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TianQin is a proposed mission for space-based gravitational-wave detection that features a triangular
constellation in circular high Earth orbits. The mission entails three drag-free controlled satellites and long-
range laser interferometry with stringent beam pointing requirements at remote satellites. For the payload
architecture and pointing control strategies, having two test masses per satellite, one for each laser arm, and
rotating entire optomechanical assemblies (each consisting of a telescope, an optical bench, an inertial
sensor, etc.) for constellation breathing angle compensation represent an important option for TianQin. In
this paper, we examine its applicability from the perspectives of test mass and satellite control in the science
mode, taking into account of perturbed orbits and orbital gravity gradients. First, based on the orbit-attitude
coupling relationship, the required electrostatic forces and torques for the test mass suspension control are
estimated and found to be sufficiently small for the acceleration noise budget. Further optimization favors
configuring the centers of masses of the two test masses collinear and equidistant with the center of mass of
the satellite, and slightly offsetting the assembly pivots from the electrode housing centers forward along
the sensitive axes. Second, the required control forces and torques on the satellites are calculated, and thrust
allocation solutions are found under the constraint of having a flat-top sunshield on the satellite with
varying solar angles. The findings give a green light to adopting the two test masses and telescope pointing
scheme for TianQin.
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I. INTRODUCTION

The TianQin mission plans to deploy three drag-free
controlled satellites in a nearly equilateral-triangle con-
stellation with arm lengths of ∼1.7 × 105 km. The satellites
follow circular orbits around the Earth at an altitude of
∼105 km (see Fig. 1), and the constellation plane is facing a
verification source, the white-dwarf binary RX J0806.3þ
1527 [1]. The mission is to detect gravitational wave (GW)
signals in the frequency range of 10−4 Hz to 1 Hz, and the
sensitivity goal presents great challenges to the science
payloads and satellite platforms.
Space-based detectors differ from ground-based detec-

tors in many important aspects. Perhaps most prominently,
space-based detectors generally do not have laser arm-
lengths and beam pointings fixed due to orbital dynamics.
Though the variations should be kept as small as possible
by orbit and constellation design, eliminating them is
generally not practical. Taking TianQin for example, the
estimated deviation from an ideal equilateral triangle due
to lunisolar gravitational perturbation is 0.1% in the
armlengths and 60� 0.1° in the breathing angles with a
typical period of 3.6 days [3]. Additionally, these is slight

wobbling of the constellation plane (∼0.05° per 3.6 days)
mostly due to the Moon’s gravitational pull from side-
ways. These basic operating condition and environment
for space-based detectors have profound influence on
measurement principles, science payload design, satellite
control, and data processing on ground, and must be dealt
with on the mission and system levels from the very
beginning.
The key science payload of space-based detectors like

LISA [4–6] and TianQin mainly consists of inertial sensors,
enclosing free-falling test masses (TMs) inside as reference
end mirrors, and long-range laser interferometers for
measuring tiny distance changes between TMs caused
by GWs. Given an operating environment, the various
ways the key payload is configured from basic components
to achieve high precision TM-to-TM measurements are
referred to as payload architectures in this paper. Closely
interrelated to payload architectures are the payload control
and operation [7]. For nominal science observation, one
crucial aspect of the payload control is the pointing of the
outgoing laser beams at distant satellites. The pm=Hz1=2-
level interferometric measurement demands a pointing
requirement of ∼10 nrad in DC bias and ∼10 nrad=Hz1=2

in jitters [5]. This poses a great challenge to the fine
pointing control and its design.*zhangxf38@sysu.edu.cn
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To tackle special needs of space-based GW detectors,
several options for payload architectures and pointing
control strategies have been proposed and studied in
literature (see, e.g., [8–10]). LISA, as the pioneer in
space-based GW detection, has opted for the design base-
line that each spacecraft are to be equipped with two
movable optical subassemblies (MOSAs) as shown in
Fig. 2 [5,11]. The assembly consists of a telescope, an
optical bench, an inertial sensor (also known as gravita-
tional reference sensor), supporting structures, and pivot
mechanisms. The two cubic TMs are allowed to free-float
in the directions of the laser arms and suspended by
electrostatic forces in the other degrees of freedom to
maintain nominal TM position and alignment inside the
electrode housings (EHs). To account for the annual
variation (�1°) of the breathing angles, the entire
MOSAs can be rotated about the pivot axes vertical to
the constellation plane (see Fig. 3). Meanwhile, pointing
adjustment of the outgoing laser beams in off-plane
directions is carried out by the drag-free and attitude
control (DFAC) of the spacecraft with the help of micro-
Newton thrusters [12]. The whole design is dubbed the
two-TM and telescope pointing scheme.
A competing option considered in LISA’s trade-off

studies [5,13] is to have one inertial sensor/TM, one

common optical bench, and two telescopes, all rigidly
fixed to one another and to one spacecraft. To correct for
constellation breathing, the telescope is designed to have a
wide field of view, and the outgoing beam direction relative
to the telescope axis can be adjusted by actuating steering
mirrors on the optical bench [14–16]. TM shapes can take
on multiple forms, allowing cubic, quasicubic, and spheri-
cal alternatives [17,18]. The entire design is dubbed the
single-TM and in-field pointing scheme.
Both schemes have their own pros and cons [17]. For

example, a prominent obstacle with the in-field pointing is
the tilt-to-length coupling (see, e.g., [18,19]), which is
made even more challenging by the telescope magnifica-
tion (∼150). Nevertheless, having two TMs per spacecraft
and articulating the MOSAs render the payload and space-
craft control quite complicated. For TianQin, the in-field
pointing appears intriguing, given that TianQin has rela-
tively small variations (�0.1°) in breathing angles.
However, the feasibility studies are still ongoing.
The geocentric design of TianQin has taken into account

