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GW200129 is claimed to be the first-ever observation of the spin-disk orbital precession detected with
gravitational waves (GWs) from an individual binary system. However, this claim warrants a cautious
evaluation because the GWevent coincided with a broadband noise disturbance in LIGO Livingston caused
by the 45 MHz electro-optic modulator system. In this paper, we present a state-of-the-art neural network
that is able to model and mitigate the broadband noise from the LIGO Livingston interferometer. We also
demonstrate that our neural network mitigates the noise better than the algorithm used by the LIGO-Virgo-
KAGRA Collaboration. Finally, we reanalyze GW200129 with the improved data quality compared to the
data used by the LIGO-Virgo-KAGRA Collaboration and show that the evidence for precession is still
observed.
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I. INTRODUCTION

The gravitational-wave (GW) era started in 2015 when a
binary black hole (BBH) merger was detected [1]. Since
then, the LIGO-Virgo-KAGRA (LVK) Collaboration
observed binary neutron star and neutron star–black hole
systems, as well as many other BBH mergers [2–4].
GW analyses often assume that the noise is Gaussian.

While this is true in many cases, about 24% of the GW
candidates from the third LVK observing run (O3) were
flagged as having a non-Gaussian noise nearby [3,4]. If the
non-Gaussian noise is not accounted for, GW searches and
source parameter estimation can be affected, including
the sky localization that is used for the electromagnetic
follow-up efforts [5–9].
One of the GW candidate events from O3, GW200129,

attracted interest because it is claimed to be the first-ever
individual BBH that has strong evidence for spin-induced
orbital precession [10]. Initial analysis performed by the
LVK Collaboration with two waveform models found
evidence for precession when using IMRPhenomXPHM
but not with SEOBNRv4 [4]. Reference [4] gave equal
weight to both analyses, thus leaving the properties of
GW200129 unclear. In addition, Nitz et al. [11] found
GW200129 to be precessing when analyzed with the
IMRPhenomX waveform model [12]. Hannam et al.
[10] put forward an analysis based on the NRSurrogate
waveform model that is more faithful to numerical

simulations [13] and found the orbital precession of
GW200129 to be 10 orders of magnitude higher than
any previous weak-field measurement.
The precession claim warrants a cautious evaluation

because GW200129 coincided with excess noise at the
Livingston interferometer caused by the 45 MHz electro-
optic modulator system [14,15]. Luckily, this noisewas also
recorded by multiple witness channels, namely LSC-POP_
A_RF45_I_ERR_DQ, LSC-POP_A_RF45_Q_ERR_DQ,
and LSC-POP_A_RF9_I_ERR_DQ, which we refer to as
RF45-I, RF45-Q, and RF9-I, respectively.
The LIGO-Virgo-KAGRA Collaboration used gwsub-

tract to model and mitigate the excess noise in the
GW strain channel h(t) [4]. The gwsubtract algorithm
was first developed to remove the “jitter” noise from LIGO
Hanford interferometer during the second LIGO-Virgo
observing run, which resulted in 30% improvement in
LIGO Hanford sensitivity [16]. The algorithm was sim-
ilarly applied for noise mitigation around GW200129 for
the Livingston data: it estimated the coupling between the
RF9-I and h(t) channels and removed the predicted excess
noise from h(t). This cleaned version of the Livingston data
was then used in the LVK and Ref. [10] analyses.
The implementation of gwsubtract for GW200129

and the algorithm itself has multiple shortcomings. Firstly,
the derivation of gwsubtract relies on the assumptions
that the data is Gaussian and stationary [16], while the
excess power in the Livingston data is non-Gaussian by
definition. Furthermore, the algorithm assumes that the
noise coupling must be linear which is not necessarily the*Andrew.Lundgren@port.ac.uk
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case for GW200129. Finally, the LVK Collaboration
used only a single channel, RF9-I, to estimate the noise
coupling, even though RF45-I and RF45-Q also recorded
the noise.
Additional studies suggest that the evidence for preces-

sion using the gwsubtract data is robust when using a
NRSurogate waveform model [17,18]. However, it is
unclear if the gwsubtract data are systematically
biased, which is the reason why Payne et al. [18] also
used an alternative method to clean the Livingston data.
Reference [18] mitigates the excess noise with BayesWave,
an algorithm that does not use witness channels and relies
only on the strain data to model the noise [19,20]. Their
analysis found that the evidence for precession is smaller
than the statistical and systematic uncertainty of noise
mitigation.
In this paper, we describe a novel method to mitigate the

excess noise using machine learning, with a focus on
removing the noise around GW200129. In Sec. II, we
describe our data selection procedure, the machine learning
model, and how the effectiveness of the model is tested, as
well as the procedure to estimate the orbital precession for
GW200129. In Sec. III, we show how well the machine
learning model works, compare its effectiveness against
gwsubtract, and present results of the spin-induced
orbital precession estimate. We summarize our findings
in Sec. IV.

