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Using the relativistic complex scalar field model with a repulsive self-interaction, we discuss the ground
state structure of charged pion condensation under the coexistence of parallel rotation and magnetic field.
Our previous study found that the density distribution profile of the condensates is a supergiant quantum
vortex phase and change with rotational speed and coupling constant. In this work, we further discover
vortex lattice structures in the condensates under conditions of small rotation and strong coupling constant.
This mechanism can be thought of as electrical superconductivity: Vortex lattices are created to better adapt
to changes in rotation and interaction. Furthermore, large rotation and weak coupling constant are more
likely to cause the vortex lattices to be destroyed and form a giant quantum vortex similar to a doughnut.
We expect this phenomenon can be observed in the relativistic noncentral heavy ion collisions with large
rotation and strong magnetic field.

DOI: 10.1103/PhysRevD.109.056024

I. INTRODUCTION

The realization of the Bose-Einstein condensate (BEC)
with alkali metal elements provides physicists with a huge
opportunity to study this new state of matter and marks the
breakthrough development of modern physics. The appli-
cations of BEC involve theoretical and experimental
research in many fields, such as ultracold atoms [1–3],
superfluidity and quantum vortices [4–6]. With in-depth
research on BEC, physicists have extended traditional
condensed matter physics to relativistic Bose-Einstein
condensates (RBECs), i.e., the condensates are composed
of relativistic microscopic constituents [7–9]. As a conse-
quence, in this era of rapid development of experimental
facilities such as relativistic heavy ion collisions, it is of
great physical significance to study the properties and
forming mechanism of RBECs.
Rotation and magnetic field in general play very impor-

tant roles in large variety of physical environments, such as
rapidly rotating neutron stars [10–12], binary black hole
mergers [13,14], and noncentral heavy ion collision experi-
ments [15–17]. Especially, in noncentral heavy ion colli-
sions, the extreme conditions of strong magnetic fields and
high rotational speeds have been realized [18–20]. By
analyzing experimental results, it can be concluded that the
strong magnetic field generated during the collisions can be

eB ∼m2 [21,22], where e is the value of an electron charge
and m is the mass of a charged pion. In addition, the
numerical simulations indicate that the angular momentum
generated in the collisions can involve in the range
[103; 105] ℏ [23,24]; and the rotational angular velocity
has reached Ω ≈ ð9� 1Þ × 1021 Hz ∼ 6.2 MeV [25,26].
Generally, a strong external magnetic field can enhance
a fermion-antifermion condensation for leading to generate
a fermion dynamical mass [27–29]. Research shows that
the rotation has similar effect to a magnetic field and can
cause certain anomalous transport processes, for example,
chiral vortical effect [30,31] and chiral vortical wave
[32,33]. While, opposite to the magnetic catalysis effect,
the rotation generally suppresses the chiral condensation at
finite temperature according to effective models [34–36].
However, the lattice QCD simulations at imaginary rotation
seem to deny the latter feature, which then cause a lot of
debate and discussion on rotation effect [37–39].
Recently, many studies have shown that the combination

of parallel rotation and magnetic field (PRM) can also
induce a variety of condensed distributions. For instance,
based on the solutions of the Dirac equation, the condensed
characteristics of free fermionic systems in PRM have been
discussed [40–43]. Also, for interacting rotating fermion
systems in a magnetic field, more research focuses on the
possible effects of the edge states in phase structure [44–47].
Within the three-flavor Nambu–Jona-Lasinio (NJL) model,
the PRM can induce charged rho (ρ�) superconductor even
at a small rotational angular velocity [48]. The combined
effects of PRM can make noninteracting charged pions
condense both in the vacuum and at finite temperature [49].
However, other calculations show that the charged pion
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condensates can only occur under the conditions of a strong
coupling constant and negatively large baryon chemical
potential [50]. In our previous study [51], based on the
viewpoint of spontaneous symmetry breaking, the results
show that the profile of ground state formed by interacting
charged pions in PRM is a supergiant quantum vortex. Such
possibility was verified by applying the Ginzburg-Landau
analysis in the NJL model [52].
This work extends the previous one [51] by looking into

a wider range of interaction strength, especially the strong
case. This paper is organized as follows. In Sec. II, we
introduce the relativistic complex scalar field model with a
repulsive self-interaction. In Sec. III, we obtain the energy
dispersion relation and wave function of free charged pion
fields by solving the Klein-Gordon equation, and calculate
the ground state density distribution of interacting charged
pion fields induced by PRM.We summarize in Sec. IV. The
nature units c ¼ ℏ ¼ kB ¼ 1 are used throughout.

