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We show how to use the cubic-quintic Gross-Pitaevskii-Poisson equation (cq-GPPE) and the cubic-
quintic stochastic Ginzburg-Landau-Poisson equation (cq-SGLPE) to investigate the gravitational collapse
of a tenuous axionic gas into a collapsed axionic condensate for both zero and finite temperature T. At
T ¼ 0, we use a Gaussian Ansatz for a spherically symmetric density to obtain parameter regimes in which
we might expect to find compact axionic condensates. We then go beyond this Ansatz, by using the cq-
SGLPE to investigate the dependence of the axionic condensate on the gravitational strength G at T ¼ 0.
We demonstrate that, as G increases, the equilibrium configuration goes from a tenuous axionic gas, to flat
sheets or Zeldovich pancakes, cylindrical structures, and finally a spherical axionic condensate. By varying
G, we show that there are first-order phase transitions, as the system goes from one of these structures to the
next one; we find hysteresis loops that are associated with these transitions. We examine these states and the
transitions between these states via the Fourier truncated cq-GPPE; and we also obtain the thermalized
T > 0 states from the cq-SGLPE; the transitions between these states yield thermally driven first-order
phase transitions and their associated hysteresis loops. Finally, we discuss how our cq-GPPE approach can
be used to follow the spatiotemporal evolution of a rotating axionic condensate and also a rotating binary-
axionic-condensate system; in particular, we demonstrate, in the former, the emergence of vortices at large
angular speeds Ω and, in the latter, the rich dynamics of the mergers of the components of this binary
system, which can yield vortices in the process of merging.
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I. INTRODUCTION

Dark matter has a rich history [1]; it includes the dark
bodies discussed by Kelvin [2], the suggestion of matière
obscure by Poincaré [3], Zwicky’s proposal [4,5] of
Dunkler Materie, inferred via the virial theorem, and the
path-breaking studies of Rubin and Ford on the rotation
curves of spiral galaxies that provided evidence for dark-
matter haloes (DMH) [6–8]. Dark matter now plays a
central role in cosmology [1], e.g., in the simple Λ-cold-
dark-matter (ΛCDM) model, where Λ is the cosmological
constant, and its generalizations [9–13]. Experiments
indicate that ≃85% of the matter in the Universe is non-
baryonic cold dark matter [14–18]. Weakly interacting
massive particles (WIMPS) [18,19] are among the leading
dark-matter candidates. Several experiments have been

carried out to establish the nature of dark matter; unfortu-
nately, there is still no unambiguous dark-matter candi-
date [1,20–22]. While such experimental studies continue,
it is important to explore theoretically the properties of other
dark-matter candidates, such as self-gravitating assemblies
of bosons, also called ultralight dark matter (ULDM) (see,
e.g., Refs. [23–31]) or axions [32]. We have studied the
former, at temperature T ≥ 0, by using the Galerkin-
truncated Gross-Pitaevskii-Poisson equation [30,31]; here,
we generalize this to study a cubic-quintic Gross-Pitaevskii-
Poisson equation [32] that is of relevance to axion stars [33]
and axion cosmology [34].
A three-dimensional (3D) system of noninteracting

mass-m bosons exhibits a Bose-Einstein condensate (BEC)
for T < Tc ¼ ½ð2πℏ2n2=3Þ=ðmkBÞ�, the critical temperature
at which the thermal de Broglie wavelength λdB ¼
½2πℏ2=mkBT�1=2 becomes comparable to the mean inter-
particle spacing ∼n−1=3, where n is the number density of
bosons and kB is the Boltzmann constant. To study a system
of weakly interacting bosons we use the Gross-Pitaevskii
equation (GPE), in which the BEC is a superfluid.
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To account for a nonrelativistic gravitational interaction
between such bosons, we couple the GPE with the Poisson
equation, i.e., we employ the Gross-Pitaevskii-Poisson
equation (GPPE). The scattering length a of the bosonic
atoms leads to a self-interaction between the bosons that
can either be repulsive (a > 0) or attractive (a < 0). In the
repulsive case, we use the GPPE with a cubic nonlinearity;
the T ¼ 0 equilibrium state follows by balancing the
gravitational interaction with the repulsive self-interaction
and the quantum pressure [24]. For T > 0 we have carried
out an extensive study of this GPPE, by a Galerkin-
truncated pseudospectral method [30,31], to obtain com-
pact objects, which can be threaded by vortices if we
include rotation.
For the case of attractive self-interactions a < 0, which is

directly relevant to axionic systems [33–36], the equilib-
rium T ¼ 0 state is unstable above an extremely low critical
mass [27], because the repulsive quantum pressure cannot
overcome attractive gravitational and self-interactions.
Self-gravitating bosonic systems with a < 0 are also
interesting because it has been hypothesized [25] that they
can accelerate the formation of structures if the system
starts from a homogeneous distribution of bosons [37]. It
behooves us, therefore, to study such systems theoretically.
To study the spatiotemporal evolution of axion stars,

we must use the GPPE with both cubic and quintic non-
linearities; the former is negative (because a < 0) and
favors the collapse instability mentioned above; the quintic
nonlinearity, with a coefficient g2 > 0, controls this insta-
bility. The resulting cubic-quintic GPPE (cq-GPPE), has
been used, in the absence of gravity, to study (a) the evolu-
tion and merging dynamics of bright solitons [38,39] in one
dimension (1D) and (b) in three dimensions (3D), without
the quintic term, for the collision of bright solitons [40]
and their collapse times during collisions; these studies use
harmonic traps. With self-gravitation, Ref. [41] has used
the GPPE, with only the quintic term, to study the dense
phase of BEC dark matter; and Ref. [32] has employed the
cq-GPPE to obtain a phase transition between dilute and
dense axion matter by using a Gaussian Ansatz at temper-
ature T ¼ 0; aside from this study, there are very few
investigations of the cq-GPPE, in the context of axionic
stars, with negative scattering lengths.
Our study of phases and transitions in the cq-GPPE is the