engineering benefits in satellite deployment, orbit deter-
mination, data communication, etc. Since its earlier con-
ceptualization, questions have been raised regarding its
payload architecture and pointing control strategy, and
particularly, how to make the overall design well-suited to
the geocentric orbits. Apparently, the two-TM and tele-
scope pointing scheme presents an important candidate.
Nevertheless, without in-depth modeling and assessment, it
is not certain whether the scheme can be applied to TianQin
and whether certain modification is needed. Hence, the
paper is intended to address this fundamental issue of the
TianQin mission, and pave the way for future system
development. For related studies on TianQin DFAC, one
may refer to, e.g., [20–25]. Most of these studies focused
on developing control algorithms, and the joint dynamics
and control of the MOSAs and TMs are yet to be included.
The applicability issue can be examined from two main

perspectives, both based on numerical orbits and the orbit-
attitude coupling derived from the telescope pointing
scheme (Sec. II). First, for the TM control, we calculate
the required electrostatic forces and torques on the TMs and
compare them with the allowed maximum values derived

FIG. 2. Illustration of MOSAs. The axes depict the body-fixed
coordinate systems of the satellites (X⃗S, Y⃗S) and two MOSAs
(X⃗OA1;2

, Y⃗OA1;2
). The MOSAs can rotate about the Z⃗OA1;2

-axes,
respectively.

FIG. 1. Depiction of the TianQin constellation revolving
around the Earth and subject to varying incoming sunlight
(not to scale) [2].

FIG. 3. The telescope pointing scheme relies on the MOSA
articulation to compensate for breathing angle variations within
the constellation plane, and the satellite attitude control to align
the laser beams in off-plane directions.
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from the acceleration noise budget (Sec. III). Second, for
the satellite control, we calculate the required forces and
torques on the satellites, and show that they can be fulfilled
by the micropropulsion system under the design constraints
of the satellites (Sec. IV).

II. MODEL SETUP

This section elaborates on the dynamic models used in
this study, including initial orbital parameters, coordinate
systems, orbit-attitude coupling, and a satellite model. The
orbit-attitude coupling relationship is a direct consequence
of the pointing control strategy. It plays a key role in our
modeling and assessment that can dispenses with detailed
control algorithms.

A. Numerical orbits

Calculating the nominal attitudes of the satellites and
MOSAs relies on having TianQin’s orbit information
during the mission. We have used General Mission
Analysis Tool (GMAT) [26] software for orbit simulation,
and obtained numerical data of the satellites’ positions,
velocities, accelerations, and gravity gradients. Propagating
realistic perturbed orbits involves various force models,
which include a 10 × 10 spherical harmonic representation
of the Earth’s gravity field (JGM-3 [27]), a point-mass
model for the Sun, the Moon, and other planets in the solar
system (the ephemeris DE421 [28]), and the first-order
relativistic effect.
Since the satellites are drag-free controlled with high

precision, we assume that the orbital evolution of the center
of mass (CoM) of the satellite is under pure gravity and that
the coupling with DFAC is currently neglected (see
the Appendix for estimated deviation from pure gravity
orbits). The initial orbital elements are from our previous
research [2], and listed in Table I. They have been

optimized to satisfy the configuration stability criteria
for the TianQin constellation. More relevant to the pointing
control, the time evolution of the breathing angles are
illustrated in Fig. 4, and the angle variation of the normal
of the constellation plane (detector pointing) from its initial
direction is given in Fig. 5.

B. Coordinate systems

The dynamic model capturing three satellites, each with
two MOSAs and two TMs, invokes multiple reference
frames (see Fig. 2).

1. Inertial and body-fixed reference frames

The body-fixed frames, as each of them attaches to one
existing body, are defined as follows:

(i) The I frame is the inertial frame to describe satellite
motion in geocentric orbits. This article has used the

TABLE I. The optimized initial orbital elements for three
TianQin satellites (SC1, 2, 3) in the J2000-based Earth-centered
ecliptic coordinates at the epoch 22May, 2034 12:00:00 UTC [2].
They can be easily converted to equatorial coordinates. The
notations used below represent various orbital elements: a for the
semi-major axis, e for the eccentricity, i for the inclination, Ω for
the longitude of the ascending node, ω for the argument of
periapsis, and ν for the true anomaly [29].

a (km) e i (°)

SC1 100 926.158 459 0.000 300 94.774 822
SC2 100 940.789 023 0.000 019 94.782 183
SC3 100 938.056 412 0.000 411 94.785 623

Ω (°) ω (°) ν (°)

SC1 209.433 009 0.980 870 84.729 131
SC2 209.430 454 205.692 143 359.976 125
SC3 209.438 226 0.061 831 325.619 846

FIG. 4. Time variations of the three breathing angles α1;2;3 of
the constellation.

FIG. 5. Angle variation of the normal of the constellation plane
from its initial direction.
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J2000-based Earth-centered equatorial coordinate
system with the axes X⃗I, Y⃗I, and Z⃗I;

(ii) The Si frame (i ¼ 1, 2, 3) is rigidly attached to one
satellite and describes its motion. It is built in the
following:
(a) The origin is at the CoM of the satellite.
(b) X⃗Si bisects the 60° angle between the two optical

assemblies.
(c) Z⃗Si is perpendicular to the solar panel.
(d) Y⃗Si is determined by the right-hand rule.

(iii) The OAl frame (l ¼ 1, 2) describes motion of one
MOSA (also known as the optical assembly).
(a) The origin is at the center of the electrode

housing.
(b) X⃗OAl

aligns with the optical axis of the telescope.
(c) Z⃗OAl

aligns with Z⃗S
(d) Y⃗OAl

is determined by the right-hand rule.
(iv) The TMl frame (l ¼ 1, 2) describes motion of

the TM.
(a) The origin is at the CoM of the TM.
(b) The x, z, and y-axes are orthogonal to the TM

faces and align with OAl when the TM is in the
nominal position.