II. RELATIVISTIC COMPLEX SCALAR
FIELD MODEL

In order to explore the ground state formation of the
charged pion condensates induced by PRM, we adopt the
relativistic complex scalar field model with a repulsive self-
interaction. In the cylindrical coordinates ðr; θ; zÞ, the
action of the relativistic complex scalar field can be given
in a curved spacetime by

S ¼
Z

dt
Z

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
LðΦ�;ΦÞ; ð1Þ

where d3x ¼ rdrdθdz, and the Lagrangian density is
defined by

L ¼ ðDμΦÞ�ðDμΦÞ −m2jΦj2 − gjΦj4: ð2Þ

Here the covariant derivative Dμ ¼ ∂μ þ ieAμ, where Aμ is
the vector potential. Φ represents a charged complex scalar
field. g is a coupling constant that reflects the strength of the
self-interaction. The spacetime metric gμν of the rotating
frame reads

gμν ¼

0
BBB@

1 − r2Ω2 yΩ −xΩ 0

yΩ −1 0 0

−xΩ 0 −1 0

0 0 0 −1

1
CCCA; ð3Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radius of the cylinder sys-

tem, the notation Ω is the rotational angular velocity, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

p ¼ 1. It is convenient to rewrite the Lagrangian
density of the system as

L ¼ jðDt þΩyDx −ΩxDyÞΦj2 − jDiΦj2
−m2jΦj2 − gjΦj4: ð4Þ

Here the Lagrangian density is obviously invariant under
the localUð1Þ symmetry. Moreover, physical properties are
generally not influenced by the specific choice of gauge.
For convenience, we choose the symmetrical gauge in the
following calculations.
In the rotating frame, the Lagrangian density for the

interacting charged pion fields in the symmetric gauge can
be expressed as

L ¼ jð∂t − iΩLzÞΦj2 − jDiΦj2 −m2jΦj2 − gjΦj4; ð5Þ

where Lz ¼ −i∂θ ¼ −iðx∂y − y∂xÞ is the angular momen-
tum along the z-axis. In the imaginary time formalism, the
partition function of the system is given by

Z ¼
Z

½dΦ�½dΦ�� exp
�Z

β

0

dτ
Z

d3xL
�
: ð6Þ

Here βð¼ 1=TÞ is defined as the inverse temperature, and τ
is the imaginary time. By integrating the above partition
function (6) by parts, we can rewrite the action of the
system as

S ¼ −
Z

β

0

dτ
Z

d3xL ¼
Z

β

0

dτ
Z

d3xH; ð7Þ

where the notation H reads

H¼Φ�½−ð∂τ−ΩLzÞ2�Φ

þΦ�
�
−Δþ1

4
e2B2r2− eBLzþm2

�
ΦþgjΦj4: ð8Þ

The operator Δ represents the Laplace operator in the
cylindrical coordinate frame

Δ≡∇2 ¼ ∂
2
r þ

1

r
∂r −

L2
z

r2
þ ∂

2
z : ð9Þ

III. GROUND STATE FORMATION
OF CHARGED PION CONDENSATES

If the ground state density distribution of the system is a
Bose-Einstein condensate, the charged pion field Φ
acquires a nonzero expectation value. Thus we can decom-
pose the charged pion fieldΦ into a classical part ϕ0ðxÞ and
a quantum fluctuation part ϕðτ;xÞ, i.e.,

Φ ¼ ϕ0ðxÞ þ ϕðτ;xÞ: ð10Þ

We note that in a finite-size system, the condensate ϕ0ðxÞ is
generally inhomogeneous. At zero temperature, the density
distribution profile of the charged pion condensates can be
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determined by minimizing the Gross-Pitaevskii-like free
energy

E ¼
Z

d3x½ϕ�
0ðxÞð−ΔþHÞϕ0ðxÞ�

þ g
Z

d3xjϕ0ðxÞj4; ð11Þ

where the operator H is defined as

H ¼ 1

4
e2B2r2 − eBLz −Ω2L2

z þm2: ð12Þ

In principle, considering that the condensate in the z-axis
direction is homogeneous, we can simplify the Gross-
Pitaevskii-like free energy as

