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We newly develop a renormalization group (RG) improvement for thermally resummed effective
potentials. In this method, f-functions are consistently defined in resummed perturbation theories, so that
order-by-order RG invariance is not spoiled after thermal resummation. With this improvement, scale
dependences of phase transition quantities such as a critical temperature, which are known to be notoriously

large at the one-loop order, are greatly reduced compared to calculations with the conventional MS scheme.
By taking advantage of the RG invariance, we also devise a resummation method that can incorporate
potentially harmful large logarithmic terms and temperature-dependent power corrections in a generic
form. We point out that a resummed one-loop effective potential refined by the method can give results that
agree with those obtained by resummed two-loop effective potentials within errors.
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I. INTRODUCTION

Investigating phase transitions in the early Universe is
expected to shed light on new physics searches in particle
physics and cosmology. Much attention has been drawn to
gravitational wave generations from first-order phase tran-
sitions, which could provide useful information on high
energy physics that cannot be obtained by terrestrial
experiments. Furthermore, if electroweak phase transition
(EWPT) is first order, a cosmic baryon asymmetry can be
explained by the electroweak baryogenesis (EWBG)
mechanism [1].

While nonperturbative approaches such as lattice calcu-
lations would be robust, perturbative treatments are still
useful for probing vast parameter space in new physics
models because of their lower costs. One of the vexing
problems at finite temperature is infrared divergences origi-
nating from a zero Matsubara frequency mode, which
could spoil the validity of perturbative expansions even
for small coupling constants at high temperature [2,3]. It is
standard practice to reorganize the perturbative expansion to
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incorporate the dominant temperature corrections into the
unperturbed part, which is referred to thermal resummation
[4-6]. One-loop effective potentials with resummation
schemes in Refs. [4-6] have been mostly employed in
studies of EWPT (for other approaches, see, e.g., Refs. [7,8]).

In perturbative analyses of EWPT, a renormalization
scheme dependence inevitably comes into calculations, and
the magnitude of which implies impacts of higher-order
terms that are missing in the calculations. If the dependence
is too large to make quantitative studies reliable, a renorm-
alization group equation (RGE) can be used to improve the
calculations [9-12]. This can be done by replacing param-
eters appearing in the effective potential with correspond-
ing running parameters derived from f-functions which are
perturbatively defined at some fixed order. One should note
that the derivation of the f-functions follows from the scale
independence of bare parameters together with a specific
renormalization scheme such as a MS scheme [13,14].
Once the effective potential is made scale independent at
some order, one can incorporate a series of higher-order
terms utilizing its scale invariance. As demonstrated in
Refs. [10,11] at zero temperature, a Z-loop effective
potential with (Z 4 1)-loop f-functions can resum up to
¢'th-to-leading logarithmic terms. At nonzero temperature,
however, such an RG improvement of the effective poten-
tial would not be straightforward due to the aforementioned
thermal resummation. Unlike the zero temperature case, the
order-by-order RG invariance is lost, and higher-order
terms are required to recover the RG invariance up to a
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certain order in coupling constants. For example, the RG
invariance of the resummed one-loop effective potential
requires a part of two-loop effective potentials. Explicit
calculations using a high-temperature expansion can be
found in Ref. [6] (for a recent study, see Ref. [7]). Another
difference from the zero temperature is that in addition to the
potentially large logarithmic terms, temperature-dependent
power corrections could also be sizable at higher temper-
atures, as described above. Thus, the commonly used log-
resummation scheme is not always appropriate. In light of
this situation, the main issues to be clarified are as follows:

(i) How do we construct an order-by-order RG invariant
effective potential at finite temperature?

(ii) How do we incorporate both logarithmic terms
and temperature-dependent corrections in a general
manner?

In our recent paper [15], we proposed a novel RG improve-
ment method for the resummed effective potentials to
answer the above questions. In our method, f-functions
are defined in the resummed perturbation theory instead of
using those in the MS scheme, and as a result, the RG
invariance is maintained order by order after the thermal
resummation. In addition to this, the resummation by RG is
generalized to include whole loop functions that contain
both logarithmic terms and thermal corrections. By its
general form, this method is reduced to the log-resummation
scheme in the zero temperature limit, while the hard thermal
loop resummation in the high-temperature limit. Due to the
length limitation of the letter [15], we show only a main
result, and some details are omitted.