2. Target reference frames

The three satellites need to be oriented with respect to
one another. Their nominal attitudes are strictly dependent
on the constellation, as the telescopes point at distant
satellites (see Fig. 3). Hence, the target reference frames
can be defined as follows:

(i) The S�
i frame (i ¼ 1, 2, 3) describes the target/

nominal attitude for one satellite.
(a) The origin coincides with the nominal orbit of

the satellite.
(b) X⃗S�i

point towards the incenter of the triangular
constellation.

(c) Z⃗S�i
is orthogonal to the constellation plane.

(d) Y⃗S�i
is built from the cross product of the

two above.
(ii) The OA�

l frame (l ¼ 1, 2) describes the target/
nominal attitude of one optical assembly.
(a) The origin coincides with the one of OAl.
(b) X⃗OA�

l
points at the distant satellite.

(c) Z⃗OA�
l
aligns with Z⃗S� .

(d) Y⃗OA�
l
is determined by the right-hand rule.

It should be noted that the above definitions are purely
geometric. For the purpose of our evaluation, we consider
the effect of the finite light speed negligible, given the
relatively short armlength of TianQin (∼0.57 s light
travel time).

C. Orbit-attitude coupling

In order to calculate the nominal control states, analytical
expressions of the angular velocities and accelerations of

the target reference frames are derived, when the attitudes
of the satellites are locked onto the constellation [30,31]. In
order to simplify the expressions, we omit the subscript of i
when considering the multi-body dynamics of a single
satellite.
For basic notations, the satellite i’s position in the inertial

frame is denoted by R⃗i. The time derivatives of a unit vector
A⃗ follow the identities:

˙A⃗ ¼ ω⃗ × A⃗; ð1Þ

̈A⃗ ¼ ˙ω⃗ × A⃗þ ω⃗ × ðω⃗ × A⃗Þ; ð2Þ

where ω⃗ is the angular velocity.
The position of the constellation’s incenter can be

represented as

r⃗inc ¼
r23R⃗1 þ r31R⃗2 þ r12R⃗3

r12 þ r23 þ r31
; ð3Þ

with

r⃗ij ¼ R⃗j − R⃗i; rij ¼ jr⃗ijj: ð4Þ

Additionally, the breathing angle can be determined by

αi ¼ arccosðn⃗ij · n⃗ikÞ; ð5Þ

with

n⃗ij ¼
r⃗ij
jr⃗ijj

: ð6Þ

Now we can calculate the nominal attitudes of the
satellites. First, X⃗S�i

can be defined by

X⃗S�i
≡ r⃗inc − R⃗i

jr⃗inc − R⃗ij
; ð7Þ

and Z⃗S�i
are given by

Z⃗S�
1
¼ Z⃗S�

2
¼ Z⃗S�

3
≡ n⃗ij × n⃗ik

sin αi
; ð8Þ

where ½i; j; k� must be an even permutation of ½1; 2; 3�.
The coordinate transformation matrix from the I frame

to S�
i frame, for example, can be determined by

T
S�i
I ¼

2
6664

X⃗T
S�i

Y⃗T
S�i

Z⃗T
S�i

3
7775; ð9Þ
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where the direction columnvectors ofS�
i are expressed in the

I frame, and A⃗T means the transpose of the columnvector A⃗.
In order to obtain the angular velocity and acceleration of

S�
i with respect to I , we introduce an auxiliary frame called

the p-frame with the origin at the constellation’s incenter
r⃗inc [30], and use the super or subscript p to annotate
variables related to or expressed in the frame. The z-axis of
the p-frame is

z⃗p ¼ Z⃗S�i
; ð10Þ

and the x-axis aligns with the projection of Z⃗I onto the
constellation plane, i.e.,

x⃗p ¼ cos βz⃗p − Z⃗I

sin β
; ð11Þ

with

cos β ¼ Z⃗I · z⃗p ð12Þ

and y⃗p given by the right-hand rule. Hence, the angular
velocity of the p-frame, expressed in its own coordinate
system, is given by

ω⃗p ¼

2
664
z⃗p · ˙y⃗p

x⃗p · ˙z⃗p

y⃗p · ˙x⃗p

3
775: ð13Þ

Nowwe can obtain the X⃗S�i
vector of the satellite iwritten in

the p-frame as

p⃗xi ¼ −
pR⃗i

jpR⃗ij
ð14Þ

with

pR⃗i ¼ Tp
I ðR⃗i − r⃗incÞ: ð15Þ

The angular velocity of the satellite i with respective to the
p frame only have a nonzero z-component, so that one has

pω⃗i=p ¼
p ˙R⃗i × p⃗xi
jpR⃗ij

: ð16Þ

The angular acceleration of the p frame can be written as

˙ω⃗p ¼

2
664

˙z⃗p · ˙y⃗p þ z⃗p · ̈y⃗p
˙x⃗p · ˙z⃗p þ x⃗p · ̈z⃗p
˙y⃗p · ˙x⃗p þ y⃗p · ̈x⃗p

3
775; ð17Þ

and the angular acceleration of the satellite iwith respective
to the p frame is given by

p ˙ω⃗i=p ¼ 2ðp⃗xi · p ˙R⃗iÞpω⃗i=p − p⃗xi ×
p ̈R⃗i

jpR⃗ij
: ð18Þ

Finally, the vectors S�iω⃗i and
S�i ˙ω⃗i can be represented as

S�iω⃗i ¼ T
S�i
p ðω⃗p þ pω⃗i=pÞ ð19Þ

and

S�i ˙ω⃗i ¼ T
S�i
p ð ˙ω⃗p þ p ˙ω⃗i=pÞ þ Ṫ

S�i
p ðω⃗p þ pω⃗i=pÞ: ð20Þ

To summarize, a mathematical relation has been derived
to provide the target attitudes, angular velocities and
angular accelerations of the satellites, which are all
determined from the orbit information of the three
satellites. Likewise, similar relations can be derived for
the MOSA’s target frame OA�

l by rotating S�
i about the

Z⃗S�i
-axis. For readers’ convenience, the Table II summa-

rizes all the coordinate transformation matrices needed in
this paper.