K ¼ ER
dz

¼
Z

dr

�
ϕ�
0ðrÞ

�
−∂2r −

1

r
∂r þ

L2
z

r2
þH

�
ϕ0ðrÞ

�

þ g
Z

drjϕ0ðrÞj4; ð13Þ

where
R
dr ¼ R

2π
0 dθ

R
R
0 rdr with r≡ ðr; θÞ. And R is the

radius of the cylinder cross section.
In the following, we define a certain number of con-

served charges. The ground state features of free and
interacting charged pion fields are studied separately.

A. Klein-Gordon equation of free charged pion fields

Let us first solve the more general Klein-Gordon
equation of free charged pion fields. We consider the
charged pion fields in the cylindrical coordinate with a
uniform magnetic field B ¼ Bz⃗ and a constant rotation
Ω ¼ Ωz⃗. In this paper, we always take eB > 0 and Ω > 0,
unless otherwise stated. The Klein-Gordon equation of free
charged pion fields in a rotating frame can be given by

−ð∂t − iΩLzÞ2ΦþD†
i DiΦ −m2Φ ¼ 0; ð14Þ

with the derivativeDt¼∂t−ieBΩr2=2, Dx ¼ ∂x þ ieBy=2,
Dy ¼ ∂y − ieBx=2,Dz ¼ ∂z. Therefore, the solution for the
above Eq. (14) can be written as

Φ ¼ e−iεtþipzzϕnlðrÞ; ð15Þ

with

ϕnlðrÞ ¼ CeilθϕnlðrÞ: ð16Þ

The notation pz is the momentum along the z-direction, C is
the normalization factor, and l is the azimuthal angular
quantum number.

In the infinite-size volume case, substituting (15) to (14),
we can rewrite the Klein-Gordon equation

½ðεþ ΩLzÞ2 þ Δ −H�ϕnlðrÞ ¼ 0: ð17Þ

Due to the need to guarantee the causal conditions of
relativity, we must consider the rotation with a finite
velocity v ¼ Ωr ≤ 1 and the quantization condition justify
with r ≫ 1=

ffiffiffiffiffiffi
eB

p
. When the first inequality is imposed, the

frame does not move faster than light to avoid pathological
effects of particle spectrum. The second inequality is
satisfied for keeping the wave function localization at
the boundary. In this way, the interference of some
nonphysical factors can be eliminated, so that the real
physical results can be better obtained. In general, we
assume that the rotation is rigid, so the rotational angular
velocity Ω does not depend on the distance to the axis-of-
rotation.
In the above case, it is convenient for obtaining the radial

solution of the Eq. (17)

ϕnlðrÞ ¼ rjlje−1
4
eBr2

1F1

�
−anl; jlj þ 1;

eBr2

2

�
; ð18Þ

where 1F1 is a confluent hypergeometrical function with
the parameter

anl ¼
1

2eB
½ðεþΩlÞ2 − p2

z −m2� − 1

2
ðjlj − lþ 1Þ: ð19Þ

Therefore, we can derive the expression of the energy
dispersion relationship from (19) as

ðεþ ΩlÞ2 ¼ p2
z þm2 þ eBð2anl þ jlj − lþ 1Þ: ð20Þ

Here the parameter anl is the nth zero point value of the
confluent hypergeometric function 1F1 when the angular
quantum number l is given, i.e., anl can be obtained by
solving the equation

1F1

�
−anl; jlj þ 1;

eBr2

2

�
¼ 0: ð21Þ

Especially, if we consider an infinite system with a radius
r → ∞, anl is a set of non-negative integers n. The function

1F1 can safely be simplified to an associated Laguerre
polynomial. Considering the nonrotation condition again,
the energy dispersion relation of the system returns to the
Landau levels (LL): ε2 ¼ p2

z þm2 þ eBð2nþ 1Þ. It is
obvious that the LL with different l is degenerate.
However, when a rotational angular velocity Ω is imposed
on the system, the LL produces a shift ∓ Ωl. Here, the
angular quantum number of the positive charged particles is
l and the angular quantum number of the negative charged
particles is −l. As a result, this means that the positive
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charged particles split downward and the negative charged
particles split upward.
In a real physical system, we choose the cylinder with

cross-sectional radius r ¼ R. And we impose the Dirichlet
boundary condition that ensures that the wave function of
the charged pion fields must vanish at the edge of the
cylinder. In the disc plane transverse to the rotating axis z⃗,
each momentum pz corresponds to a Landau degeneracy
factor

