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We present a calculation of the spin alignment for unflavored vector mesons in thermalized quark-gluon
plasma based on the Kubo formula in linear response theory. This is achieved by expanding the system to the
first order of the coupling constant and the spatial gradient. The effect strongly relies on the vector meson’s
spectral functions which are determined by the interaction andmedium properties. The spectral functions are
calculated for the one-quark-loop self-energy with meson-quark interaction. The numerical results show that
the correction to the spin alignment from the thermal shear tensor is of the order 10−4 ∼ 10−5 for the chosen
values of quark-meson coupling constant, if the magnitude of thermal shear tensor is 10−2.
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I. INTRODUCTION

Rotation and spin polarization are inherently connected
and can be converted to each other as demonstrated in the
Barnett effect [1] andEinstein-deHaas effect [2] inmaterials.
The samephenomenonknownasglobal polarization can also
exist in peripheral heavy-ion collisions at high energies in
which the huge orbital angular momentum is partially
distributed into the strong interaction matter in the form of
particles’ spin polarization [3–7]. The global polarization of
hyperons has been observed in experiments [8,9] and been
extensively studied in recent years [10–15].
Unlike the spin polarization of hyperons that can be

measured through their weak decay, vector mesons can only
decay by strong interaction which respects parity symmetry,
which makes their spin polarization inaccessible in experi-
ments. For spin-1 vector mesons, the only spin observables
that can be measured are some elements of the spin density
matrix ρλ1λ2 with λ1 and λ2 denoting spin states along the spin
quantization direction. One of them is ρ00 that can be
measured through the decay daughter’s polar angle distri-
bution in the rest frame of the vector meson. If ρ00 is not 1=3,
it means that the spin-0 state is not equally occupied among
three spin states, which is called the spin alignment. The
global spin alignment in heavy-ion collisions was first

suggested by Liang and Wang [16]. The global spin align-
ments of ϕ and K�0 mesons were first measured by STAR
collaboration in Auþ Au collisions

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV in
2008 [17], but no signals were found.With the accumulation
of experimental data, STAR Collaboration finally found a
large spin alignment for ϕ mesons in Auþ Au collision at
lower energies but not for K�0 [18].
Such a large spin alignment for ϕmesons cannot be fully

accounted by conventional mechanism [19–23]. Some of us
proposed that local fluctuations of vector fields in strong
interaction may give a large deviation of ρ00 from 1=3 for ϕ
mesons [24]. Such a prediction was made in a nonrelativ-
istic quark coalescence model [19,25] that works for static
or nearly static mesons in principle. Such a nonrelativistic
quark coalescence model has been promoted to a relativistic
version [26,27] based on quantum transport theory [28–31]
with the help of covariant Wigner functions for massive
particles [32–39] and matrix valued spin-dependent distri-
butions [40,41]. With fluctuation parameters of strong
interaction fields extracted from transverse momentum-
integrated data for ρ00 as a function of the collision energy,
the calculated transverse momentum dependence of ρ00
agrees with STAR’s data for ϕ mesons [18]. The rapidity
dependence of ρ00 has also been predicted with same
parameters before preliminary data of STAR was released:
the main feature of the data can be described by the
theoretical result [42]. For recent reviews on the spin align-
ment of vector mesons, see, e.g., Refs. [43–45].
Recently, the contribution from the thermal shear tensor to

the spin alignment of the vector meson has been calculated
using the linear response theory [46] and kinetic theory [47].
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The authors of Ref. [46] argued that this contribution is quite
large based on an estimate of the energy shift andwidth of the
vector meson in medium without really calculating them.
This work was inspired by Refs. [48–52] pointing out that
there is a coupling between the spin polarization and the
thermal shear tensor which can partially resolve the local
polarization puzzle of Λ hyperons.
In this paper, we will calculate the spin alignment of

vector mesons from the Kubo formula in linear response
theory [53–56] in thermalized quark-gluon plasma (QGP).
Vector mesons are assumed to be thermalized, and quarks
and antiquarks are assumed to be unpolarized. The inter-
action is described by the vertex between vector meson and
quark-antiquark [57–60]. In Sec. II, we present two-point
Green’s functions of different kinds for vector mesons in the
closed-time-path (CTP) formalism [28–31,61,62]. In
Sec. III, we give an introduction on spin density matrices
for vector mesons from Wigner functions. In Sec. IV, we
present the Dyson-Schwinger equation for retarded Green’s
functions. We give the expression for retarded self-energies
of vector mesons from one-quark-loop. In Sec. V, we give
the general form of spectral functions in medium for vector
mesons from retarded Green’s functions. In Sec. VI, we use
the Kubo formula in the linear response theory [53–56] to
calculate the correction to the two-point Green’s function
proportional to the thermal shear tensor. From it we are able
to calculate the correction to ρ00 in Sec. VII. We adopt the
hard-thermal-loop (HTL) [29,63–67] and quasiparticle
approximations [68] to calculate spectral functions. The
HTL approximation provides a toy model to illustrate the
physics inside this problem sincewe have analytical formula
for spectra functions. Then we consider a more realistic
quasiparticle approximation for spectral functions. Under a
few approximations or assumptions, we obtain an analytical
expression for the correction to ρ00, which depends on the
width and energy shift from the self-energy. The numerical
results for the tensor coefficients in the correction to ρ00 are
presented. The conclusion and discussion are given in
Sec. VIII.
In this paper, we adopt following notational conventions:

gμν ¼ diagð1;−1;−1;−1Þ where μ, ν ¼ 0, 1, 2, 3, xμ¼
ðx0;xÞ¼ðx0;xÞ, x ·y¼xμyμ, xðμyνÞ ¼ ð1=2Þðxμyν þ xνyμÞ,
ℏ ¼ kB ¼ 1. Greek letters denote components of four-vectors
while lowercaseLatin letters as subscripts denote components
three-vectors. The four-momentum pμ is not necessarily on-
shell unlesswe add an index “on.”The summation of repeated
indices is implied if not stated explicitly. The definition of
two-point Green’s functionsG andΣ in this paper differs by a
factor i ¼ ffiffiffiffiffiffi

−1
p

from the usual one in quantum field theory,
which are related by G ¼ iG̃ and Σ ¼ iΣ̃.

II. TWO-POINT GREEN’S FUNCTIONS

In this section we will give an introduction to two-point
Green’s functions for vector mesons on the CTP as shown

in Fig. 1. The CTP formalism is a field-theory based method
for many-body systems in off-equilibrium as well in equi-
librium [28–31,61,62]. When it is used for systems in equi-
librium, it is actually the real time formalism of the thermal
(finite temperature and density) field theory [56,69]. Wigner
functions can be obtained from two-point Green’s functions
and are related to spin density matrices, which will be
addressed in the next section. We refer the readers to
Section II.2 of Ref. [70] for a very brief introduction to
two-point Green’s functions on the CTP.
The Lagrangian density for unflavored vector mesons

with spin-1 and mass mV reads

L ¼ −
1

4
FμνFμν þm2

V

2
AμAμ − Aμjμ: ð1Þ

where AμðxÞ is the real vector field for the meson, Fμν ¼
∂μAν − ∂νAμ is the field strength tensor, and jμ is the source
coupled to AμðxÞ.
The two-point Green’s function on the CTP is defined as

Gμν
CTPðx1; x2Þ ¼ hTCAμðx1ÞAν†ðx2Þi; ð2Þ

where h� � �i denotes the ensemble average and TC denotes
time order operator on the CTP contour. Depending on
whether the field Aμ lives on the positive or negative time
branch, we have four components Gμν

CTP,

Gμν
F ðx1; x2Þ≡Gμν

þþðx1; x2Þ
¼ θðt1 − t2ÞhAμðx1ÞAνðx2Þi
þ θðt2 − t1ÞhAνðx2ÞAμðx1Þi;

Gμν
< ðx1; x2Þ ¼ Gμν

þ−ðx1; x2Þ ¼ hAνðx2ÞAμðx1Þi;
Gμν

> ðx1; x2Þ ¼ Gμν
−þðx1; x2Þ ¼ hAμðx1ÞAνðx2Þi;

Gμν
F̄ ðx1; x2Þ≡Gμν

−−ðx1; x2Þ
¼ θðt2 − t1ÞhAμðx1ÞAνðx2Þi
þ θðt1 − t2ÞhAνðx2ÞAμðx1Þi: ð3Þ

From the constraint Gμν
F þ Gμν

F̄ ¼ Gμν
< þ Gμν

> , only three of
them are independent. In the so-called physical represen-
tation [28,71,72], three independent two-point Green’s
functions are

FIG. 1. Illustration of the closed-time-path upon which the
nonequilibrium quantum field theory is built.
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Gμν
R ðx1; x2Þ ¼ ðGμν

F − Gμν
< Þðx1; x2Þ

≈ θðt1 − t2ÞðGμν
> −Gμν

< Þðx1; x2Þ;
Gμν

A ðx1; x2Þ ¼ ðGμν
F − Gμν

> Þðx1; x2Þ
≈ θðt2 − t1ÞðGμν

< −Gμν
> Þðx1; x2Þ;

Gμν
C ðx1; x2Þ ¼ Gμν

> ðx1; x2Þ þ Gμν
< ðx1; x2Þ; ð4Þ

where the subscripts “A” and “R” denote the advanced and
retarded Green’s function respectively. The two-point
Green’s functions in Eqs. (3)–(4) can be used to express
any two-point functions defined on the CTP contour such
as the self energy Σμνðx1; x2Þ. When dealing with the
vacuum contributions to Gμν

R;A, the last equalities in the
first and second line of Eq. (4) do not exactly hold since a
singular term ∼δðt1 − t2Þ is missing.