D. Satellite model and thruster layout

Another focus of this research is to assess control
requirements on the micropropulsion, which executes the
DFAC commands. In the science mode, the micropropul-
sion subsystem is responsible for compensating noncon-
servative forces [mostly solar radiation pressure (SRP)] on
the satellite, and enabling the satellite to continuously
track the two TMs along the sensitive axes, while
maintaining the nominal attitudes and pointing with high
precision.
The satellite body is modeled by a regular hexagonal

prism with a side length of 1.5 m and a height of 0.6 m (see
Fig. 6; for test and evaluation purposes only, not reflecting
the final design [32,33]). The two cylinders inside represent
the locations of the MOSAs. The flat-top sunshield is a

TABLE II. The summary of coordinate transformation
matrices.

Symbols Description

T
S�i
I (i ¼ 1, 2, 3) From the inertial frame to the

satellite i target frame
Tp
I From the inertial frame

[see Eq. (15)] to the p-frame

T
S�i
p (i ¼ 1, 2, 3) From the p-frame

[see Eq. (19)] to the satellite i target frame
TOAl
S (l ¼ 1, 2) From one satellite frame

[see Eq. (22)] to the corresponding MOSA l frame

PAYLOAD ARCHITECTURE AND POINTING CONTROL … PHYS. REV. D 109, 062001 (2024)

062001-5



hexagonal thin plate with a side length of 2.4 m, capable of
preventing direct sunlight onto the satellite side panels at an
incident angle of 45°. Some basic satellite parameters are
given in the Table III.
For the micropropulsion, the study considers two

thruster configurations, i.e., a set of four clusters and a
set of three clusters, and with each clusters containing two
diverging nozzles (see Fig. 6). The installation must avoid
obstructing the telescopes and plume impingement onto the
satellite surfaces. The test layout is to put each cluster at the
center of a side panel. The nozzles are all pointing away
from the sunshield, and their directions can be adjusted to
meet the control requirements and further optimized for
fuel consumption.

III. NOMINAL SUSPENSION CONTROL
OF TEST MASSES

In [34], the full equations of motion (EoM) of the TMs
and satellites for LISA have been derived. It indicates the
presence of differential inertial (e.g., centrifugal, Coriolis)
accelerations introduced by the rotational motion of the
satellite and MOSAs, as well as differential gravitational

accelerations of the TMs and the satellite. These differential
accelerations lead to relative motion among the TMs and
the satellite, which must be compensated by the suspension
control on TMs along the nonsensitive axes.
Space-based GW detection requires that the differential

self-gravity acceleration of the two TMs should be kept
below ∼10−10 m=s2 and the angular acceleration should
be no more than ∼10−10 rad=s−2 [35,36] to avoid excessive
cross-talk of actuation noise to the sensitive axes
(≲10−15 m=s2=Hz1=2). Likewise, both differential inertial
accelerations and differential gravitational accelerations
should be also below this level, and their directions and
magnitudes are affected by the positions of TMs and
MOSA pivots relative to the CoM of the satellite, in
addition to the satellite orbits.
In this section, the nominal attitudes of the satellites and

MOSAs will be incorporated with the EoM of the TMs to
compute the required electrostatic control forces and
torques for keeping the TMs aligned and at the centers
of the EHs. Based on this framework, the placement of the
TMs and MOSA pivots within the satellite can be opti-
mized to lower the required control forces and torques. To
focus on the orbit-related effects, we have excluded the
self-gravity from the satellite in the studies.

A. Estimated electrostatic forces

In the science mode, electrostatic forces stabilize the two
TMs along their nonsensitive axes relative to the EHs,
while the DFAC and micropropulsion of the satellite
oversee the motion of the two TMs and sustain a stable
dynamic relation with them [23,37]. Each TianQin satellite,
situated in a geocentric orbit, experiences a stronger gravity
gradient caused by the Earth-Moon system, when com-
pared with LISA. Therefore, it is important to include this
effect in calculating the required nominal control forces and
torques for the satellites. The following calculation is based
on rigid-body dynamics.
The equation of TMl (l ¼ 1, 2) translational motion is

given by

Ïr⃗TMl
¼ Ia⃗TMl

þ
If⃗c;l
mTMl

þ
If⃗dis;l
mTMl

; ð21Þ

where Ïr⃗TMl
is the acceleration of TMl with respective to the

I frame, and the term Ia⃗TMl
represents the gravitational

acceleration of TMl, and
If⃗c;l and

If⃗dis;l are the control force
and the disturbing force, respectively.
To model the system accurately, one must formulate the

system’s dynamics in the reference frame where measure-
ments are made. For example, the TM dynamics needs to
be expressed in the frame attached to its own EH. Thereby,
the full EoM of TMl (l ¼ 1, 2) in the OAl frame can be
given by [30,34]

FIG. 6. Illustration of the satellite model with two MOSAs
(cylinders) inside. Thrusters are installed in a distributed and
symmetric manner. Two options are to be evaluated, including
four-cluster (black) and three-cluster (red) configurations, with
each cluster having two diverging nozzles indicated by arrows.

