through the margin-
alization of the data distribution but does depend on our
assumed parametrization of detection through κ. Since we
will take simple functional forms for Pðdet jρ; κÞ and
πðρjλÞ, the integral in Eq. (3) can be computed in closed
form. In other words, we are using the observed data
distribution, given by fdetn; dngNn¼1, to infer the observable
distribution of ρ, given by πðρj det; κ; λÞ.
Before performing a population analysis with the joint

likelihood above, separate parameter-estimation (PE)
analyses are used to infer ρn for each event individually
under priors π̃nðρnÞ that may differ event-to-event and also
differ from πðρjλÞ. However, using the fact that the single-
event likelihood is unchanged, the individual posteriors are
P̃ðρnjdnÞ ∝ LðdnjρnÞπ̃nðρnÞ. We can therefore write the
population likelihood as

pðfdetn; dn; ρngjκ; λÞ ∝ Pðdet jκ; λÞ−N

×
YN
n¼1

Pðdetnjρn; κÞ
P̃ðρnjdnÞ
π̃nðρnÞ

πðρnjλÞ: ð4Þ

We do not directly infer each ρn from PE runs, which
instead infer the posteriors P̃ðθnjdnÞ of the source param-
eters θn under default priors π̃nðθnÞ. While each of the
original priors for θn may have the same shape, they could
impose different cuts in the parameter space. Each of these
distributions directly implies corresponding distributions
for ρn. In practice, we usually have access to the posteriors
P̃ðθnjdnÞ through discrete samples fθnigNn

i¼1 rather than as
continuous distributions, where Nn is the number of
posterior samples for event n. However, if we wish to
evaluate the density in Eq. (4), we must be able to evaluate
the individual posterior densities.
Using Bayes’ theorem, the joint posterior is

Pðfρng;κ;λjfdetn;dngÞ∝pðfdetn;dn;ρngjκ;λÞπðκ;λÞ; ð5Þ

where πðκ; λÞ ¼ πðκÞπðλÞ is the prior over the population-
level parameters that we take as independent. We sample
the posteriors using NumPyro [35]. In Sec. III we present
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results inferred using the joint distributions in Eq. (4), but
in Appendix A we show that they are fully consistent with
the posteriors inferred using a numerically marginalized
likelihood.

B. Optimal signal-to-noise ratio

We will take as our ranking statistic the network optimal
SNR ρ. The optimal SNRs for each interferometer indi-
vidually are given by

ρ2i ðθÞ ¼ 4

Z jhiðf; θÞj2
SiðfÞ

df; ð6Þ

where hi is the GW signal model at the detector as a
function of the source parameters and frequency f, SiðfÞ is
the one-sided power spectral density (PSD) of the noise,
and i indexes the interferometers. For a set of I detectors the
network optimal SNR is

ρðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

ρ2i ðθÞ
vuut : ð7Þ

We take IMRPhenomXPHM [36] as the waveform model and
use PyCBC [37] and Bilby [38] to compute SNRs.
Note that the optimal SNR should also depend on the

observed data via estimation of the PSD. However, we
make the approximation that it is given by fixed represen-
tative noise curves for the first (O1), second (O2), and third
(O3) observing runs of the LIGO Hanford,1 LIGO
Livingston,2 and Virgo3 detectors. For each event we
compute the network optimal SNR with the detectors that
were observing. This is simply fixing our choice of ranking
statistic; one could simplify further by instead taking a
single hypothetical design PSD, computing the single-
detector optimal SNR, and calibrating this to the observed
data, because the ranking statistic can be anything that
reasonably encodes detectability.
For the joint hierarchical likelihood, we construct con-

tinuous single-event likelihood approximations. We fit each
single-event posterior P̃ðρnjdnÞ for the network optimal
SNR as a univariate truncated normal distribution (such that
ρn ≥ 0). Their means μn and variances σ2n are taken as the
sample means and variances of the posterior samples
fρnigNi¼1. For the single-event priors for each ρn we take
log-normal distributions and use SciPy [39] to fit for their
shape and scale parameters by minimizing the cross
entropy between the true distributions implied by prior
samples and the fitted approximations. This likelihood

approximation is verified by comparison to a numerically
marginalized likelihood in Appendix A.