In this paper, we fill the gap in Ref. [15] by giving all the
details, including lengthy but useful expressions, and adding
more numerical examples to clarify our method further. One
of the main findings is that the resummed one-loop effective
potential in our scheme has much less scale dependence than
that in the MS scheme thanks to the order-by-order RG
invariance, though an exceptional region can, in principle,
be found due to an accidental cancellation between RG-
noninvariant terms and truncation errors in the MS scheme.
If one considers two-loop corrections, both schemes are
equally better than the one-loop result in our scheme. This is
because the two-loop corrections cancel the dominant RG-
noninvariant terms in the MS scheme. As a by-product of the
RG invariance in our scheme, a series of higher-order terms
can be incorporated into the resummed effective potentials.
In the case of a single field theory such as the ¢* theory, we
can show that the resummed one-loop effective potential in
our method correctly reproduces dominant two-loop cor-
rections. Even in a two-scalar field theory, our numerical
studies show that v./T obtained by the resummed one-
loop effective potential with our two-loop S-functions falls
within the two-loop order scale uncertainties, where 7'
denotes a critical temperature and v¢ is a vacuum expect-
ation value (VEV) at T.. Therefore, our RG-improved
effective potential would be particularly useful when the
complete two-loop effective potential is unavailable.

The paper is organized as follows. In Sec. II, p-functions
of masses and couplings and y-functions of fields are
generally derived by employing the dimensional regulari-
zation. In Sec. I1I, as the first application, we demonstrate
the RG invariance of the effective potentials up to the two-
loop order in the ¢»* theory and make a comparison between
the MS and our schemes analytically and numerically. We
also present how to incorporate higher-order terms based
on the RG invariance at some fixed order. An application of
our method to the ¢* theory with an additional real scalar
field is conducted in Sec. I'V. The numerical results of first-
order phase transitions are presented in this section. Sec. V
is devoted to the conclusion. Some detailed expressions are
given in Appendices.

II. B-FUNCTIONS IN THE RESUMMED THEORY

Let us collectively denote arbitrary fields and couplings
as ¢;(x) and g, and boson and fermion masses as m?2, and
M, respectively, and a vacuum energy is denoted as Q2. We
use dimensional regularization in which the spacetime
dimension is analytically continued to the d =4 —¢
dimension [16]. In this case, the mass dimensions of the
bare couplings gg, become o€, where o, = 1 for scalar
quartic couplings and o, = 1/2 for gauge and Yukawa
couplings, respectively, while that of the bare vacuum
energy € is d. Before discussing our scheme, we begin by
deriving p-functions in mass-independent regularization
schemes such as MS and MS [13,14]. The bare parameters
are decomposed into the renormalized parts and € poles:

o (n)
e a, '\g
9BkH —9k+zk€—,,(), (1)
n=1
o 7.(n)
b, (g
n=1
o pln)
B, (g
MBa = (5(1!7 + ZZ—n()> M/}v (3)
n=1
o (1)
ci;'(9)
z,.j:5U+Z’€—n, (4)
n=1
Q € __ Q = a)n(g> 5
i =82+ Z P (5)
n=1

From those expressions, one can find the f-functions of
each parameter as

. dg
P = 11mﬂ—'“k = —aka,(cl) + Za,f}afgf, (6)
¢

=0 d
. dmg 1

mzzlﬂm% = hmﬂ = Zbib),kakgkm%’ (7)
0 dp 45
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M, |
MaﬂMa = d = ZB((I/i),ko-kngﬂ’ <8)
€ H B

vi ij = e—>0 d/,t 2 ZCU KOk (9)

dQ
hm,u = wy, (10)

0" du
where all) = <1>/dgf, b, = dbl) /dg,, BY, =

dbaﬁ /dgy, and c,(/ = dc / dgy. For illustrative purposes,
we focus exclusively on scalar theories throughout this
paper.

Following the work of Parwani [4], we reorganize the
Lagrangian as

EB — £R+£CT

~ |ee- 5] + [t mamar].

where X,(7) are dominant thermal corrections to the
masses of the scalar fields ¢,. Z,(T) is supposed to be
obtained by gap equations or other methods in advance. At
the leading order, one would have £, (T) = O(g,T?), where
g; are scalar quartic couplings. Though this reorganization
does not change the bare Lagrangian, X,(7) appearing in
the first square brackets are regarded as the zeroth order in
this new perturbation theory, while those in the second ones
are part of the counterterm (CT) which are one-order higher
in this perturbative expansion (called thermal counterterm
hereafter). In our method, the bare mass parameters of the
scalar fields in resummed perturbation theory are defined as

o 7(n)
o= (303 B0 1 $-E8 05, 1) (1

where the last terms correspond to temperature-dependent
divergences. Such terms must be absent in all-order
calculations since the divergence structure of the theory
must not be altered by the thermal resummation. At a fixed
order in the resummed perturbation theory, however, one
would encounter temperature-dependent divergences, as
seen in the actual effective potential calculations shown in
the next section. Even though the new divergences are
expected to be canceled by higher-order terms, the order-
by-order renormalizability would be generally unclear. On
the other hand, if CTs are defined in the form of Eq. (12) at
each order in the resummed perturbation theory, the
renormalization would be more apparent. This is the
strategy we adopt here.