Nf ¼
�
eBS
2π

�
¼

�
eBR2

2

�
; ð22Þ

where the square bracket [� � �] means a rounding function.
For the LL to fit into the cross section disc with the area
S ¼ πR2, the degeneracies of the LL are identified with the
z-component of the angular momentum in position space.
As a consequence, the possible range of the l should be
−n ≤ l ≤ Nf − n where n labels the LL. And when n ¼ 0,
it means the lowest Landau level (LLL) with 0 ≤ l ≤ Nf.
Now we turn the problem to the free charged pion fields

(i.e., g ¼ 0) in the coexistence of PRM. Compared with the
solution of the corresponding Klein-Gordon equation, the
global minimum of the Gross-Pitaevskii-like free energy of
the system can be obtained by solving for the global
minimum of Knl, where the Knl reads

Knl ¼ −Ω2l2 þ eBð2anl þ jlj − lþ 1Þ þm2: ð23Þ

In order to conveniently consider the relativistic causality,
the above (23) is rewritten as

Enl ¼ −ðΩRÞ2l2 þ 2Nfð2anl þ jlj − lþ 1Þ þm2
0; ð24Þ

where Enl ¼ R2Knl and m0 ¼ R2m. In this paper, we take
the uniform magnetic field eB ¼ m2 ≈ 0.5 fm−2. Through
the above results, we plot the two lower energy spectra
of the free charged pion fields in (24) as Fig. 1. The
behavior of other higher energy levels is similar.
It can be clearly concluded from Fig. 1 that the lowest

energy of the l < 0 is much higher than the lowest energy
of the l > 0. And with the increase of rotational angular
velocity Ω, the ground state of the free charged pion system
is more inclined to the position with positive larger l.
Obviously, this shows that the charged pion condensates of
the positive l modes are more favorable than the negative l
modes, i.e., the l ≥ 0 modes always correspond to the
ground state of the system. Specifically, the l corresponding
to the ground state is the angular quantum number at
the global minimum of Knl (or Enl). For example, when the
rotational speeds ΩR are 0, 0.1, 0.2, 0.4 and 0.6, the
locations of the l corresponding to the ground state are 0, 9,
12, 16, and 24, respectively. By considering (23), we can
get that the global minimum of the system depends on
the competition between −Ω2l2 and 2eBð2anl þ 1Þ þm2.

This indicates that Ωl in the rotating system plays the role
of an effective l-dependent chemical potential.

B. Quantum vortex phases of interacting
charged pion fields

At zero temperature, the minimization of the Gross-
Pitaevskii-like free energy (13) leads to the ground state
energy spectra of interacting charged pion fields. The
equation of motion of interacting charged pion system,
however, is nonlinear and cannot be solved analytically.
Therefore, we choose the variational method to numerically
calculate the lowest energy eigenstate of the system.
Considering the basic features of interacting charged pion
fields, the trial wave function ϕ0ðrÞ can be expressed by the
complete basis vectors composed of the wave functions of
free charged pion fields as

ϕ0ðrÞ ¼
X∞
n¼0

X∞
l¼−∞

cnlϕnlðrÞ: ð25Þ

The variational parameters cnl are determined by minimiz-
ing the Gross-Pitaevskii-like free energy. For a given
number of charged pions, the conserved charges δN is
defined as

δN ≡X
nl

ðNnl − NnlÞ ¼
X
nl

jcnlj2; ð26Þ

where NnlðNnlÞ is the number of positive pions (negative
pions). In realistic numerical calculations, we can equally
choose the probability density

P
nl jcnlj2 ¼ 1. Substituting

the trial wave function (25) into (13), this Gross-Pitaevskii-
like free energy can be written as the sum of two parts:
K ¼ K0 þ Kint. Here we take the noninteracting part
K0 ¼