III. WIGNER FUNCTIONS AND SPIN
DENSITY MATRICES

In this section, we will introduce how one can obtain spin
density matrices for vector mesons from Wigner functions.
We refer the readers to some recent reviews [45,73] for
details of the topic.
The second quantization of the vector field is in the form

AμðxÞ ¼
X

λ¼0;�1

Z
d3p
ð2πÞ3

1

2EV
p

× ½ϵμðλ;pÞaðλ;pÞe−ipon·x þ ϵμ�ðλ;pÞa†ðλ;pÞeipon·x�;
ð5Þ

where pμ
on ¼ ðEV

p;pÞ is the on-shell momentum of the

vector meson, EV
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

V

p
is the vector meson’s

energy, λ denotes the spin state, aðλ;pÞ and a†ðλ;pÞ are
annihilation and creation operators respectively, and
ϵμðλ;pÞ≡ ϵμðλ; ponÞ represents the polarization vector
obeying the following relations

pμ
onϵμðλ; ponÞ ¼ 0;

ϵðλ; ponÞ · ϵ�ðλ0; ponÞ ¼ −δλλ0 ;X
λ

ϵμðλ; ponÞϵν;�ðλ; ponÞ ¼ −ΔμνðponÞ; ð6Þ

where ΔμνðpÞ ¼ gμν − pμpν=p2 is the projector
perpendicular to pμ. One can check that the quantum field
Aμ defined in Eq. (5) is Hermitian, Aμ ¼ Aμ†.
The Wigner function can be defined from G<

μνðx1; x2Þ [or
equivalently G>

μνðx1; x2Þ] by taking a Fourier transform
with respect to the relative position y ¼ x1 − x2,

G<
μνðx; pÞ≡

Z
d4yeip·yG<

μνðx1; x2Þ

¼
Z

d4yeip·yhA†
νðx2ÞAμðx1Þi: ð7Þ

Inserting the quantized field (5) into the definition of the
Wigner function (7), we obtain

Gð0Þ<
μν ðx; pÞ ¼ 2π

X
λ1;λ2

δðp2 −m2
VÞ

× fθðp0Þϵμðλ1;pÞϵ�νðλ2;pÞfð0Þλ1λ2
ðx;pÞ

þ θð−p0Þϵ�μðλ1;−pÞϵνðλ2;−pÞ
× ½δλ2λ1 þ fð0Þλ2λ1

ðx;−pÞ�g; ð8Þ

where the superscript “(0)” denotes the leading order con-
tribution in ℏ or gradient expansion, and the MVSD [40,41]
at the leading order for the vector meson is defined as

fð0Þλ1λ2
ðx;pÞ≡

Z
d4u

2ð2πÞ3δðp ·uÞ

×e−iu·x
�
a†V

�
λ2;p−

u
2

�
aV

�
λ1;pþ

u
2

��
: ð9Þ

Note that fð0Þλ1λ2
ðx;pÞ is actually the (unnormalized) spin

density matrix ρλ1λ2 , which can be decomposed into the
scalar, polarization (Pi) and tensor polarization (Tij) parts
as [45,73]

fð0Þλ1λ2
¼ Trðfð0ÞÞ

�
1

3
þ 1

2
PiΣi þ TijΣij

�
λ1λ2

; ð10Þ

where i, j ¼ 1, 2, 3, Trðfð0ÞÞ ¼Pλ f
ð0Þ
λλ , and Σi and Σij are

3 × 3 traceless matrices defined as

Σ1 ¼
1ffiffiffi
2

p

0
B@
0 1 0

1 0 1

0 1 0

1
CA; Σ2 ¼

1ffiffiffi
2

p

0
B@
0 −i 0

i 0 −i
0 i 0

1
CA;

Σ3 ¼

0
B@
1 0 0

0 0 0

0 0 −1

1
CA; Σij ¼

1

2
ðΣiΣjþΣjΣiÞ−

2

3
δij: ð11Þ

Let us define an integrated or on-shell Wigner function

Wμνðx; ponÞ ¼
Ep

π

Z
∞

0

dp0G
μν
< ðx; pÞ

¼
X
λ1;λ2

ϵμðλ1;pÞϵν�ðλ2;pÞfλ1λ2ðx;pÞ: ð12Þ
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It is easy to check that the second equality holds for the

leading order Wigner functionGð0Þ<
μν ðx; pÞ given by Eq. (8).

But we assume that it hold at any order. One can check that
Wμνðx; ponÞ is always transverse to the on-shell momen-
tum, pon

μ Wμνðx; ponÞ ¼ 0. The on-shell Wigner function
can be decomposed into the scalar (S), polarization (W½μν�)
and tensor polarization (T μν) parts as [45,73]

Wμνðx; ponÞ ¼ W½μν� þWðμνÞ

¼ −
1

3
ΔμνðponÞS þW½μν� þ T μν; ð13Þ

where each part is defined as

W½μν� ≡ 1

2
ðWμν −WνμÞ;

WðμνÞ ≡ 1

2
ðWμν þWνμÞ;

T μν ≡WðμνÞ þ 1

3
ΔμνðponÞS: ð14Þ

With Eq. (13) one can show that both W½μν� and T μν are
traceless, gμνW½μν� ¼ gμνT μν ¼ 0. Inserting Eq. (10) into
Eq. (12), we have

S ¼ TrðfÞ ¼ −ΔμνðponÞWμν;

W½μν� ¼ 1

2
TrðfÞ

X
λ1;λ2

ϵμðλ1;pÞϵν�ðλ2;pÞPiΣi
λ1λ2

;

T μν ¼ TrðfÞ
X
λ1;λ2

ϵμðλ1;pÞϵν�ðλ2;pÞTijΣ
ij
λ1λ2

: ð15Þ

We see thatW½μν� is related to Pi while T μν is related to Tij.
We can extract f00 ∝ ρ00 by projecting

LμνðponÞ ¼ ϵμ;�ð0;pÞϵνð0;pÞ þ 1

3
ΔμνðponÞ; ð16Þ

onto Wμν in Eq. (12) as

LμνðponÞWμν¼
X
λ1;λ2

LμνðponÞϵμðλ1;pÞϵν�ðλ2;pÞfλ1λ2ðx;pÞ

¼f00ðx;pÞþ
1

3

X
λ1;λ2

ϵμðλ1;pÞϵ�μðλ2;pÞfλ1λ2ðx;pÞ

¼f00ðx;pÞ−
1

3
TrðfÞ: ð17Þ

In (16), ϵμð0;pÞ is the polarization vector along the spin
quantization direction. With the first line of Eq. (15) and
Eq. (17), we obtain

LμνðponÞWμν

−ΔμνðponÞWμν
¼ f00ðx;pÞ

Tr½fðx;pÞ� −
1

3
¼ ρ00 −

1

3
: ð18Þ

The above formula relates the Wigner function to ρ00,
which we will use to calculate the correction to ρ00 in
Sec. VII.

IV. DYSON-SCHWINGER EQUATION ON CTP

In this section we will give an introduction to the Dyson-
Schwinger equation (DSE) on the CTP which incorporates
retarded and advanced self-energies to be used for spectral
functions in the next section.
We start from the integral form of the Dyson-Schwinger

equation (DSE) on the CTP for the vector meson [27,74]

Gμνðx1; x2Þ ¼ Gμν
ð0Þðx1; x2Þ

þ
Z
C
dx01dx

0
2G

μ
ð0Þ;ρðx1; x01Þ

× Σρ
σðx01; x02ÞGσνðx02; x2Þ; ð19Þ

where dx01;2 ≡ d4x01;2,
R
C denotes the integral on the CTP

contour, Gμν
ð0Þ and Gμν are the bare and full propagator

respectively, and Σρσ is the self-energy. In Eq. (19) we have
suppressed the index “CTP” in two-point functions Gμν

ð0Þ,
Gμν and Σρσ. Contracting ðGμν

ð0ÞÞ−1 on both sides of Eq. (19)
and writing the DSE in the matrix form, we obtain

− i½gμρð∂2x1 þm2
VÞ− ∂

μ
x1∂

x1
ρ �
�
Gρν

F Gρν
<

Gρν
> Gρν

F̄

�
ðx1; x2Þ

¼
�
1 0

0 −1

�
gμνδð4Þðx1 − x2Þ

þ
Z

dx0
�Σμ

F;ρ −Σμ
<;ρ

Σμ
>;ρ −Σμ

F̄;ρ

�
ðx1; x0Þ

�
Gρν

F Gρν
<

Gρν
> Gρν

F̄

�
ðx0; x2Þ;

ð20Þ

where the integral over x02 is a normal one (not on the CTP).
Under a unitary transformation, Eq. (20) can be put into the
physical representation

− i½gμρð∂2x1 þm2
VÞ− ∂

μ
x1∂

x1
ρ �
�

0 Gρν
A

Gρν
R Gρν

C

�
ðx1; x2Þ

¼
�
0 1

1 0

�
gμνδð4Þðx1 − x2Þ

þ
Z

dx0
�

0 Σμ
A;ρ⋆G

ρν
A

Σμ
R;ρ⋆G

ρν
R Σμ

C;ρ⋆G
ρν
A þΣμ

R;ρ⋆G
ρν
C

�
ðx1; x2Þ;

