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In turbulent magnetized plasmas, charged particles can be accelerated to high energies through their
interactions with the turbulent motions. As they do so, they draw energy from the turbulence, possibly up to
the point where they start modifying the turbulent cascade. Stochastic acceleration then enters a nonlinear
regime because turbulence damping backreacts in turn on the acceleration process. This article develops a
phenomenological model to examine this situation in detail and to explore its consequences for the particle
and turbulent energy spectra. We determine a criterion that specifies the threshold of nonthermal particle
energy density and the characteristic momentum beyond which backreaction becomes effective. Once the
backreaction sets in, the turbulence cascade becomes damped below a length scale that keeps increasing in
time. The accelerated particle momentum distribution develops a near power-law of the form dn=dp ∝ p−s

with s ∼ 2 beyond the momentum at which backreaction first sets in. At very high energies, where the
gyroradius of accelerated particles becomes comparable to the outer scale of the turbulence, the energy
spectrum can display an even harder spectrum with s ∼ 1.3–1.5 over a short segment. The low-energy part
of the spectrum, below the critical momentum, is expected to be hard (s ∼ 1 or harder), and shaped by any
residual acceleration process in the damped region of the turbulence cascade. This characteristic broken
power-law shape with s ∼ 2 at high energies may find phenomenological applications in various high-
energy astrophysical contexts.

DOI: 10.1103/PhysRevD.109.063006

I. INTRODUCTION

Particle acceleration in turbulent flows has long been
recognized as a key physical process in multimessenger
astrophysics, notably thanks to its ability to dissipate
turbulent energy into nonthermal populations and to
accelerate particles up to high energies. Ever since its
introduction by E. Fermi in his seminal paper on the
origin of cosmic rays [1], stochastic particle acceleration
has been invoked to model the origin of high-energy
particles and radiation in extreme environments as diverse
as the Galactic center [2–4], accretion flows [5–11] and
black hole coronae [12–15], extragalactic jets [16–22],

intracluster gas [23–27], gamma-ray bursts [28–31],
pulsar wind nebulae [32–35] etc.
For the purpose of phenomenological applications, the

nonthermal energy spectra are commonly derived from the
solution of a Fokker-Planck transport equation character-
ized by a momentum-dependent diffusion coefficient Dpp.
Often implicit to that formulation is a test-particle picture,
in which the turbulence physics is set by the physical
conditions at the driving scale on the one hand, while
nonthermal particles independently draw energy from the
turbulent flow on the other. Provided the rate at which
energy is absorbed by the particles remains small compared
to that which flows through the cascade from large to small
scales, this test-particle picture may indeed suffice. Yet, as
realized early on [36,37], continuous stirring of the turbu-
lence keeps injecting energy into the nonthermal particles,
possibly to the point where they start damping the cascade.
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This issue is particularly relevant for turbulent acceler-
ation, which is known to shape hard momentum (p)
distributions in the time-asymptotic limit, of the form
dn=dp ∝ p−s with s ∼ 1 [38–40].
Once backreaction becomes significant, stochastic par-

ticle acceleration becomes nonlinear, in the sense that
altering the turbulent cascade feeds back on the acceler-
ation process, hence on the redistribution of energy among
the nonthermal particles, which itself governs the back-
reaction. The ensuing phenomenology has been addressed
in the frame of a quasilinear Fokker-Planck model in the
context of solar flares [36,41], pulsar wind nebulae [35],
clusters of galaxies [23] or extragalactic jets [18,22,31].
The aim of the present work is to examine in detail the
evolution of the coupled dynamical system and to deter-
mine the ensuing particle energy distribution, adopting a
more general and more agnostic perspective than these
studies: more general, because we do not have a specific
application in mind and correspondingly set aside addi-
tional effects such as energy losses and particle escape to
focus on the generic spectral shape (although we eventually
discuss the influence of such effects); more agnostic,
because we intend to remain as inclusive as possible
regarding the nature of the coupling between particles
and turbulence.
We find that in the regime of strong damping, the

nonthermal particle energy spectrum takes on a generic
broken power-law shape, with a hard slope at low energies
(s≲ 1) and flat segment at high energies (s ∼ 2).
Interestingly, such spectra are rather common features of
high-energy multimessenger phenomenology. The origin of
that spectral shape can be briefly described as follows.
Once the particle energy density crosses a threshold, which
we determine, turbulence damping becomes effective
below a scale rgðppkÞ, where ppk denotes the momentum
at which the particle energy spectrum peaks at that time,
and rgðppkÞ the associated gyroradius. The momentum ppk

also corresponds to the break of the final broken power-law
spectrum. Once turbulent damping sets in, the low-energy
segment freezes because of the lack of turbulent power on
the relevant scales. Meanwhile, damping continues to occur
on length scales ≲rgðpdÞ, where pd, and hence rgðpdÞ
increases with time. This evolution shapes the high-energy
segment with constant energy per decade. In the text, we
provide a more refined description of that spectral shape as
a function of time and discuss possible variations in the
presence of energy losses, escape as well as potential
secondary acceleration scenarios.
Our study remains exploratory in nature, given that many

aspects of stochastic acceleration and turbulence physics
remain poorly understood. Nevertheless, we find that the
above results appear reasonably robust. The phenomenol-
ogy also depends on some external constraints inherent to
the source of turbulence, such as the timescale over which
turbulence is driven, which we assume here to be large

compared to all other scales, as well as the characteristic
velocity of the eddies, which sets the acceleration time-
scale. In the relativistic regime (characteristic eddy velocity
∼c), backreaction could become significant even if the
driving time becomes as short as a few eddy turn-over times
on the outer scale.
The discussion is organized as follows: we specify the

physical model and its assumptions in Sec. II, then discuss
the implications for the particle spectra in Sec. III, and
finally discuss those results in Sec. IV. Throughout this
work, we use Qx=Q ¼ 10x in CGS units and set units such
that c ¼ kB ¼ 1.

II. PHYSICAL MODEL

We consider a generic model in which a nonthermal
population of relativistic particles is subject to a stochastic
Fermi process. The turbulent plasma is assumed to be
homogeneous (at least, statistically speaking) throughout
space as well as steady in time. This means, in particular,
that even though energy is continuously injected to drive
the turbulence at the outer scale lc, the statistical properties
governing the turbulence, e.g. the Alfvén velocity vA (in
terms of the background, coherent magnetic field B0) and
the relative amplitude of turbulent fluctuations at the outer
scale δB ≡ δB=B, remain constant. For simplicity, we also
assume a magnetized regime with beta parameter β ≲ 1.
Additionally, throughout the main text, we assume that the
driving of the turbulence takes place over timescales that
are long compared to the other relevant timescales, in
particular the eddy turn-over time on the outer scale,
tnl ∼ lc=vA, and the acceleration timescales tacc. We will
discuss how the situation depicted here can be generalized
to other situations in Sec. IV.

A. Particle acceleration in turbulence

In rather general terms, stochastic acceleration can lead
to advection and diffusion in momentum space. Advection
itself can result from net energy gain in the turbulence due
to some asymmetry between energy-gain and loss proc-
esses, or from the momentum dependence of the diffusion
coefficient in a purely diffusive process (the noise induced
drift of stochastic processes). Advection plays a crucial
role for what concerns turbulent damping, because it
generically dominates the increase of the (nonthermal)
particle energy density.
To quantify the evolution in time of the differential

particle energy spectrum EpðtÞ≡ 4πp4fðp; tÞ≡ p2dn=dp,
where fðp; tÞ represents the particle distribution function
and n the particle density, we introduce two models.
The first is the common diffusive Fokker-Planck model
described by the equation