first to go beyond the Gaussian Ansatz and T ¼ 0. It leads
to important insights into structure formation in self-
gravitating axionic matter. We give a qualitative summary
of our principal results before we present the details of our
work. We first obtain the equilibrium configurations at
T¼0 and then investigate finite-temperature effects (T >0)
by using the Fourier-truncated cq-GPPE and building on
our boson-star studies with the GPPE [30,31] that general-
ise Fourier-truncated investigations of the GPE [42–44].
Furthermore, we obtain the equilibrium configuration,
for T ≥ 0, by using an auxiliary cubic-quintic stochastic

Ginzburg-Landau-Poisson equation (cq-SGLPE), the
imaginary time (t → −it) version of the cq-GPPE.
If we start with a nearly uniform density, the Fourier-

truncated T ¼ 0 cq-SGLPE collapses, first along one
direction, leading to a structure that is reminiscent of a
stack of Zeldovich pancakes [45]. As we increase the gravi-
tational strength G, these pancakes transform into cylin-
drical layers, which finally collapse into a spherical axion
star. If we cycle G from low to high values and back, this
system displays hysteresis loops, associated with first-order
phase transitions between these pancake, cylindrical, and
spherical states; these loops are examples of cosmological
hysteresis [46]. We next investigate finite-temperature
(T > 0): we demonstrate that these collapsed axionic
states transform to tenuous, noncollapsed states at high T.
Finally, we impose an angular velocity Ω on these states;
we show that, beyond a critical angular velocity, quantum
vortices thread the axionic star; this critical angular velocity
depends on the coefficient g2 of the quintic nonlinearity.
Finally, we employ our cq-GPPE approach to follow the
spatiotemporal evolution of a rotating axionic condensate
and also a rotating binary-axionic-condensate system; in
the former, we show the emergence of vortices at large
angular speeds Ω; and, in the latter, we elucidate the rich
dynamics of the mergers of the components of this binary
system.
The remainder of this paper is organized as follows: In

Sec. II we describe the cq-GPPE and cq-SGLPE models
and the pseudospectral methods that we use to study these.
We present our results in Sec. III. Section IV contains our
conclusions and a discussion of the significance of our
results.

II. MODEL AND NUMERICAL SIMULATION

We define below the models we use and the numerical
methods that we employ to study them.

A. The cq-GPPE and cq-SGLPE

At low temperatures, 3D bosonic systems form a Bose-
Einstein condensate (BEC), which can be described by a
macroscopic complex wave function ψðx; tÞ. For weakly
interacting bosons, we can use the GPE; and, in the pre-
sence of Newtonian gravity, this can be generalized to the
GPPE (see, e.g., Refs. [30,31]). For attractive self inter-
actions between the bosons, as in axionic systems [33,34],
we must include a quintic nonlinearity for stability and
employ the following cq-GPPE:

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
∇2ψ þ ½GΦþ gjψ j2 þ g2jψ j4�ψ ;

∇2Φ ¼ jψ j2 − hjψ j2i; ð1Þ

m and n ¼ jψ j2 are, respectively, the mass and number
density of bosons, Φ is the gravitational potential,
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G≡ 4πGNm2, and g≡ 4πaℏ2=m, with a < 0 the s-wave
scattering length, and g2 > 0 the coefficient of the quintic
term. If we linearize Eq. (1) about the constant density
jψ j2 ¼ n0, we get the dispersion relation, between the
frequency ω and the wave number k,

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2k4

ð2mÞ2 −
k2

m

�
Gn0
k2

− gn0 − 2g2n20

�s
; ð2Þ

whence we define the wave number

k2J ¼
2mðgn0 þ 2g2n20Þ

ℏ2

2
4−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Gℏ2n0

mðgn0 þ 2g2n20Þ2
s 3

5

ð3Þ

below which the low-k Jeans instability occurs.
Equation (1) conserves the number of particles N ≡R jψ j2d3x and the total energy E≡ Ek þ Eint þ EG:

E ¼
Z �

ℏ2

2m
j∇ψ j2 þ VðψÞ þ G

2
jψ j2∇−2jψ j2

�
d3x;

VðψÞ≡ g
2
jψ j4 þ g2

3
jψ j6: ð4Þ

In the absence of gravity [G ¼ 0], the stationary solution
of Eq. (1) in a volume V, has a constant density jψ0j2 ¼
n0 ¼ ρ0=m, total energy E0 [Eq. (4)], pressure P0, and
speed of sound v:

E0 ¼
1

2
gjψ0j4V þ 1

3
g2jψ0j6V ¼ 1

2

gN2
0

V
þ 1

3

g2N3
0

V2
;

P0 ≡ −
∂E0

∂V
¼ 1

2

gρ20
m2

þ 2

3

g2ρ30
m3

;

v≡
ffiffiffiffiffiffiffiffi
∂P0

∂ρ0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gn0 þ 2g2n20

m

r
: ð5Þ

If we make the approximation ∇2ψ ≃ ψ=ξ2, then we can
estimate the coherence length ξ by equating the kinetic and
interaction terms as follows:

ℏ2

2m
ψ

ξ2
¼ gjψ j2ψ þ g2jψ j4ψ ; whence

ξ ¼ ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðgn0 þ g2n20Þ

p : ð6Þ

We use τ≡ ξ=v to nondimensionalise the time t in our
direct numerical simulations (DNSs). The timescale based
on τ and length L of the simulation box are not comparable
to the scales used in astrophysics. We define length, time,
and mass scales relevant to astrophysics in the Appendix.