ð21Þ

where we used the shorthand notation O1⋆O2ðx1; x2Þ≡
O1ðx1; x0ÞO2ðx0; x2Þ. We can assume the system is iso-
tropic, i.e. Gμνðx1; x2Þ ¼ Gμνðx1 − x2Þ, and the spatial
inhomogeneity of the system, as required by the Kubo
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formula, is induced by a perturbation. One can obtain the
Dyson-Schwinger equation for retarded and advanced
Green’s functions in momentum space (propagators)

i½gμρðp2 −m2
VÞ − pμpρ�Gρν

A=RðpÞ
¼ gμν þ Σμ

A=R;ρðpÞGρν
A=RðpÞ: ð22Þ

The free retarded and advanced propagators are given by

Gρν
ð0ÞA=RðpÞ ¼ −i

1

p2 −m2
V ∓ ip0ϵ

�
gμν −

pμpν

m2
V

�
: ð23Þ

One can check that Gρν
ð0ÞA=RðpÞ satisfies Eq. (22) neglecting

the last term in the right-hand-side.
The coupling between the vector meson and quark-

antiquark in QGP or the q̄qV vertex is assumed to be
gVBψ̄qγ

μψqAμ [57–60]. Here B denotes the Bethe-Salpeter
wave function and can be parametrized as [75,76]

Bðp − p0; p0Þ ¼ 1 − exp ½−ðp − 2p0Þ2=σ2�
ðp − 2p0Þ2=σ2 ; ð24Þ

where p − p0 and p0 are momenta of the quark and
antiquark respectively. We see that the wave function only
depends on the relative momentum.
We can assume that only when the distance between the

quark and antiquark is zero can they form a meson, thus we
have 1=σ → 0 and B ¼ 1. Then the vector meson’s self-
energy to the lowest order of the coupling constant gV from
the quark one-loop is shown in Fig. (2). Applying Eq. (4),
we can construct retarded and advanced self-energies as

Σμν
R ðx1; x2Þ ¼ Σμν

F ðx1; x2Þ − Σμν
< ðx1; x2Þ

¼ g2VTr½γμSFðx1; x2ÞγνSFðx2; x1Þ�
− g2VTr½γμS<ðx1; x2ÞγνS>ðx2; x1Þ�;

Σμν
A ðx1; x2Þ ¼ Σμν

F ðx1; x2Þ − Σμν
> ðx1; x2Þ

¼ g2VTr½γμSFðx1; x2ÞγνSFðx2; x1Þ�
− g2VTr½γμS>ðx1; x2ÞγνS<ðx2; x1Þ�; ð25Þ

where Sðx1; x2Þ ¼ hTCψðx1Þψ̄ðx2Þi is the two-point
Green’s function of quarks on the CTP. We have included
a negative sign for the quark loop in Eq. (25). Under the
assumption that the system is homogeneous in position
space, we obtain self-energies in momentum space

Σμν
R ðpÞ ¼ g2V

Z
d4k
ð2πÞ4 fTr½γ

μSFðkÞγνSFðk − pÞ�

− Tr½γμS<ðkÞγνS>ðk − pÞ�g:

Σμν
A ðpÞ ¼ g2V

Z
d4k
ð2πÞ4 fTr½γ

μSFðkÞγνSFðk − pÞ�

þ Tr½γμS>ðkÞγνS<ðk − pÞ�g; ð26Þ

The retarded self-energy is our starting point for derivation
of spectral functions for vector mesons.

V. SPECTRAL FUNCTIONS
FOR VECTOR MESONS

In this section, we will derive spectral functions for
vector mesons from the retarded self-energy. We use the
CTP formalism in grand-canonical equilibrium which is
also called the real time formalism of the thermal field
theory. The vacuum and thermal equilbrium contributions
are incorporated in the same framework. We assume that
quarks and antiquarks are unpolarized and their distribu-
tions are the Fermi-Dirac distribution (A2).
Evaluating the retarded self-energy in Eq. (26) using the

quark propagators in Appendix A, we obtain

Σμν
R ðpÞ ¼ −ig2V

1

4π3
ð2Iμν1 þ Iμν2 Þ − ig2VI

μν
vac; ð27Þ

where Iμν1 and Iμν2 are medium parts while Iμνvac is the vacuum
part. The derivation of Iμν1 , Iμν2 , and Iμνvac are presented in
Appendix B. From Eq. (B10) we have

Σ0i
R ðpÞ ¼ Σi0

R ðpÞ ¼ p̂i
p0

jpjΣ
00
R ðpÞ;

Σij
RðpÞ ¼ p̂ip̂j

p2
0

jpj2 Σ
00
R ðpÞ þ ðδij − p̂ip̂jÞΣ⊥ðpÞ; ð28Þ

where Σ⊥ðpÞ denotes the transverse part of Σij
RðpÞ. Using

above relations, we can greatly simplify the result of full
propagators.
From Eq. (A1), one can see the only difference between

the retarded and advanced propagators is the sign of the
small positive number ϵ, so the retarded and advanced
propagators or self-energies are complex conjugate to each
other, Σμν

A ¼ −Σμν�
R (note that there is an i factor in the

definition of the self-energy). It can be checked that Σμν
R is

transverse to pμ as required by the current conservation. We
note that the vacuum contribution and its real part is
divergent and can be renormalized [68]. The imaginary

FIG. 2. The vector meson’s self-energy Σμνðx1; x2Þ from the
quark loop (one-loop) contribution.
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part of the vacuum contribution corresponds to the pair
production or annihilation processes.
Inserting Eq. (27) into Eq. (22) and introducing

Σ̃μν
R ðpÞ¼−iΣμν

R ðpÞ¼−g2V
1

4π3
ð2Iμν1 þ Iμν2 Þ−g2VI

μν
vac; ð29Þ

we obtain

½G−1
R ðpÞ�μν ¼ i½gμνðp2 −m2

VÞ − pμpν − Σ̃μν
R ðpÞ�: ð30Þ

From the definition of Iμν1;2, we find that they are written in
terms of projectors related to three momentum p.
Therefore, we assume Gμν

R has the same structure with
Σμν
R and can be written as

G00
R ¼ iA;

G0i
R ¼ Gi0

R ¼ ip̂iB;

Gij
R ¼ i½ðδij − p̂ip̂jÞCþ p̂ip̂jD�; ð31Þ

where A, B, C, D are functions of p and are not
independent since Gμν

≶ are transverse to pμ. By solving

ðG−1
R ÞμρGρν

R ¼ gμν, we find

A ¼ 1

m2
V

p2
0 −m2

V þ ðp2
0=jpj2ÞΣ̃00

R

p2 −m2
V þ ðp2=jpj2ÞΣ̃00

R

;

C ¼ 1

p2 −m2
V þ Σ̃⊥

; ð32Þ

where Σ̃⊥ ¼ −iΣ⊥. Other two functions B and D can be
expressed in terms of A and will be discussed later. We can
also define G̃μν

R;AðpÞ ¼ −iGμν
R;AðpÞ to remove the factor i in

the definition of Gμν
R;AðpÞ. The advanced full propagator

G̃μν
A can be obtained by G̃μν

A ¼ G̃μν�
R . It should be empha-

sized that this relation holds only for an unpolarized case.
We can construct Gμν

< from Gμν
A and Gμν

R as [54,72]

Gμν
< ðpÞ ¼ inBðp0Þ½G̃μν

R ðpÞ − G̃μν
A ðpÞ�

¼ −2nBðp0ÞImG̃μν
R ðpÞ; ð33Þ

where nBðp0Þ ¼ 1=ðeβp0−βμV − 1Þ is the Bose-Einstein
distribution with the inverse temperature β≡ 1=T and
the vector meson’s chemical potential μV (μV ¼ 0 for the
unflavored meson). Note that there is an i factor in the
definition of the propagator without tilde. From Eq. (33),
we find the real part of A, B, C, D have no contributions to
the spectral function, and the imaginary part of A, B, D
have following constraints from pμG

μν
< ¼ 0,

p0ImA − jpjImB ¼ 0;

p0ImB − jpjImD ¼ 0: ð34Þ

Inserting Eq. (31) into Eq. (33), one can obtain

Gμν
< ðpÞ ¼ −2nBðp0Þ½Δμν

T ρTðpÞ þ Δμν
L ρLðpÞ�; ð35Þ

or equivalently

ImG̃μν
R ðpÞ ¼ Δμν

T ρTðpÞ þ Δμν
L ρLðpÞ: ð36Þ

In Eqs. (35), (36), we defined

Δμν
T ¼ −gμ0gν0 þ gμν þ pμpν

jpj2 ;

Δμν
L ¼ Δμν − Δμν

T ≡ gμν −
pμpν

p2
− Δμν

T ; ð37Þ

as the transverse and longitudinal projector respectively
with pμ ¼ ð0;pÞ, and ρT;L are spectral functions in the
transverse and longitudinal directions given by

ρTðpÞ ¼ −ImC ¼ −Im
1

p2 −m2
V þ Σ̃⊥ðpÞ þ isgnðp0Þϵ

;

ρLðpÞ ¼ −
p2

jpj2 ImA

¼ −Im
1

p2 −m2
V þ p2

jpj2 Σ̃00ðpÞ þ isgnðp0Þϵ
; ð38Þ

where Σ̃⊥ and Σ̃00 are from Σ̃μν
R : Σ̃⊥ ≡ −ð1=2ÞΔT

μνΣ̃
μν
R and

Σ̃00 ¼ Σ̃00
R , sgnðp0Þ is the sign ofp0, and ε is an infinitesimal

positive number. One can check in Eq. (37) that
pμΔ

μν
T ¼ pμΔ

μν
L ¼ 0. In Eq. (38), one can verify that the

real parts of Σ̃⊥ and Σ̃00 contribute to the mass correction
while the imaginary parts of Σ̃⊥ and Σ̃00 determines the
width or life-time of the quasiparticle mode. For free

vector mesons, the spectral functions are ρð0ÞT ¼ ρð0ÞL ¼
πsgnðp0Þδðp2 −m2

VÞ, which giveGμν
< ðpÞ for the free vector

meson following Eq. (35) and ImG̃μν
R ðpÞ for the free vector

meson following Eq. (36).