∂tf ¼ 1

p2
∂pðDppp2

∂pfÞ; ð1Þ
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and characterized by the diffusion coefficient Dpp, for
which we assume the generic form Dpp ¼ νpp2 with νp a
momentum-independent frequency, in agreement with
recent measurements carried out in numerical particle-
in-cell (PIC) experiments at large turbulence amplitude
δB ≳ 1 and in the large Alfvénic velocity regime
(vA ≳ 0.1c) [42–48]. This hard-sphere diffusion model
has become standard in phenomenological models of
high-energy astrophysical sources based on stochastic
acceleration.
It has been realized however that the Fokker-Planck

model cannot account for the accelerated particle spectra
found in these numerical experiments, unless one adds an
advection term with a nontrivial momentum dependence
[46,47]. The numerical PIC results actually suggest that
stochastic particle acceleration acts inhomogeneously
throughout space, meaning that different particles expe-
rience vastly different energization schemes, in opposition
to the common Brownian motion underlying the Fokker-
Planck picture [48–50]. In this case, a more general
transport equation appears necessary to describe the
evolution in phase space. The scenario developed in
Refs. [51–53] argues in particular that the physical process
at play can be seen as a generalization of the original Fermi
process, in which particles gain most of their energy through
localized interactions with intense, intermittent structures
laid on scales of the order of the particle gyroradius or larger.
This model reproduces satisfactorily the power-law spectra
observed in those simulations, albeit admittedly at the price
of increased complexity. To mimic the phenomenological
features of that model, while retaining a level of simplicity
adapted to the present discussion, we introduce a second
scenario in which we initialize the spectrum as a (broken)
power-law distribution and consider only the effect of
advection, namely

∂tf ¼ −
1

p2
∂p ðApp2fÞ; ð2Þ

where Ap characterizes advection in momentum space.
We assume a scaling Ap ¼ νpp, with νp a momentum-
independent frequency, such as introduced for the Fokker-
Planck model. This equation preserves the original
power-law shape and propagates it to larger momenta in a
way similar to the noise-induced drift of the diffusive model.
In the following, it will be referred to as the “power-
law model.”
The solutions to the above transport equations in the

absence of backreaction on the turbulence are shown in
Fig. 1 for illustrative purposes: the upper panel shows the
evolution in model 1 (“Fokker-Planck”), while the lower
panel corresponds to model 2 (“power-law”). Lines are
plotted from light-thin to deep-thick colors at constant time
intervals from early to late. Model 1 assumes the impulsive
injection of a density n at the initial time, distributed as a

narrow Maxwellian distribution in momentum, dn=dp ∝
p2 exp ½−ðp − p0Þ2=ð2σ2pÞ�. Here, p0 denotes a reference
momentum and σp ≃ 0.1 an ad hoc initial width. In
model 2, we adopt a broken power-law, dn=dp ∝
p−slið1þ p=p0Þ−shiþsli . We initialize the power-law spec-
trum with sli ¼ −2, corresponding to the relativistic
Maxwellian, and we adopt shi ¼ 4 as observed in the
subrelativistic limit in magnetohydrodynamic (MHD) and
PIC simulations evincing turbulent acceleration [52–54].
The dashed lines indicate a scaling Ep ∝ p and provide the
solution that would be obtained for continuous injection of
particles at momentum p0 at all times.
Multiplying Eq. (1) or (2) by p and integrating by parts,

it is easy to see that for νp ∝ p0, the mean momentum

FIG. 1. Time-dependent solutions for the differential particle
energy density spectrum per log-momentum interval EpðtÞ≡
4πp4fðp; tÞ, for impulsive injection of particles at momentum
p0 at time t ¼ 0, plotted as a function of p̂≡ p=p0. Top: solution
for the Fokker-Planckmodel described by Eq. (1); bottom: solution
of the power-law model described by Eq. (2) with an initial index
shi ¼ 4 at high energies, sli ¼ −2 at low energies (see text for
detail). Lines plotted in light-thin to deep-thick colors range from
early to late times and are plotted at constant time intervalsΔt such
that νpΔt ¼ 1.0 and 1.6 for model 1 (top) and model 2 (bottom),
respectively. The dashed line indicates a scaling Ep ∝ p. Turbu-
lence damping by particle acceleration has not been taken into
account here.
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hpi≡ R
dpp dn=dp increases exponentially in time at rate

4νp and νp for model 1 and model 2, respectively. For
continuous injection of particles at all times, one can check
that the steady state solution of Ep at momenta p ≪ hpi
reads Ep ∝ p=νp in either model, see e.g. [19]. For
νp ∝ p0, one thus recover Ep ∝ p, as indicated by the
dashed lines in Fig. 1. The scaling Dpp ∝ p5=3 based on
quasilinear models is occasionally adopted [38]; in such a
case, Ep ∝ p4=3. In all reasonable cases, therefore, Ep

follows the behavior announced in the introduction: as
acceleration proceeds, energy is fed to the accelerated
particle population and its energy density increases with the
peak energy of the time-dependent spectrum. On long
timescales, backreaction appears inevitable.

B. Turbulence cascade and damping

We now address the energy transfer between turbulent
magnetic energy and the accelerated particles. The differ-
ential magnetic energy density spectrum of the turbulence
cascade per log-wave number interval is written EBk and
defined as EBk ≡ kSBk, in terms of the power spectrum
of magnetic fluctuations SBk ∝ k−5=3 (in the absence of
feedback), with the normalization

R
d ln kEBk ≡ δ2BEB0

,
where EB0

≡ B2
0=ð8πÞ denotes the magnetic energy density

in the background magnetic field. The turbulence
anisotropy is implicitly contained in the full tridimensional
dependence of the power spectrum of k, but otherwise
discarded here. For the sake of definiteness, we have
assumed a Kolmogorov-type exponent 5=3; our results
can be trivially extended to an index 3=2. In the absence of
feedback, the energy spectrum EBk per log-wave number
interval thus scales as k−2=3, or l2=3 per log-length interval
in terms of spatial scales l ∼ k−1. We assume δB ≲ 1,
because in practice, once δB ≫ 1, the random field effec-
tively set a large-scale mean field of strength B0 ∼ δB in
each coherence cell, so that such a situation would be
similar to one where δB ∼ 1.
For a standard cascade, the energy transfer rate at mode k

can be written1 γk ¼ kδvk, where δvk ∝ k−1=3 represents
the characteristic eddy velocity. We assume equal magnetic
and velocity fluctuation spectra, viz. δvk ∝ EB

1=2
k , which

implies γk ∝ kEB
1=2
k . In the inertial range, that is kinj ≪

k ≪ kkin with kinj the characteristic wave number at which
energy is injected into the cascade and kkin the wave
number at kinetic scales where the cascade terminates
by dissipation into plasma heating (not particle acceler-
ation), the power spectrum EBk then emerges in the
standard way as the steady-state solution to the cascade

equation ∂tEBk ¼ −k∂kðγkEBkÞ. Up to factors of the order
of unity, which we ignore here, kinj ∼ l−1

c . To complete the
cascade description, one needs to add an external reservoir
of energy Eext, which is injected at rate γinj into the cascade
at the outer scale, thus contributing to turbulence driving, as
well as a dissipation rate γkin at the dissipation scale.
To model the transfer of energy between turbulence and

particles, we introduce a kernel Φðk;pÞ, which details how
the energy gain ΔEp of the nonthermal population around
momentum p during time interval Δt is distributed over
wave numbers k of the cascade, meaning that a fraction
Φðk;pÞ of ΔEp is drawn from the part of the cascade
around wave numbers k. This function Φðk;pÞ is normal-
ized according to

R
d ln kΦðk;pÞ≡ 1.

A common assumption is that particles of momentum p
and gyroradius rg ¼ pc=eB (with B the total mean mag-
netic field strength) draw energy from turbulence at wave
numbers k ∼ r−1g , because particles of gyroradius rg are
insensitive to small-scale modes l ∼ k−1 ≪ rg, while large-
scale modes l ≫ rg tend to renormalize the mean magnetic
field along which particles move adiabatically. There are
exceptions of course. In the context of quasilinear models,
particle energization can occur both through gyroresonant
interactions with Alfvén or magnetosonic modes (k ∼ r−1g ),
or transit-time damping interactions with compressive
fluctuations, which are essentially nonresonant in wave
number space (k≲ r−1g ) [23,55–59]. Therefore, even in a
quasilinear context, it proves difficult to write a unique
wave-particle coupling kernel, unless one separates the
cascade into its Alfvénic and compressive subcascades. To
complicate somewhat the matter, the inherent anisotropy of
the cascade tends to suppress gyroresonant interactions
with Alfvénic and slow magnetosonic modes, e.g. [60,61],
unless additional effects such as resonance broadening are
taken into account, see e.g. [7,62] as well as [59] and
references therein. Finally, in the generalized Fermi sce-
nario of Ref. [53], the particle gains energy by interacting
with modes on scales k≲ r−1g , although most of the energy
gain appears to come from modes k ∼ r−1g .
In order to sample those possibilities, while remaining as

general as possible, we have considered two possible
kernels, one describing gyroresonance, the other describing
nonresonant interactions with larger-scale modes. Our
gyroresonant kernel takes a Gaussian form

Φðk;pÞ ∝ exp
�
−
1

2
½ln ðkrgÞ�2

�
ð3Þ

which formally describes a broadened resonance. As we
have not observed a significant impact of the choice of
kernel on the particle and wave spectra in our exploration,
we restrict the presentation of our results to gyroresonant
interactions and defer those corresponding to nonresonant
interactions to Appendix.