C. Priors

While the individual event SNR priors π̃nðρnÞ are deter-
mined by the original uninformative PE priors imposed over
the source parameters, the population prior πðρjλÞ can be
reasonably well-motivated astrophysically [40,41]. In the
local universe, luminosity distancesD approximately follow
a geometric prior πðDÞ ∝ D2. Since the SNR scales as
ρ ∼ 1=D the corresponding SNR distribution scales as

πðρÞ ¼ πðDÞ
���� dDdρ

���� ∼ ρ−4: ð8Þ

Our default model is therefore a power-law distribution in
the network optimal SNR. As we are primarily interested in
inferring a single threshold value in our chosen ranking
statistic, our default detectionmodelwill be aHeaviside step
function in ρ. We describe in detail the various models we
consider below and summarize them in Table I, where the
model label indicates the number of its parameters (apart
from the flow-based model).

1. Model 1

Our first model has a single parameter—the detection
threshold τ—while the intrinsic distribution is a power law
with slope σ ¼ 4, as above. Written explicitly, this is

πðρjσ ¼ 4Þ ∝ ρ−σ; ð9Þ

Pðdet jρ; τÞ ¼
�
1 if ρ > τ;

0 if ρ ≤ τ:
ð10Þ

We take a broad uniform prior πðτÞ ¼ Uð0; 20Þ.

TABLE I. Summary of the models considered for the intrinsic
and detectable populations of the network optimal SNR ρ. Listed
are the parameters of themodels and corresponding priors, whereU
andN denote uniform and normal distributions, respectively. Apart
fromModel F, the model labels indicate the number of parameters.

Model Intrinsic Detection Parameters Priors

1 Power law Heaviside Slope σ ¼ 4
Threshold τ Uð0; 20Þ

2 Power law Heaviside Slope σ Uð1; 10Þ
Threshold τ Uð0; 20Þ

3 Power law Sigmoid Slope σ Uð1; 10Þ
Threshold τ Uð0; 20Þ
Width ω Uð0; τÞ

4 Power law Heaviside Slope σ Uð1; 10Þ
Thresholds τ1;2;3 Uð0; 20Þ

F Normalizing flow Weights w1;…;42 N ð0; 1Þ

1https://dcc.ligo.org/LIGO-G1500622/public.
2https://dcc.ligo.org/LIGO-G1401390/public.
3https://dcc.ligo.org/P1800374/public for O2 and https://

dcc.ligo.org/LIGO-T2000012/public for O3.
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2. Model 2

Our two-parameter model is the same as above except
the slope σ is also free to vary, for which we take a uniform
prior πðσÞ ¼ Uð1; 10Þ.

3. Model 3

Model 3 is used to test the assumption of a strict
detection threshold by replacing it with a smooth transition
function. Above the threshold we take the same power law
as in Model 2, while below it the detection probability,

Pðdet jρ; τ;ωÞ ¼
(
Sðρ; τ;ωÞ if τ − ω ≤ ρ ≤ τ;

0 if ρ < τ − ω;
ð11Þ

is parametrized by a sigmoid function,

Sðρ; τ;ωÞ ¼ 1

2

�
1þ sin

�
π

2
þ ρ − τ

ω
π

��
; ð12Þ

that symmetrically ramps up to unity at ρ ¼ τ over an
interval of width ω. Along with the same priors as in Model
2, we take πðωjτÞ ¼ Uð0; τÞ.

4. Model 4

Given that the detection catalog contains observations
from three distinct observing runs betweenwhich the detector
sensitivities improved [42], we also consider an extension of
Model 2 in which there are separate thresholds—τ1, τ2, and
τ3—for events in O1, O2, and O3, respectively. This model
contains four parameters; one slope and three Heaviside
thresholds. We take the same priors as in Model 2.

5. Model F

Finally, we consider a more flexible model that jointly
parametrizes the detection probability and intrinsic distri-
bution, as in Eq. (2), with a normalizing flow. In particular,
we use a block neural autoregressive flow [43] with a single
hidden layer of ten units, composed with an exponential
function to enforce positivity, as implemented in
Refs. [35,44]. This model is deliberately overparametrized
with 42 parameters (the weights of the neural network, for
which we take standard normal priors) to test our assump-
tions on the shape of the detectable distribution for ρ. In
particular, we can test whether a power law is a represen-
tative model for larger SNRs, the location of the peak of the
distribution, and its width at lower SNRs.