P∞
n¼0

P∞
l¼−∞ jcnlj2εnl and the interacting part

Kint ¼ g
R
drjϕ0ðrÞj4. According to the dispersion relation-

ship (23), we can obtain εnl¼−Ω2l2þeBð2anlþ1Þþm2.
Obviously, K is the superposition of the quadratic
and quartic term. The minimum of the system still
depends mainly on the competition between −Ω2l2 and
eBð2anl þ 1Þ þm2.
By doing complicated numerical solution, we get the

global minimum (i.e., the ground state energy of interacting
charged pions) of the Gross-Pitaevskii-like free energy (13)
and the corresponding ground state ϕ0ðrÞ. Without loss of
generality, we take four different rotational speeds ΩR and
four different coupling constants g. The ground state phase
diagrams of the interacting charged pion condensates are
shown in Fig. 2. It should be noted that we did not plot
ground state density distribution for the Ω ¼ 0 here.
Because when Ω ¼ 0 and g ¼ 0, the interacting charged
pion fields are restored to the free nonrotational charged
pion fields. Profile of the condensate shows that almost all
charged pions condense in the center (i.e., the state with
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l ¼ 0) of the disc. This phenomenon is similar to the
traditional BEC, in which all bosons occupy the same
quantum state to form a macroscopic observable. When
Ω ¼ 0 and g ≠ 0, the ground state density distribution is
diffuse in the two-dimensional plane. In Fig. 2, it can be
found that the profiles of these charged pion ground states
are various quantum vortex phases. And some of these
condensates are characterized by the creation of a certain
number of vortex lattices. These vortex lattices are similar
to small twisters inside the flowing liquids.
In the absence of interaction (g ¼ 0, see the first row in

Fig. 2), the profile of the condensates will gradually expand
from the center to the edge position with increasing of the
ΩR. However, it is worth noting that this expansion change
is not continuous, but quantized. Besides, pure rotation
cannot effectively induce multiple vortex lattices, but
makes the charged pions condense into a specific single
particle state with a determined l. As previously analyzed,

the rotation causes a shift in the ground state energy level.
Specifically, the ground state changes from ε to ε −Ωl
corresponding to the angular quantum number from l ¼ 0
to l ≠ 0, respectively. Therefore, the profile of the charged
pion condensates is actually a single quantum vortex state
when ΩR ≠ 0 and g ¼ 0. The radius of the single quantum
vortex depends on the rotational angular velocity. Quantum
vortices generally have unique intrinsic angular momentum
that is different from spin. In a cylinder, the wave function
of the quantum vortex states can be written as

ϕ0ðrÞ ¼ ηðrÞeilcθ; ð27Þ

where ηðrÞ is just a r-dependent function, and ηðrÞ ∝ rjlcj.
lc is a non-negative integer and is also defined as the
winding number (or topological charge) in the vortex state.
Theoretically, lc is proportional to the angular momentum
quantum number. From the first row in Fig. 2, we can find
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FIG. 1. Energy spectra of the lowest two energy levels (a) n ¼ 1 and (b) n ¼ 0 as a function of the angular quantum number l and
different rotational speed ΩR. In this figure we take Nf ¼ 25 and R ¼ 10 fm.
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that the largerΩR, the larger lc. Numerical calculations show
that lc ¼ l, when the rotating charged pions are in the ground
state. In particular, the results show that rotation has a certain
catalytic effect in a magnetic field. This allows the non-
interacting charged pions to form a single giant quantum
vortex with a winding number lc ≫ 1 induced by PRM.
In the following, we turn our attention to the system of

interacting charged pion fields (g ≠ 0, see the rows 2–4 in
Fig. 2). We find that the formation of vortex lattices results
from conditions of small rotation and strong coupling
constant. In a uniform magnetic field, the possible reason
for the formation of vortex lattices is to trigger electrical
superconductivity to adapt to the combined effects of
interaction and rotation. The number of vortex lattices

reflects the weight of free charged pion states with different
l. It can generally be represented by the values of the
nonvanishing parameters cnl in (25). For example, when
g ¼ 0.1 and ΩR ¼ 0.1 (i.e., the subfigure in the third row
and first column in Fig. 2), there are two rings of vortex
lattices in the ground state. The nonvanishing parameters
cnl are c0l ¼ ð0.144; 0.516; 0.835Þ for l ¼ ð0; 2; 11Þ,
respectively. In this quantum vortex structure, it is shown
that there are two vortex lattices in the inner ring, nine
vortex lattices in the outer ring and the total number is
eleven. This result accurately shows that the maximum l
contained in the ground state is the total number of vortex
lattices. In particular, the features of other subfigures in
Fig. 2 are similar.

