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We present a calculation of the spin alignment for unflavored vector mesons in thermalized quark-gluon
plasma based on the Kubo formula in linear response theory. This is achieved by expanding the system to the
first order of the coupling constant and the spatial gradient. The effect strongly relies on the vector meson’s
spectral functions which are determined by the interaction and medium properties. The spectral functions are
calculated for the one-quark-loop self-energy with meson-quark interaction. The numerical results show that
the correction to the spin alignment from the thermal shear tensor is of the order 107 ~ 107 for the chosen

values of quark-meson coupling constant, if the magnitude of thermal shear tensor is 1072,
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I. INTRODUCTION

Rotation and spin polarization are inherently connected
and can be converted to each other as demonstrated in the
Barnett effect [ 1] and Einstein-de Haas effect [2] in materials.
The same phenomenon known as global polarization can also
exist in peripheral heavy-ion collisions at high energies in
which the huge orbital angular momentum is partially
distributed into the strong interaction matter in the form of
particles’ spin polarization [3—7]. The global polarization of
hyperons has been observed in experiments [8,9] and been
extensively studied in recent years [10-15].

Unlike the spin polarization of hyperons that can be
measured through their weak decay, vector mesons can only
decay by strong interaction which respects parity symmetry,
which makes their spin polarization inaccessible in experi-
ments. For spin-1 vector mesons, the only spin observables
that can be measured are some elements of the spin density
matrix p;, ;, with 4; and 4, denoting spin states along the spin
quantization direction. One of them is pg, that can be
measured through the decay daughter’s polar angle distri-
bution in the rest frame of the vector meson. If pyq is not 1/3,
it means that the spin-0 state is not equally occupied among
three spin states, which is called the spin alignment. The
global spin alignment in heavy-ion collisions was first
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suggested by Liang and Wang [16]. The global spin align-
ments of ¢ and K** mesons were first measured by STAR
collaboration in Au + Au collisions /syy = 200 GeV in
2008 [17], but no signals were found. With the accumulation
of experimental data, STAR Collaboration finally found a
large spin alignment for ¢ mesons in Au + Au collision at
lower energies but not for K*° [18].

Such a large spin alignment for ¢» mesons cannot be fully
accounted by conventional mechanism [19-23]. Some of us
proposed that local fluctuations of vector fields in strong
interaction may give a large deviation of pg, from 1/3 for ¢
mesons [24]. Such a prediction was made in a nonrelativ-
istic quark coalescence model [19,25] that works for static
or nearly static mesons in principle. Such a nonrelativistic
quark coalescence model has been promoted to a relativistic
version [26,27] based on quantum transport theory [28-31]
with the help of covariant Wigner functions for massive
particles [32-39] and matrix valued spin-dependent distri-
butions [40,41]. With fluctuation parameters of strong
interaction fields extracted from transverse momentum-
integrated data for pg as a function of the collision energy,
the calculated transverse momentum dependence of py
agrees with STAR’s data for ¢» mesons [18]. The rapidity
dependence of pgy, has also been predicted with same
parameters before preliminary data of STAR was released:
the main feature of the data can be described by the
theoretical result [42]. For recent reviews on the spin align-
ment of vector mesons, see, e.g., Refs. [43-45].

Recently, the contribution from the thermal shear tensor to
the spin alignment of the vector meson has been calculated
using the linear response theory [46] and kinetic theory [47].
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The authors of Ref. [46] argued that this contribution is quite
large based on an estimate of the energy shift and width of the
vector meson in medium without really calculating them.
This work was inspired by Refs. [48-52] pointing out that
there is a coupling between the spin polarization and the
thermal shear tensor which can partially resolve the local
polarization puzzle of A hyperons.

In this paper, we will calculate the spin alignment of
vector mesons from the Kubo formula in linear response
theory [53-56] in thermalized quark-gluon plasma (QGP).
Vector mesons are assumed to be thermalized, and quarks
and antiquarks are assumed to be unpolarized. The inter-
action is described by the vertex between vector meson and
quark-antiquark [57-60]. In Sec. II, we present two-point
Green’s functions of different kinds for vector mesons in the
closed-time-path (CTP) formalism [28-31,61,62]. In
Sec. III, we give an introduction on spin density matrices
for vector mesons from Wigner functions. In Sec. IV, we
present the Dyson-Schwinger equation for retarded Green’s
functions. We give the expression for retarded self-energies
of vector mesons from one-quark-loop. In Sec. V, we give
the general form of spectral functions in medium for vector
mesons from retarded Green’s functions. In Sec. VI, we use
the Kubo formula in the linear response theory [53-56] to
calculate the correction to the two-point Green’s function
proportional to the thermal shear tensor. From it we are able
to calculate the correction to pg in Sec. VII. We adopt the
hard-thermal-loop (HTL) [29,63—67] and quasiparticle
approximations [68] to calculate spectral functions. The
HTL approximation provides a toy model to illustrate the
physics inside this problem since we have analytical formula
for spectra functions. Then we consider a more realistic
quasiparticle approximation for spectral functions. Under a
few approximations or assumptions, we obtain an analytical
expression for the correction to pgy, which depends on the
width and energy shift from the self-energy. The numerical
results for the tensor coefficients in the correction to p, are
presented. The conclusion and discussion are given in
Sec. VIIL

In this paper, we adopt following notational conventions:
¢ = diag(1,-1,-1,-1) where p, v =0, 1, 2, 3, ¥*=
(xO’X) = (XO’X)’ x~y:x”y#, XwYy) = (1/2)()(”)7,, + xuyy)’
h = kg = 1. Greek letters denote components of four-vectors
while lowercase Latin letters as subscripts denote components
three-vectors. The four-momentum p# is not necessarily on-
shell unless we add an index “on.” The summation of repeated
indices is implied if not stated explicitly. The definition of
two-point Green’s functions G and X in this paper differs by a

factor i = +/—1 from the usual one in quantum field theory,
which are related by G = iG and X = iX.

II. TWO-POINT GREEN’S FUNCTIONS

In this section we will give an introduction to two-point
Green’s functions for vector mesons on the CTP as shown

—>
t

FIG. 1. Tllustration of the closed-time-path upon which the
nonequilibrium quantum field theory is built.

in Fig. 1. The CTP formalism is a field-theory based method
for many-body systems in off-equilibrium as well in equi-
librium [28-31,61,62]. When it is used for systems in equi-
librium, it is actually the real time formalism of the thermal
(finite temperature and density) field theory [56,69]. Wigner
functions can be obtained from two-point Green’s functions
and are related to spin density matrices, which will be
addressed in the next section. We refer the readers to
Section II1.2 of Ref. [70] for a very brief introduction to
two-point Green’s functions on the CTP.

The Lagrangian density for unflavored vector mesons
with spin-1 and mass my reads

2

I
L= P + L a,00 = A, (1)

where A#(x) is the real vector field for the meson, F,, =
0,A, — d,A, is the field strength tensor, and j* is the source
coupled to A#(x).