1We use the denomination γ… to write turbulent transfer
rates, injection into the cascade or damping on kinetic scales
through wave-plasma interactions; the corresponding quantities
are positive.
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The turbulence cascade system, accounting for nonlinear
feedback from particle acceleration can eventually be
written in the form

∂tEBk ¼ −k∂kðγkEBkÞ −
Z

d ln pΦðk;pÞ∂tEp

þ γinjEextkinjδðk − kinjÞ − γkinEkkinkkinδðk − kkinÞ;
ð4Þ

The last two terms describe turbulence driving on the outer
scale and dissipation on kinetic scales, as discussed before,
while the first two describe advection in k-space by
nonlinear mode-mode interactions within the turbulence
and cascade damping by particle acceleration. For what
concerns the inertial range, therefore, only the first two
matter. The normalization

R
d ln kΦðk;pÞ≡ 1 guarantees

that the total turbulent plus nonthermal particle energy is
conserved up to the source due to external driving and the
sink associated with dissipation into thermal plasma heat-
ing. We have chosen here to describe the turbulent cascade
using pure advection in wave number space, as in Ref. [63];
other, more refined descriptions involving diffusion or
diffusion-advection processes are possible, see e.g. the
discussion in Ref. [64].
We now recall that the nonlinear interaction term

γk ∝ kEB
1=2
k . In practice, we thus define a reference rate

γ0 such that

γk ¼ γ0aγkEBkðtÞ1=2; ð5Þ
with normalization aγ ≡ 1=½kinjEBkinjðt ¼ 0Þ1=2� for dimen-
sional reasons.
Regarding the acceleration rate, we assume here that it

scales in direct proportion to the amount of magnetic
energy on the relevant scales, meaning

Dpp ¼ νpp2aν

Z
d ln kΦðk;pÞEBkðtÞ;

Ap ¼ νppaν

Z
d ln kΦðk;pÞEBkðtÞ; ð6Þ

with normalization aν ≡ 1=½R d ln kΦðk;pÞEBkðt ¼ 0Þ�.
There is no specific reason why the kernel Φðk;pÞ that
appears in Eq. (6) should be the same as that which controls
the feedback described by Eq. (4). In the present frame-
work, however, both should retain the same essential
general characteristics, therefore setting them to be equal
appears as a reasonable choice. However, while the above
linear dependency of Dpp and Ap on EBk holds both for the
original Fermi scenario and for quasilinear models, a
different relationship may arise if particles are accelerated
in intermittent regions of strong velocity gradients [51–53].
We will discuss possible consequences in Sec. IVA.
For reference, we mention that previous studies on this

topic have adopted a Fokker-Planck description for the

evolution of the particle distribution function, characterized
by a diffusion coefficient Dpp ∝ pq with q ≃ 5=3 extracted
from quasilinear calculations in isotropic wave turbulence,
used a wave damping term corresponding to exact gyro-
resonance, and described the cascade through diffusion in
wave number space. In the present setting, the nonlinear
features of stochastic acceleration are encoded in a general
manner through the kernels describing the coupling
between particles and the turbulence, and more specifically
described by the dependencies of γk, Dpp and Ap on the
time-dependent turbulent and particle energy contents.

III. IMPLICATIONS FOR SPECTRA

A. A numerical example

We integrate Eq. (4) together with Eq. (1) describing the
evolution of Ep in the Fokker-Planck model, or Eq. (2) for
the power-law model, to obtain numerical estimates of the
spectra accounting for the backreaction that results from
particle acceleration. For pedagogical purposes, we first do
so with the same parameters as in Fig. 1. In detail, for a
numerical time step δt, we choose here γ0δt ¼ 2.6 × 104

and νpδt ¼ 1.3 for model 2, or νpδt ¼ 0.86 for model 1.
The dynamical range covers a large range of length scales
extending from 0.3rgðp0Þ to 5 × 1010rgðp0Þ, the largest
scale setting the outer scale of turbulence k−1inj . This choice
of parameters is ad hoc, and intended to bring to light the
main physical effects. Further below, we will update those
parameters in order to make connection with realistic
physical conditions.
The results are shown in Fig. 2 and they are to be read

as follows. The energy spectra are plotted using the
same conventions as in Fig. 1. To ease the reading of
the figure, we have chosen to plot the magnetic energy
spectra alongside, as a function of spatial scale k̂−1 ¼
k−1=rgðp0Þ. The underlying motivation is to overlay both
spectra and to better display the duality between k and p
that emerges from the gyroresonance condition k̂−1 ¼ p̂.
The dashed orange line indicates the magnetic energy
spectrum (per wave number log-interval) that would be
observed in the absence of damping, EBk ∝ k−2=3.
Qualitatively, the general time evolution proceeds as

follows. Shortly after injection, the accelerated particle
spectrum can be read off as the light blue line to the bottom
left of the figure, peaking at momenta p̂ ∼ 1. Its evolution
has drawn energy from the cascade at gyroresonant wave
numbers k̂−1 ∼ 1, thus eroding the power spectrum at those
momenta, see the light orange line to the bottom left.
This, in turn, slows down then eventually suppresses
further acceleration of particles with momenta p̂ ∼ 1. For
this reason, further time-dependent solutions do not show
substantial evolution at low momenta. Nevertheless, at any
given time, particles of sufficiently large momenta, mean-
ing in a part of the inertial range where the magnetic power
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spectrum has not suffered significant damping, can feed off
the existing magnetic energy and undergo further accel-
eration. This contributes to damp the magnetic energy
spectrum, as can be read off Fig. 2 by following the orange
lines in time, from light-thin to deep-heavy. A direct
comparison of both figures, with damping (Fig. 1) and
without (Fig. 2) demonstrates that acceleration feedback
affects both energy spectra rather dramatically.

B. Spectral shapes in the presence of damping

We now discuss those spectral shapes in more quanti-
tative details. Inside the inertial range, only the first two
terms on the rhs of Eq. (4) determine the evolution of EBk:

nonlinear mode coupling, which advects turbulent energy
from large to small scales, and acceleration damping, which
erodes the turbulence spectrum, acting in the opposite
direction from small to large scales. At any given time t,
damping is maximal at the wave number kdðtÞ where those
two rates meet, i.e.

νpEpd ∼ γkdEBkd ðdampingÞ: ð7Þ

This equation tacitly uses the correspondence p̂ ↔ k̂−1 to
define pd through p̂d ¼ k̂−1d , equivalently rgðpdÞ ¼ k−1d . If

νpEp ≪ γkEBk at all p, assuming k̂ ∼ p̂−1, then damping is
ineffective and Ep increases as in the absence of feedback.
Since Ep increases with time in that regime, while γkEBk

remains unchanged, the particle energy density may even-
tually increase up to the point where Eq. (7) becomes
satisfied, at some time td, and at a momentum pdðtdÞ that
we write ppk. The subscript pk underlines the fact that the
peak of the particle energy density distribution will be
found around ppk at later times.
At later times, the damping rate is maximal at kd, because

power has already been removed on smaller spatial scales
k̂−1 ≪ k̂−1d (equivalently p̂ ≪ p̂d), while on large spatial
scales k̂−1 ≫ k̂−1d (equivalently p̂ ≫ p̂d), the energy flows
faster through the turbulence cascade than what can be
removed by particles, so that EBk remains effectively
unscathed. In the numerical example presented in Fig. 2,
the numerical parameters at the initial time are such that
the condition expressed by Eq. (7) above is met at p̂ ≃ 5,
which indeed corresponds, to within a numerical pre-
factor of order unity, to where the particle energy
spectrum stops evolving.
Once damping becomes effective, i.e. once Eq. (7) is

verified in some range of momenta, the general behavior
of EpðtÞ derives from two principles: momenta p≳ pd

evolve at a rate fixed by the acceleration physics as in
the absence of feedback, while the energy density of
particles increases by as much as the turbulence can feed it
at kd. In the above example, damping sets in soon after
injection and the nonthermal particle energy density
at p̂d (Epd

∼ 10−2 → 10−1 in the units of Fig. 2) far
exceeds the turbulent energy density at kd (EBkd ≃ 10−7

in those same units). During a time interval Δt, therefore,
the critical momentum pd increases approximately as
Δ ln pd ≃ νpΔt, while the particle energy density
changes only by ΔEpd

¼ EpdþΔpd
− Epd

≃ EBkd (since
Δ ln kd∼−Δ lnpd), which is much smaller than Epd

.
Correspondingly, this process shapes a spectrum with an
approximate scaling EpðtÞ ∝ p0 at ppk < p < pdðtÞ, which
maintains the overall particle energy density roughly con-
stant. In terms of spectral index, this corresponds to s ∼ 2.
This segment can be found in Fig. 2 in the range p̂ ∼ 102 to
p̂ ∼ 106 roughly.