VI. KUBO FORMULA IN LINEAR
RESPONSE THEORY

In this section we use the Kubo formula in linear
response theory to calculate the nonequilibrium correction
to Gμν

< ðpÞ. The Kubo formula has been derived in
Zubarev’s approach to nonequilibrium density operator
[55,77,78].
According to the Kubo formula, the linear response of

the expectation value of an operator Ô to the perturbation
∂μβν has the form
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hÔðxÞi¼hÔiLEþ∂μβνðxÞ lim
Kμ→0

∂

∂K0

×Im

�
iTðxÞ

Z
t

−∞
d4x0h½ÔðxÞ;T̂μνðx0Þ�iLEe−iK·ðx0−xÞ

�
;

ð39Þ

where hÔðxÞi≡ Tr½ρ̂ ÔðxÞ� and hÔðxÞiLE ≡ Tr½ρ̂LEÔðxÞ�
with ρ̂ and ρ̂LE being the nonequilibrium and local
equilibrium density operator respectively [78], βμðxÞ≡
uμðxÞ=TðxÞ with uμðxÞ and TðxÞ being the local velocity
and temperature respectively, Kμ is the momentum
roughly equals to π=L with L being the length of the
system, and

T̂μν ¼ F̂μ
αF̂

ανþm2
VÂ

μÂν− gμν
�
−
1

4
F̂ρηF̂

ρηþ 1

2
m2

VÂρÂ
ρ

�
;

ð40Þ

is the energy-momentum tensor for the vector field.
Detailed derivation of Eq. (39) is given in Ref. [78].
Now we set ÔðxÞ to be the operator corresponding

to Gμν
<

Ĝμν
< ðx; pÞ ¼

Z
d4yeip·yÂν

�
x −

y
2

�
Âμ

�
xþ y

2

�
; ð41Þ

which gives Gμν
< ¼ hĜμν

< ðx; pÞi. In Eqs. (40) and (41) we
explicitly show the “hat” on the field operator Âμ which we
have suppressed in Sec. II and III just to emphasize their
operator’s nature in the Kubo formula (39). When inserting
Eqs. (40) and (41) into Eq. (39), the vector field Âμ can be
approximated as the free field at the leading order in space-
time gradient, since ∂μβνðxÞ is already of the next-to-
leading order.
Substituting Ĝμν

< ðx; pÞ in (41) into Eq. (39), one obtains
the next-to-leading order term of Gμν

< as

δGμν
< ðx;pÞ≡ hĜμν

< ðx;pÞi− hĜμν
< ðx;pÞiLE

¼ 4T lim
Kμ→0

∂

∂K0

Im
Z

dp0
1dp

0
2

2π

nBðp0
1Þ− nBðp0

2Þ
p0
1 −p0

2 þK0 þ iϵ

× δ

�
p0 −

p0
1 þp0

2

2

�
∂γβλðxÞ

×
X

a;b¼L;T

ρaðp1Þρbðp2ÞIμνγλab ðp1; p2Þ ð42Þ

where p1 ¼ ðp0
1;p −K=2Þ, p2 ¼ ðp0

2;pþK=2Þ, nBðp0Þ
is the Bose-Einstein distribution defined after Eq. (33), and
ρL;T are given in Eq. (38). Note that integral ranges for p0

1;2

are different from Ref. [46]. The tensor Iμνγλab ðp1; p2Þ can be
expressed in terms of projectors Δμν

L;T as

Iμνγλab ðp1; p2Þ ¼ ðpλ
1p

γ
2 þ pγ

1p
λ
2ÞΔν

a;αðp1ÞΔμα
b ðp2Þ þ ðp1;αpα

2 −m2
VÞ½Δγν

a ðp1ÞΔμλ
b ðp2Þ þ Δλν

a ðp1ÞΔμγ
b ðp2Þ�

− ½pγ
1p

α
2Δν

a;αðp1ÞΔμλ
b ðp2Þ þ pγ

2p
α
1Δλν

a ðp1ÞΔμ
b;αðp2Þ� − ½p1;αpλ

2Δ
γν
a ðp1ÞΔμα

b ðp2Þ þ pλ
1p2;αΔαν

a ðp1ÞΔμγ
b ðp2Þ�

− gγλ½gβαðp2;ρp
ρ
1 −m2

VÞ − p1;βp2;α�Δαν
a ðp1ÞΔμβ

b ðp2Þ: ð43Þ

Then we integrate Eq. (42) over p0 from 0 to þ∞ to exclude the contribution from antiparticles. As we have mentioned
above, the limit Kμ → 0 should be taken in the last step, thus the integral of Eq. (42) can be simplified as

Z þ∞

0

dp0δG
μν
< ðx; pÞ ≈ 2Tξγλ

Z
∞

0

dp0
1

∂nBðp0
1Þ

∂p0
1

X
a;b¼L;T

ρaðp0
1;pÞρbðp0

1;pÞIμνγλab ðp0
1;p; p

0
1;pÞ; ð44Þ

where ξγλ ¼ ∂ðγβλÞ denotes the thermal shear tensor.
The spin alignment coupled with the thermal shear

tensor is given by

δρ00¼
LμνðponÞ

Rþ∞
0 dp0½G<

μνðx;pÞþδG<
μνðx;pÞ�

−ΔμνðponÞ
Rþ∞
0 dp0½G<

μνðx;pÞþδG<
μνðx;pÞ�

; ð45Þ

where G<
μνðx; pÞ is given in Eq. (35) while δG<

μνðx; pÞ is
given in (44), and LμνðponÞ is defined in Eq. (16). The
above formula is the starting point for us to evaluate the
correction to ρ00 from the shear stress tensor in the next
section.

We should note about the difference between the average
taken in G<

μνðx; pÞ given by Eq. (35) [as well as other
avarages in Sec. II] and the one taken in hĜμν

< ðx; pÞi in
Eq. (42). The local equilibrium average is implied for the
former, while the nonequilibrium average is implied for the
latter. For notational simplicity, we do not put “LE” index
to local equilibrium averages in this paper except in the
Kubo formula Eqs. (39) and (42).

VII. SPIN ALIGNMENT CORRECTION
FROM SHEAR TENSOR

In this section, we will calculate the spin alignment
correction from the shear tensor. To this end, we adopt two
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approximations to evaluate self-energies and spectral func-
tions of unflavored vector mesons: the HTL and quasipar-
ticle approximation.

A. HTL approximation

Under the HTL approximation, the external momentum
of the vector meson’s self-energy is of order gVT which is
called “soft” while the quark loop momentum is of order T
which is called “hard” [29,63–67]. This condition is not
satisfied for the real vector meson in the thermal environ-
ment at RHIC and LHC with p0 > mV ≫ T. The reason
that we still consider the HTL approximation is that the
self-energies in this approximation is analytical and the
calculation of the spin density matrix is transparent. In
other words, we treat the HTL approximation as a toy
model to show the underlying physics.
We can consider massless quarks for simplicity. Note

that the vacuum term is not included since the imaginary
part of the vacuum term corresponds to the process that one
particle decomposes into two on-shell quarks, i.e. p0 > k0,
which is beyond the HTL approximation. The vacuum
contribution is proportional to p2Δμν as required by the
Ward identity, which is of order g4VT

2 since p ∼ gVT. The
self-energy in the HTL approximation reads

Σ̃00ðpÞ¼3m2
T

�
1−

p0

2jpjln
p0þjpjþ iϵ
p0− jpjþ iϵ

�
;

Σ̃⊥ðpÞ¼−
3

2
m2

T
p2
0

jpj2
�
1−

p2
0− jpj2
2p0jpj

ln
p0þjpjþ iϵ
p0− jpjþ iϵ

�
; ð46Þ

where m2
T ¼ g2VT

2=9 denotes the thermal mass. The real
and imaginary parts of Σ̃00 and Σ̃⊥ can be obtained as

ReΣ̃00ðpÞ ¼ 3m2
T

�
1 −

p0

2jpj ln
				p0 þ jpj
p0 − jpj

				
�
;

ReΣ̃⊥ðpÞ ¼ −
3

2
m2

T
p2
0

jpj2
�
1 −

p2
0 − jpj2
2p0jpj

ln

				p0 þ jpj
p0 − jpj

				
�
;

ImΣ̃00ðpÞ ¼ π
3

2
m2

T
p0

jpj θðjpj
2 − p2

0Þ;

ImΣ̃⊥ðpÞ ¼ −π
3

4
m2

T
p0ðp2

0 − jpj2Þ
jpj3 θðjpj2 − p2

0Þ; ð47Þ

where θðxÞ is the Heaviside step function. We see that the
imaginary parts are nonvanishing only in spacelike region
of p.
Under the HTL approximation, one can get the inequal-

ity p0 ∼mT ∼ gVT ≪ mV, which provides a natural power
counting in α≡mT=mV . We also assume p2

0 < jpj2, so
there is no pole contribution. Then the spectral function
ρL=T in (38) can be approximated as

ρTðpÞ ¼
ImΣ̃⊥ðpÞ

m4
V

þOðα5Þ

¼ −π
3

4

m2
T

m4
V

p0p2

jpj3 θðjpj2 − p2
0Þ þ

1

m2
V
Oðα3Þ;