TABLE III. Satellite parameters used in the simulations.

Symbols Parameters Values

mSðkgÞ Satellite mass 1000
ISðkg · m2Þ Moment of inertia diag(583, 583, 1125)

mOAðkgÞ MOSA mass 60
IOAðkg · m2Þ Moment of inertia diag(1.52, 1.56, 1.56)

mTMðkgÞ TM mass 2.45 [1]
ITMðkg · m2Þ Moment of inertia diag(0.001, 0.001, 0.001)

ρa Sunshield absorptivity 0.4
ρr Sunshield reflectivity 0.6 [33]
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OAl̈r⃗l ¼ þ
OAlf⃗c;l
mTMl

þ
OAlf⃗dis;l
mTMl

−
OAlf⃗c;S
mS

−
OAlf⃗dis;S
mS

þ TOAl
S

�ðSa⃗TMl
− Sa⃗SÞ − S̈r⃗0;l − Sω⃗S ×

�
Sω⃗S × ðS⃗rl þ S⃗r0;lÞ

�

− 2Sω⃗S × TS
OAl

ðOAl˙r⃗l þ OAlω⃗OAl
× OAlr⃗lÞ − 2Sω⃗S ×

S˙r⃗0;l − S ˙ω⃗S × ðS⃗rl þ S⃗r0;lÞ
�
− OAlω⃗OAl

× ðOAlω⃗OAl
× OAlr⃗lÞ

− 2OAlω⃗OAl
× OAl˙r⃗l − OAl ˙ω⃗OAl

× OAlr⃗l: ð22Þ

Here OAl̈r⃗l is the acceleration of TMl with respective to the
OAl frame. The terms Sa⃗TMl

and Sa⃗S are the gravitational
acceleration of TMl and the satellite in the S frame,
respectively. OAlf⃗c;S and OAlf⃗dis;S are the control forces
and the disturbing force on the satellite in the OAl frame.
The symbol TOAl

S is the transformation matrix from the S
frame to the OAl frame. The terms Sω⃗S and

S ˙ω⃗S denote the
angular velocity and acceleration of the satellite, respec-
tively, and likewise, the terms Sω⃗OAl

and S ˙ω⃗OAl
denote

MOSA’s angular velocity and acceleration, respectively.
The terms S˙r⃗0;l and

S̈r⃗0;l can be expressed as

S˙r⃗0;l ¼ Sω⃗OAl
× ðS⃗r0;l − S⃗rp;lÞ ð23Þ

and

S̈r⃗0;l ¼ S ˙ω⃗OAl
× ðS⃗r0;l − S⃗rp;lÞ

þ Sω⃗OAl
×
�
Sω⃗OAl

× ðS⃗r0;l − S⃗rp;lÞ
�
; ð24Þ

where S⃗rp;l, S⃗r0;l are the MOSA’s pivot position and the
EH’s center position with respective to the satellite.
Under nominal control, the disturbing forces are com-

pensated by the control forces, and for simplicity we absorb
OAlf⃗dis;l and

OAlf⃗dis;S into OAlf⃗c;l and
OAlf⃗c;S, respectively.

Moreover, there is no relative motion between the TM
and the EH, i.e., OAlr⃗l ¼ OAl˙r⃗l ¼ OAl̈r⃗l ¼ 0. Hence, from
Eq. (22) with Eqs. (23) and (24) plugged in, the equation
determining the nominal suspension control force OAlf⃗c;l
can be written as

OAlf⃗c;l
mTMl

¼
OAlf⃗c;S
mS

− TOAl
S

�ðSa⃗TMl
− Sa⃗SÞ − 2Sω⃗S × ½Sω⃗OAl

× ðS⃗r0;l − S⃗rp;lÞ� − S ˙ω⃗OAl
× ðS⃗r0;l − S⃗rp;lÞ

− Sω⃗OAl
×
�
Sω⃗OAl

× ðS⃗r0;l − S⃗rp;lÞ
�
− Sω⃗S × ðSω⃗S × S⃗r0;lÞ − S ˙ω⃗S × S⃗r0;l

�
; ð25Þ

and the above equation can be rewritten in a simpler form,

TOAl
S

SA⃗c;S ¼ OAlA⃗c;l þ TOAl
S

S⃗gl: ð26Þ

Here OAlA⃗c;l ≔
OAlf⃗c;l=mTMl

is the suspension control

acceleration on TMl, and
SA⃗c;S ≔ Sf⃗c;S=mS is the control

acceleration the satellite needs to follow the TMs. More-
over, S⃗gl is the TM acceleration in the S frame given by the
terms in the curly brackets of Eq. (25). Now the key step is
to equalize the accelerations of the two TMs by the
suspension control [38], as follows.
First, the differential acceleration ΔS⃗g of the two TMs is

defined by

ΔS⃗g ¼ S⃗g2 − S⃗g1: ð27Þ

Moreover, we use SG⃗l to denote the accelerations of the two
TMs under the suspension control in the S frame, and we
obtain

SG⃗1 ¼ SA⃗c;1 þ S⃗g1;
SG⃗2 ¼ SA⃗c;2 þ S⃗g2: ð28Þ

Second, we introduce θ and φ as the angles between the
optical axes X⃗OAl

and X⃗S, respectively (see Fig. 2). There are
three conditions to be satisfied by the nominal DFAC, i.e., a)
both TMs having equal accelerations in the S frame, i.e.,
SG⃗1 ¼ SG⃗2, b) no suspension implemented along the sensi-
tive axes X⃗OAl

, and c) the control forces along the
z-axes of the two TMs being equal with opposite signs.
The last condition is needed to compensate for the differ-
ential accelerations of the two TMs. Therefore, we can
obtain the required electrostatic acceleration on TMl in the
OAl frame as