We use pseudospectral DNSs to solve the 3D cq-GPPE and
cq-SGLPE, in a cubical domain, with side L ¼ 2π and N3

collocation points, and periodic boundary conditions in all
three spatial directions. We employ the Fourier expansion

ψðxÞ ¼
X
k

ψ̂k expðik · xÞ; ð7Þ

and the 2=3-rule for dealiasing, i.e., we truncate the
Fourier modes by setting ψ̂ ≡ 0 for jkj > kmax [47,48],
with kmax ¼ ½N=3�. The Fourier-truncated cq-GPPE is

iℏ
∂ψ

∂t
¼ PG

�
−
ℏ2

2m
∇2ψ þ PG

��
G∇−2 þ g

þ g2PGðjψ j2Þ
	jψ j2
ψ

�
; ð8Þ

where PG is the Galerkin projector [with PG½ψ̂k� ¼
θðkmax − jkjÞψ̂k]. For time marching we use the fourth-
order Runge-Kutta scheme RK4.
The total energy E≡ Ek þ Eint þ EG now becomes

Ek ¼
ℏ2

2m

Z
d3xj∇ψ j2;

Eint ¼
Z

d3x

�
g
2
ðPGjψ j2Þ2 þ

g2
3

�
PG

�ðPGjψ j2Þ2

�jψ j2

�
;

EG ¼ G
2

Z
d3x½PGjψ j2�∇−2½PGjψ j2�: ð9Þ

Equilibrium configurations of the cq-GPPE can be obtained
efficiently by using the following Galerkin-truncated
cq-SGLPE, which follows from Eq. (8) via the Wick
rotation t → −it:

ℏ
∂ψ

∂t
¼ PG

�
ℏ2

2m
∇2ψ þ μψ − PG

��
G∇−2 þ g

þ g2PGðjψ j2Þ

jψ j2�ψ

�
þ

ffiffiffiffiffiffi
2ℏ
β

s
PG½ξðx; tÞ�; ð10Þ

where μ is the chemical potential, β ¼ 1=ðkBTÞ, kB is the
Boltzmann constant, T is the temperature, and ξðx; tÞ is a
zero-mean Gaussian white noise with hξðx; tÞξ�ðx0; t0Þi ¼
δðt − t0Þδðx − x0Þ. Although the truncated cq-SGLPE
Eq. (10) does not conserve the total energy, its DNS
converges more rapidly to the long-time solution of the
truncated cq-GPPE (8) than does a direct DNS of the latter
(cf., Refs. [30,49] for the GPPE and the GPE).

B. cq-GPPE with rotation (Ω ≠ 0)

One of the most remarkable features of superfluids,
rotating with an angular frequency Ω, is the formation
of quantized vortices when Ω > Ωc, a critical angular
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frequency. The circulation around the vortex line is
quantized:

I
C
vs · dl ¼ nκ; ð11Þ

where vs is the superfluid velocity, n is an integer, and
κ ≡ h=m. We investigate the formation of quantized
vortices in gravitationally collapsed axionic condensates
by introducing the rotation term −ΩLzψ into the cq-GPPE
(1), where Lz ¼ −iℏðx∂y − y∂xÞ is the z-component of
the angular momentum L ¼ x × P. The equilibrium con-
figuration can then be obtained by using the following
cq-SGLPE with the rotation term:

ℏ
∂ψ

∂t
¼ ℏ2

2m
∇2ψ −

�
GΦþ gjψ j2 þ g2jψ j4 −ΩLz

�
ψ : ð12Þ

We first obtain a spherical collapsed condensate by using
Eq. (12) for Ω ¼ 0; we then increase Ω slowly up until the
critical angular speed Ωc, beyond which vortices thread the
system. In our DNSs withΩ ≠ 0, we use the pseudospectral
methods that we have described above.
In the remaining part of this paper, we work with the

dimensional form of these equations where ℏ ¼ 1 and
m ¼ 1. [In the Appendix, we give the length and times
scales that we should use for different astrophysical
systems.] We characterise the equilibrium configuration
by the scaled radius of gyration:

R
L
¼ 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
ρðrÞr2drR
ρðrÞdr

s
: ð13Þ

For axions of mass m, the values of g and g2 in the
potential energy Eq. (4) depend on the mass m and the
decay constant f. We calculate f in terms of the Planck
mass Mp ¼ ðℏcGN

Þ1=2 (as in Ref. [32]) for the values of g
we consider for structure formation and the generation of
vortices. If we keep only the first two terms in Eq. (32) of
Ref. [32], the instantonic potential of axions is

V ¼ −
ℏ3c3

16f2
jψ j4 þ ℏ6c4

288f4m
jψ j6; ð14Þ

our definition of jψ j2 differs from that of Ref. [32] by a
factor m. By comparing the first term of the above
instantonic potential with the potential in Eq. (4), we have
f2 ¼ ℏ3c3

8jgj . In terms of the Planck mass Mp

f
Mpc2

¼ ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

32πjgj

s
: ð15Þ

We use ℏ ¼ 1, m ¼ 1, g ¼ −15, G ¼ 100, and speed of
light c (for units of length and mass see the Appendix),

so we have f ∼ 10−7Mpc2. Thus, f ≪ Mpc2, which is the
strong-self-interaction case within the Newtonian limit in
Ref. [32] for axions of mass m ∼ 10−4 eV=c2.
The parameters g and g2 are not dimensionless.