ρLðpÞ ¼
p2

jpj2
ImΣ̃00ðpÞ

m4
V

þOðα5Þ

¼ π
3

2

m2
T

m4
V

p0p2

jpj3 θðjpj2 − p2
0Þ þ

1

m2
V
Oðα3Þ: ð48Þ

for p0 ≪ mV. Using Eq. (48) in Eq. (45), we can get the
leading order term of δρ00

δρð0Þ00 ≈−T
ξγλ
R jpj
0 dp0

∂nðp0Þ
∂p0

ρaðpÞρbðpÞ½I22γλab ðpÞ− 1
3
Iiiγλab ðpÞ�

ðgμ0gν0 − gμνÞ
R jpj
0 dp0nðp0Þ½Δμν

L ρLðpÞ þΔμν
T ρTðpÞ�

þ
R
∞
0 dp0nBðp0Þ½ðΔ22

T − 1
3
Δii

TÞρTðpÞ þ ðΔ22
L − 1

3
Δii

LÞρLðpÞ�
fR jpj0 dp0nBðp0Þ½Δkk

T ρTðpÞ þΔkk
L ρLðpÞ�g2

× Tξγλ

Z jpj

0

dp0
∂nBðp0Þ
∂p0

X
a;b¼T;L

ρaðpÞρbðpÞIjjγλab ðp;pÞ; ð49Þ

where Δμν
L;T are projectors defined in Eq. (37). In Eq. (49),

the polarization vector can be approximated as ϵμð0; ponÞ ¼
ð0; 0; 1; 0Þ þOðαÞ with jpj ≪ Ep ≈mV , where we choose
y direction as the spin quantization direction. So ΔμνðponÞ
can be approximated as gμν − gμ0gν0. The leading order
Iμνγλab;ð0Þ is given by

Iμνγλab ðpÞ ≈ −m2
V ½Δγν

a ðpÞΔμλ
b ðpÞ þ Δλν

a ðpÞΔμγ
b ðpÞ�

þm2
Vg

γλgβαΔαν
a ðpÞΔμβ

b ðpÞ; ð50Þ

which is Oðm2
VÞ. Finally we can estimate

δρð0Þ00 ∼
m−2

V α2 ×m−2
V α2 ×m2

V

m−2
V α2

× ξ ∼ α2ξ; ð51Þ

where ξ≡ jξγλj is the magnitude of the thermal shear
tensor. If we set the parameters’ values as gV ¼ 1,
T ¼ 150 MeV, mV ¼ 1020 MeV, the coupling between
the spin alignment and the shear tensor is about
α2 ∼Oð10−2Þ. If we further use ξ ∼ 0.01, then we obtain

δρð0Þ00 ∼Oð10−4Þ, which is much smaller than the contri-
bution from the coalescence model via strong force
fields [26].

DONG, YIN, SHENG, YANG, and WANG PHYS. REV. D 109, 056025 (2024)

056025-8



B. Vector mesons as resonances

Now we consider the realistic case that vector mesons
are resonances so that the coalescence and dissociation
processes can happen. In this case, we have p0 > Ek and

ðp − kÞ2 > 0. The small imaginary numbers in the quark
loop integral become �iðEk � p0Þϵ ∝ iϵ in J�ðp; n1; n2Þ
in Eq. (B4). Therefore, the vector meson’s self-energies
read

Σ̃00ðpÞ ¼ −g2V
1

4π2



−4J0ð−1; 2Þ þ 2

p0

jpj ½Jþðp; 0; 1Þ − J−ðp; 0; 1Þ� þ
p2

2jpj ½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ�

þ 2

jpj ½Jþðp; 1; 1Þ þ J−ðp; 1; 1Þ�
�
− g2VI

00
vac;

Σ̃⊥ðpÞ ¼ −g2V
1

16π2
1

jpj3 fð8p
2jpj þ 16jpj3ÞJ0ð−1; 2Þ − ðp4 þ 2p2jpj2Þ½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ�

− 4p2
0½Jþðp; 1; 1Þ þ J−ðp; 1; 1Þ� − 4p0p2½Jþðp; 0; 1Þ − J−ðp; 0; 1Þ�

þ4jpj2½Jþðp;−1; 3Þ þ J−ðp;−1; 3Þ�g − g2VI
⊥
vac; ð52Þ

where I⊥vac ≡ ð1=2Þðδij − p̂ip̂jÞIijvac. Note that the vacuum contributions to real parts of self-energies are canceled by
renormalization. When evaluating imaginary parts, we note that J0ðn1; n2Þ is real and ImJþ is nonzero in the region
p2 þ 2p0Ek < 2jkjjpj, which cannot be satisfied under the quasiparticle approximation with p0 > jpj and Ek > jkj. So the
imaginary parts come from ImJ−ðp; n1; n2Þ within the range −2jkjjpj ≤ p2 − 2p0Ek ≤ 2jkjjpj as

ImJ−ðp;n1; n2Þ ¼ −π
Z

Emax

Emin

dEkðE2
k −m2

qÞðn2−1Þ=2En1þ1
k

�
1

eðEk−μqÞ=T þ 1
þ 1

eðEkþμqÞ=T þ 1

�
; ð53Þ

where μq is the chemical potential of quarks, mq is the quark mass, and Emax =min is

Emax =min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
�p
2
þ p0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
q

p2

s !2

þm2
q

vuut : ð54Þ

We see that imaginary parts exist only when p2 > 4m2
q. Then the imaginary parts of self-energies read

ImΣ̃00ðpÞ ¼ −g2V
1

2π2jpj Im
�
J−ðp; 1; 1Þ − p0J−ðp; 0; 1Þ þ

p2

4
J−ðp;−1; 1Þ

�
− g2VImI00vac;

ImΣ̃⊥ðpÞ ¼ −g2V
1

16π2jpj3 Im½−ðp4 þ 2jpj2p2ÞJ−ðp;−1; 1Þ − 4p2
0J−ðp; 1; 1Þ þ 4p0p2J−ðp; 0; 1Þ þ 4jpj2J−ðp;−1; 3Þ�

− g2VImI⊥vac: ð55Þ

Note that vacuum contributions are included in imagi-
nary parts of self-energies, which correspond to pair
production and annihilation (dissociation and combina-
tion) processes involving on-shell particles in the initial
and final states (the meson, quark and antiquark are all
on-shell).

1. Quasiparticle approximation

We take the quasiparticle approximation (QPA) for
the vector meson that gV is not very large and the self-
energies are assumed to be small compared with m2

V . In
this case, the spectral functions in Eq. (38) have narrow
peaks around EV

p . In the region near p0 ¼ EV
p, we can

approximate the self-energies as their on-shell values,
i.e., Σ̃00ðpÞ ≈ Σ̃00ðponÞ and Σ̃⊥ðpÞ ≈ Σ̃⊥ðponÞ. Then spec-
tral functions for transverse/longitudinal modes can be
approximated as

ρT=LðpÞ ¼ ρpoleT=LðpÞ þ ρcutT=LðpÞ
≈ πsgnðp0Þδ½p2

0 − ðEV
p þ ΔET=LÞ2�θð4m2

q − p2Þ

þ mVΓT=L

½p2
0 − ðEV

p þ ΔET=LÞ2�2 þm2
VΓ2

T=L

× θðp2 − 4m2
qÞ; ð56Þ
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where ΓT=L are widths and ΔET=L are energy shifts for
transverse/longitudinal modes approximated as

ΓT ¼ 1

mV
ImΣ̃⊥ðponÞ;

ΓL ¼ mV

jpj2 ImΣ̃00ðponÞ;

ΔET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
V;p − ReΣ̃⊥ðponÞ

q
− EV

p;

ΔEL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
V;p −

m2
V

jpj2 ReΣ̃00ðponÞ
s

− EV
p: ð57Þ

We see in Eq. (56) that ρpoleT=LðpÞ denote pole contributions
while ρcutT=LðpÞ denote cut contributions.
We plot widths and energy shifts in Fig. 3 as functions of

jpj at gV ¼ 1, 2. We choose two sets of values for the
strange quark chemical potential and temperature corre-
sponding to the freeze-out conditions at

ffiffiffiffiffiffiffiffi
sNN

p ≈ 20 and
200 GeV in heavy-ion collisions [79,80]: μs ≈ μB=3 ≈
64.5 MeV and T ≈ 155.7 MeV (black) and μs ≈ μB=3 ≈
7.4 MeV and T ≈ 158.4 MeV (red). Other parameters
are set to gV ¼ 1, mV ¼ 1.02 GeV, and ms ¼ 419 MeV.
We can check ρpoleT=LðpÞ ¼ 0 for these values of parameters

since 4m2
q − p2 < 0 at the corrected mass-shell p2 ¼ m2

V −
ReΣ̃⊥ðponÞ and p2 ¼ m2

V − ðm2
V=jpj2ÞReΣ̃00ðponÞ for

transverse and longitudinal modes respectively. One can
see in Fig. 3 that the width and energy shift are almost
independent of freezeout conditions at the collision energy
20 and 200 GeV.
We find that the ΓT=L and ΔET=L are much smaller than

mV , which allows us to introduce the following power
counting scheme

ΔET=L

EV
p

∼
ΓT=L

EV
p

∼ ϵ ≪ 1; ð58Þ

where we have introduced ϵ as a small power counting
parameter. Since ΓT and ΓL are positive definite, we expect
that their difference is a second-order contribution
ΔΓ=EV

p≡ðΓT−ΓLÞ=EV
p∼Oðϵ2Þ, while EV

pð1=ΓT−1=ΓLÞ¼
EV
pðΓL−ΓTÞ=ðΓTΓLÞ∼Oð1Þ. On the other hand, such a

cancellation may not happen for ΔET and ΔEL, because
they may have different signs. Therefore ðΔET − ΔELÞ=
EV
p ≲OðϵÞ could be a first-order contribution. According

to hydrodynamic simulation of the strong interaction matter
in heavy-ion collisions, the thermal shear tensor ξ≡ jξγλj is
a small quantity of Oð10−2Þ, which can be treated as
another power counting parameter. With Eq. (56) for
spectral functions, one can prove that the term with the
p0 integral of δGμν