OA1A⃗c;1¼
ΔSgy sinφ−ΔSgx cosφ

sinðφþθÞ Y⃗OA1
þΔSgz

2
Z⃗OA1

; ð29Þ

OA2A⃗c;2¼
−ΔSgy sinθ−ΔSgx cosθ

sinðθþφÞ Y⃗OA2
−
ΔSgz
2

Z⃗OA2
; ð30Þ
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whereΔSgx,ΔSgy, andΔSgz are the components ofΔS⃗g in the
S frame.
Finally, taking Eq. (29) or Eq. (30) back to Eq. (28), the

common acceleration of the two TMs under the suspension
control in the S frame reads

SG⃗¼ sinθcosφSgx;2þ cosθ sinφSgx;1− sinθ sinφΔSgy
sinðθþφÞ X⃗S

þ sinφcosθSgy;2þ cosφsinθSgy;1− cosθcosφΔSgx
sinðθþφÞ Y⃗S

þgz;2þgz;1
2

Z⃗S; ð31Þ

which is also the control acceleration of the satellite,
i.e., SA⃗c;S ¼ SG⃗.
In the nominal control, the target frames and the body-

fixed frames are aligned. So in the subsequent discussions,
we will no longer differentiate between them. Now one can
compute the electrostatic control accelerations for the TMs
in the science mode, with the information of gravitational
forces and the satellite/MOSA attitudes fed into the
expressions of S⃗gl. Given the EH centers at (0, 20, 0) cm
and ð0;−20; 0Þ cm in the S frame, the result on TM1 is
shown in Fig. 7. One can see that the control acceleration in
the OA1 frame is zero along the x-axis, and in the order of
10−13 m=s2 along the y-axis, and in the order of
10−14 m=s2 along the z-axis. These values are well below
the 10−10 m=s2 requirement.
The above calculations are under the condition of

compensating the breathing angle through symmetric
rotation of the MOSAs, i.e., θ ¼ ϕ. We have also calculated
the asymmetric case with one MOSA fixed, and it gives a
similar result with no changes in the order of magnitude
and hence omitted here.
Finally, we point out that the common acceleration SG is

in the order of 10−13 m=s2 (see Fig. 8). Note that the control
acceleration has zero values along the satellite’s z-axis due
to the condition c) mentioned earlier. In the Appendix,
orbital calculations with this acceleration added reveal
negligible deviations from pure gravity orbits over three
months, thus validating the assumption made in Sec. II A.

B. Estimated electrostatic torques

For the inter-satellite measurements, the TMs need to be
rotated with the satellite and MOSAs. Therefore, electro-
static control torques are applied to maintain the nominal
attitudes of the TMs. The Euler’s rotation equations for the
TMs are given by

OAl ˙ω⃗TMl
¼ I−1TMl

�OAlM⃗c;l þ OAlM⃗dis;l

�

− I−1TMl

�
OAlω⃗TMl

× ðITMl
OAlω⃗TMl

Þ�: ð32Þ

The terms OAlM⃗c;l and
OAlM⃗dis;l are the control torques and

the disturbance torques. The terms OAlω⃗TMl
and OAl ˙ω⃗TMl

are the angular velocity and acceleration of TMl in theOAl
framewith respective to the I frame, which can bewritten as

OAlω⃗TMl
¼ TOAl

S
Sω⃗S þ OAlω⃗OAl

þ OAlω⃗l; ð33Þ

and

OAl ˙ω⃗TMl
¼ TOAl

S
S ˙ω⃗S − OAlω⃗OAl

× ðTOAl
S

Sω⃗SÞ
þ OAl ˙ω⃗OAl

þ OAl ˙ω⃗l: ð34Þ

Similar to the case of the nominal control accelerations, the
relative angular velocities OAlω⃗l and accelerations OAl ˙ω⃗l
between TMs and their EHs, and the disturbance torques
should all be zero. Hence, the equations for the nominal
electrostatic control torques read

OAlM⃗c;l ¼ ITMl

�OAl ˙ω⃗S − OAlω⃗OAl
× OAlω⃗S þ OAl ˙ω⃗OAl

�

þ ðOAlω⃗S þ OAlω⃗OAl
Þ × ITMl

OAlω⃗S

þ ðOAlω⃗S þ OAlω⃗OAl
Þ × ITMl

OAlω⃗OAl
: ð35Þ

The above equations have no dependence on the positions of
the EH centers and MOSA pivots, since the nominal
attitudes are only determined by the orbits of the CoM of

FIG. 7. The nominal electrostatic control acceleration required
for the two TMs in the science mode.
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the satellites in our treatment (see Sec. II C). We can convert
the torques to the angular accelerations, which are more
convenient for comparing with the requirements. The
electrostatic angular accelerations on the TMs over three
months are shown in Fig. 9. It can be seen that the maximum
angular acceleration for the two TMs is less than
10−12 rad=s2, which are well below the requirement.

