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Different types of phase transition fromhadron to quark at high density near zero temperaturemay occur in
the inner core of hybrid stars. We investigate the impacts of phase transition types and quark models on
properties of hybrid star and quark cores. The quark-meson coupling (QMC) model is used to describe
hadronic matter, and the MIT bag model as well as the Nambu-Jona-Lasinio (NJL) model are employed to
describe quark matter for comparison. From the mass-radius curves obtained by using equations of state
(EOS), we find that EOSs of hadronmatter have a decisive influence on themaximummass of a hybrid star in
the first-order phase transition case, while quark matter EOSs have more impacts on results in the crossover
transition case. It is also found in the present work that the thermodynamic correction arising from an
interpolation scheme considerably stiffens the EOSs. Therefore the crossover type phase transition generally
leads to hybrid stars with higher masses. In particular, by using the QMC model and the NJL model to
construct crossover EOSs with thermodynamic correction, we discover that the maximummasses of hybrid
stars can meet the recent observational constraint on mass from PSR J0952-0607, i.e., 2.35� 0.17M⊙.

DOI: 10.1103/PhysRevD.109.063008

I. INTRODUCTION

Neutron stars are one of the end points in the evolution of
massive stars and are composed of dense matter, in which
the density in the inner core could reach several times
the nuclear saturation density (ρ0 ≈ 0.15 fm−3) [1–3]. The
study of neutron stars is important to our understanding of
dense matter properties. Although relativistic heavy-ion
collisions [4] have advanced our understanding of hot
dense QCD matter in the last few decades, neutron stars are
the only known natural laboratories containing cold and
dense QCD matter [5–9].
It has long been thought that QCD matter undergoes a

phase transition from hadronic matter to deconfined quark
matter at high densities and/or high temperatures due to the
asymptotically freedom of the strong interactions [10–15],
and that such a phase transition is very likely to take place
in the high-density regions of neutron star [16–18],
especially since some model-independent calculations in
recent years have suggested that the presence of quark
cores inside massive neutron stars should be considered
the standard scenario [19]. Such neutron stars with both
hadronic matter and deconfined quark matter are called
hybrid stars, and the research of hybrid stars can help us
further understand the phase transition properties of dense
QCD matter in the low-temperature region.

In order to describe hadron-quark phase transitions near
zero temperature, one need to obtain equations of state
(EOS). Ideally, it would be preferable to calculate the EOS
directly from QCD and extract information about the phase
transitions. Unfortunately, there is no reliable first principle
QCD calculation that can produce an equation of state
applicable in high density regions [20–24]. Thus one is
forced to employ phenomenological models to characterize
hadronic matter and quark matter separately and connect
their EOSs via proper means.
In this work, we use the quark-meson coupling (QMC)

model [25–28] to describe the hadronic phase, and the
quark phase will be described by the MIT bag model [29]
and the NJL model [30–32] that are “almost complemen-
tary” [32]. We hope the EOSs thus obtained to be more
reliable in the phase transition region [20]. For the con-
nection between the hadronic and quark phases, we will
follow the main treatments in literature [5,13,33,34]: One
is the first-order phase transition described by Maxwell
[11,35–39] or Gibbs [3,10,11,23,24,40–44] constructions,
another is the crossover [6,7,20,40,45,46] type. Our aim is
to study the effects of different quark models and phase
transitions on the maximum masses of hybrid stars. Recent
and earlier observations of massive neutron stars, PSR
J0952-0607 (2.35� 0.17 times the solar mass M⊙) [47]
and PSR J0348þ 0432 (2.01� 0.04M⊙) [48], pose chal-
lenges to the traditional understanding of the EOSs of
super-dense matter [41,49]. We wish to see whether our
calculation could yield masses compatible with these data.*Corresponding author: jfyang@phy.ecnu.edu.cn
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In addition, we will also study the properties of quark cores
in hybrid stars.
This paper is organized as follows. In Sec. II, the QMC

model with hyperons is presented. In Sec. III, we briefly
introduce the MIT Bag model and the SU(3) NJL model.
Combining the above models we obtain the hybrid equation
of state by using the Gibbs criterion and interpolation
scheme in Sec. IV. Our calculations of the hybrid star
properties are given and analyzed in Sec. V. Included in
Sec. VI are our conclusions and summaries.