The two-point Green’s function on the CTP is defined as

Gerp(x1,20) = (TcA* (x1)AY (x,)), (2)

where (- - -) denotes the ensemble average and 7'¢ denotes
time order operator on the CTP contour. Depending on
whether the field A¥ lives on the positive or negative time
branch, we have four components Gp,

G (x1,%2) = G, (x1, %)
= 0(1) — 1) (A"(x1)A"(x2))
+ (1, — 11) (A (x2) A" (x1)),
G2 (x1, ) = G{_(x1,xy) = (A (x2)A*(x1)),
GZ (x1,xp) = GZL(x1,%7) = (A*(x))A¥(x)),
G/;:D(xlax2) = GY(x),x2)
= 0(1; — 1;)(A"(x1)A" (x2))
+ 0(11 — 12) (A" (x2) A" (x1)). (3)

From the constraint Gy + G} = G 4 G¥’, only three of
them are independent. In the so-called physical represen-
tation [28,71,72], three independent two-point Green’s
functions are
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GR (x1,x2) = (GF = GZ)(x1,x))
~O(t — 1) (GE = GZ)(x1, xa),
G (x1.%2) = (GF = GZ)(x1,x2)
~0(t; — 1) (GZ = GE)(x1,x,),
G (x1, %) = G (x1, x2) + GZ(x1, x2), (4)

where the subscripts “A” and “R” denote the advanced and
retarded Green’s function respectively. The two-point
Green’s functions in Eqs. (3)—(4) can be used to express
any two-point functions defined on the CTP contour such
as the self energy X*(x;,x,). When dealing with the
vacuum contributions to Gf ,, the last equalities in the
first and second line of Eq. (4) do not exactly hold since a
singular term ~&(¢; — t,) is missing.

III. WIGNER FUNCTIONS AND SPIN
DENSITY MATRICES

In this section, we will introduce how one can obtain spin
density matrices for vector mesons from Wigner functions.
We refer the readers to some recent reviews [45,73] for
details of the topic.

The second quantization of the vector field is in the form

dp 1
At(x) = /—_
() /1:%;1 (27)*2E)
x [ (A, p)a(A.p)e=iPo* + e (A, p)at (4, p)eiPon],
(5)

where ph, = (El‘f,p) is the on-shell momentum of the

vector meson, E) = +/|p|> + m} is the vector meson’s
energy, A denotes the spin state, a(4,p) and a'(4,p) are
annihilation and creation operators respectively, and
e"(A,p) = €,(A, pon) represents the polarization vector
obeying the following relations

pgﬂeﬂ(/t pon) =0,
6(’1’ pon) : €*</1/7 pon) = _5/1%
S (A pon) (2 pon) = —A(pen).  (6)
A

where  A*(p) = ¢ — p#p*/p* is the projector
perpendicular to p#. One can check that the quantum field
A¥ defined in Eq. (5) is Hermitian, A# = AT,

The Wigner function can be defined from G, (x;, x,) [or
equivalently G, (x;,x,)] by taking a Fourier transform
with respect to the relative position y = x| — x,,

G/fl/('x’ P) = /d‘lyeip"yG/jl/(xlv)Q)
- / dyer (AL)A, (). (7)

Inserting the quantized field (5) into the definition of the
Wigner function (7), we obtain

0)<
G~ (x. p) = 27 _8(p* = m3)
s

. 0
< {0(p°)e, (41 p)es (4o DS L), (x.P)
+0(=p°)ei(21.—p)e, (42. —p)
0
X 81, + Sy, (e =PI} (8)
where the superscript “(0)” denotes the leading order con-

tribution in 7 or gradient expansion, and the MVSD [40,41]
at the leading order for the vector meson is defined as

d4
1 em)= [ 555000

. . u u
xe‘””‘<av </12,p—5> ay </11,p+5> > 9)

Note that fg?i, (x,p) is actually the (unnormalized) spin
density matrix P3,4,» Which can be decomposed into the
scalar, polarization (P;) and tensor polarization (T;;) parts
as [45,73]

1 1
f/(l(l),lz = Tr(f) (g + EPiZi + Tijzij> . (10)
JIwR

where i, j = 1,2, 3, Tr(f ) = Zifﬁj), and ¥; and X;; are
3 x 3 traceless matrices defined as

oo [0t o
=101, S,=—|i 0 =i,
2 2
V2 010 V2 0i O
100 | 5
=00 0 |, Zy=5(Z+L%)-36; (1)
00 -1

Let us define an integrated or on-shell Wigner function

E 00 y
WH (¥, pon) = —~ A dpoG¥ (x, p)
= e(41.p)e" (42.P)f1,,(x.p).  (12)
Ao
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It is easy to check that the second equality holds for the

leading order Wigner function G,(,(,),>< (x, p) given by Eq. (8).
But we assume that it hold at any order. One can check that
WH(x, pon) is always transverse to the on-shell momen-
tum, p"WH(x, p,,) = 0. The on-shell Wigner function
can be decomposed into the scalar (S), polarization (Wl

and tensor polarization (7#*) parts as [45,73]
WH (x, pon) = wlel L )

1
= =30 (pon)S + W+ T, (13)

where each part is defined as

1
|/]/U”’] = 5(M/l‘” — |/VV”)’
1
W) = 3 (WHY - W),
1
TH = W) +§A””(pon)8. (14)

With Eq. (13) one can show that both W and 7+ are
traceless, gWW["”] = g, T" = 0. Inserting Eq. (10) into
Eq. (12), we have

S = Tr(f) = _A”U(pon)wﬂw

1 )
Wil = ST(f)Y et (41, )€ has )P
Ao
T = Te(F)S e (. p)e (oo P)T,E0,. (15
Ao

We see that W/ is related to P; while 7 is related to T;;.
We can extract f, « pgo by projecting

1
L (pon) = €7(0,p)e*(0.p) + 5 & (pon).  (16)
onto W in Eq. (12) as

L;w(pon>W/w = ZLﬂv(pon)eﬂ (’11 7p)€v* (’127p)flliz (x,p)
Ay

1
= foo(x,p) +§Z€”(/11 )€ (A2,P) f 1,4, (%, P)
P

= fonlx.p) =5 T (F). (17)

In (16), ¢*(0,p) is the polarization vector along the spin
quantization direction. With the first line of Eq. (15) and
Eq. (17), we obtain

L/w (pon) W

_Aﬂy(pon)w/w

_ Soo(x.p) 1
TTlfp)] 3 T3

(18)

The above formula relates the Wigner function to pgg,
which we will use to calculate the correction to pgy, in
Sec. VIL

IV. DYSON-SCHWINGER EQUATION ON CTP

In this section we will give an introduction to the Dyson-
Schwinger equation (DSE) on the CTP which incorporates
retarded and advanced self-energies to be used for spectral
functions in the next section.