The rearrangement of the perturbative expansion seems
to mess up the order-by-order RG invariance. While the
scaling of £,(7) may be nontrivial, it should be scale

independent for full-order calculations, and thus the scaling
of the resummed effective potential would not be altered. In
principle, it is possible to construct Z,(7) in a self-
consistent way by solving a complete set of Schwinger-
Dyson equations. However, from a practical standpoint, we
assume that X, (7') is preset as a solution to the gap equation
in a scheme different from the one we are considering here.
For illustration, we have shown in Appendix B that X, (T)
adopted here is scale invariant up to the two-loop level in
the MS scheme. As always, there exists a residual scale
dependence in perturbatively calculated =,(7’). However,
this scale dependence is a matter of precision when
computing it, and in principle, we could improve it by
including higher-order terms in the gap equation. From
our standpoint, this is a separate matter from the scale
dependence issue of the effective potential that we will
discuss below, and we do not put the two different
scale dependencies together for consistency. The scale
invariance of X,(7) allows us to choose the couplings at
a particular fixed scale g;(pyeq) for X, (7). For the sake of
simplicity, we use initial values of the RG running for
%, (T) and a high-temperature approximation, as detailed in
Appendix B. In this paper, we call d=,(T)/du =0 con-
sistency condition. With this condition, we prove the order-
by-order RG invariance of the resummed effective poten-
tials up to the two-loop level.! Following the same step as in
the MS scheme but with the consistency condition, it
follows that

M2z = > (bl m3 + b S )owgr.  (13)
k.b

The thermal resummation also generates temperature-
dependent divergences in the vacuum energy. However,
the relation g = w; is not altered once the consistency
condition is imposed. Furthermore, f-functions of dimen-
sionless couplings remain the same as those in the MS
scheme.

III. ¢* THEORY

We first consider the ¢* theory to explain our scheme
and show the order-by-order RG invariance up to the two-
loop levels. The bare Lagrangian is given by

1
’CB - EaﬂéBaﬂq)B - VB(q)B>7
iz 2 B ga

As shown below, the vacuum energy Q is also needed
to show the RG invariance of the effective potentials.

'"The RG-invariant resummed pressure using a different
method can be found in Ref. [17].
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We decompose Lz into the renormalized Lagrangian (L)
and CT (Lcr), and subtract and add a dominant thermal
correction X(7T) in each part. The explicit form of the
resummed Lagrangian is given in Appendix A 1.

We derive the effective potentials up to the two-loop
level in this resummed perturbation theory. Let us denote
the classical background field as ¢. The tree-level effective
potential is

Auc
+—qo . (15)

Volp) =+ 5 (=7 + 2(1)g? +

where X(T') must be regarded as the zeroth-order term. The
field-dependent mass is given by

PV,

M? =
0¢?

=m*+X(T), (16)

with m? = =12 + Ju‘¢p? /2. Consequently, the resummed
one-loop effective potential takes the form

Mm* (2 M? 3
I In—

pVi(p) = 4(167%) 75t O(€)>’ (17)

where ji = A4me 7 ~2.66p with yp being the Euler
constant. As mentioned in Sec. I, the temperature-dependent
divergence appears in the fixed-order calculation. In our
renormalization scheme, the whole divergences in Eq. (17)
are removed by CTs defined in Egs. (A7)-(A9), leading to

s LI, 12D ), 134
e 3272 e 167> e 1672
(18)

Therefore, CTs of the dimensionful parameters are modified
by the thermal resummation. With those CTs, the bare mass
parameters Qp and v are expressed as

1 (2 -%)2

Quut =Q+60Q =Q +— , 19

BH T +€ 3272 ( )
- 1 2 1 2

vy =Zg (1 +6112) :1/2<1 +€167r2) _2(6‘1671'2)’

(20)

where Zg, = 1 at the one-loop level. From our fS-function
formulas (10) and (13), it follows that (for the derivation, see
Appendix A 1)

2 _
ﬁg) = %, (21)
—x
) <A, @

In the limit of £ = 0, our #-functions are reduced to those in
the MS scheme. Therefore, the difference between the two
schemes could be sizable when X is comparable to 2. If one
uses CTs in the MS scheme, the temperature-dependent
divergences would remain at this order. As pointed out in
Ref. [18] (see also Ref. [19]), hlgher—order loop corrections
are needed to cancel such dlvergences

As alluded to above, the dimensionless quantities are not
affected by the thermal resummation considered here, and
thus the -function of A and y-function are the same as those
in the ordinary MS scheme, i.e.,

pl =25 4 =o. (24)

The resummed one-loop effective potential after sub-
tracting the divergences amounts to