II. HADRONIC MATTER DESCRIPTION WITHIN
THE QMC MODEL

In the QMC model, a baryon immersed in the nuclear
medium is treated as a static MIT bag containing quarks.
The interactions between baryons are realized by exchang-
ing scalar (σ) and vector (ω, ρ) mesons which are regarded
as classic fields in the mean-field approximation and couple
directly to the quarks in the bag. The equation of motion of
quark fields inside the bag reads:�
iγμ∂μ − ðmq − gqσσÞ − γ0

�
gqωωþ gqρ

τ3
2
ρ

��
ψq ¼ 0; ð1Þ

where q ¼ u, d, s, with the current quark mass mq and the
quark-meson coupling constants gqσ ; g

q
ω; g

q
ρ . The normalized

ground state for a quark in the bag is given by

ψqðr; tÞ ¼ N qe−iϵqt=RB

�
j0ðxqr=RBÞ

iβqσ · r̂j1ðxqr=RBÞ
�

χqffiffiffiffiffiffi
4π

p ; ð2Þ

where

ϵq ¼ Ωq þ RB

�
gqωωþ gqρ

τ3
2
ρ

�
; ð3Þ

βq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωq − RBm�

q

Ωq þ RBm�
q

s
; ð4Þ

with Ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2q þ ðRBm�

qÞ2
q

and the effective mass of

quark m�
q ¼ mq − gqσσ. Here RB and χq denote the bag

radius and quark spinor respectively. The bag eigenvalue xq
is determined by the boundary condition at the bag surface

j0ðxqÞ ¼ βqj1ðxqÞ: ð5Þ
The energy of a static bag containing three ground state
quarks of different baryons is then given by

Ebag
B ¼

X
q

nq
Ωq

RB
−
ZB

RB
þ 4

3
πR3

BBB; ð6Þ

where the parameter ZB accounts for the zero-point motion
and center-of-mass corrections and BB is the bag constant.

The effective nucleon mass at rest in the model is taken to
be M�

B ¼ Ebag
B , and the bag radius RB is determined by

minimizing the effective nucleon mass, i.e., the stability
condition

dM�
B

dRB
¼ 0: ð7Þ

In order to fix the parameters above, we start from fixing
BN and ZN for nucleon, here we set RN ¼ 0.6 fm, then they
are obtained by fitting the nucleon mass MN ¼ 939 MeV
and enforcing the stability condition. With the current
quark masses mu ¼ md ¼ 5.5 MeV, ms ¼ 150 MeV, we
obtained ZN ¼ 4.00506, B1=4

N ¼ 210.854 MeV. For the

remaining baryons, their bag constants are fixed to B1=4
B ¼

210.854 MeV, then by performing the similar procedure,
RB and ZB of all octet baryons are determined, and the
results are displayed in Table I.
The next step is to fit the quark-meson coupling con-

stants gqσ ; g
q
ω and gqρ . Here we take the values of these

coupling constants from Ref. [3]:

gqσ ¼ 5.957; gωN ¼ 8.981; gρN ¼ 8.651;

gqω ¼ 1

3
gωN; gqρ ¼ gρN;

where the couplings gσN and gωN are determined by fitting
the saturation density ρ0 ¼ 0.15 fm−3 and the binding
energy per baryon Eðρ ¼ ρ0Þ ¼ −15.7 MeV at the satu-
ration point [3]. And the remaining coupling gρN is fixed by
fitting the asymmetry energy coefficient asym ¼ 32.5 MeV
at the saturation density [3]. The meson masses are taken as
mσ ¼ 550 MeV, mω ¼ 783 MeV and mρ ¼ 770 MeV.
According to the following relations

gσB ¼ xσBgσN; gωB ¼ xωBgωN; gρB ¼ xρBgρN

the hyperon-meson coupling constants are determined,
with xσ ¼ 0.7 and xω ¼ xρ ¼ 0.783 [3,50]. The determi-
nation of the coupling constant enables us to parametrize
the effective mass as a function of σ [27,28,41].

TABLE I. Values of RB and ZB for different octet baryons
fitting to their physical masses, with the bag constant B1=4

B ¼
210.854 MeV, current quark masses mu ¼ md ¼ 5.5 MeV and
ms ¼ 150 MeV.

Baryons MB RB ZB

N 939.0 0.6 4.00506
Λ 1115.6 0.63188 3.69130
Σþ 1189.3 0.64577 3.45691
Σ0 1192.5 0.64630 3.44661
Σ− 1197.4 0.64726 3.43082
Ξ0 1314.9 0.66248 3.29602
Ξ− 1321.3 0.66359 3.27512
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For the QMC model, the meson field equations of
motion in the mean-field approximation at Hartree level
are given by [3,26]

m2
σσ ¼

X
B

2SB þ 1

2π2

�
−
∂M�

BðσÞ
∂σ

�

×
Z

kB

0

M�
BðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM�2
B ðσÞ

p k2dk; ð8Þ

m2
ωω0 ¼

X
B

gωBð2SB þ 1Þk3B=ð6π2Þ; ð9Þ

m2
ρρ03 ¼

X
B

gρBI3Bð2SB þ 1Þk3B=ð6π2Þ; ð10Þ

where SB; I3B; kB are the spin, isospin projection, and the
Fermi momentum of different species of baryon B,
respectively.
The energy density and pressure including leptons can be

derived from the Lagrangian density in the mean-field
approximation [3,24,41,51]