II. METHODS

A. Data

The Livingston interferometer was locked and observing
for more than five hours when GW200129 was detected
and continued to observe for more than 38 hr. During this
time, the Livingston interferometer had excess noise caused
by the 45 MHz electro-optic modulator system; this noise is
also known as the radio frequency (rf) noise [15]. Radio
frequency noise coupled to the GW strain channel h(t), as
well as the noise witness channels RF45-I, RF45-Q, and
RF9-I (Fig. 1).
To learn the coupling between the witness channels

and the GW strain channel h(t), we selected 27 hr
of the total 43 hr when the detector was locked
and observing. To be exact, we chose the interval from
January 29, 2020 09:55:06 UTC to January 30, 2020
12:55:06 UTC.
We chose this interval for multiple reasons. First, the rf

noise was exceptionally recurrent during this time. In
addition, the noise coupling may change if the interfer-
ometer configuration changes; therefore, we selected only
the data contained in this observational lock. Finally, we
did not use the time around GW200129 to avoid any biases.
After data selection, we whitened the data using the inner

product equation, where hajbi is the inner product between
the two time series aðtÞ and bðtÞ given by

hajbi ¼ 4

Z
∞

0

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð1Þ

where SnðfÞ denotes the power spectral density (PSD). To
avoid using PSD biased by the rf noise, we inspected the
data visually and selected 512 s of relatively quiet data for
the PSD estimation.
Once the data were whitened, it was resampled to

512 Hz. Because our network memory requirement is
proportional to f3Nyquist, data resampling from 4096 to
512 Hz significantly reduced the required memory to train
the algorithm. Since the orbital precession for GW200129
is mostly observed below 50 Hz [18], reducing the
sampling rate does not impact the precession measurement.

FIG. 1. Whitened time series data for the gravitational-wave
strain channel h(t) and witness channels RF45-Q, RF45-I, and
RF9-I. Gravitational-wave signal GW200129 is clearly seen in
h(t) at 0 s. The non-Gaussian noise in h(t) caused by the electro-
optic modulator system is also recorded by the witness channels.
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After resampling the data, we selected the time intervals
when the rf noise was present in the witness channels. To
identify these intervals, the Z score of 11.7 was used for the
RF45-I channel (there was no particular reason why this
specific channel was selected out of the three witness
channels). If a data point passed this threshold, we would
select 4 s around this data point.
We collated 477 noisy data intervals (about 32 min) after

this procedure. Using ∼32 min of noise-only data instead
of the full 27 hr of data allowed us to train the machine
learning algorithm more efficiently.

B. Dense neural network

We use a dense neural network (DNN) to model the
excess noise witnessed by the rf channels. DNNs are well
known for their ability to generalize even extremely
complicated relationships in data, including the nonlinear
coupling that can happen among multiple noise witness
channels. In addition, a DNN does not rely on the
assumption that the data need to be Gaussian and stationary
like the linear subtraction method gwsubtract.
We found that a relatively simple fully connected DNN

with just two hidden layers and a dropout layer in between
is enough to model the rf noise around GW200129 (see
Table I for full network architecture). To predict a single
noise point, i.e., 1

512
s, in h(t), we use 2 s of data from each

rf channel.
In order to reduce the overfitting and increase the

learning efficiency, we use L2 kernel regularization of
10−4 and rectified linear unit activation function. The
dataset from Sec. II A is split with 9∶1 ratio for testing
and validating the algorithm. The network is trained for 500
epochs using Adam optimizer [21] with inverse time decay
learning function, learning rate of 10−3, and mean squared
error loss function. Training the network written with
TensorFlow [22] takes about 30 min on Nvidia A100
80 GB GPU.
After the training is performed, the model can be applied

to mitigate the noise around GW200129. To do that, we
perform the same steps as in Sec. II A for 4096 s around
GW200129, i.e., the data are first whitened and resampled.

After that, the three rf channels are used as input to get the
rf noise contribution in h(t) estimated by the DNN. Once
that is done, the data are up-sampled to 4096 Hz, dew-
hitened, and subtracted from the original 4096 s LIGO
Livingston frame. This is the data frame that has rf noise
mitigated using our machine learning algorithm. The data
frame is publicly available on Zenodo [23].