We have g ¼ 4πaℏ2=m [dimensions of ½M�½L�5½T�−2].
The parameter g2 ¼ 32ℏ4π2a2

3m3c2 [dimensions of ½M�½L�8½T�−2]
is obtained by comparing the potential in Eq. (4) with
the second term of Eq. (14). In the remainder of this
paper, we choose the values of g and g2 with ℏ ¼ 1,
m ¼ 1, and in terms of the above-mentioned dimensions
of [M], [L], and [T]; their dimensionless ratio is
δ≡ g2

ξ3g ¼ 16π
3
ðcsc Þ2ðaξÞ. The values of the ratios cs=c (ratio

of speed of sound to that of light) and a=ξ (ratio of
scattering and coherence lengths) are restricted because
of computational limitations. We choose δ such that we
get a stable collapsed object. [For the units of g and g2
see the Appendix.]

C. Initial conditions

We use the following initial conditions in our DNSs:
(i) IC1: To study the formation of different structures,

we solve the cq-SGLPE (10) at T ¼ 0, with an
initially uniform density on which we superimpose a
small nonuniform perturbation.

(ii) IC2: After we obtain a stable axionic condensate, we
study the collision dynamics of two such conden-
sates by using Eq. (8) and the following initial
condition for this binary system [cf., Ref. [50]]: We
first obtain a radially symmetric solution ψðr; tÞ via
the expansion

ψðr; tÞ ¼
XNR=2

n¼0

ψ̂2nðtÞT2nðr=R0Þ; ð16Þ

where Tn is the order-n Chebyshev polynomial
(of the first kind) and ψ̂NR0 is chosen to satisfy the
boundary condition ψðR0; tÞ ¼ 0. We then use the
following relaxation method to obtain the stationary
state of Eq. (1):

ψðr; tþ dtÞ ¼ Θ−1
�
ψðr; tÞ − dt

�ðGΦþ gjψ j2
þ g2jψ j4Þψ


�
; ð17Þ

where Θ ¼ 1 − dt∇2jr=2 and∇2jr ≡ 1
r2

∂

∂r ðr2 ∂

∂rÞ. For
rapid convergence to the stationary state, we use the
following Newton method: We define fjðψÞ≡
ψ jðtþ dtÞ − ψ jðtÞ and look for the root ψ j� at
which fjðψ j�Þ ¼ 0; here, ψ jðtÞ is the value of ψðtÞ
at the collocation point j. At every Newton iteration
step, we solve (numerically)

P
k½ðdfj=dψkÞδψk� ¼

−fjðψ jÞ, to find δψk [51].
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III. RESULTS

We present our results as follows: In Sec. III A we
present analytical results that use a Gaussian Ansatz for a
spherically symmetric density profile. Sections III B and
III C are devoted, respectively, to our studies at temperature
T ¼ 0 and T > 0. In Secs. III D and III E we discuss,
respectively, a rotating axionic condensate and a rotating
binary-axionic-condensate system.

A. The Gaussian Ansatz

Most analytical treatments of the cq-GPPE make
the following Gaussian approximation for a spherically
symmetric density profile (see, e.g., Ref. [24]):

ρðrÞ ¼ ρð0Þe−r2=R2
Gauss ; ð18Þ

where ρð0Þ ¼ M=ðπ3=2R3
GaussÞ is the central density, and

RGauss is the radius of the axionic collapsed object in this
approximation. We contrast, in Fig. 1, illustrative density
profiles of spherically collapsed axion stars, which we
obtain from this Gaussian Ansatz and our DNSs of
Eq. (10), for various values of g2, but with fixed g ¼ −0.01
and G ¼ 1. We find that this Ansatz approximates the
density profiles very well for small g2 [see Fig. 1(a)]. As g2
increases [see Figs. 1(b) and 1(c)], the DNS density profile
approaches that of a polytrope of index n ¼ 1=2, which has
a compact support [24], and the Gaussian Ansatz becomes
a poor approximation.
If we continue with this simple Gaussian Ansatz, we can

calculate the effective-potential-energy curve, whose mini-
mum yields the collapsed axion star, as follows. By using
the Madelung transformation

ψðr; tÞ ¼
ffiffiffiffi
ρ

m

r
eiϑðr;tÞ ð19Þ

we rewrite the different parts of the total energy Eq. (4) as

Ek ¼
1

2

Z
ρv2sd3xþ ℏ2

8m2

Z ð∇ρÞ2
ρ

d3x;

Eint ¼
Z �

g
2m2

ρ2 þ g2
3m3

ρ3
�
d3x;

EG ¼ G
2

Z
ρΦd3x; ð20Þ

where vs ¼ ℏ
m∇ϑ and the gravitational potential is calcu-

lated via Φ ¼ R ρðx0Þ
jx−x0j d

3x0. The kinetic energy Ek is a sum

of the classical Ekc and quantum Ekq kinetic energies:

Ekc ¼
1

2

Z
ρv2sd3x;

Ekq ¼
ℏ2

8m2

Z ð∇ρÞ2
ρ

d3x: ð21Þ

Given the Gaussian Ansatz (18), we can calculate these
energies (by performing different integrals via Mathe-
matica) to obtain

Ekq ¼
3ℏ2M

4m2R2
Gauss

;