C. Optimizing test mass placement

In the two previous subsections, calculations have been
performed to determine the nominal electrostatic forces and
torques on the two TMs. This subsection aims to find an
optimal TM layout that minimizes the nominal control
forces, providing a reference for the key payload and
satellite design.
Since the two TMs are symmetrically positioned relative

to the X⃗S-Z⃗S plane and are subject to similar dynamical
environment, we focus on TM1 and show its results in the
following analysis. TM1 can be placed within the range
YS ∈ ½0; 50� cm, XS ∈ ½−50; 50� cm, and ZS ∈ ½−20; 20� cm
in the S frame. The TM positions are sampled at 5 cm
intervals along YS and XS, and sampled at 10 cm intervals
along ZS. The control accelerations at these positions are
calculated and compared to identify the optimal position.
The dependence of the maximum (absolute) nominal TM

control accelerations during three months on the TM1

position are demonstrated in Fig. 10. The plots show that
the control accelerations remain nearly invariant with the
TM positions shifting along the X⃗S. This is related to the
fact that the sensitive axes of the TMs are not actuated.
Furthermore, as the TM separation increases, i.e., shifting
along Y⃗S, the differential gravitational acceleration grows,
thereby augmenting the electrostatic control acceleration.
However, it is still well below the requirement within a
separation up to 1 m. In the case of placement along Z⃗S, the

differential gravitational acceleration remains nearly con-
stant, but the inertial acceleration varies slightly, resulting
in a small elevation of the electrostatic acceleration when
moving away from Z⃗S ¼ 0. To summarize, electrostatic
control along the TM nonsensitive axes prefer shortening
the TM separation, but generally it does not import strong
limitation on the TM placement for TianQin, if one
disregards the effect of self-gravity.
Nevertheless, the TM placement along the X⃗S axis can

make a difference for the satellite control. As Fig. 11
shows, the required satellite acceleration (jSG⃗j) to follow
TMs is minimized when both CoMs of the TMs are placed
in the XS axis, i.e., being collinear and equidistant with the
satellite CoM. This is important for saving fuel during the
science observation.

D. Optimizing MOSA pivot placement

We further examine the dependence of the maximum
(absolute) nominal TM/satellite control accelerations dur-
ing three months on the MOSA pivot positions. The pivot
positions are sampled at 1 cm intervals within a range of
½−50; 50� cm, relative to the EH center along the sensitive
axes X⃗OAl

, and the TMs are separated by 40, 50, and 60 cm

FIG. 8. The control acceleration required on the satellite, which
is to be achieved by micropropulsion.

FIG. 9. The nominal electrostatic angular accelerations of the
two TMs in the science mode for three months.
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and aligned with the satellite CoM Since the electrostatic
control OAlA⃗c;l occurs predominantly along Y⃗OAl

, we only
show the results in the these directions of the TMs, and for
the satellite we show the magnitude of the control accel-
eration, all in Fig. 12. From the plot, we note that TM2

reaches its minimum value at a pivot position different from
TM1. This is owing to that the control accelerations of the
two TMs are different as shown in Eqs. (29) and (30).
Therefore one can find a pivot position to minimize the
averaged maximum control accelerations of the two TMs.
Thus the position of approximately 10 cm ahead of the EH
center is advisable. Moreover, the asymmetrical V-shaped
general trend is similar for different TM separations and for
the satellite.
To help confirm the results, we can further compare the

time evolutions of the electrostatic control accelerations of
TM1 for two different pivot positions with a 40 cm TM
separation (see Fig. 13). The plot and calculation show that
both the maximum absolute value and the root mean square
of the control acceleration are greater when the pivot is at
the origin than when the pivot is displaced 13 cm forward.
It indicates that the inertial accelerations resulting from the
pivot deviating from the EH center can help to offset the
gravity gradient [see Eq. (25)]. This design is beneficial for
counterbalancing the heavy telescope at the front part of
the MOSA.

IV. NOMINAL ATTITUDE CONTROL OF
SATELLITES

This section calculates the nominal control forces and
torques that are required to maintain the satellites’ drag-free
orbits and nominal attitudes. This is done with time-varying
SRP on the flat-top sunshields of the satellites, and we omit
the effect of MOSA rotation on the satellite dynamics [34]

FIG. 11. The dependence of the maximum nominal satellite
control accelerations (jSG⃗j) during three months on the TM1

position.

FIG. 10. The dependence of the maximum nominal TM control
accelerations during three months on the TM1 position. The
upper plot shows the Y⃗OA1

component, and the lower the Z⃗OA1

component.

FIG. 12. The dependence of maximum nominal control accel-
erations of the TMs and satellite on the pivot positions, with
different TM separations (40 cm, 50 cm, 60 cm).
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which is estimated to be negligible. Then, the Kuhn-Tucker
algorithm [39] is employed to allocate thrust to individual
nozzles. The process is considered successful if positive-
value solutions can be found. Moreover, we search for
optimized nozzle orientations that can lower the average
thrust output, i.e., fuel consumption. Also the assessment is
performed for a total period of four months (e.g., 2034/5/
24–2034/9/22) by adding 15-day margins before and after
three-month observation windows.

A. Estimated total thrusts and torques

Micro-Newton thrusters are used to offset no-
gravitational forces and steer the satellites in the desired
orbits and attitudes. The main sources of disturbances are
the SRP and the thermal radiation emitted by the satellites
themselves. The satellites’ nominal orbits and attitudes,
along with the Sun’s position and simulated satellite
temperatures (e.g., ∼40 °C at the sunshields [33], see also
Table III), are combined to estimate the total thrusts and
torques required for four months. The typical result is
shown for one satellite in Fig. 14. The plots for the other
two satellites are quite similar and hence omitted here.
It can be seen from the plots that except along the

Z⃗S-direction, the variations of the thrusts and torques has
the same period of the orbit (3.6 days). This is due to the
fact that with the telescopes aiming at other satellites, the
X⃗S-axis of the satellite is always Earth-pointing and hence
the satellite rotates at the same rate with the orbit. In
addition, the variations are modulated by the slow-varying
solar angle with respect to the constellation plane.