We start from the integral form of the Dyson-Schwinger
equation (DSE) on the CTP for the vector meson [27,74]

G"”(xl,xz) = G%) ('xl’XZ)

+ [ andngl,, (. x)

X 2o (x),%5)G™ (x5, X2), (19)

where dx| , = d*x|,, [ denotes the integral on the CTP
contour, G and G* are the bare and full propagator

respectively, and 277 is the self-energy. In Eq. (19) we have

suppressed the index “CTP” in two-point functions G’(‘g),
G* and 2°. Contracting (G’(’g))‘1 on both sides of Eq. (19)
and writing the DSE in the matrix form, we obtain

G Giy
_l[gﬂ (6)261_’_"12)_%1011]( ij )v)('x ,.X')
14 Vv 4 G/> G'}: 1,42

1 0
(4 ) o)

o (e TN G TS
X X1, X pv pv X,X2)s
%, b G G

(20)

where the integral over x} is a normal one (not on the CTP).
Under a unitary transformation, Eq. (20) can be put into the
physical representation

- 2 2 o 0 G
_l[gup(axl +mV)_a§fla/§ ] pU pU (X],Xz)
Gr Gc

01

= (1 0)9"”5(4)()61—)62)
0 ShxGY

+/dx’< } i y>x,x ,

Sho *Gy b xGY + S %Gl (x1,%2)

(21)

where we used the shorthand notation O;*O,(x,x,) =
O, (x1,x" )05 (X', x,). We can assume the system is iso-
tropic, i.e. G*(x,x,) = G*(x; —x,), and the spatial
inhomogeneity of the system, as required by the Kubo
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formula, is induced by a perturbation. One can obtain the
Dyson-Schwinger equation for retarded and advanced
Green’s functions in momentum space (propagators)

[ylp(p _m\/) P pp]GZD/R( )
=4"+ ZZ/R./;( )GA/R( ) (22)

The free retarded and advanced propagators are given by

: 1 prp’
G . (p) = l—,(g"”— ) 23
()A/R( )= p?>—m} Fipee m?, (23)

One can check that G’(’g> 4/&(P) satisfies Eq. (22) neglecting

the last term in the right-hand-side.

The coupling between the vector meson and quark-
antiquark in QGP or the gqV vertex is assumed to be
gvBw y*w A, [57-60]. Here B denotes the Bethe-Salpeter
wave function and can be parametrized as [75,76]

1 —exp[=(p—2p')*/0?]
(p=2p)/)c*

B(p-p'.p)= (24)

where p—p’ and p’ are momenta of the quark and
antiquark respectively. We see that the wave function only
depends on the relative momentum.

We can assume that only when the distance between the
quark and antiquark is zero can they form a meson, thus we
have 1/06 — 0 and B = 1. Then the vector meson’s self-
energy to the lowest order of the coupling constant g, from
the quark one-loop is shown in Fig. (2). Applying Eq. (4),
we can construct retarded and advanced self-energies as

IR (x1,x0) = T (01, xp) = ZE(xy, x3)
= gy Trly"Sp(x1, %2) 7" Sp(x2, x1)]
= gy Tr[r* S (x1, x2)7"S- (x2, x1)],
T (x1,x0) = 25 (x, x) — 22 (x, x0)

= gy Tr[y*Sp(x1. %2) 7" Sp(x2. x1)]
- 9%/Tr{7ﬂ5> (21, X2)7"S < (%2, x1)]. (25)

Ty, @ L2,V

FIG. 2. The vector meson’s self-energy X, (x;,x,) from the
quark loop (one-loop) contribution.

where  S(x1,x) = (T (x))p(x,)) is the two-point
Green’s function of quarks on the CTP. We have included
a negative sign for the quark loop in Eq. (25). Under the
assumption that the system is homogeneous in position
space, we obtain self-energies in momentum space

4
() = / %{Trwwww D)

— Tr[y*S_(k)y*S. (k= p)]}.
2 (p) =gy / (;i;)ét{Tr[y”Sp(k)r”SF(k -p)]
+ Tr[y*S.. (k)y*S<(k — p)]}. (26)

The retarded self-energy is our starting point for derivation
of spectral functions for vector mesons.

V. SPECTRAL FUNCTIONS
FOR VECTOR MESONS

In this section, we will derive spectral functions for
vector mesons from the retarded self-energy. We use the
CTP formalism in grand-canonical equilibrium which is
also called the real time formalism of the thermal field
theory. The vacuum and thermal equilbrium contributions
are incorporated in the same framework. We assume that
quarks and antiquarks are unpolarized and their distribu-
tions are the Fermi-Dirac distribution (A2).

Evaluating the retarded self-energy in Eq. (26) using the
quark propagators in Appendix A, we obtain

., 1 .

> (p) = —lg%,4—}r3 QI +15) —igh e, (27)

where /" and 15" are medium parts while /{5 is the vacuum

part. The derlvatlon of I", I, and I%;. are presented in
Appendix B. From Eq. (B10) we have

0i( ) — 0 5. P0 500
IR (p) =2 (p) = i 2R (P),
p| "
P

"Ipl?

where X (p) denotes the transverse part of X3 (p). Using
above relations, we can greatly simplify the result of full
propagators.

From Eq. (A1), one can see the only difference between
the retarded and advanced propagators is the sign of the
small positive number €, so the retarded and advanced
propagators or self-energies are complex conjugate to each
other, " = —X&™ (note that there is an i factor in the
definition of the self-energy). It can be checked that X is
transverse to p* as required by the current conservation. We
note that the vacuum contribution and its real part is
divergent and can be renormalized [68]. The imaginary

ZR(p) =i, T 5 2R (p) + (67 = B'D)ZL(p).  (28)

056025-5
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part of the vacuum contribution corresponds to the pair
production or annihilation processes.
Inserting Eq. (27) into Eq. (22) and introducing

1 v v
— QI+ 1)~

2 (p)=—iZ (p)=—g} ™ golte,  (29)

we obtain

[Gr' ()™ = ilg"(p* —m}y) — p'p* =K (p)].  (30)

From the definition of 4",, we find that they are written in
terms of projectors related to three momentum p.
Therefore, we assume G% has the same structure with
T and can be written as

GY =
GY = G = ip;B.
G{ = i[(8;; — pib;)C + p;p, D). (31)

where A, B, C, D are functions of p and are not
independent since G’;” are transverse to p*. By solving

(G, G = ¢, we find
A L pi—my+ (pp/IpP)ER
w2 =i+ (P
1
C=———, 32
p*—my +X; (32)
where £, = —iX . Other two functions B and D can be

expressed in terms of A and will be discussed later. We can
also define G%', (p) = —iG/ ,(p) to remove the factor i in
the definition of G ,(p). The advanced full propagator
G!Y can be obtained by G4’ = G4 It should be empha-

sized that this relation holds only for an unpolarized case.
We can construct G from G’ and G% as [54,72]

= ing(po)[G¥ () = G} (p)]
= —2np(po)ImG (p), (33)

GZ(p)

where ng(po) = 1/(efPo=P#v —1) is the Bose-Einstein
distribution with the inverse temperature = 1/T and
the vector meson’s chemical potential uy (uy = 0 for the
unflavored meson). Note that there is an i factor in the
definition of the propagator without tilde. From Eq. (33),
we find the real part of A, B, C, D have no contributions to
the spectral function, and the imaginary part of A, B, D
have following constraints from p,G% = 0,

polmA — |p|ImB = 0,

polmB — |p|ImD = 0. (34)

Inserting Eq. (31) into Eq. (33), one can obtain

GZ(p) = =2np(po)[AT pr(p) + AL pL(p)].  (35)
or equivalently
ImGYy (p) = A7 pr(p) + A pL(p). (36)
In Egs. (35), (36), we defined

/‘pl’
p*

A = =g+ g +

p;tpu

AV = pw A =g DA (37)

as the transverse and longitudinal projector respectively
with p# = (0,p), and pr; are spectral functions in the
transverse and longitudinal directions given by

1

pr(p) = —=ImC = — = : :
p?—mi +2.(p) + isgn(po)e
e
pr(p) = —7—5ImA
p[?
1
= —Im——— : . (38)
pt—my + e = Z00(p) + isgn(po)e
where £ and £y are from £f: £ = —(1/2)A1 £ and

o0 = =%, sgn(py) is the sign of py, and & is an infinitesimal
positive number. One can check in Eq. (37) that
p,AY = p,A7" = 0. In Eq. (38), one can verify that the
real parts of £, and £, contribute to the mass correction
while the imaginary parts of £, and %y, determines the
width or life-time of the quasiparticle mode. For free
vector mesons, the spectral functions are p(TO ) = p(LO) =
msgn(pg)d(p? — m?), which give G (p) for the free vector
meson following Eq. (35) and ImGY%’(p) for the free vector
meson following Eq. (36).