εHP ¼
X
B

2SB þ 1

2π2

Z
kB

0

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

B ðσÞ
q

þ 1

2
m2

oσ
2 þ 1

2
m2

oω
2
0 þ

1

2
m2

ρρ
2
03

þ
X
l¼e;μ

1

π2

Z
kl

0

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q
; ð11Þ

PHP ¼
1

3

X
B

2SB þ 1

2π2

Z
kB

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

B ðσÞ
p

−
1

2
m2

σσ
2 þ 1

2
m2

ωω
2
0 þ

1

2
m2

ρρ
2
03

þ 1

3

X
l¼e;μ

1

π2

Z
kl

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q : ð12Þ

Neutron star matter with baryons and leptons must
satisfy the following conditions:

μp ¼ μΣþ ¼ μn − μe; ð13Þ

μΛ ¼ μΣ0 ¼ μΞ0 ¼ μn; ð14Þ

μΣ− ¼ μΞ− ¼ μn þ μe; ð15Þ

μμ ¼ μe; ð16Þ

ρp þ ρΣþ ¼ ρe þ ρμ− þ ρΣ− þ ρΞ− ; ð17Þ

where from Eq. (13) to Eq. (16) are the β-equilibrium
conditions and Eq. (17) is the charge neutrality condition.

The chemical potentials of baryons and leptons in the above
conditions have the form:

μB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2B þM�2

B

q
þ gωBω0 þ gρBI3Bρ03; ð18Þ

μl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l þm2

l

q
: ð19Þ

III. QUARK MATTER DESCRIPTION

Similar to the hadron matter in neutron stars, the three-
flavor quark matter also needs to fulfill the β-equilibrium
conditions Eq. (20) and Eq. (21) and charge neutrality
condition [52,53] Eq. (22):

μs ¼ μd ¼ μu þ μe; ð20Þ

μμ ¼ μe; ð21Þ

2

3
ρu −

1

3
ðρd þ ρsÞ − ρe − ρμ ¼ 0; ð22Þ

which are necessary for calculating the energy density and
pressure of the quark matter in hybrid stars. In this section,
two different models are used to describe deconfined
quark phase.

A. The MIT bag model

In the simplest form of the MIT bag model, the quarks
are treated as a noninteracting Fermion gas [29,41], then
the energy density and pressure of quark matter are
expressed as:

εQP ¼
X

q¼u;d;s

3

π2

Z
kq

0

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

q

q
þ B

þ
X
l¼e;μ

1

π2

Z
kl

0

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q
; ð23Þ

PQP ¼
X

q¼u;d;s

1

π2

Z
kq

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

q

q − B

þ 1

3

X
l¼e;μ

1

π2

Z
kl

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q ; ð24Þ

where kq, mq, and B are the Fermi momentum, quark
current masses and the bag constant, respectively. Here the
same values of current quark masses are taken as in the
QMC model. Note the bag constant B here is a free
parameter, unlike that in the QMC model [37,41].
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B. The SU(3) NJL Model

Next we consider the SU(3) NJL model [54,55] with
vector interaction to describe quark phase with the follow-
ing Lagrangian density [20]:

LNJL ¼ ψ̄ði∂− m̂0Þψ þGS

XN2
F−1

a¼0

�ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2
�

þK
	
det ½ψ̄ð1þ γ5Þψ � þ det ½ψ̄ð1− γ5Þψ �



−

(
gVðψ̄γμψÞ2

GV
PN2

F−1
a¼0

�ðψ̄γμλaψÞ2 þ ðψ̄γμγ5λaψÞ2
� ð25Þ

where m̂0 ¼ diagðmu;md;msÞ and NF ¼ 3. The term
proportional to GS is a Uð3ÞL ×Uð3ÞR symmetric
four-fermion interaction, where λa; a ¼ 1; 2;…; 8 are
Gell-Mann matrices, i.e., the generators of SUð3Þ group
with λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I. The second line corresponds to the

Kobayashi-Maskawa-’t Hooft (KMT) six-fermion interac-
tion Lagrangian density which breaks the Uð1ÞA sym-
metry [56], where K is the coupling constant of such
interaction. In this work, we employ two different types of
vector interactions: the one proportional to gV which is
flavor-independent [6,20,57,58], while another one propor-
tional to GV is flavor-dependent [6,20].
In this NJL model, the constituent quark masses are

given by the gap equation within the mean-field approxi-
mation [42]:

m�
i ¼ m0

i − 4GSσi þ 2Kσjσk; ð26Þ
where index ði; j; kÞ corresponds to the circular permuta-
tion of quark flavor ðu; d; sÞ; σi ¼ hψ̄ iψ ii; ði ¼ u; d; sÞ are
quark condensates, which has the form:

σq ¼ hψ̄qψqi ¼ −
3

π2

Z
Λ

kq

m�
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm�2
q

q k2dk; ð27Þ

where kq and Λ denote the Fermi momentum of quark and
momentum cutoff, respectively. From the Lagrangian
density above one can obtain the total energy density
and pressure of the quark phase described by this model:

εQP ¼
X

q¼u;d;s

�
−

3

π2

Z
Λ

kq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

q

q
k2dk

�

þ 2GSðσ2u þ σ2d þ σ2sÞ − 4Kσuσdσs

×

�þgVðρu þ ρd þ ρsÞ2
þ2GVðρu2 þ ρd

2 þ ρs
2Þ

þ
X
l¼e;μ

1

π2

Z
kl

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q
k2dk − ε0;

PQP ¼
X

i¼u;d;s;e;μ

ρiμi − εQP: ð28Þ

where ρu; ρd and ρs are the density of quarks. Here in the
NJL model we need to introduce ε0 to ensure zero energy
density in the vacuum [42]. In this work the RKH
parameter set [59] is employed: m0

u ¼ m0
d ¼ 5.5 MeV,

m0
s ¼ 140.7 MeV, Λ ¼ 602.3 MeV, GSΛ2 ¼ 1.835, and

KΛ5 ¼ 12.36, and values of vector couplings are varied
from 0GS to 1GS discretely [20,45,57,58].

IV. PHASE TRANSITION IN HYBRID STARS

In this section, we study the two types of phase
transitions mentioned above, namely, first-order transition
and crossover between hadronic phase and quark phase,
using different quark models for comparison.

A. First-order transition

For first-order transition we only consider Gibbs con-
struction here, which has the criteria:

PHP ¼PQP ¼PMP; μHB ¼ μQB and μHe ¼ μQe : ð29Þ

The charge neutrality condition and baryon number con-
servation of two different phases need to be replaced by the
global conditions as below

ð1 − χÞρcHP þ χρcQP þ
X
l¼e;μ

ρcl ¼ 0; ð30Þ

ð1 − χÞρHP þ χρQP ¼ ρ; ð31Þ

where ρc and ρ denotes the charge density of two phases
and total baryon density, respectively, with χ a parameter
ranging from 0 to 1, i.e., from hadronic phase to quark
phase with the existence of mixed phase. Consequently, the
energy density takes the following form:

ε ¼ ð1 − χÞεHP þ χεQP: ð32Þ

1. Between the QMC model and the MIT Bag model

The pressure is plotted in Fig. 1 as a function of
baryon density nB with variable bag constants of the MIT
Bag model: B1=4 ¼ 210.854 MeV, B1=4 ¼ 200 MeV and
B1=4 ¼ 190 MeV. As is shown in Fig. 1, the starting
point of mixed phase will move to smaller density as the
bag constant decreases, and when the bag constant
decreases to a certain value the hyperons may disappear,
as is shown by the relative population of each particle in
Fig. 2, where the Yi denotes the particle fraction:
ρi=ρ; ði ¼ N;Λ;…; e; μ; u; d; sÞ.

2. Between the QMC model and the NJL model

Similar to the previous part, the pressure with different
vector coupling constants of the NJL model are presented
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in Fig. 3. Evidently in the figure, the density at which the
mixed phase starts with the same NJL parameter set is
strongly correlated to the strength of vector interaction. As
the coupling constant increases, the density at which the
mixed phase starts increases. Here we wish to note that the
flavor-independent type vector interaction can produce a
stiffer EOS than the flavor-dependent type EOS when their
coupling constants have equal values.
The relative populations of each particle are displayed

in Fig. 4, which illustrates that the increasing strength of

repulsive vector interaction pushes the appearance of quark
matter to a higher density.

B. Crossover

In addition to the first-order phase transition described
above, it is also possible to have crossover type of phase
transition in hybrid stars [13,45]. For crossover, we treat
hadrons as finite-sized rather than pointlike objects, so that
they start to overlap at some density, and the region where
this overlap occurs implies the beginning of crossover.

FIG. 1. Pressure as a function of baryon density ρ for hadronic,
quark and mixed phases. Blue dashed line represents PðρÞ of
pure hadronic phase. The remaining solid and dashed lines of
different colors indicate PðρÞ of mixed and quark phase,
respectively, with varying bag constant of the MIT bag model,
B1=4 ¼ 210.854 MeV (red), B1=4 ¼ 200 MeV (green), B1=4 ¼
190 MeV (orange).