C. Testing the cleaned data

We apply the method proposed by Macas and Lundgren
[24] to estimate how much of the excess noise is removed
using our algorithm and compare its effectiveness with
gwsubtract. To do that, we first identify time intervals
when the rf noise is present in the data around GW200129.
Using the Z score of 6 for the RF45-I channel, we select
366 s out of 4096 s considered to contain the radio
frequency noise.
We convert these data into the normalized time-fre-

quency tiles with quality factor Q ¼ 8, which allows us to
estimate the average tile power. Then, using Bayesian
statistical modeling, we calculate the amount of power in
the non-Gaussian data versus the total power, defined as
“fractional power.” We repeat the same procedure for the
original Livingston data, as well as the data that have the rf
noise mitigated with gwsubtract.

D. Estimating the spin-induced orbital precession
of GW200129

We finally apply the Bilby Bayesian inference package
[25,26] to estimate the posterior probability density using
our new cleaned Livingston data and the original data from
Hanford and Virgo. We follow the configuration of the
initial LVK gravitational-wave transient catalog 3 (GWTC-
3) analysis [4], but use the NRSur7dq4 waveform approx-
imant [13] with a suitably modified prior following
Hannam et al. [10]. We also marginalize over the calibra-
tion uncertainty. However, the PSD used by the GWTC-3
analysis used an on-source estimate that depends on the
analysis data. Since we have cleaned the Livingston data,
we opt instead to use a Welch PSD estimate for all three
detectors. Finally, we perform sampling using the Bilby

Markov chain Monte Carlo (Bilby-MCMC) sampler [25].

III. RESULTS AND DISCUSSION

A. Data cleaning

Figure 2 shows the spectrograms of the Livingston data
around GW200129 before and after cleaning and the
difference between these two spectrograms. We note that
the algorithm removed large portions of the excess noise
after the GW signal, as well as some noise that happened
during the GW signal and within the frequency range of the
GW signal. Comparing with the gwsubtract results
[14], it is clear that our algorithm removes noticeably more
data at frequencies above 50 Hz.

TABLE I. Dense neural network architecture. We use 2 s of
data with fNyquist ¼ 256 Hz from each rf channel to predict a
single data point, i.e., 1

512
s, in the gravitational-wave strain

channel h(t).

Layer Output shape (length, dimensions)

Input (1024, 3)
Flatten (3072, 1)
Dense (1024, 1)
Dropout (1024, 1)
Dense (1024, 1)
Output (1, 1)

REVISITING THE EVIDENCE FOR PRECESSION IN … PHYS. REV. D 109, 062006 (2024)

062006-3



As we can see from Fig. 3, our modeled radio frequency
noise is closer to the gwsubtract noise prediction than
the prediction made by BayesWave (glitch model A) in
Payne et al. [18]. This makes sense since both the
gwsubtract and machine learning (ML) approach use
witness channel information. However, ML subtraction
contains more high-frequency features than gwsub-
tract, which can be explained by the fact that ML uses
more witness channels and/or the algorithm represents the
nonlinearity better. Comparing BayesWave’s noise model
with gwsubtract and ML, it looks much simpler with a
peak around −0.08 s before the merger.
Close to the merger time, we can see some differences

between all three models. Around −0.025 s before the
merger, BayesWave subtracts more data than gwsub-
tract and ML. Later, around −0.015 s before the merger,
gwsubtract subtracts more data than BayesWave, but
less data than ML.

For a more quantitative comparison between the
original, gwsubtract, and ML data frames, see Fig. 4.
We omit results of Payne et al. [18] in this com-
parison because the Macas and Lundgren [24] comparison
method requires significantly more data than the Ref. [18]
cleaned.
The average tile power plot [Fig. 4(a)] shows that both

gwsubtract and ML algorithms significantly reduce the
excess power. For Gaussian data, the average tile power is
1, while the original data frame has as much as twice the
amount of power than Gaussian data around 40 Hz.
The ML algorithm removes more excess power than

gwsubtract across all frequency ranges, and the differ-
ence becomes much higher at frequencies above ∼50 Hz.
From ∼85 Hz, gwsubtract does not remove any excess
noise anymore. This happens because gwsubtract uses
only a single witness channel that does not contain any
correlation with h(t) at those frequencies.
The fractional power plot [Fig. 4(b)] shows similar

conclusions. The ML algorithm is better at removing
the excess noise across all frequencies, reducing up to
10% more of the fractional power at frequencies below
50 Hz. At higher frequencies, the difference in fractional
power between gwsubtract and ML can be as high
as 20%.
Unfortunately, the average tile power and fractional

power plots [Figs. 4(a) and 4(b)] indicate that neither
the gwsubtract nor the ML algorithm remove the
excess noise completely. This can happen due to a variety
of reasons. First, it is possible that both algorithms
cannot estimate the correlation function between the
witness channels and the gravitational-wave strain ideally.
Another possibility is that none of the witness channels
are perfect, i.e., they do not record the full coherence
between the rf noise in a witness channel and the rf noise
in h(t).