VI. KUBO FORMULA IN LINEAR
RESPONSE THEORY

In this section we use the Kubo formula in linear
response theory to calculate the nonequilibrium correction
to G2 (p). The Kubo formula has been derived in
Zubarev’s approach to nonequilibrium density operator
[55,77,78].

According to the Kubo formula, the linear response of
the expectation value of an operator O to the perturbation
0,3, has the form

056025-6
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0

<0>LE + aﬂﬂl/ (x)lgr_l?oa—m)

xIm [iT(x) [ @002 @)ppe i)
(39)

(O(x)) =

where (O(x)) = Tr[p O(x)] and (O(x));g = Tr[pr 0 (x)]
with p and pyg being the nonequilibrium and local
equilibrium density operator respectively [78], p#(x) =
u”(x)/T(x) with u*(x) and T(x) being the local velocity
and temperature respectively, K* is the momentum
roughly equals to z/L with L being the length of the
system, and

A IR an 1. . | B
T =P P m AR - g <_Z Fp b7 + gmszpA’)> ’
(40)
is the energy-momentum tensor for the vector field.
Detailed derivation of Eq. (39) is given in Ref. [78].

Now we set O(x) to be the operator corresponding
to G¥

2t = [asori (s (s+ D).

7 (py,py) =

(piph + PipA)AL . (p1) AL (pa) +

which gives G* = (G"(x, p)). In Egs. (40) and (41) we
explicitly show the “hat” on the field operator A* which we
have suppressed in Sec. II and III just to emphasize their
operator’s nature in the Kubo formula (39). When inserting
Egs. (40) and (41) into Eq. (39), the vector field A" can be
approximated as the free field at the leading order in space-
time gradient, since 9,4,(x) is already of the next-to-
leading order.

Substituting G*(x, p) in (41) into Eq. (39), one obtains
the next-to-leading order term of G as

8G2 (x,p) = (G2 (x,p)) — (G (x, p))i&
T 1im - 1m / dpldp} ns(pl)—nso(pz)
K"—0 0K 2r p1 p2+K + ie
<o =L 00
X > pa(pO)pe(p) I (prip2)  (42)
a,b=L.T
where p; = (pl,p —K/2), p» = (p3.p + K/2), np(po)

is the Bose-Einstein distribution defined after Eq. (33), and
pr.r are given in Eq. (38). Note that integral ranges for p{ ,

are different from Ref. [46]. The tensor I/ W(Pl , p2) can be
expressed in terms of projectors A% LT as

+ (prapi — my)[AL (p1)AY (p2) + AX(p))AY (pa)]
— [P PSAL L (p1) AV (p2) + PAPSAY (p1) A (pa)] =

[P1PAAY (1) AL (p2) + PiP2a A (p1) AL (pa)]

- g* [g/fa(plpp!l) - m%,) - Pl,ﬂpz,a]AZ”(Pl )Algﬁ(l?z)- (43)

Then we integrate Eq. (42) over p, from 0 to +oo to exclude the contribution from antiparticles. As we have mentioned
above, the limit K# — 0 should be taken in the last step, thus the integral of Eq. (42) can be simplified as

+0c0 ) - n 0
/ dpdGZ (x, p) = 2T¢,, / dp g(éﬁ)
0 o 0

where &, = 9.,/ denotes the thermal shear tensor.
The spin alignment coupled with the thermal shear
tensor is given by

L' (pon) Jo ® dpo(Gry(x,p) +6G,(x, p)]
—A"(Pon fo dpo|Gy,(x.p)+6G;,(x.p)]

Opoo = (45)

where G,;,(x, p) is given in Eq. (35) while 6G;,(x, p) is
given in (44), and L*(p,,) is defined in Eq. (16). The
above formula is the starting point for us to evaluate the
correction to pgy from the shear stress tensor in the next
section.

DAV NCIR AT W ) (44)

a,b=L,T

We should note about the difference between the average
taken in G, (x, p) given by Eq. (35) [as \Yell as other
avarages in Sec. II] and the one taken in (G (x, p)) in
Eq. (42). The local equilibrium average is implied for the
former, while the nonequilibrium average is implied for the
latter. For notational simplicity, we do not put “LE” index
to local equilibrium averages in this paper except in the
Kubo formula Egs. (39) and (42).

VIL. SPIN ALIGNMENT CORRECTION
FROM SHEAR TENSOR

In this section, we will calculate the spin alignment
correction from the shear tensor. To this end, we adopt two
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approximations to evaluate self-energies and spectral func-
tions of unflavored vector mesons: the HTL and quasipar-
ticle approximation.

A. HTL approximation

Under the HTL approximation, the external momentum
of the vector meson’s self-energy is of order gy, T which is
called “soft” while the quark loop momentum is of order T’
which is called “hard” [29,63—67]. This condition is not
satisfied for the real vector meson in the thermal environ-
ment at RHIC and LHC with py > my > T. The reason
that we still consider the HTL approximation is that the
self-energies in this approximation is analytical and the
calculation of the spin density matrix is transparent. In
other words, we treat the HTL approximation as a toy
model to show the underlying physics.

We can consider massless quarks for simplicity. Note
that the vacuum term is not included since the imaginary
part of the vacuum term corresponds to the process that one
particle decomposes into two on-shell quarks, i.e. p® > k9,
which is beyond the HTL approximation. The vacuum
contribution is proportional to p>A* as required by the
Ward identity, which is of order g}, T2 since p ~ g, T. The
self-energy in the HTL approximation reads

- po+I|p|+ie
200(”)‘3’"%(1 T |p|+ie)’

- 3, pk Po_|P|2 po-+|p|+ie

2 (p ———m2—<1— In : (46)
(P ==3m1 1o\ 2polpl ™ po=Ip|+ie

where m2. = ¢3T?/9 denotes the thermal mass. The real

and imaginary parts of =% and £, can be obtained as
|

0 o Ea o dpo " p,(p)py(p) 1 (p) = A1 (p)
opgy = =T

= Po | po+ [P
ReXy(p) = 3m? (1——ln‘ ),
o(P) =3mz\ 1= 3™ o=l

3, p} (1_P%—|P|2ln‘l?o+|l’|>
2 T\p|2 2polpl | Po—Ipl|)’

- 3 p
Im2go(p) =7 m%ﬁ <|P|2—P%)’

Reij_ (p) =

Ipl)(

5 3 p p2_ 2
IS, (p) = —n—m%%e pP-p2).  (47)

4

where 6(x) is the Heaviside step function. We see that the
imaginary parts are nonvanishing only in spacelike region
of p.