FIG. 2. Relative population of each particle as a function of ρ in generalized beta equilibrium for (a) B1=4 ¼ 210.854 MeV and
(b) B1=4 ¼ 190 MeV. The particle species indicated by the different line types and colors are presented in the figure.

FIG. 3. Pressure as a function of ρ. Blue dashed line represents
PðρÞ of pure hadronic phase. The remaining solid and dashed
lines of different colors indicate PðρÞ of mixed and quark phase,
respectively, with varying vector couplings of the NJL model,
zero vector coupling (red), GV ¼ 0.2GS (green), GV ¼ 0.4GS
(orange), gV ¼ 0.2GS (magenta).
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In order to obtain crossover type EOSs between hadronic
phase and quark phase, we follow the phenomenological
ε-interpolation interpolating scheme in Refs. [6,45], which
has the form:

εðρÞ ¼ εHPðρÞf−ðρÞ þ εQPðρÞfþðρÞ; ð33Þ

f�ðρÞ ¼
1

2

�
1� tanh

�
ρ − ρ̄

Γ

��
; ð34Þ

where f�ðρÞ are the interpolating functions and ðρ̄;ΓÞ is the
parameter set characterizing the center value and the width
of the crossover region. With the thermodynamical relation

PðρÞ ¼ ρ2 ∂ðϵ=ρÞ
∂ρ we obtain the pressure:

PðρÞ ¼ PHPðρÞf−ðρÞ þ PQPðρÞfþðρÞ þ ΔP; ð35Þ

ΔP ¼ ρ½εHPðρÞg−ðρÞ þ εQPðρÞgþðρÞ�; ð36Þ

g�ðρÞ ¼ � 2

Γ
½eðρ−ρ̄Γ Þ þ e−ð

ρ−ρ̄
Γ Þ�−2; ð37Þ

Note that ΔP is a correction that guarantees thermo-
dynamic consistency, and its physical meaning is unclear
at present stage as it is derived from a phenomenological
interpolation, we will discuss both the numerical results
with and without the correction term in the following part.
Finally we focus on the choice of parameters ðρ̄;ΓÞ,

which should satisfy two constraints: (1) dP=dρ > 0 to
ensure the thermodynamic stability of the system, and
(2) ρ̄ − 2Γ > ρ0 so that the normal nuclear matter will be
well described by the hadron EOS [6,40,45].

1. Between the QMC model and the MIT bag model

The interpolation between EOSs of the QMC model and
MIT Bag model strongly restricts the selection of param-
eters in order to satisfy the constraint dP=dρ > 0 men-
tioned above. In Fig. 5, we only plotted the pressure as a
function of baryon density ρ without the thermodynamic
correction ΔP as the correction term strongly reduces the
pressure in the transition region and violates the thermo-
dynamic stability of EOSs, where the parameters are taken
as ðρ̄;ΓÞ ¼ ð7ρ0; 2ρ0Þ. And the speed of sound as a func-
tion of density is also presented.
As illustrated in the Fig. 5(b), the increasing bag constant

softens the generated EOSs, similar to those constructed
using Gibbs conditions. It is noteworthy that the speed of
sound exhibits abrupt behavior which stiffens the EOSs at
the density where the quark equation of state produces a
positive pressure, and the definition of c2s is as follow:

c2s ¼
dP
dε

: ð38Þ

This exotic behavior like a first-order phase transition may
suggest that the crossover type phase transitions using the
current interpolation scheme are not applicable to models in
which quark matter is treated as a noninteracting Fermi gas
or weakly interacting quarks.

2. Between the QMC model and the NJL model

In the final part of this section, we present the inter-
polating pressure as a function of baryon density, which the
quark phase is described by the NJL model, both with and
without ΔP. The interpolating functions are presented in
Fig. 6 with the transition region ðρ̄;ΓÞ ¼ ð3ρ0; ρ0Þ [6]. As
demonstrated in the figure, the correction term significantly

FIG. 4. Relative population of each particle as a function of ρ in generalized beta equilibrium for (a) zero vector coupling and
(b) GV ¼ 0.4GS. The particle species indicated by the different line types and colors are presented in the figure.
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affects EOSs in the transition region, e.g. destabilizes the
EOSs with flavor-dependent vector interaction in the right
panel. Furthermore, ΔP may enables EOSs to violate the
causality even though they satisfy the thermodynamic
stability, which means the speed of sound c2s exceeds the
speed of light (c ¼ 1).
Comparing curves with or without correction term ΔP,

one can also see that the type of vector interaction

influences the stiffness of EOSs to some extent, which
may significant affects the properties of hybrid stars.