D. Event selection

For consistency with the SNR computation in Sec. II B,
we use the public parameter-estimation samples from the
IMRPhenomXPHM analyses [45,46] in the combined GWTC-
2.1 [6] and GWTC-3 [7] catalogs. Of these, three were
observed in O1, seven in O2, and 78 in O3, while two

events excluded by this requirement are GW170817 and
GW190425. GW170817 in particular is the event with the
highest SNR, implying it is informative for the upper tail of
the SNR distribution and could therefore impact inferred
power-law slopes, but we do not expect its exclusion to
impact detection thresholds which are informed by events
with low SNRs. To the best of our knowledge, the released
posteriors for GW170817 do not include all parameters
required to compute SNRs, meaning it could not be
included in our analysis even taking a different waveform
model. Events are included in these catalogs if they are
determined to be of astrophysical origin with probability
pastro > 0.5 in at least one of the search pipelines.
Following Ref. [22], we instead consider the events with
FAR < 1 yr−1 in at least one of the pipelines, which
excludes some events from O3 and results in a catalog
of 72 events. We compare results using the two catalogs in
Appendix B.

III. RESULTS

In the following we report medians and 90% symmetric
credible intervals for inferred posteriors.

A. Detection threshold

In Fig. 1 we display the posteriors inferred from Model
1. We find a detection threshold of τ ¼ 9.2þ0.4

−0.4 . Using the
joint likelihood in Eq. (4) we simultaneously infer the

FIG. 1. The detection threshold τ inferred using Model 1. The
shaded red bands show from darker to lighter the symmetric 50%,
90%, and 99% credible intervals. The blue distributions show the
network optimal SNRs ρn as inferred by the original parameter
estimation runs in the top row and by the joint population
inference in the bottom row.
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network optimal SNRs ρn for each event (equivalent to
population-reweighted posteriors in marginal analyses as
in, e.g., Ref. [47]). The population constraint for the strict
detection threshold forces the tail of lower SNR events at
ρ ≈ 4 to be above threshold with ρ≳ 8.
We further demonstrate this effect in Fig. 2, where we

show the joint posterior for the threshold τ and the SNR for
the event with the lowest median, GW200216_220804
(shortened to GW200216 in the plot for brevity). While
originally ρ ¼ 7.0þ1.7

−1.6 as inferred from parameter estima-
tion samples which is largely in the region ρ < τ excluded
by the assumed population model, the population inference
places a constraint of ρ ¼ 9.5þ0.7

−0.5 , the two being consistent
only at the 97% one-sided credible level.

B. Astrophysical distribution

We verify the power-law slope assumed in Model 1 by
letting this also be a free parameter in Model 2. Our
posteriors are displayed in Fig. 3. We find a measurement
of the detection threshold only slightly broader than for
Model 1 (τ ¼ 9.3þ0.4

−0.5 ) and a slope σ ¼ 4.2þ0.8
−0.7 that is fully

consistent with the astrophysical expectation of Eq. (8). In
particular, we find that the simpler Model 1 is preferred
over Model 2 with a Bayes factor of 7.7 as computed using
the Savage-Dickey density ratio [48].

C. Detectable distribution

We now test the detection threshold assumed by Models
1 and 2. When instead assuming that the detection
probability is not a step function, we infer a width
ω ¼ 4.9þ3.0

−3.7 , as parametrized by Model 3 in Eq. (12).
This suggests a preference for nonzero widths, though we
also find nonzero support for ω ¼ 0 in Fig. 3. This
broadening shifts the peak of the distribution to higher
ρ, with τ ¼ 11.6þ1.4

−1.8 for Model 3, since the nonzero density
in the detectable population can be accounted for not just
by the power law component but also by the sigmoid
detection probability, unlike for Models 1 and 2. The
centroid of the threshold remains consistent between all
three models, however, with τ − ω=2 ¼ 9.2þ0.5

−0.6 for Model
3. This also results in a steeper but still consistent power-
law slope, σ ¼ 4.7þ1.3