Under the HTL approximation, one can get the inequal-
ity po ~ my ~ gyT < my, which provides a natural power
counting in @ = my/my. We also assume pj < [p|?, so
there is no pole contribution. Then the spectral function
pr/r in (38) can be approximated as

ImE, (p
pr(p) = L) | o(gs)
my
2 TP o2 — p3) + Ly O
IpP O my ’
2 T $00
p° ImX (p) 5
PLp :—74—0(1
3mTP0P 2 2 1 3
== o(lp|* — pg) + = O(’). (48

for p* < my. Using Eq. (48) in Eq. (45), we can get the
leading order term of dpq

Jo© dp’np(po)[(AF —3A)pr(p) + (A —3A7)p(p)]

ong(po)

x TE /Ipld 0
p
7 0 opo

where A’ij are projectors defined in Eq. (37). In Eq. (49),
the polarization vector can be approximated as € (0, p,,) =
(0,0,1,0) + O(a) with |p| < E, = my, where we choose
y direction as the spin quantization direction. So A*(p,,)
can be approximated as ¢** — ¢*°¢*°. The leading order

I Zyzlo) is given by

a,b=T.L

~ —my[AY (p) AR (p) + A¥(p)AY (p)]
+ m% g g A (p)AY (p), (50)

vyA
Izb}/ (p)

which is O(m?). Finally we can estimate

(94090 = 9u) J¥ dpon(po) (A p1.(p) + A pr(p )]
> palP)Po(P)ET (P ),

{fp‘ dp®ng(po)[A¥pr(p) + A pr(p )]}2

(49)

0 myrat x mytat x m3,

Spoy ~ my2a x &~ a’g, (51)

where &= £,| is the magnitude of the thermal shear
tensor. If we set the parameters’ values as gy =1,
T =150 MeV, my = 1020 MeV, the coupling between
the spin alignment and the shear tensor is about
a* ~ O(1072). If we further use &~ 0.01, then we obtain

5p(()%) ~ O(107*), which is much smaller than the contri-
bution from the coalescence model via strong force
fields [26].
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B. Vector mesons as resonances

Now we consider the realistic case that vector mesons
are resonances so that the coalescence and dissociation

(p — k)? > 0. The small imaginary numbers in the quark
loop integral become +i(E; + pg)e  ie in J.(p;n, ny)
in Eq. (B4). Therefore, the vector meson’s self-energies

processes can happen. In this case, we have p’ > E, and read
J
s oy ] Pory (. . p’ . .
200(P) = =gv 75 ~Ho(=1.2) + 2=/ (p; 0. 1) = J_(p; 0. )] + = [/ (p; =1, 1) + J_(p; =1, 1)]
4 p| 2|p|
2
F L)+ (1 D] - 2,
< 1 1
z(p) = —Q%WW{(8P2|P| +16p[*)Jo(=1,2) = (p* + 2p*[p*) V4 (i —1. 1) + J_(p: =1, 1)]

—4pslJ i (ps 1, 1) +J_(p; 1, 1)] = 4pop?[J 4 (p30,1) = J_(p; 0, 1)]

+4lpPP[J 4 (p:=1.3) + J_(p:=1.3)]} = giTe, (52)
where I, = (1/2)(5; TR ) j)li’;c. Note that the vacuum contributions to real parts of self-energies are canceled by
renormalization. When evaluating imaginary parts, we note that Jo(n,n,) is real and ImJ_ is nonzero in the region
p* + 2poE; < 2|k||p|, which cannot be satisfied under the quasiparticle approximation with p, > |p| and E; > |k|. So the

imaginary parts come from ImJ_(p;n;, n,) within the range —2|k||p| < p? — 2poE; < 2|k||p| as

Em

ImJ_(p;ny,ny) = —71'/

Emin

1
(Ex—pg)/T 11 + e(EkJrllq)/T +1 ’

(53)

where y,, is the chemical potential of quarks, m, is the quark mass, and Epay /min 18

2
2
p » 4m
Emax/rnin: (iz‘f'_o 1__2q> +m§.

2

(54)
p

We see that imaginary parts exist only when p? > 4m(2]. Then the imaginary parts of self-energies read

B 1 P’
ImE(p) = —gzvmlm J_(p;1,1) = poJ_(p;0,1) +71_(p;—1’1)] — gyImI%.,

1

ImE, (p) = —gémlm[—(ﬁ‘ +2[p[*p?)J_(p;=1.1) —4p3J_(p: 1. 1) + 4pop*J_(p;0,1) + 4|p|*J_(p; =1.3)]

— g Iml,.

Note that vacuum contributions are included in imagi-
nary parts of self-energies, which correspond to pair
production and annihilation (dissociation and combina-
tion) processes involving on-shell particles in the initial
and final states (the meson, quark and antiquark are all
on-shell).

1. Quasiparticle approximation

We take the quasiparticle approximation (QPA) for
the vector meson that gy is not very large and the self-
energies are assumed to be small compared with m%. In
this case, the spectral functions in Eq. (38) have narrow
peaks around Ej. In the region near p, = E, we can

(55)

[
approximate the self-energies as their on-shell values,

i.e., Z00(p) ® Zgo(Pon) and Z; (p) & Z | (pon). Then spec-
tral functions for transverse/longitudinal modes can be
approximated as

1
priL(p) = P () + p3(p)

~ msgn(po)d[pg — (E) + AEz))*|0(4m — p?)
mVFT/L

(PG — (Ey + AEr) )] +mylg ),

x O(p* —4m3),

+

(56)

056025-9



DONG, YIN, SHENG, YANG, and WANG

PHYS. REV. D 109, 056025 (2024)

where 'y, are widths and AEy,; are energy shifts for
transverse/longitudinal modes approximated as

1 ~
FT = 711’1121([70“),
my

my ~
I, = W Imz% (pon) ’

AET = \/E%/p - Reil(pon) - E;ﬂ

-EV.

» (57)

2 my o s
AE; = Ev,p - WReZOO(pon)

We see in Eq. (56) that pl}(;lz( p) denote pole contributions

while p; (p) denote cut contributions.

We plot widths and energy shifts in Fig. 3 as functions of
Ip| at gy = 1, 2. We choose two sets of values for the
strange quark chemical potential and temperature corre-
sponding to the freeze-out conditions at /syy ~ 20 and
200 GeV in heavy-ion collisions [79,80]: u, ~ up/3 ~
64.5 MeV and T ~ 155.7 MeV (black) and u, ~ pup/3 ~
7.4 MeV and T = 158.4 MeV (red). Other parameters

are set to gy = 1, my = 1.02 GeV, and m; = 419 MeV.

We can check pr%(;lz( p) = 0 for these values of parameters

since 4m? — p*> < 0 at the corrected mass-shell p* = mj, —

ReX| (pon) and p? = m} — (m}/|p|*)ReZpy(pon) for

transverse and longitudinal modes respectively. One can
see in Fig. 3 that the width and energy shift are almost
independent of freezeout conditions at the collision energy
20 and 200 GeV.