V. NEUTRON STAR PROPERTIES

In this section, we use the two models introduced
above to investigate the properties of hybrid stars with
different phase transitions inside by solving the

FIG. 5. (a) Pressure as a function of density ρ. Dashed curves of different colors indicate PðρÞ of (blue) hadronic or quark phase with
varying bag constant, B1=4 ¼ 210.854 MeV (red), B1=4 ¼ 200 MeV (green), B1=4 ¼ 190 MeV (orange). Solid lines are interpolated
function and the colors represent the same meaning as the dashed lines. (b) Speed of sound squared as a function of ρ. Solid curves in
red, green, and orange are obtained from the interpolated EOSs with B1=4 ¼ 210.854, 210, 190 MeV, while the blue one corresponds to
the QMC EOS.

FIG. 6. Pressure as a function of baryon density ρ. For plot (a), the interpolation functions do not include the thermodynamic
correction ΔP, whereas for those in plot (b) include the correction for thermodynamic consistency. The crossover region is selected as
ð3ρ0; 1ρ0Þ. The line colors indicate the strength of vector coupling, zero vector coupling (red), GV ¼ 0.5GS (green), GV ¼ 1GS
(orange), gV ¼ 0.5GS (magenta), gV ¼ 1GS (cyan). Solid curves are the interpolated functions and colored dashed curves the PðρÞ for
quark phase. Blue solid line is again the PðρÞ for hadronic phase.
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Tolman-Oppenheimer-Volkov (TOV) equations:

dP
dr

¼ −
G
r2
ðM þ 4πPr3Þðεþ PÞ

�
1 − 2GM

r

�
−1
;

dM
dr

¼ 4πr2ε; ð39Þ

where G denotes the gravitational constant, and r is the
radial distance from the center. Furthermore, after we
obtain the mass-radius relations, the unstable hybrid stars
need to be excluded in the analysis for their masses
decrease as the central energy density goes up [52].

A. Hybrid stars with mixed phase

First we investigate the properties of hybrid stars with
mixed phases.

1. Using the MIT bag model

The resulting mass-radius relations of hybrid stars and
quark cores are presented in Fig. 7. As shown in Fig. 7(a),
the presence of mixed phases and the reduction of the bag

constant significantly reduce the maximum mass of the
hybrid stars, none of the curves can meet the constraints of
the observational data from PSR J0348þ 0432 [48] and
PSR J0952-0607 [47]. The M − R (mass-radius) relations
of quark cores in hybrid stars are plotted in Figs. 7(b)
and 7(c). For a stable hybrid star, no pure quark matter is
found in it even though its mass reaches the maximum value
but a inner core with mixed phase. We can also see that the
size and mass of such cores increase as the bag constant
decrease, then the maximummass and radius can even reach
0.83M⊙ and 7.35 km. Detailed data are presented in Table II.

2. Using the NJL model

The resulting M − R relations are displayed in Fig. 8.
From Fig. 8(a), we are able to analyze the effect that the
strength of the vector interaction brings about on the
maximum mass of hybrid stars. As the vector coupling
constant increases, the maximally massive stars may have
greater mass but still under the observational constrains. On
the contrary, the cores which contain quark matter shrink
with increasing GV or gV, just as we present in Table III.

FIG. 7. Mass-Radius relations of hybrid stars in panel (a), pure quark cores in panel (b) and mixed core in panel (c) based on the MIT
bag model for quark matter. The light yellow band and the light blue band correspond to the mass measurement of PSR J0952-0607
(2.35� 0.17M⊙) [47] and PSR J0348þ 0432 (2.01� 0.04M⊙) [48]. The different color solid dots in panel (a) and (c) represent the
maximally massive stars with different bag constants.

FIG. 8. Mass-Radius relations of hybrid stars in panel (a), pure quark cores in panel (b) and mixed cores in panel (c) based on the NJL
model for quark matter. The different color solid dots in panel (a) and (c) represent the maximally massive stars with varying vector
coupling.
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Moreover, we notice that once the vector coupling constant
reaches a relatively large value (such as GV ¼ 0.4GS
and gV ¼ 0.2GS), quark matter will disappear in a stable
hybrid star even reaches the maximum mass, as is shown
in Fig. 8(c).

B. Hybrid stars with crossover

Next we turn to the effects on hybrid stars brought about
by crossover type phase transition. Since there is no clear
boundary between hadronic matter and quark matter in
the crossover situation, we use the polytropic index

TABLE III. The properties of hybrid star containing mixed
phase based on the NJL model for quark matter with varying
vector coupling and different vector interaction types. The
asterisks (*) in this table indicate that the quark matter does
not appear.

Type Strength Mmax=M⊙ ρcðfm−3Þ MQC=M⊙ RQC (km)

GVðgVÞ 0GS 1.869 0.835 0.381 5.26
GV 0.2GS 1.938 0.944 0.048 2.29
GV 0.4GS 1.939 0.958 * *
gV 0.2GS 1.939 0.958 * *

TABLE II. The properties of hybrid star containing mixed
phase based on the MIT bag model for quark matter with varying
bag constant.