FIG. 2. Time-dependent solutions for the differential energy
density spectrum Epðp; tÞ≡ 4πp4fðp; tÞ (blue colors), now
accounting for turbulence damping by particle acceleration.
Other parameters have remain unchanged with respect to those
used in Fig. 1. The magnetic energy spectrum EBkðtÞ is here
shown at various times in orange colors. The abscissa is p̂≡
p=p0 for Ep, and k̂

−1 ¼ k−1=rgðp0Þ for EBk. Top: solution for the
Fokker-Planck model described by Eq. (1); bottom: solution of
the power-law model described by Eq. (2). Lines plotted in light-
thin to deep-thick colors range from early to late times and are
plotted at constant time intervals. The dashed purple line
indicates a scaling Ep ∝ p, while the dashed orange line indicates
the scaling expected for the turbulence cascade in the absence of
nonlinear feedback, EBk ∝ k−2=3.
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As discussed thereafter (Sec. III C), Epd
at td is expected

to be significantly larger than EBkd . Consequently, as Ep

develops a flat spectrum at times t > td and momenta
p > ppk, while EBk grows as k̂−2=3, EpdðtÞ may eventually
become comparable to that in the turbulent cascade at kdðtÞ.
Henceforth, we refer to the momentum at which this occurs
as p×. In the range p > p×, the spectral shape transits to
Ep ∝ p0.5−0.7 (corresponding to an index s ≃ 1.3–1.5 for
dn=dp ∝ p−s) because the amount of turbulent energy
density damped in the interval Δ ln k ≃ −Δ ln p in a time
interval Δt is now given mostly to the particles, instead of
cascading to smaller length scales. Correspondingly, the
particle then develops a spectrum enslaved2 to that of EBk,
as is clearly apparent in Fig. 2.
The cases shown in Fig. 2 make ad hoc choices of the

overall normalization of the two parameters that determine
advection, νp and γk, as of the initial energy density in
particles and magnetic field. The general evolution depicted
above nevertheless offers a generic overview of the
phenomenology. We illustrate this point in Fig. 3 by
integrating the system for the power-law model with
different parameters: in the top panel, the cascade rate γk
has been multiplied by 100, while in the middle panel,
the initial nonthermal particle energy density has been
divided by 1000, and in the bottom panel, both the cascade
rate has been increased by 100 and the initial particle
energy density has been divided by 1000; all other
parameters have remained unchanged. Increasing γk or
decreasing Epðt ¼ 0Þ delays the onset of damping, accord-
ing to Eq. (7). Consequently, damping is weak at initial
times in both top and middle panels, and all the more so in
the lower panel. Particle acceleration then proceeds, at least
initially, as in Fig. 1, meaning that the momentum at which
the particle energy distribution peaks shifts as exp ðνptÞ,
while the energy density increases in direct proportion to
that peak momentum. Once damping sets in, this peak
momentum stops evolving and the segments discussed
above emerge.
The general shape of the time-dependent spectrum can

thus be summarized in the following way. At early times
t < td, damping has not set in and particles are accelerated
as described in Sec. II A. In particular, the spectrum can be
obtained as the solution to the transport equation, e.g.
Eq. (1) or (2). At later times, t > td, when damping sets in,
the spectral shape is characterized by three characteristic
momenta: ppk, constant in time and defined as the
momentum at which Ep peaks at time td, i.e. ppk≃pdðtdÞ;
pdðtÞ, the momentum that sets the scale k̂d ¼ p̂−1

d up to
which damping is effective; finally, p×, the momentum at

which Ep×
becomes comparable to the turbulent magnetic

energy density on scale k̂× ¼ p̂−1
× . To a reasonable approxi-

mation, pdðtÞ can be defined as the characteristic momen-
tum at which Ep would peak in the absence of damping,
because damping does not affect the acceleration rate of
particles of momentum pd. The spectral shape at times
t > td is thus characterized by the following segments. First
consider the case pdðtÞ < p×. For p < pdðtÞ, the spectrum

FIG. 3. Same as Fig. 2, for different initial conditions. Top
panel: cascade rate γk increased by 100; middle panel: Epðt ¼ 0Þ
decreased by 103; bottom panel: both γk increased by 100 and
Epðt ¼ 0Þ decreased by 103. Other parameters unchanged. Both
panels consider the power-law model, formalized by Eq. (2). See
text for details.

2Above, we wrote Ep ∝ p0.5−0.7, not Ep ∝ p2=3, both to reflect
the fact that the index is not exactly qB − 1 with qB ¼ 5=3 the
index of the turbulent power spectrum, and because qB itself can
take values between 3=2 and 5=3.
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is frozen in time, and characterized by a break at
momentum ppk: below ppk, the spectral shape corresponds
to the low-energy part of the spectrum obtained by linear
evolution (meaning, in the absence of damping) at time td;
in the range ppk < p < pdðtÞ, the spectrum is flat,
characterized by a power-law of index s ≃ 2. For
p > pdðtÞ, the spectral shape is that obtained by linear
evolution up to time t, because particles in that range of
momenta have interacted with undamped modes of the
cascade at all times. If pdðtÞ > p×, an extra segment
appears. It is characterized by a new power-law spectrum
with index s ≃ 1.3–1.5 in the range p× < p < pdðtÞ; the
flat spectrum with index s ≃ 2 extends from ppk to p×;
other segments remain unchanged.
Depending on the value of p0 and the initial Ep, the

duration—equivalently, extent in dynamic range—of the
linear phase can be more or less pronounced, as illustrated
by Figs. 2 and 3. We stress that the above spectral shapes
are time-dependent and that they assume an impulsive
injection of particles at momentum p0 at the initial time.
The influence of the driving timescale and the possible
continuous injection of particles on the overall time-
integrated spectra will be discussed in Sec. IV C and IV D.

C. Connection to physical parameters

To make contact with the quantities that characterize
the turbulence, we first recall that γkinj ∼ vA=lc and

EBkinj ∼ EB ∼ δ2BEB0
∼ δ2Bv

2
Aρ, where ρ represents the mass

density of the thermal plasma. In the following, we use
βA ≡ vA=c. Alternatively, one could use EB0

∼ β−1nT, to
relate the magnetic energy density to the plasma beta
parameter, its density n and temperature T.
Unfortunately, the scaling of the advection rate νp is not

as well estimated. In quasilinear theory, one expects
νp ≃ βqAδ

2
Bc=lc with q ¼ 2 or q ¼ 3 depending on the

acceleration mechanism and the source of resonance
broadening, as discussed in Ref. [59], while in the
generalized Fermi model of Ref. [53], one expects q ¼ 3
in the subrelativistic regime. Here, we retain a general
scaling characterized by q.
To simplify the following estimates, we assume that, at

time td at which damping first sets in, most of the non-
thermal energy density is concentrated at some momentum
ppk and neglect the details of the spectral shape of the
spectrum beyond ppk. This is a reasonable assumption
because γkEBk does not depend on k (per Kolmogorov
universality assumption), so that Eq. (7) is first verified at
the point where Ep peaks. Furthermore, we write the total
nonthermal particle energy density as EnthðtÞ and thus
assume that Enth ∼ EppkðtÞ at time t < td, extending the
definition of ppk to ppkðtÞ at t < td, corresponding to the
momentum at which Ep peaks in the absence of damping.
Recalling first that EppkðtÞðtÞ ≃ Enth;0ppkðtÞ=p0 in that

regime with Enth;0≡Enthðt¼0Þ, recalling also that γkEBk ¼
γkinjEBkinj , the condition Eq. (7) that determines the onset of
damping can be written as