We find that the I'y,;, and AE7,;, are much smaller than
my, which allows us to introduce the following power
counting scheme

AEr Tru

Vv Vv
EV EY

~e<kl, (58)

where we have introduced € as a small power counting
parameter. Since [’ and I'; are positive definite, we expect
that their difference is a second-order contribution
AT/Ey=(Ty=T.)/E})~O(e*), while E} (1/T7—1/T,)=
Ey(T,—T'7)/(T7l)~O(1). On the other hand, such a
cancellation may not happen for AE; and AE;, because
they may have different signs. Therefore (AE; — AE;)/
E} < O(e) could be a first-order contribution. According
to hydrodynamic simulation of the strong interaction matter
in heavy-ion collisions, the thermal shear tensor & = |£,,] is
a small quantity of O(1072), which can be treated as
another power counting parameter. With Eq. (56) for
spectral functions, one can prove that the term with the
po integral of 5G(x, p) in the denominator of the right-
hand-side of Eq. (45) is of the order £E), /T’y ~ &/€, while
the term with the p, integral of G (x, p) is O(1). In order

T A B e B RS BT
20.5 - (b) 872 1 82
. 20.0 - 1 80

> L

(]

E ]
19.5 — T (Vs,=20GeV) T — [ (V5,=20GeV) ] 78

~ = = T} (Vsy=20GeV) - = [ (Nsy=20GeV) ]

— I (Vs=200GeV) T — T (V5,=200GeV) ]
19.0F = = T, (Nsy=200GeV) - = T} (Vsy=200GeV) 7 76

P o 1 o e b L ) ) e L e ) ]

R B B B e B e B e e R
0.5F (© g~l1 — AB, (Vsy=206ev) F  (d) &=2 — A (Vsy=206eV) J 2. 0

F - = AE (Vs =20GeV) ¥ = = AB (Vs=20GeV) }
. 0A4E — AE; (Vs=2006eV) F — AB; (Vsy=200Gen)q 1. 6
;.i 0. 3_ \\ - - AE,/(\/sNRZZOOGeV)_;;_ \\ - - AE,‘(\/SWZZOOGeV)_; 19
o 0.2F - 10.8

< ; Sel Sel ]
0.1;— “~.,_. T el -:0.4
0.0F B 3 " Jo.0

b aal L ol [ ol T TN | Lo s o 1o, | . | 2

0.0 0.5 1.0 1.5 20 25 00 05 1.0 1.5 2.0 2.5 3.0
Ip| (GeV)

FIG. 3.

The width T" (a,b) and energy shift AE (c,d) for transverse (solid lines) and longitudinal (dashed lines) modes as functions of

Ip| at gy = 1 (a,c) and gy = 2 (b,d). Two sets of values are chosen for the s-quark chemical potential and temperature corresponding
to the freezeout conditions at /syy ~20 GeV and 200 GeV: u, = 64.5 MeV, T = 155.7 MeV (black) and p;, = 7.4 MeV and

T = 158.4 MeV (red).
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for the linear response theory to work, one has to require
/e < 1.

It is clear that the integrands in Eq. (45) are suppressed
by spectral functions in the region of p# far from the
mass-shell. Therefore we can make an approximation by
expanding p, in the integrands around the on-shell
energy EV in powers of dpy = py —EV except spectral
functions. To the first order in py, the po integral of
GZ(p) gives

+o0 uw
/ dpoG* (p)
cut a
=—2§ dPoP 1 +0po =y
OE)

a=T,L

X [nB(pon)Azb(pon)]’ (59)
|

1
Spoo(p) = —

W

7°pha

+ 9o — Eyg”

while the p, integral of §G*(p) from the linear response to
the shear tensor gives

+o0
| asc )
=2T¢, Y

a,b=L,T

+oo
/O dpopi(p)p5(p)

2\ [a
X<1+5P0 ){MF‘W(%,M) (60)

Y24 v
oF I oE »

Detailed calculations for the integrand in Eq. (60) are given in
Appendix C. The integrals over p in Egs. (59) and (60) can
be completed and the results are listed in Appendix D. Then
Spoo(p) is calculated by substituting Egs. (59) and (60) into
Eq. (45). Up to linear order in € or &, the result reads

[1+n3a¥n{—qu%oA?u%acap>+5MLWu%oA?u%a

[pﬁnpén

2E)

«wm—qmﬂ

+ &Ly (Pon) (AT (Pon) AT (Pon) + A (Pon) AT (Pon)|C2 (P)

+ é:}’il‘/w(pon)[AyLD(pon)Aiﬂ(pon)CL(p) + A;U(pon)Aiﬂ(pon)CT(p)]} + 0(62)

where the dimensionless coefficients are defined as

_ 1+ng(E))+T/E, AE; — AE,

1 + nB(EX) T ’
C :(Eg)z i_i +n (EV) (EZ>2 AE‘L_AE‘T
! my FT FL B\=p mvT FL FT ’
C 4mvE})/(FLAET +FTAEL)
2= s
4(Ep)*(AEr = AEL)? +my (T +Tp)?
2EJAEr, -
T myl'r/p

Noting that py, could deviate from 1/3 due to a nonzero C,
independent of the shear tensor. Such a deviation arises
from the possible difference between spectral functions for
transverse and longitudinal modes [81]. In the power
counting scheme, we can check that Cy ~ O(¢) and other
coefficients C; with i =1,2,T,L are all O(1). The
numerical results show that Cy ~ O(1073) and other co-
efficients C; with i =1,2,7,L are O(107! ~1072) for
gy =1, 2. The dominant term that is proportional to
the shear tensor is the C; term, which is controlled by
1/T'y = 1/T", for the current values of gy.

2. Numerical results

In this subsection we will numerically calculate spectral
functions and Jpyy using Egs. (38) and (55). We will
compare numerical results with the QPA results using
Eq. (61). The parameters are set to the same values as in
Sec. VIIB 1. We can express 6pg(p) as

Spo0(P) = 8pt " (P) + £uC™ (D), (63)

where C* are dimensionless constants.

(¢

The numerical results for 5,000:0) (p) are shown in Fig. 4.
The QPA results using Eq. (61) are shown for comparison.
We choose two configurations for the mometum direction
with respect to the spin quantization one: transverse or
parallel configuration. The analytic results using Eq. (61)
are also shown for comparison. The results of the configu-
ration with an arbitrary angle are between these two limits.

We see that the magnitude of 5p(()%:0)(p) is about 1073 for
the values of parameters we choose.

The numerical results for the tensor coefficient C**(p)
are shown in Figs. 5 and 6 for transverse and parallel
configurations respectively. The QPA results using Eq. (61)
are shown for comparison. We see that the magnitude of
C*(p) is about 1072 ~ 1073 for the values of parameters
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FIG. 4. The numerical results for 5/)(0%:0) in Eq. (63) for the transverse (left) and parallel (right) configurations in which the momentum

is transverse and parallel to the spin quantization direction z respectively. The results under the quasiparticle approximation (QPA) using
Eq. (61) are shown for comparison.
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FIG. 5.

The numerical results for C** in Eq. (63) for the transverse configuration in which the momentum is perpendicular to the spin

quantization direction z. The results under the quasiparticle approximation (QPA) using Eq. (61) are shown for comparison.
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FIG. 6. The numerical results for C* in Eq. (63) for the parallel configuration for the spin quantization and momentum directions.
The spin quantization is chosen to be in the z direction. The results under the quasiparticle approximation (QPA) using Eq. (61) are

shown for comparison.

we choose, which is consistent with the result of Ref. [47]
in the order of magnitude.