B1=4 (MeV) Mmax=M⊙ ρcðfm−3Þ MQC=M⊙ RQC (km)

210.854 1.85 0.82 0.27 4.61
200 1.74 0.83 0.56 6.28
190 1.59 0.94 0.83 7.35

FIG. 9. Mass-radius relation of hybrid stars based on the
interpolation EOSs between the QMC model and the MIT bag
model. The crossover region is chosen to be ð7ρ0; 2ρ0Þ. The
different color solid dots represent the maximally massive stars
with different bag constants.

FIG. 10. Mass-Radius relation of hybrid stars based on the
interpolation EOSs between the QMC model and the NJL model.
The crossover region is chosen to be ð3ρ0; ρ0Þ. The different color
solid dots represent the maximally massive stars with different
vector coupling. Plot (a) does not include thermodynamic
correction ΔP, whereas plot (b) includes the correction for
thermodynamic consistency.

TABLE IV. The properties of hybrid star in the percolation
picture based on the MIT bag model for quark matter with
varying vector coupling, and the crossover region is fixed to
ð7ρ0; 2ρ0Þ. The dashes (—) in this table represent that there is no
clear onset for quark matter.

B1=4 (MeV) Mmax=M⊙ ρcðfm−3Þ MQC=M⊙ RQC (km)

210.854 1.852 0.852 — —
200 1.860 0.866 — —
190 1.872 0.896 — —
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γ ¼ dðlnpÞ=dðln ϵÞ to judge the onset of quark matter [19].
The models describing hadronic matter generically predict
γ ≈ 2.5 around and above saturation density, while γ ¼ 1 in
conformal matter, in this work we employed the approxi-
mate rule of γ ≲ 1.75 continuously to mark the appearance
of quark matter [19]. It should be emphasized that the quark
core we discuss in the following presentation refers to the
sphere containing quark matter within a hybrid star.

1. Using the MIT bag model

Despite the appearance of unreasonable leaps in the
EOSs, we still calculate the M − R curves. The properties
of hybrid stars, which quark matter is described by the MIT
bag model, are shown in Fig. 9 and Table IV. Due to the
previously mentioned restrictions on the interpolated EOSs,
here we only present the curves obtained with parameters
ðρ̄;ΓÞ ¼ ð7ρ0; 2ρ0Þ. As one can see, the maximum mass of
hybrid stars still stay below that of neutron stars containing
only hadronic matter described by the QMC model.
Nevertheless, the decreasing of bag constant leads to a
larger maximummass, contrary to the case of the first-order
phase transition.
Another property we need to focus on is the size of the

quark core. It must be stressed again that γ ≲ 1.75 is just a
necessary but not a sufficient condition for the appearance
of quark matter [17]. It turns out that the density at which γ
crossing 1.75 is far below the crossover window, therefore
we cannot have a clear and reliable onset of quark matter
with the bag constant range we worked with. This is
indicated by the dashes in Table IV.

2. Using the NJL model

Now we display the results related to the NJL model
within crossover type phase transition. The resultingM − R
curves for several interpolated EOSs, both with and without
correctionΔP, are shown in Fig. 10. It is obvious that when
excluding the correction terms, the maximum mass of
hybrid meets the constraint from the observational data of
pulsar PSR J0384þ 0342, which is indicated by a light
blue band. However, once the correction terms are taken
into account, the mass of maximally massive star even
exceeds the observational constraint from PSR J0952-0607
and can approach three times solar mass.
Similar to the situation in the first-order phase transition,

the maximum mass of hybrid star is significantly raised by
increasing values of vector coupling of the same type. It is
also necessary to pay attention to the influence of the
central value and width of the phase transition region
without ΔP. When Γ is fixed and ρ̄ is adjusted from 3ρ0 to
5ρ0 [6], the maximum mass increases except for the case
gV ¼ 1GS. This exception is most likely because the quark
phase EOS using vector coupling gV ¼ 1GS is significantly
stiffer than the hadronic one at high density. Next fixing ρ̄
to 5ρ0 and changing Γ from 1ρ0 to 2ρ0, one can observe the
decreasing in maximum mass with all values of vector
coupling.
Finally, the properties of quark cores are also of interest.

Again we employ the γ index to determine the onset of
quark matter. Note that for interpolation parameters
ð5ρ0; 1ρ0Þ, a failure in identifying a clear and reliable
onset of quark matter also occurs with quite some vector
couplings, which is also indicated by the dashes in Table V.

TABLE V. Hybrid star properties in the percolation picture under variation of crossover region, using the NJL model for quark matter
with varying vector coupling and different vector interaction types. The dashes (—) in this table represent that there is no clear onset for
quark matter. And the asterisks (*) in this table indicate that a consistent EOS could not be constructed using the chosen interpolation
method with variations of vector coupling and interpolation parameters.