Eint ¼
g2M3

9
ffiffiffi
3

p
m3π3R6

Gauss

þ gM2

4
ffiffiffi
2

p
m2π3=2R3

Gauss

;

EG ¼ −
GM2

4π
ffiffiffiffiffiffi
2π

p
m2RGauss

; ð22Þ

whence we get

E ¼ Ekc þ Veff ; ð23Þ

where the effective potential is

Veff ¼ Ekq þ Eint þ EG: ð24Þ

FIG. 1. Plots of the density ρðrÞ=ρmax versus r=R, the scaled distance from the center of the axion star, for different values of the
parameters g, g2, andG. The light blue curve is from our DNS and the dark blue curve follows from the Guassian Ansatz [see the text and
Eq. (18)]. R is the radius of gyration given in Eq. (13).
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In Fig. 2(a) we present plots of Veff versus RGauss, for
g2 ¼ 8, G ¼ 14, M ¼ 0.97, and different values of the
attraction parameter g, to show that there is a single, low-
density minimum at small negative values of g. As we
increase the attraction, a new minimum appears: At large
negative values of g, there are two minima, labeledLM and
GM, which correspond, respectively, to low- and high-
density phases of the axionic system; e.g., at g ¼ −15, the
dense axionic condensate is the global minimum GM of
Veff . We also calculate Veff by using our DNS of Eq. (10)
and compare it with the Gaussian-Ansatz effective potential
of Eq. (24). In Fig. 2(b), we present plots of Veff versus the
radius of gyration R from our DNS (in black) and the
Gaussian Ansatz (in red), for g ¼ −15, g2 ¼ 8, G ¼ 100,
and M ¼ 0.97. Although the Gaussian Ansatz does not
yield quantitatively accurate positions of minima of Veff ,
for g ¼ −15, g2 ¼ 8, it shows the existence of a stable
axionic condensate. [To compare our DNS results with
their Gaussian-Ansatz counterparts, we must account for
the following factor: RGauss ¼

ffiffiffiffiffiffiffiffi
2=3

p
R, with R the radius of

gyration [Eq. (13)].

B. Collapsed axionic condensates: T = 0

Our Gaussian-Ansatz study of Veff shows that, for g ¼
−15 and g2 ¼ 8, a stable axionic condensate may occur.
We now investigate the G-dependence of such an axionic
condensate by solving the cq-SGLPE (10). We first con-
sider T ¼ 0 and start with the initial condition IC1,
a nearly homogeneous distribution of ψ , and then we
increaseG from zero to large values. In Fig. 3, we show ten-
level contour plots of the spatial variation of jψðx; tÞj2, at
the initial time (column-1) and final time (column-2) for
G ¼ 0 [first row of Fig. 3], G ¼ 4 [second row of Fig. 3],
G ¼ 34 [third row of Fig. 3], and G ¼ 98 [fourth row of
Fig. 3]. The initial conditions for the runs in rows 2, 3, and
4, are, respectively, the final configurations in rows 1, 2,
and 3. In each row, the equilibrium configuration (column
2) for a given value ofG, is a result of a balance between the
self-interactions and the repulsive quantum pressure. Note
that, as G increases, the equilibrium configuration goes
from a tenuous axionic gas [row 1], to flat sheets [row 2] or
Zeldovich pancakes [52], cylindrical structures [row 3], and
finally a spherical axionic condensate [row 4]. In column 3
of Fig. 3 we illustrate the evolution of the scaled radius of
gyration R=L as a function of the scaled time t=ðξ=vÞ for
(a)G ¼ 0, (b)G ¼ 4, (c)G ¼ 34, and (d)G ¼ 98. In row 5
we show ten-level contour plots of jψðx; tÞj2, with the same
parameters as for row 2, but which we obtain by using the
cq-GPPE (8).
To study the transitions between the T ¼ 0 equilibrium

configurations shown in column 2, rows 1–4, in Fig. 3, we
increase (blue curve) and then decrease (green curve) G, as
we show via the plot of R=L versus G in Fig. 4, for the
illustrative values g ¼ −15 and g2 ¼ 8 in the cq-GPPE.
As we increaseG, there are three first-order transitions, first
from a statistically homogeneous state to pancakes, then
to a cylindrical configuration, and finally to a collapsed
spherical object. At the transitions between these configu-
rations, R=L jumps discontinuously. Given that we change
the values of G at a finite rate, the metastability of these
configurations makes the first-order jumps appear as
hysteresis loops [53], in which the increasing-G (blue
curve) and decreasing-G (green curve) scans yield different
branches. It is interesting to speculate if this is an example
of the cosmological hysteresis proposed in Ref. [54]: “a
universe filled with scalar field exhibits cosmological
hysteresis.”

C. Formation of axionic objects: T > 0

We now study finite-temperature (T > 0) effects, on the
various structures obtained in Fig. 3, by using the Fourier-
truncated cq-GPPE (8); we also construct the thermalized
state directly by using the cq-SGLPE (10). Columns 1, 2,
and 3 of Fig. 5 show ten-level contour plots of jψðx; tÞj2 at
different representative temperatures, which increase from

(a)

(b)