−0.9 , since it is additionally constrained
at the other end of the distribution by the absence of events
with ρ≳ 30. The optimal SNR reflects only the (approxi-
mate) center of the expected distribution of observed SNRs.
But beyond this, the catalog is constructed using a different
ranking statistic, in this case the FAR, which does not
directly translate into a strict threshold in other quantities,
such as the network optimal SNR. The ω ¼ 0 slice of the

FIG. 2. The joint posterior distribution of the network optimal
SNR ρ for the event with the lowest median SNR,
GW200216_220804, and the detection threshold τ for Model
1. Red distributions show the joint population inference result,
blue shows the original parameter estimation, and the gray region
is excluded by the model. The panels along the diagonal show
one-dimensional marginal posteriors while the lower left panel
shows the two-dimensional marginal, with contours at the 50%,
90%, and 99% credible levels.

FIG. 3. Posterior distributions for the power-law slope σ of the
intrinsic network optimal SNR population, the centroid τ − ω=2
of the detection threshold τ, and the detection probability width ω
that parametrize Models 1 (red), 2 (green), and 3 (blue). Models 1
and 2 assume ω ¼ 0, and Model 1 assumes σ ¼ 4; these
constraints are displayed with vertical and horizontal lines for
comparison. The diagonal panels display one-dimensional mar-
ginal posteriors and the lower left panels display two-dimensional
marginals with 50%, 90%, and 99% credible levels.
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Model 3 posterior remains consistent with Models 1 and 2,
as seen in Fig. 3.
The resulting posterior population distribution, computed

by evaluating the prior models πðρj det; κ; λÞ at draws from
the posterior Pðκ; λjfdgÞ, is displayed in Fig. 4. Compared
toModel 2, the distribution inferred usingModel 3 has larger
uncertainties, suggesting the parametrization of the former
may be overly restrictive. They are consistent at larger SNRs
where they assume the same parametrization, but below the
detection threshold inferred by Model 2 become inconsis-
tent beyond the 90% uncertainty.
We verify the assumptions of Model 3 by placing a more

flexible prior over the detectable population of ρ with
Model F, whose inferred distribution is also displayed in
Fig. 4 for comparison. The results for Models 3 and F are
broadly consistent, peaking at the same location (11.3þ0.8

−0.8
for Model F, cf. above) and staying consistent below and
above it within the 90% posterior uncertainty, though the
latter prefers a broader distribution overall. With Model F
we find a slower rise with a width 5.8þ1.5

−1.3 below the peak of
the distribution. The overall uncertainty in Model F is lower
than that of Model 3 since, due to its over parametrization
and resulting sparsity [49], many weight posteriors are prior
driven. However, we use this model parametrized by a
neural network only to broadly check that the functional
forms assumed for the previous models are reasonable.
Choosing a smaller network does not change the resulting
posterior population distribution, but changing the shape
of the priors to, e.g., uniform, result in slightly larger
uncertainties around the peak of the distribution.

D. Differences between observing runs

Finally, we consider another extension toModel 2 that still
assumes a strict detection threshold, but takes different values
for the threeLVKobserving runs (Model 4). Theposterior for
Models 2 and 4 are compared in Fig. 5. Assuming a shared
power-law slope σ leaves its measurement unchanged, with
σ ¼ 4.3þ0.8

−0.7 . The detection threshold for O3, τ3 ¼ 9.1þ0.5
−0.5 , is

fully consistent with the shared thresholds in Model 1 and 2,
implying the inferences for latter are primarily driven by the
O3 events that make up the majority of the catalog. The
thresholds forO1 andO2aremore uncertain, however, due to
the lower number of events (3 and 7, respectively), with τ1 ¼
10.5þ2.1

−2.4 and τ2 ¼ 11.2þ1.2
−1.4 . These thresholds are consistent

with each other and, while their posterior constraints do
overlapwith that for O3, they are typically larger. Thismeans
a signal passing the FAR cut in O3 could be included in the
catalog with a lower equivalent network optimal SNR than it
would in O1 or O2, given the assumed representative PSDs.

IV. DISCUSSION

In both inference and modeling settings, GW detect-
ability is very often unphysically thresholded using the
(network) optimal SNR, a quantity that depends on the data
only through estimation of the detector noise properties and
moreover on the true binary source parameters. This is in

FIG. 4. Detectable distributions of the network optimal SNR ρ
and associated posterior uncertainty inferred using Models 2
(green), 3 (blue), and F (orange). Solid lines indicate the posterior
median and shaded regions the symmetric 90% credible intervals.