< ðx; pÞ in the denominator of the right-
hand-side of Eq. (45) is of the order ξEV

p=ΓT=L ∼ ξ=ϵ, while
the term with the p0 integral of G

μν
< ðx; pÞ is Oð1Þ. In order

FIG. 3. The width Γ (a,b) and energy shift ΔE (c,d) for transverse (solid lines) and longitudinal (dashed lines) modes as functions of
jpj at gV ¼ 1 (a,c) and gV ¼ 2 (b,d). Two sets of values are chosen for the s-quark chemical potential and temperature corresponding
to the freezeout conditions at

ffiffiffiffiffiffiffiffi
sNN

p ≈ 20 GeV and 200 GeV: μs ¼ 64.5 MeV, T ¼ 155.7 MeV (black) and μs ¼ 7.4 MeV and
T ¼ 158.4 MeV (red).
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for the linear response theory to work, one has to require
ξ=ϵ ≪ 1.
It is clear that the integrands in Eq. (45) are suppressed

by spectral functions in the region of pμ far from the
mass-shell. Therefore we can make an approximation by
expanding p0 in the integrands around the on-shell
energy EV

p in powers of δp0 ¼ p0 − EV
p except spectral

functions. To the first order in δp0, the p0 integral of
Gμν

< ðpÞ givesZ þ∞

0

dp0G
μν
< ðpÞ

¼ −2
X
a¼T;L

Z þ∞

0

dp0ρ
cut
a ðpÞ

�
1þ δp0

∂

∂EV
p

�

× ½nBðponÞΔμν
a ðponÞ�; ð59Þ

while the p0 integral of δG
μν
< ðpÞ from the linear response to

the shear tensor gives

Z þ∞

0

dp0δG
μν
< ðx; pÞ

¼ 2Tξγλ
X

a;b¼L;T

Z þ∞

0

dp0ρ
cut
a ðpÞρcutb ðpÞ

×

�
1þ δp0

∂

∂EV
p

��
∂nBðponÞ
∂EV

p
Iμνγλab ðpon; ponÞ

�
: ð60Þ

Detailed calculations for the integrand inEq. (60) are given in
Appendix C. The integrals over p0 in Eqs. (59) and (60) can
be completed and the results are listed in Appendix D. Then
δρ00ðpÞ is calculated by substituting Eqs. (59) and (60) into
Eq. (45). Up to linear order in ϵ or ξ, the result reads

δρ00ðpÞ ≈ −
1

3
½1þ nBðEV

pÞ�


−LμνðponÞΔμν

T ðponÞC0ðpÞ þ ξγλLμνðponÞΔμν
T ðponÞ

×

�
pγ
onpλ

on

ðEV
pÞ2

C1ðpÞ þ
gλ0pγ

on þ gγ0pλ
on − EV

pgγλ

2EV
p

ðCTðpÞ − CLðpÞÞ
�

þ ξγλLμνðponÞ½Δγν
T ðponÞΔλμ

L ðponÞ þ Δγν
L ðponÞΔλμ

T ðponÞ�C2ðpÞ

þ ξγλLμνðponÞ½Δγν
L ðponÞΔλμ

L ðponÞCLðpÞ þ Δγν
T ðponÞΔλμ

T ðponÞCTðpÞ�
�
þOðϵ2Þ ð61Þ

where the dimensionless coefficients are defined as

C0 ¼
1þnBðEV

pÞþT=EV
p

1þnBðEV
pÞ

ΔET −ΔEL

T
;

C1 ¼
ðEV

pÞ2
mV

�
1

ΓT
−

1

ΓL

�
þnBðEV

pÞ
ðEV

pÞ2
mVT

�
ΔEL

ΓL
−
ΔET

ΓT

�
;

C2 ¼
4mVEV

pðΓLΔET þΓTΔELÞ
4ðEV

pÞ2ðΔET −ΔELÞ2þm2
VðΓLþΓTÞ2

;

CT=L ¼
2EV

pΔET=L

mVΓT=L
: ð62Þ

Noting that ρ00 could deviate from 1=3 due to a nonzero C0

independent of the shear tensor. Such a deviation arises
from the possible difference between spectral functions for
transverse and longitudinal modes [81]. In the power
counting scheme, we can check that C0 ∼OðϵÞ and other
coefficients Ci with i ¼ 1; 2; T; L are all Oð1Þ. The
numerical results show that C0 ∼Oð10−3Þ and other co-
efficients Ci with i ¼ 1; 2; T; L are Oð10−1 ∼ 10−2Þ for
gV ¼ 1, 2. The dominant term that is proportional to
the shear tensor is the C1 term, which is controlled by
1=ΓT − 1=ΓL for the current values of gV .

2. Numerical results

In this subsection we will numerically calculate spectral
functions and δρ00 using Eqs. (38) and (55). We will
compare numerical results with the QPA results using
Eq. (61). The parameters are set to the same values as in
Sec. VII B 1. We can express δρ00ðpÞ as

δρ00ðpÞ ¼ δρðξ¼0Þ
00 ðpÞ þ ξμνCμνðpÞ; ð63Þ

where Cμν are dimensionless constants.

The numerical results for δρðξ¼0Þ
00 ðpÞ are shown in Fig. 4.

The QPA results using Eq. (61) are shown for comparison.
We choose two configurations for the mometum direction
with respect to the spin quantization one: transverse or
parallel configuration. The analytic results using Eq. (61)
are also shown for comparison. The results of the configu-
ration with an arbitrary angle are between these two limits.

We see that the magnitude of δρðξ¼0Þ
00 ðpÞ is about 10−3 for

the values of parameters we choose.
The numerical results for the tensor coefficient CμνðpÞ

are shown in Figs. 5 and 6 for transverse and parallel
configurations respectively. The QPA results using Eq. (61)
are shown for comparison. We see that the magnitude of
CμνðpÞ is about 10−2 ∼ 10−3 for the values of parameters
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FIG. 5. The numerical results for Cμν in Eq. (63) for the transverse configuration in which the momentum is perpendicular to the spin
quantization direction z. The results under the quasiparticle approximation (QPA) using Eq. (61) are shown for comparison.

FIG. 4. The numerical results for δρðξ¼0Þ
00 in Eq. (63) for the transverse (left) and parallel (right) configurations in which the momentum

is transverse and parallel to the spin quantization direction z respectively. The results under the quasiparticle approximation (QPA) using
Eq. (61) are shown for comparison.
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we choose, which is consistent with the result of Ref. [47]
in the order of magnitude.

VIII. DISCUSSION AND CONCLUSION

We study thermal medium effects for the spin alignment
of vector mesons from the meson-quark interaction in the
thermalized QGP, in which quarks, antiquarks and vector
mesons are assumed to be thermalized. Quarks and anti-
quarks are also assumed to be unpolarized. We calculate the
retarded self-energy of the vector meson from the quark
loop. The spectral function can be obtained from the
retarded two-point Green’s function including the contri-
bution of the retarded self-energy. Other types of two-point
Green’s functions with interaction can all be expressed in
spectral functions. Then we calculate the linear response
of the two-point Green’s function to the thermal shear tensor
using the Kubo formula, which provides a correction to the
Green’s function. Such an effect is caused by interaction.
Finally the correction to ρ00 can be expressed in terms of

spectral functions through one-loop self-energies. In order to
obtain an analytical formula for the correction to ρ00, we
take the quasiparticle approximation: (a) the energy shifts
and widths from real and imaginary parts of self-energies
are much smaller than energies of vector mesons; (b) the

difference between widths for transverse and longitudinal
modes is much smaller than widths themselves. This
approximation is supported by numerical results with the
parameters we have chosen. Under this approximation we
derive an analytical formula for the correction to ρ00 to the
linear order in the expansion parameter in terms of energy
shifts and widths. The numerical results show that dimen-
sionless coefficients of the thermal shear tensor are of
Oð10−2 ∼ 10−3Þ for the chosen values of quark-meson
coupling constant. The magnitude of the contribution from
the thermal shear tensor to ρ00 is thenOð10−4 ∼ 10−5Þ if the
thermal shear tensor is Oð10−2Þ.
Our results are based the one-loop self-energy with

meson-quark interaction in the QGP. One can also consider
other interactions, such as ρππ or ϕKK couplings, in the
nuclear matter [81–83].
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FIG. 6. The numerical results for Cμν in Eq. (63) for the parallel configuration for the spin quantization and momentum directions.
The spin quantization is chosen to be in the z direction. The results under the quasiparticle approximation (QPA) using Eq. (61) are
shown for comparison.
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APPENDIX A: QUARK PROPAGATORS

The propagators for unpolarized quarks at the leading order are given by

Sð0Þ<αβ ðx; pÞ ¼ ðp · γ þmqÞαβ
π

Ep
f−δðp0 − EpÞfðþÞ

FDðEpÞ þ δðp0 þ EpÞ½1 − fð−ÞFDðEpÞ�g;

Sð0Þ>αβ ðx; pÞ ¼ ðp · γ þmqÞαβ
π

Ep
fδðp0 − EpÞ½1 − fðþÞ

FDðEpÞ� − δðp0 þ EpÞfð−ÞFDðEpÞg;

Sð0ÞFαβ ðx; pÞ ¼ iðp · γ þmqÞαβ
p2 −m2

q þ iϵ
−

π

Ep
ðp · γ þmqÞαβ½δðp0 − EpÞfðþÞ

FDðEpÞ þ δðp0 þ EpÞfð−ÞFDðEpÞ�;

Sð0ÞAαβ ðx; pÞ ¼ iðp · γ þmqÞαβ
p2 −m2

q − ip0ϵ
;

Sð0ÞRαβ ðx; pÞ ¼ iðp · γ þmqÞαβ
p2 −m2

q þ ip0ϵ
; ðA1Þ

where ϵ is a small positive number, mq ¼ mq̄ is the quark mass, and

f�FDðEkÞ ¼
1

exp ðβEk − βμq=q̄Þ þ 1
; ðA2Þ

are Fermi-Dirac distributions for quarks/antiquarks as functions of the energy Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

q

q
and chemical

potentials μq=q̄.