FIG. 2. (a) Log linear plots of the effective potential Veff versus
the axionic condensate’s radius RGauss [see Eq. (18)], for g2 ¼ 8,
G ¼ 14, and M ¼ 0.97. The minima labeled LM and GM
correspond, respectively, to low- and high-density phases of
axionic condensates. (b) Plots of Veff versus the radius of gyration
R [Eq. (13)], for g ¼ −15, g2 ¼ 8, G ¼ 100, and M ¼ 0.97,
obtained by using the Gaussian Ansatz (in red) and our DNS
(in black).
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FIG. 3. Ten-level contour plots of jψðx; tÞj2 from the cq-SGLPE (10) at T ¼ 0, with initial and final states in columns 1 and 2,
respectively, andG ¼ 0 [first row],G ¼ 4 [second row],G ¼ 34 [third row], and G ¼ 98 [fourth row] and the initial conditions given in
the text. Column 3: R=L versus the scaled time t=ðξ=vÞ for (a) G ¼ 0, (b) G ¼ 4, (c) G ¼ 34, and (d) G ¼ 98. Row 5 shows the contour
plots of jψðx; tÞj2, for the same parameters as for row 2, but by using the cq-GPPE Eq. (8).
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column 1 to 3. At T ¼ 0 we have pancake, cylindrical, and
spherical structures at G ¼ 30, G ¼ 70, and G ¼ 104 in
rows 1, 2, and 3, respectively. As we increase T and move
from column 1 to 3, we see that, in all the rows, each one of
the condensed structures becomes a disordered tenuous
axionic assembly. In column 4 of Fig. 5 we show plots of
the scaled radius of gyration R=L versus the temperature T.
We start with the density distributions illustrated in column
1 of Fig. 5. We then increase T, for each one of these initial
conditions; we follow this by a cooling cycle until the
system returns to the initial temperature. These heating and
cooling cycles yield the hysteresis loops that we show in
column 4 of Fig. 5 (with navy blue and cyan lines for
heating and cooling cycles, respectively). Although the
loops are clearly visible, they are not as pronounced as their
counterparts in Fig. 4.

D. Rotational dynamics of a single axionic condensate

Quantized vortices appear when we rotate a superfluid
with a sufficiently large angular speed Ω. To obtain such
quantized vortices in our self-gravitating system of axions,
we solve the cq-SGLPE (12). First we use initial condition
IC1 in Eq. (12), with Ω ¼ 0; for the chosen set of para-
meters this yields a spherical collapsed object. We now use
this collapsed object as the initial condition for Eq. (12) and
slowly increase the angular speed Ω. We use the final
steady-state value for the field ψ , for a given value of Ω, as
the initial condition for the next value of Ω.
In Figs. 6(a)–6(c), we present contour plots of jψðx; tÞj2,

for a single rotating compact axionic object, with the

(z) axis of rotation indicated by a green arrow. We obtain
this configuration by solving the cq-SGLPE for g ¼ −15,
g2 ¼ 8,G ¼ 100, and (a)Ω ¼ 3, (b) Ω ¼ 4, and (c)Ω ¼ 5.
Note that vortices thread the collapsed object once Ω >
Ωc ≳ 3, where Ωc is the critical angular speed required
for the appearance of vortices. The number density of
vortices increases as we increaseΩ [cf. Figs. 6(b) and 6(c)].
Furthermore, we show in Fig. 6(d) that Ωc decreases as g2
increases. Our result is akin to that of Ref. [55], for a
trapped BEC without the G and g2 terms, where it is found
that the critical angular speed decreases as the repulsive
interaction g between the bosons increases. For our self-
gravitating axionic system, with g < 0 and G held fixed,
Fig. 6(d) suggests that, as g2 → 0, the critical angular speed
Ωc becomes so high that the system cannot support
vortices.

E. Rotational dynamics of binary axionic systems

We now investigate the dynamics of a rotating binary
axionic system by using the following initial condition
that consists of two spherical collapsed axionic objects,
separated by a distance d, along the y-direction, and with
equal and opposite initial velocities, v1 ¼ ðv; 0; 0Þ, v2 ¼
ð−v; 0; 0Þ, in the x-direction:

ψbðx; t ¼ 0Þ ¼ fðjx − x0jÞeiv1·x þ fðjxþ x0jÞeiðv2·xþΔϕÞ;

ð25Þ

where x0 ¼ ð0; d=2; 0Þ and Δϕ is the relative phase
between the two objects. We obtain the function fðjxjÞ
by using initial condition IC2 and then the Newton method
[cf. the discussion around Eq. (17)], which converges
rapidly to the stationary state of the cq-GPPE (1). We
explore the dependence of the dynamics of such axionic
binaries in the following two illustrative parameter regimes,
PI and PII.

1. Parameters PI

We first study the binary system in which the two axionic
compact objects have the same mass, N1 ¼ N2 ¼ N=2,
where N is the number of bosons. We evolve Eq. (8) in
time, by starting with the initial condition of Eq. (25),
v ¼ 0.5, and g ¼ −0.5, g2 ¼ 0.001, and G ¼ 2.0. In the
black panel of the first row of Fig. 7, we show isosurface
plots of jψðx; tÞj2 for the rotating binary system at different
representative times and with Δϕ ¼ π. We observe clearly
that the two components of the binary system approach
each other initially and collide; then they bounce off of each
other, but again come close together, albeit with a reduced
separation; and finally these components merge after a
large time.
In the black panel of the second row of Fig. 7, we show

isosurface plots of jψðx; tÞj2 for the rotating binary system
at different representative times and with Δϕ ¼ 0, i.e., with