FIG. 5. Posteriors of the parameters for Models 2 (green) and 4
(blue). Both are characterized by a power law with slope σ and a
strict detection threshold τ, shared between all three observing runs
for Model 2 but separated into O1, O2, and O3 for Model 4 (τ1, τ2,
and τ3, respectively). Diagonal panels show each one-dimensional
posterior while lower left panels show two-dimensional marginals
with 50%, 90%, and 99% credible regions.
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contrast to real searches that depend only on the observed
GW data. By simultaneously parametrizing the detection
probability and intrinsic distribution of a selected ranking
statistic such as the network optimal SNR, we showed that
corresponding detection thresholds can be calibrated against
observational catalogs that were assembled using real search
pipelines. In other words, we inferred the threshold of an
unphysical model that best reproduces the physical model.
However, we emphasize that the only way to fully

reproduce search results is to process simulated sources
with software injections and there is no guarantee that, e.g.,
an optimal SNR threshold will filter sources across the
parameter space in the same way. Such thresholds make
strong assumptions on the dependence of detectability on
the source parameters and reference PSD through the SNR
calculation that searches do not. In reality, detection also
depends on other parameters that this method does not
account for, such as the background rate which is also
inhomogenous across the binary parameter space (e.g.,
more massive binaries produce shorter signals which are
more easily mistaken for noise transients, and vice versa).
Because we do not know the true source properties of
search triggers, the only way to benchmark unphysical
selection criteria is to construct the distribution of physical
ranking statistics given the unphysical one, which would
anyway require performing software injections in many
noise realizations. The primary purpose of this work, then,
is not to replace injection campaigns where accurate
reproduction of search pipelines is necessary (e.g., pop-
ulation inference), but to infer appropriate thresholds for
unphysical models when efficiency is paramount (e.g.,
processing large population synthesis simulations into
mock catalogs). Our parametrization also provides a
convenient functional form for the detection probability
tailored to current observations.
Other approaches that model detection with some

approximation for the noise properties allow selection
effects to be computed while depending only on observ-
ables as opposed to the true source properties [14,31,32]. If
one were to construct observational catalogs in this way, by
thresholding on, e.g., the observed SNR, it is trivial to
perform self-consistent downstream analyses, such as
population inference. However, the assumptions that pro-
duce (semi) analytic detection estimates, though reason-
able, are not exact. Moreover, catalogs are more commonly
assembled using statistics that take account of information
beyond just the SNR, such as the FAR [22] or pastro [6,7].
When applied to such catalogs, the above approach there-
fore still requires the choice of an approximating threshold,
because the ranking statistics used to assemble the catalog
and then to estimate detection biases for, e.g., population
inference or simulated reconstruction of observed events,
are different. The method we present is general and can be
used to infer catalog-calibrated detection thresholds no
matter the chosen approximating model.

We find a marked agreement between our inferred
O3-only network optimal SNR threshold with that found
by optimization against injections [30]—9.1þ0.5

−0.5 and 9.2,
respectively (see their Fig. 6)—despite systematic
differences between the two. Firstly, our catalog is com-
posed of real signals that are compared to a waveform
model, whereas injections are both generated and recovered
using waveform models. Secondly, while both methods
took fixed PSDs to calculate SNRs, Ref. [30] also uses
those to draw noise realizations for injections, whereas
there is some variability in real observations. Thirdly,
the observational catalog is contaminated at some level
by noise transients [22], which is not true of injection
campaigns. Our posterior measurements are therefore
conditioned on this systematic waveform and noise mis-
modeling (though we expect the systematic uncertainty to
be subdominant with respect to the statistical uncertainty),
meaning downstream use of the same ranking statistic and
thresholds are self consistent.
We encoded the full vector of binary source properties

into the population distribution of a single representative
variable, here taken to be the network optimal SNR. Even if
the intrinsic population is uncorrelated between source
parameters, this is not true of the observed population. A
full joint inference of all binary source parameters along
with global parameters that characterize the detectable and
intrinsic populations will be an interesting approach for
future work.
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APPENDIX A: MARGINAL POSTERIOR