Enth ∼ β3−qA ρc2 ∼ β1−qA β−1nT ∼ β1−qA EB0
: ð8Þ

This critical value is denoted Enth;nlin in the following. This
is neither a trivial nor an intuitive result, in the sense that
Enth can exceed EB0

significantly before feedback occurs,
all the more so if βA ≪ 1. The reason is that, as particles get
accelerated, energy keeps being injected in the turbulence
cascade on the outer scale, so that what truly governs the
amount of energy that accelerated particles can receive is
the energy flux along the cascade as integrated over time,
not the initial energy content on the outer scale. This, of
course, requires turbulence to be driven over sufficiently
long times. Assuming that acceleration proceeds exponen-
tially fast at rate ∼νp, this corresponds to a driving time

tinj ≳ 1

νp
ln ðEnth;nlin=Enth;0Þ: ð9Þ

Alternatively, one can write the momentum ppk at which
damping becomes important as

ppk

p0

∼ β3−qA
ρc2

Enth;0
∼ β1−qA β−1

nT
Enth;0

∼ β1−qA

EB0

Enth;0
: ð10Þ

In the numerical example presented earlier in Figs. 2
and 3, the ad hoc values of νp and γ0 were not fixed to vA
and other quantities, which explains why feedback
occurred at values of Ep sometimes below that of EB,
except for the top or bottom panels of Fig. 3, which present
a case that satisfies Eq. (8) at δB ∼ 1 and βA ∼ 1. This
choice was dictated by numerical constraints guaranteeing
the accuracy and stability of the integration. Nevertheless,
the observed generic behavior and its interpretation
given above allows to extrapolate those results to realistic
cases of interest.
If Enth;0 ≪ Enth;nlin initially, acceleration proceeds as in

the absence of damping until damping sets in, provided the
dynamic range of the cascade as well as all other external
constraints on the system (lifetime, age etc.) allow it. At this
point, the energy density is assumed to peak at ppk as
determined by Eq. (10); by definition, pd ∼ pk at that time.
Furthermore, Eq. (8) guarantees that Epk

≫ EBkd , hence the
spectrum develops a power-law form dn=dp ∝ p−2 up to
the maximum energies, starting at momentum ppk. While
pdðtÞ keeps evolving in time afterward, ppk remains
approximately unchanged because the turbulence on scales
≳rgðppkÞ is being damped. The regime Ep ∝ p0.5−0.7 may
eventually emerge, although only in a restricted range of
gyroradii not far below the outer scale, because Epd

≳ EB

for nearly all pd, according to Eq. (8).
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It may be worthwhile to point out that Eq. (8) also
indicates that the nonthermal particle energy density should
remain at all times less or at most comparable to ρc2,
which implies that the Alfvén velocity should not be
modified significantly by particle acceleration. This jus-
tifies our initial hypothesis of constant βA. To generalize
those relations to plasmas of relativistic temperature, one
needs to operate the substitution ρc2 → e (up to order unity
prefactors), writing e as the total plasma energy density,
and vA → uA ∼ ðEB0

=eÞ1=2, with uA the Alfvén 4-velocity,
meaning that βA interpreted as uA=c can now take values
larger than unity.

IV. DISCUSSION

A. Limitations and caveats

The present discussion remains exploratory in nature,
because of the numerous uncertainties that plague the
physics of particle acceleration in magnetized turbulence,
even at the test-particle level. Nonetheless, we first wish to
stress that the assumption of gyroresonance that underlies
the definition of the kernel Φðk;pÞ plays only a minor role
in our finding. The key point that controls the evolution
of the spectra in Fig. 2 is that turbulent energy flows
through the cascade from right to left (large to small scales),
while the erosion of that cascade progresses from left to
right. The reason why this occurs, in turn, is that the time-
dependent spectrum of accelerated particles in the absence
of feedback has a high-energy slope s > 2, which implies
that, as advection shifts that spectrum to the right, erosion
also shifts to the right. This explains, in particular, why the
present results remain mostly insensitive to the shape of
the kernel. Of course, one could conceive a situation in
which particles are accelerated by drawing energy from
the largest scales of the cascade only. This however
requires a rather fine-tuned kernel Φðk;pÞ, strongly
peaked in k at kinj; otherwise the previous results are
recovered, as we have checked.
On the other hand, the relationship [Eq. (6)] that relates

Dpp and Ap to the magnetic energy content does play a
nontrivial role in regulating the damping of the cascade. So
far, we have assumed that the acceleration rate depends
linearly on EBk, as motivated by the original Fermi scenario
or quasilinear models. This implies that acceleration pro-
ceeds as long as there remains magnetic energy, which
implies, by virtue of Eq. (4) that damping persists until
complete erosion of the turbulent power spectrum on the
relevant scales. Now, if particle acceleration rather proceeds
through the interaction of particles with localized, intermit-
tent structures [51–53], one should anticipate that particle
acceleration would remove power from those localized
structures only, not from the average turbulent bath where
acceleration is slow or ineffective. Acceleration would then
stall, hence damping would cease, even though the magnetic
energy on those scales has not been fully removed.

As a naive representation of this model, we replace the
dependency Ap¼νpφB, where φB¼aν

R
d ln kΦðk;pÞEBk

by Ap ¼ νpφ
n
B with n > 1. This model amplifies the impact

of damping on acceleration rate, in such a way as to quench
acceleration rapidly once damping sets in, i.e. when
φB < 1. As illustrated by Fig. 4, damping indeed becomes
weak, at least at early times. The particle energy distribu-
tion however retains the same features as in the models
discussed so far (n ¼ 1), because the acceleration rate
has dropped sharply in the regions where damping has
occurred, while particle acceleration still proceeds in
undamped regions of the cascade. We have verified that
different parametrizations, e.g. Ap¼νpmax f0;2φB−1g,
which halts acceleration once the turbulent energy content
on the relevant scales has dropped by half, would lead to a
similar phenomenology.

B. Accompanying acceleration processes

One must also question whether the bulk of accelerated
particles cannot exert a positive feedback on the turbulence,
instead of just acting as a sink for turbulent energy. Natural
possibilities that spring to mind are instabilities generated
by anisotropies in the particle momentum distribution. For
instance, large-scale compression and shear in high-beta
plasmas generate anisotropies that can excite firehose and
mirror instabilities, which in turn build magnetic power on
short (kinetic) length scales, thereby bypassing the usual
scale-to-scale cascade [65]. This phenomenology pertains
to high-beta plasmas, because the level of compression
needed to reach the firehose or mirror thresholds,
jΔP=Pj≳Oð1=βÞ with P ¼ nT the pressure and ΔP the
amount of pressure anisotropy, remains moderate in that
regime. Although we have assumed β ≲ 1, the beta

FIG. 4. Same as Fig. 3 (top panel), assuming however that the
acceleration rate scales as a higher power of EBk, namely Ap ¼
νpφ

n
B with n ¼ 3 as described in the text. The case shown in Fig. 2

corresponds to n ¼ 1. The main consequence is to moderate the
damping of the turbulence cascade, while the shape of the particle
energy spectrum remains preserved. See text for details.
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parameter βnth of the nonthermal population must have
reached substantial values if stochastic acceleration has
entered a nonlinear regime: βnth∼β1−qA according to Eq. (8).
Hence, in principle, those nonthermal particles could
induce firehose or mirror instabilities that would redistrib-
ute some energy on small length scales. To our knowledge,
the development of such instabilities in a two-component
plasma (thermalþ nonthermal) has not received attention
so far. Speculating on the consequences, one might expect
that the added small-scale power could contribute to
particle scattering, although not as effectively as the
original cascade on scales ≳rgðpdÞ. Nevertheless, this
would lead to acceleration, for instance through a form
of magnetic pumping, combining scattering on small-scale
inhomogeneities with adiabatic compression in the large-
scale perturbations [66,67].
Magnetic reconnection in the damped part of the

turbulence spectrum might also open another acceleration
channel. Particle-in-cell simulations have demonstrated
that in a (relativistic) magnetized turbulent plasma, recon-
nection acts as an injector of thermal particles into the
Fermi acceleration process [42–48]. In detail, particles
swept by current sheets are pre-accelerated up to a
momentum such that their gyroradius exceeds the current
sheet thickness, at which point they start exploring the
larger scales of the turbulence cascade. In the present
context, however, one may wonder whether turbulence
damping below a macroscopic scale k−1d could not generate
current sheets on that scale that would energize particles up
to momentum ∼pd. Such a scenario should be investigated
with dedicated numerical simulations.
Overall, it seems natural to expect that some form

of secondary, residual acceleration could contribute to
particle energization in the region of scales where
turbulence has been damped. Provided this form of
acceleration is less efficient than the primary channel
of stochastic acceleration discussed earlier, the overall
spectral shape with s ∼ 2 would remain unchanged. As
we have checked, the dominant effect is to shape a hard
spectrum at momenta p≲ ppk while shifting ppk to larger
values, slowly in time.