FIG. 4. Plot of the scaled radius of gyration R=L versus the
gravitational interaction parameter G for g ¼ −15 and g2 ¼ 8 in
the cq-GPPE; blue and green curves show, respectively, curves
along which G increases and decreases.
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the two components of the binary system out of phase. We
observe that the collapse of the two components of the
binary system occurs in a very short time, compared to the
collapse time for Δϕ ¼ π [cf. the time labels in the black
panels of the first and second rows in Fig. 7]. In Fig. 8,
we plot versus time t the distance d between the centers of
masses of the components of the binary system [Fig. 7],

to demonstrate that the collapse of these two components
occurs more rapidly for Δϕ ¼ 0 (red curve) than for
Δϕ ¼ π (black curve). The collapse is not monotonic for
Δϕ ¼ π as is clear from the oscillations in the black curve
in Fig. 8.
In the last column of Fig. 7, we present plots versus time

t of the kinetic energy Ekq, the interaction energy Eint, the

(a) (b) (c) (d)

FIG. 6. Contour plots of jψðx; tÞj2, for a single rotating compact axionic object, which we obtain by solving the cq-SGLPE for
g ¼ −15, g2 ¼ 8,G ¼ 100, and (a)Ω ¼ 3, (b)Ω ¼ 4, and (c)Ω ¼ 5. Vortices appear onceΩ > Ωc, a critical angular speed. The axis of
rotation is indicated by the green arrow (the Z-axis about which the axion condensate is rotated). (d) Plot of Ωc versus g2.

(a) (b) (c)
(d)

(e) (f) (g)
(h)

(i) (j) (k)
(l)

FIG. 5. Columns 1–3: Ten level contour plots of jψðx; tÞj2 at different temperatures as we heat last snapshots of Fig. 3. The three rows
are arranged with increasing value ofG; forG ¼ 30 in row 1,G ¼ 70 in row 2, andG ¼ 104 in row 3. Column 4 shows the scaled radius
of gyration, R=L vs the temperature T. The black curve is for the heating part of the cycle and the green one is for the cooling part. The
points (a)–(c) in (d) corresponds to density distributions in columns 1–3.
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gravitational energy EG, and the total energy E; the plot in
the first (second) row is for Δϕ ¼ π (Δϕ ¼ 0). These plots
lead to the following important results:

(i) The temporal oscillations in these curves are asso-
ciated with the bouncing of the two components of
the binary system before their eventual merger. The
differences in the timescales on the horizontal axes
of top and bottom graphs confirm that the collapse of
the binary system occurs more rapidly whenΔϕ ¼ 0
than if Δϕ ¼ π.

(ii) The total energy E < 0 for both Δϕ ¼ 0 and
Δϕ ¼ π. This is similar to the result of Ref. [56], for
the interaction between two BEC halos, which finds
that the two halos collide and merge when E < 0.

(iii) The rapid merger for Δϕ ¼ 0 in our cq-GPPE
system suggests that there is a well in the potential
energy, which favors the formation of a bound state
for our binary system. Studies of a rotating-binary
system in the conventional Gross-Pitaveskii-Poisson
equation (GPPE) with repulsive self interactions,
i.e., g > 0 [but g2 ¼ 0] also show that the two
components merge more easily when they are in-
phase than if they are out-of-phase.

2. Parameters PII

Next we investigate the binary system in which the
two axionic compact objects have the same mass, N1 ¼
N2 ¼ N=2, where N is the number of bosons. We evolve
Eq. (8) in time, by starting with the initial condition of
Eq. (25), v ¼ 0.5, and g ¼ −0.5, g2 ¼ 0.005, and G ¼ 2.0,
i.e., the same as the parameter set PI except for a five-fold
increase in the axion-interaction strength g2.
In Fig. 9 we show volume plots of jψðx; tÞj2 for the out-

of-phase Δϕ ¼ π (first row) and in-phase Δϕ ¼ 0 (second
row) cases. In this instance too, the two objects merge more
quickly in the second case than in the first.
The two compact objects in this binary system have equal

and opposite velocities initially. As the system evolves, the
two objects merge and the single collapsed object rotates
with a finite angular momentum. If this angular momentum
is sufficiently high, it is possible to obtain quantized vortices,
if the interaction strength g2 is large. The volume plot in the
first row of Fig. 9 clearly shows a vortex. Such a vortex can
also be visualized by plotting the density variation along one
direction for the last configuration of the collapsed, rotating

FIG. 7. Contour plots of jψðx; tÞj2 for a rotating binary axion system, obtained by using the cq-GPPE for parameter set PI, i.e.,
g ¼ −0.5, g2 ¼ 0.001, G ¼ 2.0 and relative phase, Δϕ ¼ π (top row) and Δϕ ¼ 0 (bottom row). Plots in the last column show the time
evolution of the kinetic, gravitational, interaction, and total energies.

FIG. 8. Plots versus time t the distance d between the centers
of masses of the components of the binary system [Fig. 7], to
demonstrate that the collapse of these two components occurs
more rapidly for Δϕ ¼ 0 (red curve) than for Δϕ ¼ π
(black curve).
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axionic object. We show such plots in the last column of
Fig. 9. The large dip in the density, approximately at the
middle, indicates a vortex when Δϕ ¼ π; we do not observe
such a dip if Δϕ ¼ 0.