B. Thrust allocations

Thruster layout affects thrust allocation among the
nozzles. The two preliminary configurations have been

given in Sec. II D and Fig. 6. Note that the satellites lack
thrusters pointing in the −Z⃗S direction. Instead, the SRP
can be used as a virtual thruster to work jointly with the
others [40]. Under this constraint and thruster configura-
tions, we can use the Kuhn-Tucker optimization algorithm
to determine the availability of positive-value solutions for
various nozzle orientations.
To represent nozzle orientations, we use pitch and yaw

angles defined in a coordinate system where the x-axis
aligns with the outward normal of the side panel, and the
z-axis aligns with the satellite’s Z⃗S-axis, with y-axis to
complete the right-hand system (see Fig. 6). By rotating
around the y-axis with the pitch angle and then around
z-axis with the yaw angle, one obtains the directional vector
of one nozzle. The two nozzles of the same cluster are
mirror-symmetric with respect to the x–z plane. The
parameter space falls within the range of (0°, 90°) for both
pitch and yaw.
By exhausting the parameter space with an step size of

1°, we have identified the selectable range of nozzle angles
that can generate positive thruster outputs over four

FIG. 13. The control accelerations of TM1 for different pivot
positions (0 cm, 13 cm) with a 40 cm TM separation for three
months.

FIG. 14. Estimated total thrust and torque for one TianQin
satellite to maintain the drag-free orbit and nominal attitude.
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months. The result is shown in Fig. 15, with the vertical
scale denoting the average thrust calculated from all eight
nozzles.
According to the result, the nozzle orientation with the

least variation and average thrust is obtained at a 51° pitch

and a 81° yaw for the four-cluster design. The case of the
three-cluster design yields the same optimized orientations.
The corresponding thrust variations of the nozzles are
shown Fig. 16. The plots show that the four-cluster
configuration has narrower output ranges and a less average
thrust than the three-cluster configuration. Both designs can
fulfill the TianQin requirements, which warrants further
trade-offs. In addition, to avoid plume impingement, the
yaw angle can be relaxed down to 68° without altering the
average thrust (see Fig. 15).

V. CONCLUSION AND DISCUSSION

In this paper, we have assessed the applicability of the
two TMs and telescope pointing scheme to the TianQin
mission under the geocentric perturbed orbits and orbital
gravity gradients, and also optimized certain basic
mechanical parameters for a better adaptation. This is done
by estimating the required electrostatic control forces and
toques on the TMs and comparing them with the allowed
maximum values, and by finding thrust allocation solutions
for the satellite DFAC under the constraint of the satellite
configuration and varying solar angles. The estimations
are based on the geometric relation of the orbit-attitude
coupling and can work through without the need of
detailed control algorithms. Two main conclusions can
be drawn here.
(1) The required electrostatic control accelerations and

angular accelerations for the TM suspension control
along the nonsensitive axes are estimated at
∼10−13 m=s2 and ∼10−13 rad=s2, respectively,
which are well below the requirements from the
acceleration noise budget. Moreover, their magni-
tudes and the required total thrust on the satellite can
be minimized by configuring the CoMs of the two
TMs and the satellite symmetrically in syzygy, and
by offsetting the MOSA pivot from the EH center
forward along the sensitive axis by ∼10 cm. This
pivot offsetting is found to be effective in having the
inertial acceleration and the gravity gradient accel-
eration partially cancel each other.

(2) Both the three-cluster and four-cluster configura-
tions of the microthrusters are capable of sustaining
the drag-free orbits and the nominal attitudes
of the satellites for consecutively four months of
science observation. A combination of a 51° pitch
angle and 68–81° yaw angles of the thrust direction
relative to the installation panel has been identified
to yield smallest average thrust and thrust var-
iations.

As no principle issues are identified, the findings support
adopting the two TMs and telescope pointing scheme as the
current baseline for TianQin, also given that the scheme has
become more mature technologically than other options.
The analyses also provide useful reference to the system
design of the MOSA and satellite. For future works, the

FIG. 15. Selectable nozzle orientations for the four-cluster
configuration with corresponding mean thrusts of the eight
nozzles averaged for four months. The red dots mark optimized
nozzle orientations.

FIG. 16. The thrust variations over four months, allocated for
the four-cluster and three-clusters configurations, and with the
optimized nozzle orientation at a 51° pitch and a 81° yaw.
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dynamic model (TQDYN) should be further extended to
include, e.g., the self-gravity from the satellite, and
an integration with high-precision orbit propagation
(TQPOP, [41]) and the split interferometry (TQTDI, [42])
is also of great interest to the mission (see, e.g., [31]).
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APPENDIX: ESTIMATION
OF ORBIT DEVIATION

The deviation from pure-gravity orbits due to DFAC is a
factor that needs to be considered in the orbit propagation.
LISA has made relevant estimates on the constellation
stability [43,44]. To evaluate the magnitude of the deviation
for TianQin, we use the following equation describing the
relative motion between the drag-free controlled satellite
and an ideally free-falling satellite:

S ̈R⃗SC ≈ SA⃗c;S þ ΓS
SR⃗SC − Sω⃗S × ðSω⃗S ×

SR⃗SCÞ
− 2Sω⃗S ×

S ˙R⃗SC − S ˙ω⃗S ×
SR⃗SC: ðA1Þ

It approximates the differential gravitational acceleration
between the actual satellite and its ideal position by using

the gravity gradient ΓS at the latter position. The terms
SR⃗SC,

S ˙R⃗SC, and
S ̈R⃗SC describe the relative state of the actual

satellite from its ideal state. The term SA⃗c;S is the external

acceleration provided by thrusters, and equal to SG⃗ in the
Eq. (31), and the next three terms corresponding to the
inertial acceleration caused by the moving S frame.
The result is shown in Fig. 17. The satellite’s deviation

from its ideally free-falling orbit over a three-month period
is in the order of meters. Although the real deviation may be
larger due to self-gravity, this deviation is negligible in
regard of the constellation stability and nominal attitude
variations of the satellites.
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