ðρ̄;ΓÞ Type Strength

Mmax=M⊙ ρcðfm−3Þ MQC=M⊙ RQC (km)

ΔP No ΔP ΔP No ΔP ΔP No ΔP ΔP No ΔP

ð3ρ0; 1ρ0Þ GVðgVÞ 0GS 2.065 1.455 0.610 1.036 0.237 0.208 5.21 3.91
GV 0.5GS * 1.609 * 0.867 * 0.762 * 6.83
GV 1GS * 1.707 * 0.908 * 1.018 * 7.34
gV 0.5GS 2.673 1.813 0.631 0.973 0.244 0.326 4.93 4.41
gV 1GS 3.022 2.011 0.603 0.869 0.242 0.305 4.84 4.27

ð5ρ0; 1ρ0Þ GVðgVÞ 0GS * 1.859 * 0.830 * — * —
GV 0.5GS * 1.872 * 0.790 * — * —
GV 1GS * 1.891 * 0.794 * — * —
gV 0.5GS * 1.930 * 0.863 * — * —
gV 1GS * 1.994 * 0.871 * 0.209 * 3.72

ð5ρ0; 2ρ0Þ GVðgVÞ 0GS * 1.776 * 0.889 * 0.606 * 6.29
GV 0.5GS 2.267 1.816 0.848 0.829 0.263 0.605 4.35 6.25
GV 1GS 2.451 1.851 0.818 0.838 0.187 0.735 3.77 6.55
gV 0.5GS 2.327 1.900 0.876 0.906 0.158 0.384 3.51 4.84
gV 1GS * 1.994 * 0.883 * 0.328 * 4.42
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From Table V, we find that the result presents greater
irregularities, since the γ-dependent criterion used here is
only an approximate rule. For maximally massive hybrid
stars predicted by EOSs with correction terms and inter-
polation parameters ð5ρ0; 2ρ0Þ, their quark cores generally
appears in the interior of the stars at a smaller size and mass
comparing to those without corrections.

VI. SUMMARY AND OUTLOOK

In this work, we have investigated the effects of two
different phase transitions inside the hybrid star, i.e., the
first-order phase transition and crossover, on the maximum
mass of hybrid stars and the properties of quark cores
inside. Quark matter is described by the MIT bag model
and the SU(3) NJL model, respectively, and hadronic
matter described by the QMC model. The Gibbs criterion
and interpolation scheme from Refs. [40,45] are taken to
construct EOSs. There are significant differences in using
them to calculate hybrid star properties.
In the first-order phase transition case (Gibbs construc-

tion) with the MIT bag model, the maximum mass of the
hybrid star increases with the bag constant. The mass and
radius of the quark cores decrease as the bag constant in-
creases. With the NJL model, the increasing vector cou-
pling raise the maximum mass of the hybrid star. The quark
cores decreases in mass and radius with increasing vector
coupling. In neither cases can the maximum mass of hybrid
stars exceed that of a pure neutron star and meet obser-
vational data. It seems that the appearance of first-order
phase transition (Gibbs construction) in a neutron star
lowers its maximum mass. And a hybrid star with higher
maximum mass may contain a less sizable quark core.

In the crossover transition case with the MIT bag model,
the maximum mass of the hybrid star increases as the bag
constant decreases, but still fails to meet the observational
data. The conflict between the crossover region and the
index γ which fails to give a clear onset for quark matter.
Then in the crossover transition case with the NJL model,
the maximum mass of the hybrid star can be significantly
boosted to even 3M⊙ with thermodynamic correction ΔP,
much larger than the observational data. In addition, the
maximum mass of the hybrid star increases with the vector
coupling. The variation of quark cores properties is
complicated (Table V), with or without thermodynamic
correction ΔP. It seems that the MIT bag model (without
quark interactions) and specific crossover interpolation
schemes cannot be used in combination. The strong vector
interactions in the NJL model and thermodynamic correc-
tion ΔP in crossover may be helpful to increase the
maximum mass for hybrid stars.
Our investigation suggest that: In the first-order phase

transition case, our result seems to discourage the attempt
to increase maximum mass of hybrid stars from quark
section; while in the crossover case, the interpolation
scheme and quark phase EOSs both have non-negligible
influences. Consequently, the choice of models for both
hadronic and quark phase still leaves much room for future
investigation. For example, the QMC model in the Hartree
approximation can be replaced by that in the Hartree-Fock
approximation, and the NJL model can be replaced by the
PNJL model [58,60] or the quasiparticle model [61,62] for
further comparative study. In addition, more work is needed
to study the properties of quark cores. Further experimental
programs and observational data are expected to provide
more inspiration for our future phenomenological study.
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