Instead of simultaneously inferring κ, λ, and fρng, if we
are uninterested in the event-level parameters we can
marginalize the likelihood over each to obtain

Lðfdetn; dngjκ; λÞ ∝ Pðdet jκ; λÞ−N

×
YN
n¼1

Z
Pðdetnjρn; κÞLðdnjρnÞπðρnjλÞdρn: ðA1Þ

Rewriting the individual-event likelihoods in terms of the
original parameter-estimation posteriors, we have

Lðfdetn; dngjκ; λÞ ¼ Pðdet jκ; λÞ−N

×
YN
n¼1

1

Nn

XNn

i¼1

Pðdetnjρni; κÞ
πðρnijλÞ
π̃nðρniÞ

; ðA2Þ

where each integral is approximated as a Monte Carlo
average over the posterior samples fρnigNn

i¼1 ∼ P̃ðρnjdnÞ.
The advantage of this approach is that we do not need to use
fitted posteriors for the individual events as above, instead
relying directly on the posterior samples. We do still require
the original prior densities, but since they do not depend on
κ or λ the prior densities evaluated at the posterior samples,
ffπ̃nðρniÞgNn

i¼1gNn¼1, can be computed once and stored ahead
of time.
As an example, we show the Model 3 posteriors resulting

from the full hierarchical distribution of Eq. (4) and the
marginal likelihood of Eq. (A2) in Fig. 6. The two are
almost identical, implying our assumed single-event
truncated-normal posteriors are valid. The only slight
discrepancy between them is that the posterior for the
detection-threshold width ω inferred with the joint like-
lihood has nonzero support at ω ¼ 0, whereas that for
the marginal likelihood does not. This is likely because the
truncated normal posteriors have support for ρn across the
positive real line whereas the parameter-estimation results
are subject to finite-sampling effects.

FIG. 6. Posterior distributions for the parameters of Model 3
as inferred in a fully hierarchical analysis (blue) and a numeri-
cally marginalized one (red). Diagonal panels contain histo-
grams for each parameter individually while the others contain
two-dimensional posteriors with contours at the 50%, 90%, and
99% credible levels.

FIG. 7. Posterior distributions for the parameters of Model 4
inferred using catalogs where events are selected based on a
threshold of FAR < 1 yr−1 (blue) or pastro > 0.5 (red). One- and
two-dimensional marginal posteriors are given in the diagonal
and lower-left panels, respectively, with the latter containing
containing credible regions at the 50%, 90%, and 99% levels.
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APPENDIX B: CATALOG DEFINITION

The results in Sec. III are all produced using a catalog
where events are selected if they satisfy FAR < 1 yr−1, as
in Ref. [22]. In other words, we are inferring the parameters
κ and λ of the detectable distribution of network optimal
SNRs ρ that best reproduces this FAR threshold. Another
common catalog threshold is for events to be more likely of
astrophysical origin than otherwise, i.e., pastro > 0.5 [7].
We assess the impact of these two choices in Fig. 7 by
running the inference with Model 4 on each catalog. In the
catalog defined by pastro > 0.5 there are several events
whose network optimal SNR posteriors clearly do not
satisfy the assumed truncated-normal approximation
employed in Sec. II B. We therefore use the marginal
likelihood from Eq. (A2) in which the finite set of

parameter-estimation samples are used directly, thus avoid-
ing approximating the posterior distributions.
The only events that do not make the FAR < 1 yr−1

threshold compared to the larger pastro > 0.5 catalog are
from O3. Therefore, the parameters τ1 and τ2 that define the
detection thresholds for O1 and O2, respectively, are
unchanged with respect to this choice of catalog. Due to
the inclusion of more low-SNR events from O3, the
corresponding threshold τ3 is lowered from τ3 ¼ 9.1þ0.5

−0.5
to τ3 ¼ 8.2þ0.4

−0.4 . The power-law slope is also mostly
influenced by the O3 events in the catalog due to the
larger number of them, and becomes σ ¼ 4.0þ0.7

−0.6 for the
pastro > 0.5 catalog, compared to σ ¼ 4.2þ0.9

−0.7 for
FAR < 1 yr−1. In both cases the uncertainties are slightly
reduced due to the addition of 18 events.
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