C. Influence of the driving timescale

So far, we have assumed that the timescale tinj over
which the turbulence is stirred far exceeds the other relevant
timescales, tacc ∼ ν−1p and tdec ∼ γ−1kinj ∼ lc=vA in particular.

In the opposite limit tinj ≲ tdec, the turbulence can be
regarded as decaying. Particle acceleration becomes inef-
fective if tdec ≪ tacc, because most of the turbulent energy
is converted to plasma heating before acceleration can
occur. Such a situation occurs rather generically if the
turbulence is of small amplitude (δB ≪ 1) or subrelativistic
(vA ≪ c), because the acceleration timescale increases fast
with decreasing δB and vA. Oppositely, particle acceleration

can proceed for a few turn-over times tdec and generate a
power-law spectrum with characteristic index s ≃ 2…4 in
the large-amplitude, semirelativistic regime of decaying
turbulence [44,45]. Once the turbulence has decayed,
acceleration stops and the spectra freeze. Similar spectral
indices are observed if the turbulence is stirred over
∼10lc=vA [42,43,46–48].
It appears natural to ask if the accelerated particles are

able to backreact on the turbulence on such short time-
scales. At subrelativistic Alfvénic velocities, the response is
likely no, according to Eq. (8). On the numerical side, test-
particle tracking in time-dependent MHD simulations has
shown that in this limit (vA ≃ 0.4c, δB ≫ 1), the non-
thermal spectrum is characterized by an index s ≃ 4 [53], in
good agreement with that measured in PIC numerical
simulations in relatively similar conditions (vA ≃ 0.1c,
δB ≳ 1) [54]. This corroborates the idea that backreaction
through particle acceleration is weak in that regime, at least
on the timescales probed, as otherwise, the spectra
observed by following test-particles (in the MHD simu-
lation) would have differed from those measured in PIC
simulations, which by construction account for all non-
linear backreaction effects.
In the relativistic limit (vA ≃ c), Eq. (8) suggests that

backreaction could be effective even on a few eddy
turn-over timescales. In PIC numerical simulations, the
“nonthermal particle population” cannot be distinguished
from the thermal plasma, because the accelerated par-
ticles are extracted out of that pool and the energy
densities in both subpopulations are comparable.
Interestingly, these simulations have reported spectra
with index s ≃ 2 at δB ≳ 1. This suggests that maybe,
the true difference between the spectral indices observed
in these simulations in the relativistic vs mildly or
subrelativistic limit stems from nonlinear feedback, not
from a fundamental difference in the acceleration phys-
ics. A comparison of test-particle tracking in MHD
simulations of relativistic turbulence with the above
PIC simulations would provide an unambiguous test of
that possibility. Another telltale signature would be to
measure an acceleration timescale that increases with
time at a fixed momentum, as well as an eroded power
spectrum on short length scales. The degree of erosion of
the power spectrum is however subject to the uncertain-
ties affecting the relationship between acceleration rate
and magnetic energy content, as discussed in Sec. IVA.
Turning the argument around, we remark that a detailed
study of the time evolution of those various quantities
(acceleration timescale, power spectrum etc.) could bring
valuable information on the physical process governing
particle acceleration in magnetized turbulence.
Damping of the power spectrum seems to have been

observed in recent PIC simulations of relativistic turbu-
lence [15], although in a different regime from that studied
here. That work indeed focuses on radiative turbulence, in
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a regime such that particles cool through inverse Compton
interactions on a short timescale, significantly shorter than
the eddy turn-over time. Consequently, particles are not
accelerated to large energies and damping is restricted to
the smallest length scales of the cascade.
Finally, we would like to draw attention to recent efforts

that aim at deriving the shape of the accelerated particle
spectrum from arguments of (generalized) maximum
entropy in a collisionless turbulent plasma [68–71]. By
construction, such studies focus on the long timescales,
sufficiently long at least for relaxation to take place in the
relevant region of the energy distribution. Quite interest-
ingly, spectra with indices s ∼ 2 then emerge as attractors. It
is thus tempting to speculate that the nonlinear feedback
process described here represent a step on the route to these
asymptotic spectra.

D. Consequences of continuous injection
and effects of losses and escape

For practical purposes, one may also wonder how time-
integrated or steady-state spectra look like when particles
are continuously injected and how the present picture
would be modified in the presence of losses through
radiative interactions, escape in position space, or further
injection of particles, which are common features of
astrophysical phenomenological models.
So far, we have considered an impulsive injection of a

certain spectrum (e.g., a broken power-law) at t ¼ 0, so that
the calculated spectra effectively represent Green’s func-
tions in time. If particles are injected continuously, then one
should integrate those Green’s functions over the injection
time history. In detail, if particles are injected at momentum
p0 at a rate νinj, then the time-integrated spectrum up to
time t is given by Eint

p ðtÞ≡ νinj
R
t dτEpðτÞ. We provide here

an expression for the general spectral shape, considering
model 2 for simplicity (the results can be directly gener-
alized to model 1). At times t < td, nonlinear effects can be
neglected, and

Eint
p ðtÞ≃νinj

νp

p
p0

Enth;0 ½p<ppkðtÞ�;

Eint
p ðtÞ≃νinj

νp

ppkðtÞ
p0

Enth;0

�
p

ppkðtÞ
�
−shiþ2

½p>ppkðtÞ�; ð11Þ

with ppkðtÞ the characteristic momentum at which the
instantaneous spectrum Ep peaks. For model 2, ppkðtÞ ≃
p0 expðνptÞ, while for model 1, ppkðtÞ ≃ p0 expð5νptÞ at
t < td. It is understood that, at times t > td, ppkðtÞ ≃ ppk as
defined in Eq. (10).
On longer timescales t > td, back reaction acts in two

ways: it freezes acceleration at p < ppk and shapes a flat
spectrum in the momentum range ppk < p < pdðtÞ, as
discussed earlier. We recall that pdðtÞ corresponds to the
momentum at which Ep would peak in the absence of

damping, i.e. pdðtÞ ≃ ppk expðνpðt − tdÞÞ ≃ p0 expðνptÞ
(for model 2). Then

Eint
p ðtÞ≃ νinjEnth;0

�
1

νp

p
p0

þðt− tdÞ
ppk

p0

�
p
ppk

�
−sliþ2

�

þ νinjEnth;0ðt− tdÞp0δðp−p0Þ ½p<ppk�; ð12Þ

Eint
p ðtÞ≃νinjEnth;0

ppk

p0

�
Θ½pdðtÞ−p�

�
t− td−

lnðp=ppkÞ
νp

�

þΘ½p−pdðtÞ�
νp

�
p

pdðtÞ
�

−shiþ2
�

½p>ppk�: ð13Þ

As the general aim here is to capture the general shape of
the time-integrated spectrum, numerical prefactors of the
order of unity have been replaced by 1 in these equations
and only leading terms have been kept.
The second term in the bracket of Eq. (12) captures the

low-energy extension of the spectrum that freezes at late
time due to turbulent damping. The corresponding power-
law index has been set to sli ¼ −2 by choice in the rest of
the text (see Sec. II A), but different models could lead to
different values. In particular, the p-dependency would
differ in model 1. Additionally, any secondary or residual
acceleration would harden the spectrum in that range.
A conservative interpretation of Eq. (12), therefore, should
limit itself to the observation that the time-integrated
spectrum in the range p < ppk must be harder than s ≃ 1

(equivalently Ep ∝ p).
In Eq. (13), the first term ∝ Θ½pdðtÞ − p� (together with

p > ppk), ΘðxÞ denoting the Heaviside distribution, con-
cerns the region of momenta whose spectrum has been
frozen due to turbulent damping. The first term ∝ t
provides the dominant contribution at late times. The
second term ∝ Θ½p − pdðtÞ� instead represents the part
of spectrum that gets accelerated in undamped regions
of the turbulent cascade. Correspondingly, Eint

p ðtÞ retains
the scaling ∝ p−shiþ2 of the high-energy tail of the
injected spectrum. We have omitted here, for simplicity,
the possible contribution that would arise from the segment
Ep ∝ p0.5−0.7, at momenta p larger than p×, defined as that
at which Ep becomes comparable to EBk× for k̂× ¼ p̂−1