APPENDIX B: RETARDED SELF-ENERGY

We evaluate the retarded self-energy in Eq. (26) using quark propagators in (A1). The result reads

Σμν
R ðpÞ ¼ g2V

Z
d4k
ð2πÞ4 fTr½γ

μSFðkÞγνSFðk − pÞ� − Tr½γμS<ðkÞγνS>ðk − pÞ�g

¼ −g2V

Z
d4k
ð2πÞ4 Trfγ

μðk · γ þmqÞγν½ðk − pÞ · γ þmq�g
i

ðk − pÞ2 −m2
q − iðk0 − p0Þϵ

×
π

Ek
fδðk0 − EkÞfðþÞ

FDðEkÞ þ δðk0 þ EkÞfð−ÞFDðEkÞg þ ðμ ↔ ν; p → −p; ϵ → −ϵÞ

þ g2V

Z
d4k
ð2πÞ4 Trfγ

μðk · γ þmqÞγν½ðk − pÞ · γ þmq�g

×

�
i

k2 −m2
q þ iϵ

·
i

ðk − pÞ2 −m2
q þ iϵ

−
π2

EkEk−p
δðk0 þ EkÞδðk0 − p0 − Ek−pÞ

�

¼ −ig2V
1

4π3
ð2Iμν1 þ Iμν2 Þ − ig2VI

μν
vac; ðB1Þ

where Iμν1 , Iμν2 , and Iμνvac are defined as

Iμν1 ¼
Z

d3kkμonkνon
1

Ek
½fðþÞ

FDðEkÞ þ fð−ÞFDðEkÞ�
�

1

ðkon þ pÞ2 −m2
q þ iðEk þ p0Þϵ

þ 1

ðkon − pÞ2 −m2
q − iðEk − p0Þϵ

�
;

Iμν2 ¼
Z

d3k
1

Ek
½pμkνon þ pνkμon − gμνðp · konÞ�½fðþÞ

FDðEkÞ þ fð−ÞFDðEkÞ�

×

�
1

ðkon þ pÞ2 −m2
q þ iðEk þ p0Þϵ

−
1

ðkon − pÞ2 −m2
q − iðEk − p0Þϵ

�
; ðB2Þ
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Iμνvac ¼ i
Z

d4k
ð2πÞ4 Tr½γ

μðk · γ þmqÞγνððk − pÞ · γ þmqÞ�

×

�
i

k2 −m2
q þ iϵ

·
i

ðk − pÞ2 −m2
q þ iϵ

−
π2

EkEk−p
δðk0 þ EkÞδðk0 − p0 − Ek−pÞ

�
; ðB3Þ

where kμon ¼ ðEk;kÞ is an on-shell momentum for the quark or antiquark. The tensors Iμν1 and Iμν2 can be expressed in special
functions J�ðp;n1; n2Þ and J0ðn1; n2Þ defined as

J�ðp; n1; n2Þ≡
Z

∞

0

djkjEn1
k jkjn2 ½fðþÞ

FDðEkÞ þ fð−ÞFDðEkÞ� ln
p2 � 2p0Ek þ 2jkjjpj � iðEk � p0Þϵ
p2 � 2p0Ek − 2jkjjpj � iðEk � p0Þϵ

;

J0ðn1; n2Þ≡
Z

∞

0

djkjEn1
k jkjn2 ½fðþÞ

FDðEkÞ þ fð−ÞFDðEkÞ�: ðB4Þ

We now evaluate each element of Iμν1 separately. The result for I001 is

I001 ¼ 2π

Z
djkjjkj2Ek½fðþÞ

FDðEkÞ þ fð−ÞFDðEkÞ�
Z

1

−1
d cos θ

×

�
1

p2 þ 2p0Ek − 2jkjjpj cos θ þ iðEk þ p0Þϵ
þ 1

p2 − 2p0Ek þ 2jkjjpj cos θ − iðEk − p0Þϵ
�

¼ π
1

jpj ½Jþðp; 1; 1Þ þ J−ðp; 1; 1Þ�: ðB5Þ

In evaluating I0i, we decompose the vector k into the component parallel and perpendicular to p as k ¼ p̂ðk · pÞ þ kT with
kT · p ¼ 0. The integral over the component perpendicular to p vanishes. The result for I0i1 is

I0i1 ¼ Ii01

¼ 2πp̂i

Z
djkjdθ sin θ cos θjkj3½fðþÞ

FDðEkÞ þ fð−ÞFDðEkÞ�

×

�
1

p2 þ 2p0Ek − 2jkjjpj cos θ þ iðEk þ p0Þϵ
þ 1

p2 − 2p0Ek þ 2jkjjpj cos θ − iðEk − p0Þϵ
�

¼ πp2

2jpj2 p̂i½Jþðp; 0; 1Þ − J−ðp; 0; 1Þ� þ
πp0

jpj2 p̂i½Jþðp; 1; 1Þ þ J−ðp; 1; 1Þ�: ðB6Þ

To evaluate Iij, we notice that it is symmetric in i and j, so we can decomposes it into components proportional to p̂ip̂j and
δij − p̂ip̂j using

kikj → p̂ip̂jðk · pÞ þ 1

2
k2
Tðδij − p̂ip̂jÞ: ðB7Þ

Then we obtain the result for Iij as
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Iij1 ¼ 2πp̂ip̂j

Z
djkj 1

Ek
jkj4

Z
dθ sin θcos2θ½fðþÞ

FDðEkÞ þ fð−ÞFDðEkÞ�

×

�
1

p2 þ 2p0Ek − 2k · pþ iðEk þ p0Þϵ
þ 1

p2 − 2p0Ek þ 2k · p− iðEk − p0Þϵ
�
þ πðδij − p̂ip̂jÞ

Z
djkj 1

Ek
jkj4

×
Z

dθ sin θsin2θ½fðþÞ
FDðEkÞ þ fð−ÞFDðEkÞ�

�
1

p2 þ 2p0Ek − 2k · pþ iðEk þ p0Þϵ
þ 1

p2 − 2p0Ek þ 2k · p− iðEk − p0Þϵ
�

¼ p̂ip̂j
π

4jpj3 f−8p
2jpjJ0ð−1; 2Þ þ p4½Jþðp;−1;1Þ þ J−ðp;−1; 1Þ�

þ 4p2
0½Jþðp; 1;1Þ þ J−ðp; 1; 1Þ� þ 4p0p2½Jþðp; 0; 1Þ− J−ðp; 0;1Þ�g

þ ðδij − p̂ip̂jÞ
π

8jpj3 f8p
2jpjJ0ð−1;2Þ− p4½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ�

− 4p2
0½Jþðp; 1; 1Þ þ J−ðp; 1; 1Þ�− 4p0p2½Jþðp; 0; 1Þ− J−ðp; 0; 1Þ� þ 4jpj2½Jþðp;−1; 3Þ þ J−ðp;−1; 3Þ�g: ðB8Þ

In Eqs. (B5), (B6) and (B8) we have express the result of Iμν1 in terms of special functions J�ðp; n1; n2Þ and J0ðn1; n2Þ
in Eq. (B4).
The derivation of Iμν2 is similar and straightforward. Here we just list the result as follows

I002 ¼ −4πJ0ð−1; 2Þ þ 2π
p0

jpj ½Jþðp; 0; 1Þ − J−ðp; 0; 1Þ� þ
πp2

2jpj ½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ�;

I0i2 ¼ Ii02 ¼ −4πp̂i
p0

jpj J0ð−1; 2Þ þ
π

2
p̂i

p0p2

jpj2 ½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ� þ π

�
1þ p2

0

jpj2
�
p̂i½Jþðp; 0; 1Þ − J−ðp; 0; 1Þ�;

Iij2 ¼ p̂ip̂j



−4πJ0ð−1; 2Þ þ

π

2

p2

jpj ½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ�þ2π
p0

jpj ½Jþðp; 0; 1Þ − J−ðp; 0; 1Þ�
�

þ ðδij − p̂ip̂jÞ


4πJ0ð−1; 2Þ −

π

2

p2

jpj ½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ�
�
: ðB9Þ

Using the results for elements of Iμν1 and Iμν2 , we obtain the elements of 2Iμν1 þ Iμν2 in Eq. (B1),

2I001 þ I002 ¼ −4πJ0ð−1; 2Þ þ 2π
1

jpj ½Jþðp; 1; 1Þ þ J−ðp; 1; 1Þ� þ 2π
p0

jpj ½Jþðp; 0; 1Þ − J−ðp; 0; 1Þ�

þ πp2

2jpj ½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ�;