FIG. 2. In the coexistence of PRM, the ground state density distribution jϕ0ðrÞj2 of interacting charged pion fields changes with
different rotational speeds ΩR and coupling constants g. Each column has the same ΩR, and each row has the same g. The rotational
speeds of different columns increase from left to right and are ΩR ¼ 0.1, 0.2, 0.4, 0.6, respectively. The coupling constants of different
rows increase from top to bottom and are g ¼ 0, 0.01, 0.1, 0.3, respectively. In this figure we take Nf ¼ 25 and R ¼ 10 fm.
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Large rotation and weak coupling constant are more
likely to cause the vortex lattices to be destroyed and form a
new single giant quantum vortex. As the ΩR continues to
increase, more charged pions are condensed on the edge of
the disc to form a doughnut-like structure. This change
demonstrates that the larger rotation destroys the equilib-
rium state initially formed in the condensates, prompting
the transformation of multiple vortex lattices into a single
giant quantum vortex state. The reason for this trans-
formation process is probably the effect of centrifugal
force caused by large rotation. And the single giant
quantum vortex state has a certain winding number lc.
For example, when ΩR ¼ 0.6 (see the fourth column in
Fig. 2), the winding numbers are lc ¼ 24, 24, 24, 23 for
g ¼ 0, 0.01, 0.1, 0.3, respectively. Here, the small differ-
ence in the lc results from the coupling of adjacent energy
levels due to the existence of an interaction. At this point,
the interaction effect is significantly smaller compared to
rotation. Obviously, this suggests that rotation and inter-
action form an entanglement effect in the charged pion
condensates.
The profile of the condensates may be even richer if we

consider dynamic electromagnetic fields. As we all know,
the rotation and magnetic field have similar effects. And the
effect of rotation applies not only to charged particles, but
also to neutral particles. For free charged pion fields, the
rotation causes a change in the ground state of the system
from l ¼ 0 to l ¼ lc. This change is generally expressed as
an effective l-dependent chemical potential. For interacting
charged pion fields, the combined effect of rotation and
magnetic field may produce more meaningful ground state
density distribution with the various vortex lattice struc-
tures. These provide us with a deeper understanding of the
evolution of condensates induced by PRM. Of course,
some signals of QGP and CME can also be studied through
the properties of vortex phase formed in the condensates.
Therefore, it is of principal interest that we look forward to
more quantitative studies in the next work.

IV. SUMMARY

In PRM, we calculate the ground state density distribu-
tion of charged pions formed under a wider range of

interactions and rotational speeds. The method is based on
the relativistic complex scalar field model with a repulsive
self-interaction and then solved by variational calculations.
We conclude that a certain number of vortex lattices are
found in the condensates under conditions of small rotation
and strong coupling constant.
Our calculation results show that for free charged pion

fields, the condensate always tends to angular quantum
number l ≥ 0modes. And as the rotational angular velocity
Ω increases, the corresponding l of the ground state
increases. This indicates that Ωl in the rotating system
plays the role of an effective l-dependent chemical poten-
tial. For interacting charged pion fields, we find that as
coupling constant increases, the vortex lattices are gener-
ated in the ground state of charged pions. In this case, this
mechanism can be thought of as electrical superconduc-
tivity. These vortex lattices are created to better adapt to
changes in rotation and interaction. Under conditions of
large rotation and weak coupling constant, the vortex
lattices inside disc tends to be destroyed and more pions
condense on the edge of the disc to form a doughnut-like
structure. This phenomenon is similar to the condensate of
free charged pions in a finite-size cylinder system with a
large rotation, and the reason can be considered to be the
result of centrifugal force. Moreover, these vortex struc-
tures are theoretically observable.
Finally, a natural extension of the present paper will be a

more self-consistent and realistic research of the profile of
charged pion condensates (i.e., the condensed distribution
under dynamic electromagnetic fields, the pion superfluid
in noncentral heavy-ion collisions), which may lead to
more discussions about the features of the RBECs in a
finite-size rotating system. We hope the measurement of
multipion correlations can help us to check the formation
and evolution of quantum vortex phases in the charged pion
condensates under parallel magnetic field and rotation.
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