× . It
would provide a contribution ∝ νinjEnth;0ðppk=p0Þðt − t×Þ
ðp=p×Þ0.5−0.7 in the range p× < p < pdðtÞ, where t×
denotes the time at which pdðtÞ ¼ p×.
In summary, therefore, the time-integrated spectrum

preserves the general shape of the time-dependent spectra
Ep illustrated in Figs. 2 and 3, except for the low-energy
segment below the peak momentum, which takes a power-
law form with s ≃ 1 in the absence of damping (t < td), and
possibly harder at times t > td.
The final term on the r.h.s. of Eq. (12) accounts for

particles that have been injected at p0 at times t > td, and
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that have not been accelerated because of the lack of
turbulent power on the relevant scales. In some physical
situations, this term might be absent altogether. Consider
for instance a system in which particles are injected at one
spatial boundary, then advected away at the same time as
they are subject to stochastic acceleration in the comoving
plasma turbulence. Integration over space of the particle
energy density spectrum would then scale as the integral
over time of the impulsive time-dependent spectra calcu-
lated earlier, so that one would recover Eq. (12) up to that
contribution ∝ δðp − p0Þ.
If particles can escape at some other boundary after some

time tesc through, e.g., advection or diffusive escape, the
average spectrum over the acceleration zone would reach a
steady-state spectrum given by Eint

p ðtescÞ. If tesc ≲ td, this
spectrum would scale as ∝ p for p < ppkðtÞ, see Eq. (11),
while if td ≲ tesc ≲ t×, damping would lead to the broken
power-law spectrum characterized by Eq. (12) and (13), viz.
hard below ppk, flat (s ∼ 2) above, up to the momentum
pesc ¼ pdðtescÞ, beyond which it would turn over into the
high-energy tail of the spectrum accelerated without damp-
ing, as before. Interestingly, that part of the spectrum
declines more slowly in momentum than a naive exponen-
tial cutoff. Finally, if tesc > t×, one should include the
segment ∝ p0.5−0.7, as before.
Considering now energy losses characterized by a

momentum ploss, defined as that where the energy loss
rate outpaces that of energy gain, one can anticipate the
following. At times t such that pdðtÞ ≪ ploss, the time-
dependent spectra derived in Sec. III would remain
unchanged. Once pdðtÞ ∼ ploss, the time-dependent spectra
should freeze with pdðtÞ ∼ ploss at all subsequent times.
The magnetic energy that flows into the cascade down to
k̂−1 ∼ p̂loss would then be directed into particles as before
but reconverted about as fast into radiation. If ploss ≲ ppk,
turbulent damping can be neglected of course, hence the
steady-state spectrum is expected to exhibit a pile-up shape
around the critical momentum at which the acceleration and
cooling balances, as is well-known in classical stochastic
acceleration [38]. For ploss ≳ ppk, however, this pile-up
would become less prominent due to two reasons. First, the
energy spectrum is flatter, Ep ∝ p0 or Ep ∝ p0.5−0.7, so the
number of particles above the critical momentum gives a
modest correction. Second, the acceleration essentially
stops at higher energies due to the damping.

E. Some phenomenological consequences

Overall, one may thus expect a generic spectrum of a
broken power-law form, with a hard spectral slope below
ppk, and a slope s ∼ 2 above. The spectral slope below ppk

is left unspecified here, because it depends on the degree to
which residual acceleration can proceed around ppk as well
as on the injection rate of particles, as discussed above. If
such residual acceleration can be neglected, the location of

the break is given by Eq. (10); otherwise, ppk may increase
in time. Assuming that, at the initial time, the nonthermal
particle energy density represents a fraction xnth < 1 of the
thermal plasma content, then ppk ∼ p0β

1−q
A β−1x−1nth, with p0

the characteristic thermal momentum. This break momen-
tum can thus take large values depending on the parameters
βA, q and xnth. Interestingly, broken power-law spectra
characterized by a hard low-energy segment, a high-energy
flat (s ∼ 2) spectrum and a break at large momenta, as
above, often emerge in the phenomenological modeling of
high energy sources such as blazars [72–74], gamma-ray
bursts [75] or pulsar wind nebulae [76], see e.g.
Refs. [22,31,35] for recent discussions in the present
context. The present findings thus open interesting avenues
of research for phenomenological applications in high-
energy multimessenger astrophysics.
The Crab nebula, for instance, represents a prime

candidate for the present scenario because the characteristic
eddy turn-over timescale can be as short as a year, tnl ∼
1 yrðlc=0.3 pcÞ assuming vA ∼ c, given that the coherence
length cannot indeed exceed the size of the nebula which
is of the order of a pc, while the pulsar has been
injecting energy into the nebula for about a thousand years.
In view of the rather large characteristic magnetization
σ ≃ ðvA=cÞ2 ≲ 1 that is inferred from dynamical arguments
[77,78], numerical simulations [79], and phenomenological
broad-band modeling [80], the conditions for backreaction
should be amply satisfied. Interestingly, the spectral energy
distribution can be generally well reproduced by a model in
which the electrons and positrons are distributed as a
broken power-law in momentum characterized by a break
at Lorentz factor γbk ∼ 2 × 105, and spectral slopes s1 ∼ 1.5
below the break, s2 ∼ 3.1 above the break. The latter
actually corresponds to an accelerated population with
slope sacc;2 ¼ s2 − 1 ∼ 2.1 because synchrotron radiation
in a magnetic field of strength B ∼ 300 μG effectively cools
electrons down to a Lorentz factor γsyn ∼ 3 × 105 over the
pulsar lifetime, i.e., in a marginally fast cooling regime. In
the frame of the present discussion, we speculate that the
pairs could be injected in a relativistic turbulent bath in the
central parts of the nebula, where the broken power-law
spectrum is shaped quasi-instantaneously by stochastic
acceleration, until damping freezes the spectrum. The pairs
would then cool as they diffuse outward in the nebula. At
magnetization σ ∼Oð1Þ, Eq. (10) suggests that ppk ∼ p0,
indicating that the break Lorentz factor would correspond to
that at which particles are injected into the nebula. The
arguments developed above (Sec. IVD) suggest that this
picture could potentially reproduce the general features of
the particle energy distribution. Assuredly, more work is
needed to put this model on a firmer footing, in particular for
what concerns the origin of the so-called radio electrons [76].
In Sec. III, we have also observed that the spectrum can

turn over into a hard spectral shape with s ∼ 1.3–1.5 at the
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highest energies. Such a regime would be of particular
interest for theoretical models of ultrahigh-energy cosmic
ray origin, because it produces a hard spectrum close to the
confinement scale where rg ∼ lc, i.e. close to the Hillas
limit, as phenomenologically inferred from fits to the
observed spectrum and composition [81]. Furthermore,
the overall spectral shape guarantees that a substantial
fraction, if not most of the particle energy, resides at the
highest energies, thus alleviating somewhat the constraint
on the overall energy budget of the source.
In turbulent coronae of black hole accretion systems such

as AGN, our results have new implications for the maxi-
mum momentum of cosmic-ray ions. If Ep is sufficiently
small at the injection momentum, i.e., only a fraction of the
particles is injected, the spectrum can be hard with s ∼ 1 at
energies of interest. Classically, with radiative losses, it can
be harder due to the pile-up effect followed by a cutoff
around ∼ploss (e.g., Fig. S3 of Ref. [12]). However, instead,
the peak momentum could be set by Eq. (10). If Ep is
sufficiently large at the injection energy, our phenomeno-
logical model predicts that the energy spectrum has a flat
portion above the injection momentum, followed by a
cutoff set by ∼ploss. In either case, particles can be injected
through magnetic reconnections in the high magnetization
region, where their small volume fraction could lead to the
small number of injected particles. The cosmic-ray pressure
could be saturated to be a decent fraction of the magnetic
pressure, due to damping.
Finally, one obvious consequence of turbulence damping

is to increase the polarization degree of the emitting zone,
possibly up to maximal values if the emitting zone is
restricted to one coherence length volume and if damping is
complete up to scale ∼lc.