2I0i1 þ I0i2 ¼ p̂i
p0

jpj ð2I
00
1 þ I002 Þ

2Iij1 þ Iij2 ¼ p̂ip̂j
p2
0

jpj2 ð2I
00
1 þ I002 Þ þ ðδij − p̂ip̂jÞ

π

4jpj3 f8ðp
2
0 þ jpj2ÞjpjJ0ð−1; 2Þ

− p2ðp2
0 þ jpj2Þ½Jþðp;−1; 1Þ þ J−ðp;−1; 1Þ� − 4p2

0½Jþðp; 1; 1Þ þ J−ðp; 1; 1Þ�
− 4p0p2½Jþðp; 0; 1Þ − J−ðp; 0; 1Þ� þ 4jpj2½Jþðp;−1; 3Þ þ J−ðp;−1; 3Þ�g: ðB10Þ

The vacuum contribution Iμνvac for p0 > 0 can be evaluated by dimensional regularization as

Iμνvac ¼ i
Z

d4k
ð2πÞ4 Trfγ

μðk · γ þmqÞγν½ðk − pÞ · γ þmq�g
i

k2 −m2
q þ iϵ

·
i

ðk − pÞ2 −m2
q þ iϵ

¼ ðgμνp2 − pμpνÞ 1

2π2

Z
1

0

dxxð1 − xÞ
�
2

ϵ
− logð−xð1 − xÞp2 þm2

q − i0þÞ − γ þ logð4πÞ þOðϵÞ
�

¼ p2Δμν 1

2π2

Z
1

0

dxxð1 − xÞ
�
2

ϵ
− log j − xð1 − xÞp2 þm2

qj − γ þ logð4πÞ þOðϵÞ
�

þ ip2Δμν 1

2π2

Z
1

0

dxxð1 − xÞπθ½xð1 − xÞp2 −m2
q�; ðB11Þ
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where ϵ ¼ 4 − d (d is an arbitrary space-time dimension in
regularization) and γ ≈ 0.5772. Here the term proportional
to delta functions in Iμνvac is vanishing. The real part of I

μν
vac

can be canceled by introducing a renormalization term with
the condition ReIμνvacðp2 ¼ m2

VÞ ¼ 0. The imaginary part
Iμνvac is nonzero when

ffiffiffiffiffi
p2

p
> 2mq and contributes to the

spectral density. This corresponds to pair production or
annihilation processes.

APPENDIX C: EXPANSION OF PART
OF INTEGRAND IN EQ. (44)

AT MASS-SHELL

In this appendix, we will expand p0 around EV
p in

powers of δp0 for the integrand in the second term of
Eq. (44) except spectral functions. The integrand can be
written as

Iμνγλ ¼ ∂nBðp0Þ
∂p0

ρaðpÞρbðpÞIμνγλab ðp; pÞ ¼ ρaðpÞρbðpÞ
�
1þ δp0

∂

∂EV
p

��
∂nBðponÞ
∂pon

Iμνγλab ðpon; ponÞ
�

ðC1Þ

where a summation over a; b ¼ L, T is implied.
First we expand Iμνγλab ðp; pÞ in (43) at p0 ¼ EV

p . We can express pμ ¼ pμ
on þ δp0gμ0, where δp0 ¼ p0 − EV

p . We note that
Δμν

T ðpÞ does not depend on p0, but Δ
μν
L ðpÞ ¼ ΔμνðpÞ − Δμν

T ðpÞ depends on p0 through Δμν. Then to the first order in δp0

they can be expanded as

Δμν
T ðpÞ ¼ Δμν

T ðponÞ;

ΔμνðpÞ ≈ ΔμνðponÞ þ
2EV

p

m4
V
pμ
onpν

onδp0 −
1

m2
V
ðpμ

ongν0 þ pν
ongμ0Þδp0;

Δμν
L ðpÞ ≈ Δμν

L ðponÞ þ
2EV

p

m4
V
pμ
onpν

onδp0 −
1

m2
V
ðpμ

ongν0 þ pν
ongμ0Þδp0: ðC2Þ

Then Iμνγλab ðp; pÞ can be expanded to the leading order in δp0 as

Iμνγλab ðp; pÞ ¼ 2pλpγΔν
a;αðpÞΔμα

b ðpÞ þ ðp2 −m2
VÞ½Δγν

a ðpÞΔμλ
b ðpÞ þ Δλν

a ðpÞΔμγ
b ðpÞ� − gγλgβαðp2 −m2

VÞΔαν
a ðpÞΔμβ

b ðpÞ;
Iμνγλab ðpon; ponÞ ¼ 2pλ

onp
γ
onΔν

a;αðponÞΔμα
b ðponÞ;

IμνγλTT ðp; pÞ ≈ 2pλ
onp

γ
onΔμν

T ðpÞ þ 2ðpλ
ongγ0 þ pγ

ongλ0 − EV
pgγλÞδp0Δ

μν
T ðpÞ þ 2EV

pδp0½Δγν
T ðpÞΔμλ

T ðpÞ þ Δλν
T ðpÞΔμγ

T ðpÞ�;
IμνγλTL ðp; pÞ ≈ 2EV

pδp0½Δγν
T ðpÞΔμλ

L ðponÞ þ Δλν
T ðpÞΔμγ

L ðponÞ�;
IμνγλLT ðp; pÞ ≈ 2EV

pδp0½Δγν
L ðponÞΔμλ

T ðpÞ þ Δλν
L ðponÞΔμγ

T ðpÞ�;

IμνγλLL ðp; pÞ ¼ 2pλ
onp

γ
onΔμν

L ðponÞ þ 4
EV
p

m4
V
pλ
onp

γ
onp

μ
onpν

onδp0 − 2
1

m2
V
pλ
onp

γ
onðpμ

ongν0 þ pν
ongμ0Þδp0

þ 2ðpλ
ongγ0 þ pγ

ongλ0 − EV
pη

γλÞδp0Δ
μν
L ðponÞ þ 2EV

pδp0½Δγν
L ðponÞΔμλ

L ðponÞ þ Δλν
L ðponÞΔμγ

L ðponÞ�: ðC3Þ

The function ∂nBðp0Þ=∂p0 is expanded to the first order in δp0 as

∂nBðp0Þ
∂p0

≈
∂nBðEV

pÞ
∂EV

p
þ ∂

2nBðEV
pÞ

∂
2EV

p
δp0 þO½ðδp0Þ2�

¼ −βnBðEV
pÞ½1þ nBðEV

pÞ� þ β2nBðEV
pÞ½1þ nBðEV

pÞ�½1þ 2nBðEV
pÞ�δp0; ðC4Þ

To the first order in δp0, the integrand is expanded as

IμνγλLO ¼ ρaðpÞρbðpÞ
∂nBðEV

pÞ
∂EV

p
Iμνγλab ðpon; ponÞ

¼ 2pλ
onp

γ
on
∂nBðEV

pÞ
∂EV

p
fΔμνðponÞρ2LðpÞ þ Δμν

T ðponÞ½ρ2TðpÞ − ρ2LðpÞ�g; ðC5Þ
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IμνγλNLO ¼ 2pλ
onp

γ
on
∂
2nBðEV

pÞ
∂
2EV

p
δp0fΔμνðponÞρ2LðpÞ þ Δμν

T ðponÞ½ρ2TðpÞ − ρ2LðpÞ�g

þ 2δp0ρ
2
TðpÞ

∂nBðEV
pÞ

∂EV
p

fðpλ
ongγ0 þ pγ

ongλ0 − EV
pgγλÞΔμν

T ðpÞþEV
p ½Δγν

T ðpÞΔμλ
T ðpÞ þ Δλν

T ðpÞΔμγ
T ðpÞ�g

þ 2δp0ρ
2
LðpÞ

∂nBðEV
pÞ

∂EV
p



2
EV
p

m4
V
pλ
onp

γ
onp

μ
onpν

on −
1

m2
V
pλ
onp

γ
onðpμ

ongν0 þ pν
ongμ0Þ þ Δμν

L ðponÞðpλ
ongγ0 þ pγ

ongλ0 − EV
pgγλÞ

þEV
p ½Δγν

L ðponÞΔμλ
L ðponÞ þ Δλν

L ðponÞΔμγ
L ðponÞ�

�

þ 2EV
pδp0ρTðpÞρLðpÞ

∂nBðEV
pÞ

∂EV
p

½Δγν
T ðpÞΔμλ

L ðponÞ þ Δλν
T ðpÞΔμγ

L ðponÞþΔμλ
T ðpÞΔγν

L ðponÞ þ Δμγ
T ðpÞΔλν

L ðponÞ�: ðC6Þ

APPENDIX D: INTEGRALS FOR SPECTRAL FUNCTIONS

The integrals in Eqs. (59) and (60) are given as follows

Z
∞

0

dp0ρL=TðpÞ ≈
π

2EV
p

�
1 −

ΔEL=T

EV
p

�
þOðϵ2Þ

Z
∞

0

dp0δp0ρL=TðpÞ ≈
π

2

ΔEL=T

EV
p

þOðϵ2Þ
Z

∞

0

dp0ρ
2
L=TðpÞ ≈

π

4EpmVΓL=T

�
1 −

ΔEL=T

Ep

�
þOðϵÞ

Z
∞

0

dp0δp0ρ
2
L=TðpÞ ≈

πΔEL=T

4EpmVΓL=T
þOðϵÞ

Z
∞

0

dp0δp0ρLðpÞρTðpÞ ≈
π

2Ep

mVðΓLΔET þ ΓTΔELÞ
½4E2

pðΔEL − ΔETÞ2 þm2
VðΓT þ ΓLÞ2�

þOðϵÞ ðD1Þ
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