IV. CONCLUSIONS

We have shown how to use the cq-GPPE (8) and the cq-
SGLPE (10) to investigate the gravitational collapse of a
tenuous axionic gas into a collapsed axionic condensate for
T ≥ 0. We have first presented analytical results at T ¼ 0,
which use a Gaussian Ansatz for a spherically symmetric
density profile [24] and suggest parameter regimes in
which we might expect to find compact axionic conden-
sates. We have gone beyond this Ansatz by using the cq-
SGLPE (10) to investigate theG-dependence of the axionic
condensate at T ¼ 0, and shown that, as G increases, the
equilibrium configuration goes from a tenuous axionic gas,
to flat sheets or Zeldovich pancakes [52], cylindrical
structures, and finally a spherical axion condensate [see
Fig. 3]. By varying G, we have shown that there are first-
order phase transitions as the system goes from one of
these structures to the next one, as we see clearly by the
hysteresis loops in Fig. 4. We have then examined these
states and the transitions between these states via the
Fourier truncated cq-GPPE (8) and also by obtaining the
thermalized T > 0 states [see Fig. 5] from the cq-SGLPE
(10); transitions between these states yield thermally driven
first-order phase transitions and their associated hysteresis
loops. Finally, we have discussed how our cq-GPPE app-
roach can be used to follow the spatiotemporal evolution of
a rotating axion condensate and also a rotating binary-
axion-condensate system; in particular, we have examined,
in the former, the emergence of vortices at large angular
speedsΩ and, in the latter, the rich dynamics of the mergers
of the components of this binary system, which can yield
vortices in the process of merging.

Our work goes beyond earlier studies [30,31,57,58]
that use the conventional cubic GPPE, which is appro-
priate for boson condensates that are not axionic. The
latter require the inclusion of the quintic term in the
cq-GPPE, which we have studied in detail here. We also
note that the cq-GPPE arises naturally in the Taylor
expansion of instantonic potentials of axions [32]. In
future work we will explore axionic generalizations of
Ref. [31] and explore relations, if any, of the emergence
of vortices in a recent study of the mergers of black holes
and saturons [59]. If dark matter indeed consists of
BECs, then dark-matter galactic halos and axionic or
bosonic stars should be capable of generating quantized
vortices, because of the tidal torques from the surround-
ing matter as studied; for instance, Refs. [60,61] study
the formation and effects of vortices on the rotation
curves of spiral galaxies; their results are in agreement
with observations obtained from the Andromeda Galaxy
and suggest the existence of substructures on these
curves, which agree with the observations on some spiral
galaxies. Our studies could find applications in such
astrophysical settings.
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APPENDIX

We use the dimensionless form of the cubic-quintic
Gross-Pitaevskii-Poisson equation (cq-GPPE), which we
obtain by setting ℏ ¼ 1, and m ¼ 1. Here we discuss

FIG. 9. Volume plots of jψðx; tÞj2 for a rotating binary axionic system obtained by using the cq-GPPE for parameter set PII, i.e.,
g ¼ −0.5, g2 ¼ 0.005, G ¼ 2.0 and relative phase Δϕ ¼ π (first row) and Δϕ ¼ 0 (second row). The last column shows plots of the
density variation along the line passing through the center of the last configuration of the collapsed, rotating axionic system.
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the units relevant for different astrophysical settings. For
ℏ ¼ 1, we have

1
ð½M�kgÞ · ð½L�meÞ2

ð½T�sÞ ¼ 1.054 × 10−34
me2 · kg

s
; ðA1Þ

where [L], [T], and [M] are the units of length, time, and
mass, respectively, and me represents metre. We now
calculate the astrophysically relevant mass and timescales
(depending on the object of interest).

(i) If the cq-GPPE (1) describes a dark-matter halo, we
consider ultralight axions of massm ≃ 10−23 eV=c2,
which fixes the unit of mass. Therefore, choosing
m ¼ 1 amounts to using

1ð½M�kgÞ ¼ 10−23
eV
c2

;

½M� ¼ 1.78 × 10−59 kg: ðA2Þ

By using Eqs. (A1) and (A2) we get

½T� ¼ 1.69 × 10−25½L�2s; ðA3Þ

and we can choose the unit of length to be 1 kpc ≃
3 × 1019 m [62]. Therefore, for dark-matter haloes

½T� ¼ 1.52 × 1014 s ≃ 4.8 × 106 yr ¼ 4.8 Myr;

½M� ¼ 1.78 × 10−59 kg: ðA4Þ

With these units of length [L], mass [M], and time
[T] for dark-matter haloes, our simulation box is
of size ð2π × 2π × 2πÞ kpc3 and the time step of
0.000001 is equivalent to dt ¼ 4.8 yrs.

(ii) If the cq-GPPE (1) describes an axionic star, we
consider axions of mass m ≃ 10−4 eV=c2, which
fixes the unit of mass. Therefore, choosing m ¼ 1
amounts to using

1ð½M�kgÞ ¼ 10−4
eV
c2

;

½M� ¼ 1.78 × 10−40 kg: ðA5Þ

By using Eqs. (A1) and (A5) we obtain

½T� ¼ 1.69 × 10−6½L�2 s: ðA6Þ

If we choose the unit of length to be 1½L� ¼ 1 km
then, for axionic stars,

½T� ¼ 1.69 s ðA7Þ

½M� ¼ 1.78 × 10−40 kg: ðA8Þ

With these units of length [L], mass [M], and time
[T] for axionic stars, our simulation box is of size
ð2π × 2π × 2πÞ km3 and the time step of 0.000001
is equivalent to dt ¼ 1.69 μs.

(iii) The coefficient of cubic nonlinearity g is given as
follows

g ¼ 4πaℏ2

m
kg ·me5

s2
; ðA9Þ

where me represents the metre. For axions of mass
m ≃ 10−4 eV=c2, using Eq. (A8) with ℏ ¼ m ¼ 1,
we have

g ¼ 20.11a × 1025
½M�½L�5
½T�2 ðA10Þ

For the ratios a=ξ and cs=c (based on the
computational limits), we choose g and g2 such that
the nondimensional ratio δ ¼ g2

ξ3g gives a stable

collapsed object. Here ξ is the healing length, and
cs is the speed of sound.
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