VIII. DISCUSSION AND CONCLUSION

We study thermal medium effects for the spin alignment
of vector mesons from the meson-quark interaction in the
thermalized QGP, in which quarks, antiquarks and vector
mesons are assumed to be thermalized. Quarks and anti-
quarks are also assumed to be unpolarized. We calculate the
retarded self-energy of the vector meson from the quark
loop. The spectral function can be obtained from the
retarded two-point Green’s function including the contri-
bution of the retarded self-energy. Other types of two-point
Green’s functions with interaction can all be expressed in
spectral functions. Then we calculate the linear response
of the two-point Green’s function to the thermal shear tensor
using the Kubo formula, which provides a correction to the
Green’s function. Such an effect is caused by interaction.

Finally the correction to pg, can be expressed in terms of
spectral functions through one-loop self-energies. In order to
obtain an analytical formula for the correction to pg,, we
take the quasiparticle approximation: (a) the energy shifts
and widths from real and imaginary parts of self-energies
are much smaller than energies of vector mesons; (b) the

difference between widths for transverse and longitudinal
modes is much smaller than widths themselves. This
approximation is supported by numerical results with the
parameters we have chosen. Under this approximation we
derive an analytical formula for the correction to pg to the
linear order in the expansion parameter in terms of energy
shifts and widths. The numerical results show that dimen-
sionless coefficients of the thermal shear tensor are of
O(1072 ~ 1073) for the chosen values of quark-meson
coupling constant. The magnitude of the contribution from
the thermal shear tensor to pyy is then O(10™* ~ 1073) if the
thermal shear tensor is O(1072).

Our results are based the one-loop self-energy with
meson-quark interaction in the QGP. One can also consider
other interactions, such as pzz or ¢KK couplings, in the
nuclear matter [81-83].
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APPENDIX A: QUARK PROPAGATORS

The propagators for unpolarized quarks at the leading order are given by

T

S(0)<
E,

O p) = (p7+my)upaA=8(po = E) i (E,) + 8(po + E) 1 = fp(E]}

SO (x.p)=(p-r+ mq>aﬂ,§p {8(po — Ep)1 = fYi(Ep)] = 8(po + E)fip(E,)}.

0)F l(p "y t+m )a 4 -
Sty (rop) = =L = (p ey my)ggl6(po = By (E,) + 8(po + Ep) i (E,).
p°—my +ie »
(0)A i(py+my)y
Sep (¥P) =55,
4 p? —mZ — ipye
0)R l(p Yy t+m )(l
Sy (.p) = (A1)
p g T 1Po€

where € is a small positive number, m, = mj is the quark mass, and

1

= , A2
oxp (BEs — Prigyg) 1 (42)

f#p(Ex)

are Fermi-Dirac distributions for quarks/antiquarks as functions of the energy E; = (/|k|> + mé and chemical

potentials /.

APPENDIX B: RETARDED SELF-ENERGY
We evaluate the retarded self-energy in Eq. (26) using quark propagators in (A1l). The result reads

4
R (p) =gv / %{Tr[}’ﬂSF(k”/DSF(k —p)] = T[S (k)y*S. (k= p)|}

o Uik o) oyt i
=t [ Gt T e m =)y )

x E%{é(/co — E) S (EQ) + 8(ko + E)fSp(E)} + (4 < v, p = —p,e = —¢)

[ G m )= )+ )

2

i i P
: - 8k + E)8(k° = p° — Ey_
x {kz—m?]—i-ie (k—=p)*—mi+ic EiE._, (K + E)o(k” — p kﬁ)]

., 1 :
= —lg%/4—n_3 (21}1w + 1’5") - lg%/l/\fla/c, (Bl)
where 11", I5°, and I4; are defined as

1 1
. + . b
(kon + p)? = mg 4+ i(Ex + po)e  (kon — p)* — my — i(E — PO)J

1 _
i / &Kk - (B0 +ffm)(Ek)}[

1 _
. / i (PR + PR = 4 KB + 1)

1 1

X N - R s B2
[(kon P = B 4 po)e  (kon = P =2 —i(Ex = po)e (B2)
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4
=i [ STl ey m (k= p) v+ m,)

2

i i T
X . - S(kO + E)Ss(K° - p° —E,_ )|, B3
[kz—m,21+i€ (k—p)*—m; +ic EiE._, (K + EQo(k” = p kp) (B3)

where kb, = (E}, k) is an on-shell momentum for the quark or antiquark. The tensors 7/ and 15" can be expressed in special
functions J.(p;ny,n,y) and Jo(n, n,) defined as

" - 2+ 2poEy + 2|K||p| £ i(E; + po)e
J TR, N = dkEﬂ]knz (+)E + ( )E 1np 0~k k 0 ’
i) = [ dRIE R () + (B0 n DT e

Jo(ny, m) = / " AR ED K| (B + £ ED). (B4)

We now evaluate each element of I/ separately. The result for 7{° is

) 1
= 271'/dk”k|2Ek[f1(V+D)(Ek) + i (E0) /1 deos?

1 1
x . + .
va + 2poEy — 2|k||p|cos @ + i(Ey + po)e  p* —2poEy + 2[K|[p| cos 6 — i(E; — po)e

= ) + (i 1) (B5)

In evaluating 1%, we decompose the vector k into the component parallel and perpendicular to p as k = p(k - p) + ky with
k; - p = 0. The integral over the component perpendicular to p vanishes. The result for 19 is

0i _ 7i0
Il _Il

= 2mp, / d[k|d0'sin 6 cos Ok P[0 (Ey) + fi(Eo)]

! 1
% . + .
[pz + 2poE, — 2[K|[p| cosO + i(E + po)e | p? — 2poEx + 2|K||p| cos O — i(E; — po)e
—”pz b po A
=2 Bil/ 1 (p:0.1) =J_(p;0,1)] +—|p‘2 Pl (p: 1. 1) +J_(p;1,1)]. (B6)

To evaluate /*/, we notice that it is symmetric in i and j, so we can decomposes it into components proportional to p,p ; and
61']' - f)lﬁj using

. 1 .
kik; = pip;(k - p) + 5 k7(5;; — Pib;). (B7)

Then we obtain the result for I/ as
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i A 1 . _
1 = 2mb; [ A I [* [ dosindeosiolfy () + 1) )

1 1 1
X ; + N +ﬂ'5i'—A‘A-/dk—k4
[Pz +2poEr =2k - p +i(Ei + po)e  p* —2poEy + 2k -p —i(Ey —PO)J (6 =0ip)) [ 4 |Ek| |

. 1 1
x [ do sin sin20[ ) (E) + £ (E { + ]
/ Ve (Ed) + Fro(Ed) 2+ 2poE; =2k -p+i(Ex+ pole  p>—2poEg+2k - p—i(E; — po)e

=p:D; Zp |3{ 8p*Iplo(=1,2) + p* [/ (p;=1,1) +J_(p; =1, 1)]
+4pld (p,1,1)+J (ps 1, D] +4pop*[J(p;0.1) = J_(p;0,1)]}
+ (85— Pib;) 5y (8PP0 (=1.2) = P[4 (ps=1.1) + T_(p5—1,1)]