FIG. 3. Radio frequency noise modeled by BayesWave (pur-
ple), gwsubtract (orange), and our algorithm (green); the
original unmitigated data are in gray. All data were whitened and
bandpassed to 512 Hz.

FIG. 2. Spectrograms of the original Livingston data around
GW200129, cleaned Livingston data using our machine learning
approach, and the difference between these two spectrograms.
Our algorithm removes the non-Gaussian noise after the GW
signal, as well as some noise that happened during the GW signal
and within the frequency range of the GW signal.
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B. Spin-induced orbital precession of GW200129

In Fig. 5, we show the posterior distribution of the spin
magnitude and tilt from our new analysis utilizing the
cleaned data. Comparing with Fig. 2 of Hannam et al. [10],
which used the gwsubtract cleaned frame, we see
similar results within the expected sampling error (any
subtle changes would most likely be caused by the differ-
ence in PSD construction). From this figure, we can
confirm that the identification of evidence for precession,
i.e., that the primary spin is constrained to be close to unity
and highly misaligned, is robust to our new deglitching
routine.

In Fig. 6, we demonstrate the two-dimensional mass
ratio q and precession parameter χp results using our
noise mitigation routine. We see that the mass ratio peaks
around 0.5 and that χp peaks around 0.95, indicating a
highly precessing system. This agrees with results from
Hannam et al. [10], but contrasts with the findings from
Payne et al. [18] where BayesWave is used to model the
noise. Payne et al. [18] find the mass ratio to be less

FIG. 4. Average tile power (a) and fractional power (b) for data
around GW200129 with quality factor Q ¼ 8. Both tests indicate
that our machine learning algorithm removes more non-Gaussian
noise than gwsubtract, especially at frequencies above 50 Hz.

FIG. 5. A spin-disk plot showing the two-dimensional posterior
distribution of the spin magnitude and tilt of the primary (right-
hand side) and secondary (left-hand side) of GW200129.

FIG. 6. Mass ratio q and the precession parameter χp plot for
GW200129 using ML-mitigated data.
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symmetric and the posterior on the precession parameter χp
to be less informative (depending on the glitch model
they use).

IV. CONCLUSIONS

In this paper, we demonstrated that machine learning can
model the non-Gaussian noise recorded by witness chan-
nels. We use RF45-I, RF45-Q, and RF9-I channels as input
to the fully connected dense neural network and gravita-
tional-wave strain channel h(t) as output. Such an algorithm
allowed us to mitigate the noise around the GW200129
signal.
We also found that our approach removes a significant

part of the non-Gaussian noise in h(t), and that it actually
removes more non-Gaussian noise than gwsubtract, the
algorithm used by the LIGO-Virgo-KAGRACollaboration.
At frequencies below 50 Hz, our algorithm removes up

to 10% more fractional power compared with gwsub-
tract, while at higher frequencies the fractional power
difference can be as high as 20%. However, neither
gwsubtract nor our method is able to remove the
non-Gaussian noise completely. This can happen due to
these algorithms being imperfect, witness channels not
containing the full information about the excess noise, or
any other unknown reason.
Furthermore, we note that our method does not over-

subtract the noise. The algorithm removes only the corre-
lated noise between the gravitational-wave strain h(t) and
the witness channels, as the algorithm does not have
enough capacity to memorize all of the data it is trained on.
The reanalysis of GW200129 with the improved data

quality finds a similar evidence of the spin-induced
precession as reported by Hannam et al. [10]. However,
we note that, while our method is able to remove more rf
noise from the data than gwsubtract, we also show that
there is still some noise left unmitigated.

The data frame used in this paper is publicly available
on Zenodo [23]. This research has made use of data,
software, and/or web tools obtained from the Gravitational
Wave Open Science Center [27], a service of LIGO
Laboratory, the LIGO Scientific Collaboration, the Virgo
Collaboration, and KAGRA. Various parts of the

analysis used GWpy [28], PyCBC [29,30], Bilby [25,26],
Bilby-MCMC [31], TensorFlow [22], Keras [32], Adam [21],
PyMC [33], NumPy [34], SciPy [35], IPython [36], Jupyter

NOTEBOOK [37], Pandas [38], Matplotlib [39], ARVIZ [40],
and CORNER [41].
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