V. SUMMARY AND CONCLUSIONS

Building up on earlier work, this paper has provided a
comprehensive study of nonlinear stochastic acceleration,
a regime in which the accelerated particles draw sufficient
amounts of energy to alter the energy cascade of the
turbulence, which itself regulates the efficiency of the
acceleration process. To model this nonlinear coupling
between particles and turbulence, we have proposed and
analyzed a general phenomenological model that solves a
transport equation in momentum space for the particles,
the cascade equation in wave number space for the
turbulence, accounting for a sink of energy due to particle
acceleration, and accounting altogether for the depend-
ence of the cascade and acceleration rates on the amount
of energy in each channel. We have then determined the
generic spectral energy distributions for the particles and
the turbulence as a function of ambient physical con-
ditions, and time.
The history of the overall process can be summarized as

follows. As particles draw energy from the turbulence, their
spectra shift to larger and larger momenta, or equivalently

larger and larger length scales if momenta are expressed as
gyroradii. An important specificity of stochastic acceler-
ation is its tendency to shape hard energy spectra in the
stationary limit, which means that as time goes on, particles
draw more and more energy from the turbulent cascade. In
detail, if the momentum diffusion coefficientDpp ∝ pr, the
steady-state energy density spectrum (per log-momentum
interval) evolves as Ep ∝ p3−r in the absence of turbulent
damping and nonlinear feedback. This corresponds to a
particle momentum distribution dn=dp ∝ p−2Ep ∝ p1−r ∝
p−s, with s ≃ r − 1, where n represents the particle density.
In the stochastic Fermi process, particles of a given

gyroradius rg draw energy from a certain range of length
scales l, generally l≳ rg. Provided the turbulence is
externally stirred over sufficiently long timescales, there
exists a time td at which particles of momentum p start to
draw energy from the turbulence at a rate comparable to
that at which turbulent energy flows through the cascade on
the relevant length scale l. Specifically, this momentum
p ¼ ppk corresponds to the momentum at which Ep peaks
at td and the length scale l ∼ rgðppkÞ. Once that point is
reached, turbulent damping becomes significant. This, in
turn, tends to suppress acceleration on length scales ≲l,
and therefore to freeze the particle spectra below ppk.
Meanwhile, particles of larger momenta keep being accel-
erated and concomittantly damp the turbulence on increas-
ing length scales. At any given time beyond td, the
spectrum is thus frozen below a momentum pdðtÞ, which
keeps increasing in time, because the turbulence has
undergone damping below length scales ∼rgðpdÞ.
Overall, this shapes a broken power-law spectrum, with
a hard component below ppk, and a flat spectrum dn=dp ∝
p−s with s ∼ 2, from ppk up to pdðtÞ. Beyond pdðtÞ, the
spectrum recovers the form it would have in the absence of
damping, see Fig. 2 for an illustration at different times.
As time goes on, the particle energy spectrum extends in

momentum space (hence to larger length scales in terms
of gyroradius), just as the (time-dependent) maximum
length scale rg½pdðtÞ� below which the turbulent cascade
is damped. Because the energy content of the cascade
increases with length scale, it may be that the particle
energy density at that scale eventually becomes comparable
to the cascade energy density at wave number
k ∼ rg½pdðtÞ�−1. If this point is reached, the particle energy
spectrum changes slope, generating a hard segment with
s ∼ 1.3–1.5. However, backreaction becomes effective only
once the particle energy density crosses a certain threshold,
see Eq. (8). In practice, that constraint implies that the
segment with s ∼ 1.3–1.5 should be limited to a restricted
dynamic range of gyroscales close to the outer scale of
the turbulence.
In summary, one should thus observe the following. On

timescales t≲ td, damping and nonlinear feedback can be
ignored. This timescale td can be derived from Eqs. (8) or
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Eq. (10). On longer times, t≳ td, damping remodels the
spectrum into the broken power-law form discussed above,
namely a hard spectrum at p < ppk, a flat (s ∼ 2) spectrum
above, including the fall-off above pdðtÞ, and possibly
the segment s ∼ 1.3–1.5 at the highest energies. In this
description, the break momentum ppk remains frozen in
time. These spectra assume impulsive injection of particles
at the initial time at momentum p0 and thus represent
Green’s functions. The time-integrated spectra with con-
tinuous particle injection preserve the above features,
except for the low-energy part below ppk, which takes
the form of a power-law with index s ∼ 1 in the absence of
damping (assuming Dpp ∝ p2), or harder once damping
sets in.
As we have stressed, the present discussion remains

exploratory, given the numerous uncertainties that plague
the nature of particle acceleration in magnetized turbulence.
We have discussed a number of limitations and nevertheless
conclude that the above picture appears globally robust. It
seems likely that some form of secondary acceleration
could develop below the momentum ppk at which back-
reaction first sets in. This would imply that the spectrum in
that region is not frozen in time but would evolve, likely at a
slower rate than the high-energy extension characterized by
the slope s ∼ 2. One direct consequence is to shape a hard
spectrum below that critical momentum, whose exact slope
would be dictated by the rate of acceleration in that region
and the rate at which particles are injected in the process.
We have also briefly addressed the influence of escape and
losses on the general shape of the spectrum.
As we have noted, broken power-law spectra of the

above form emerge as generic features of phenomenologi-
cal models in high-energy multimessenger astrophysics.
Our results thus open interesting avenues of research for
phenomenological applications, which we plan to address
in forthcoming studies.
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APPENDIX: NUMERICAL PARAMETERS

We have considered two generic kernels: one describing
gyroresonance, the other describing nonresonant inter-
actions with larger-scale modes. The first kernel is written
as a Gaussian in log-space

FIG. 5. Kernels Φðk;pÞ defined in Eq. (A1) and (A2) describ-
ing gyroresonant (purple) and nonresonant (orange) interactions,
respectively. Those kernels determine how the energy gained by
particles of momentum p (p̂≡ p=p0) is distributed as loss in the
turbulence cascade in terms of wave number k [k̂≡ krgðp0Þ].

FIG. 6. Comparison of the results for a gyroresonant kernel
(top panel) and a nonresonant kernel (bottom panel) as defined
in the text and displayed in Fig. 5. The other parameters used to
the numerical integration are those corresponding to the top
panel of Fig. 3.

LEMOINE, MURASE, and RIEGER PHYS. REV. D 109, 063006 (2024)

063006-14



Φðk;pÞ ∝ exp

�
−
ðln p̂þ ln k̂Þ2

2Δ2
1

�
ðgyroresonantÞ; ðA1Þ

with Δ1 ¼ 1.0, whose value is purely ad hoc.
The second kernel is biased toward larger scales, and we

select in particular the following broken power-law shape

Φðk;pÞ ∝ fexp ½ln ðp̂ k̂Þ=Δ2� þ exp ½− ln ðp̂ k̂Þ=Δ3�g−1
ðnonresonantÞ; ðA2Þ

where Δ2 ¼ 0.7 and Δ3 ¼ 5.0. Those two kernels are
illustrated in Fig. 5 and the consequences of using one
or the other are shown in Fig. 6, for the numerical
parameters corresponding to the case shown in the top
panel of Fig. 3. Although the kernel parameters are ad hoc,
they suffice for the purpose of demonstrating the impacts of
the nonresonant interaction. Dedicated numerical simula-
tions might hopefully shed light on these parameters. In the
main text, we discuss the results using the first (gyroreso-
nant) kernel only.
Regarding the numerical scheme used to integrate the

model equations, we rely on an implicit Crank-Nicholson

method, using a high-order stencil for the spatial deriva-
tives. The large dynamic range in k and p renders the
system unstable: advection rate in wave number space
increase with k, therefore decrease with k−1, while the
energization rates rather increase with p. It has proven
necessary to introduce some regularization procedures, in
particular a minimal floor value for γk (where the turbu-
lence has been damped) and to smooth the numerical
solutions at each time step with a Gaussian filter of one bin
width, in order to quench numerical instabilities that grow
on the mesh size. The dynamic range has here been set to
2 × 1011. In Fig. 2, turbulence is driven at the outer scale by
maintaining the value of EBkinj constant, which corresponds
to the value at the maximum of EBk. The loss of particles
through both boundaries is minimal, as is obvious from
Fig. 2. Similar spectral shapes would be obtained by
changing the dynamical range, provided it remains larger
than a few decades, as we have checked. Finally, with
regards the choice of numerical parameters, we have
integrated the system for various values of Δ1, Δ2 and
Δ3 that control the width of Φðk;pÞ. The observed spectra
were similar in all cases.
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