8|p|
—4pgld (P 1L1) +J_(p; L 1) = 4pop? [T (p30,1) = J_(p;0, )] +4|p|*[J (p; =1,3) +J_(p;=1,3)]}.  (B8)

In Egs. (B5), (B6) and (B8) we have express the result of /{* in terms of special functions J..(p;n, ny) and Jo(ny, ny)
in Eq. (B4).
The derivation of 15 is similar and straightforward. Here we just list the result as follows
2

v
1P = —4nJo(-1.2) + 27[%[&(1%& 1) =J_(p;0.1)] +TI;| i (ps=1,1) +J_(p; =1 1)],
2

% gy(-1,2) + p’|”|’ s (p: 1,1>+J_<p;—1,1>1+n(1+|§—|%)p,~w+<p;o,1>—J_<p;o,1>],

1 = pp, {—47:10(—1,2) P (= 1) 4T (pi =1 )22 22 1 (0. 1) = (30, 1)]}

19 = 19 = —4zp, 20

2 |p| Ip|

0y = 0ip) {4min(-1.2) - ZL U, (i1 1) + (-1 1] (89

Using the results for elements of /{* and I}, we obtain the elements of 274" + I5” in Eq. (B1),

1
210 + 1 = —4nJy(-1,2) + 2n—

;’(’lu L D) +J_(pi=1.1)],
219 + 19 = p, |p|(2100+100)

21 + 1 —ppjl : (2100+1°°) +(5ij_ﬁif)j)4| E {8(pg + Ip[»)Iplo(-1.2)

= PP+ PPV (ps =1 1) +J_(pi=1.1)] = 4pglJ 4 (p: 1. 1) +T_(p: 1. 1)]
—4pop* [+ (p:0,1) = J_(p: 0, )] +4[p [/, (p:=1,3) + J_(p: —1.3)]}. (B10)
The vacuum contribution I4;. for p > 0 can be evaluated by dimensional regularization as
i ' i
k* —mg +ie (k—p)* —m? + ie

4
r-if %Tﬂﬂk-wmqwuk—p) v+ my)}
— (07 = ) g [ ex(1 =02 = Tog(al1 = 0)p? = 10°) = + o(an) + Ofc)
= pZA”’“#/ dxx(1 - x) F —log | — x(1 — x)p* + mj| — y + log(4x) + 0(6)]

1
+zp2A””2 /dxx(l—x)ﬂe[ x(1—x)p? —m7], (B11)
n?
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where ¢ = 4 — d (d is an arbitrary space-time dimension in
regularization) and y =~ 0.5772. Here the term proportional
to delta functions in 4. is vanishing. The real part of Iy
can be canceled by introducing a renormalization term with
the condition Relys.(p* = m?) = 0. The imaginary part
14, is nonzero when \/? > 2m,, and contributes to the
spectral density. This corresponds to pair production or
annihilation processes.

I’”’M _ anB(pO)
9po

where a summation over a,b = L, T is implied.
First we expand I (p, p) in (43) at py =

A% (p) does not depend on py, but A7 (p) = A"”(p)
they can be expanded as
AT (p) = AT (Pon)-
v
A (p) m A (pon) +—-

L‘t/
) ) 2EY
AP (p) = AT (Pon) + mf

1%

pa(P)P (P (p. p) =pu<p>pb<p>(1 T 5p0

E}. We can express p# =

1
PhnP5nbPo — — (Pong”® + Poud*)8po.
1%

APPENDIX C: EXPANSION OF PART
OF INTEGRAND IN EQ. (44)
AT MASS-SHELL

In this appendix, we will expand p, around E},’ in
powers of Op, for the integrand in the second term of
Eq. (44) except spectral functions. The integrand can be
written as

(C1)

0 ong(Pon) uv
) |: B( - )Iﬂ J//I(p(m’ pon)

0EY ) | 0Pon

Pon + 8pog°, where pg = po — Ej. We note that

A% (p) depends on p through A*“. Then to the flrst order in &p

1 0 410
PonPon5P0 -5 (pongb + pong >5POv

Then I"7*(p, p) can be expanded to the leading order in &p, as

vyA a v A av B
I (p.p) = 2p* pr A o (p)AL (p) + (P — my)[AY (p) ALY (p) + A% (p)AY (p)] = g7 gpa(P? — mY) A% (p) AL (p),
27 (Pons Pon) = 2P Pon A o (Pon) AL (Pon).
I (. p) ~ 2Pk Do A (p) + 2(plag’® + Ping™® — ESg*)3po A (p) + 2EYSpo[AY (p) Y (p) + A% (p) A (p)),
I (p. p) % 2E)5po AF (p) AL (Pon) + AF (P)AY (pon)].
174 (p. p) ~ 2E5po[ AL (Pon) A () + A% (pon) A (),
y ” EY 1
7 (p. p) = 2Pk Poaldy (pon) + 4m—Zpénp£np’énp3n5po — ZWpénpén(pﬁng”O + pag*®)épo
v v
+ 2(phag® + Pond — ESn7")5po AL (Pon) + 2E48po[AL (pon) AL (Pon) + A (Pon) AY (pon)].  (C3)
The function dng(pg)/dpy is expanded to the first order in 5p, as
dng(po) _ong(Ey)  0*np(Ey)
o~ 1) Ol(6py)?
apo aEZ azEg Po + [( pO) ]
= —pny(Ep)[1 + ng(Ey)] ‘*‘ﬂan(Eg)[l + ng(E))|[1 + 2ng(E})]6po. (C4)
To the first order in dp,, the integrand is expanded as
1% an ( V) 1%
1% = p.(p)pw(p) SEV 7 (Pons Pon)
A anB( ) v 2 ld 2 2
= 2P Pon —— oET {8 (pon)pi (P) + AT (Pon) lp7(P) — p1(P)]}, (CS)
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2 Vv
e st
ong(E))
OEY
ong(Ey) { EY

22— péphapenpt
V onfonf onfon
aE,, m

7
I NLO —

1(p) + A7 (pon)lp7(p) = p1(P)]}

2pénDbn

{(Phag”® + Plong® = Ep g ) AT (p)+EJ AT (p) A (p) + AF ()Y ()]}

+ 25pop3(p)

1
+ 28popi (p) - Wpénpﬁn(p’éng”o + P5ud™) + AL (Pon) (Pong™ + Phng™ — Epg?)
\%4

CEY[AT (po) A (pon) + Ammm’?(ponn}

ong(E )

+2E50p0pr(P)u(P) = (AT (D)L (pon) + A ()Y (o) +AF (P)AT (Pen) + AF (P)AE (pen)]. - (C6)

APPENDIX D: INTEGRALS FOR SPECTRAL FUNCTIONS
The integrals in Egs. (59) and (60) are given as follows

A dpoprr(p) =

/0 dPo5P0PL/T(P)

A dpopy ;r(p) =

/o dpodpori 1 (p) ~

A N dpodpopL(p)pr(p) =

/2 AE; 7
W( EV
ﬂAEL/T
2 E)

>+(9( 2)

+ O(e?)

AE
” 1-="H1) 4 o)
4E mVFL/T Ep

T[AEL/T
—+0
4F mVFL/T * (€)
mv(FLAET + FTAEL)
2E [4E2 (AEL - AET> + mV(FT + FL)Z]

+ O(e)
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