Veir(9) = Vole) + Vi(e). (25)
where
L S
Volo) = @+ L (4 + (D) + Lot (20
M* M? 3 T4 1
Vilg) = —— (2 -2 A —-¥
10 = 6 (05 =3 ) + 5 1A%) = 32002
(27)
with A2 = M?/T? and the thermal function Iz(A?) is
defined as
15(A%) = / " deIn (1 - eV (28)
0

7 ps A A% 3
M- A2 DA [ In—-Z 2
5t A W) 32<na3 2) (29)

2One could consider a resummation method shown in
Refs. [20,21], in which the bare Lagrangian is decomposed into

‘CB :L:R +‘CCT

_ 1 2 1 22 4 4 1 2
_L(aﬂop) L T AR

A 2 B 2 2 A 4 2 ?
+15(0,9) +5 (M2 -2 )0~ Lo +D( M -X ) |,

(23)

where M? =12 —% and A, B, C, and D are CTs in the MS
scheme at zero temperature. Orders (denoted as §) of M? and ¥ in
the resummed perturbation theory are regarded as M> = O(&°)
and X = O(6). With this order counting, the one-loop CTs for the
mass and vacuum energy are reduced to £ M?®* + DM*, which
are essentially the same as our CTs, and the order-by-order
renormalization works.
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where the high-temperature expansion (HTE) is used in the
second line, and Inap = 2In4x — 2y ~3.91. The last
term in V;(¢) comes from the thermal CT which avoids
the double counting of X(T)¢p?/2.

Now, we move on to the two-loop analysis. As is the
one-loop case, all the divergences appearing in the two-
loop effective potential are removed by CTs defined in
Egs. (A7)—(A10). Correspondingly, the f-functions of the
theory parameters in our scheme are found to be

5 = e (30)

R T
:%<—5—22+2>+%, (32)
ﬁ,(12) = —%‘f‘ 4/17513) = (161:2)2 <_ 177/13) (33)

Similarly to the one-loop order, only f-functions of the
dimensionful parameters are modified by the thermal
resummation. One can see that there exists A%/ (162%1?)
in ﬁﬁ) which is the same as the temperature-dependent term
in Eq. (22) but the opposite sign. At first sight, they appear
to be canceled outin . = ﬁip + ﬂg). As shown in the RG
invariance of the effective potential using HTE, however,
one has to regard 1X/(167%2?) in ﬂg) as one-order higher
correction than that in /}il), implying that A appearing in the
former is one-order lower than that in the latter [see also

Eq. (48) below]. We also note that ﬂg ) is nonzero due to the
thermal correction, which is another difference from the
MS scheme.

After removing all the divergences by CTs, the two-loop
corrections to the resummed effective potential are cast into
the form

2,2
Valy) = S PM) =0 A() ~ J2(n)TM), (34)

where the loop functions 7(M) and H(M) are defined in
Egs. (C3) and (C18), respectively. The last term in Eq. (34)
corresponds to the thermal CT at this order, and by which
the double counting of X(7) corrections and linearlike
terms in @ such as O((M?)'/>T3) are avoided [6].

A. RG invariance of the thermally
resummed effective potential

Now that we have obtained the renormalized effective
potentials and S-functions in our scheme at one- and two-
loop orders, we show their RG invariance one by one. The
effective potential satisfies [9—12]

A

0:
H du

o L, 0 9 d J
= —_ _ R J— V
ﬂd,u +v°p, o2 + 5 o1 Te? o0 + ba 50| et
= DVeff. (35)

We first show the RG invariance of the resummed one-loop
effective potential. Applying the derivative operator D to
the potential (25), one gets

2 4
1 12 1 1 1 M
DV0|one—loop = ﬂéz) - Eﬂiz)qaz + Eﬂ/(l )(,04 = 302" (36)
PV o = g V1= M (37)
1lone-loop — H (3;4 - 32]7:2 ’

where the consistency condition DX = 0 is used. Thus, one
obtains D(V + V)|onet00p = 0- We note that this invari-
ance is due to the modified f-functions. In order words, the
MS p-functions cannot maintain the RG invariance at this
order. Let us consider the errors of both schemes. In our
scheme, we have the truncation error which starts from the
two-loop order, O(1/(16x%)?). In the MS scheme, on
the other hand, an additional error comes from the
RG-noinvariant terms, which are found to be

- —2m? + %) 1
D MS — (
(VO + Vl)one—lOOp 3271'2 + O<(16ﬂ2)2)>
—/1(p22 1
38
T O<(16ﬂ2)2)>’ Y

where @-independent terms are dropped after the right
arrow assuming ¥ = AT?/24. Therefore, in the MS scheme,
there could be a cancellation between the two different
errors depending on model parameters. We will exemplify
such a case below. However, we emphasize that the less-
scale dependence is merely accidental and has no theo-
retical reasoning.

It would also be instructive to see the above RG
invariance using HTE. This demonstration focuses exclu-
sively on the ¢-dependent terms and omits the vacuum
energy Q. Using HTE of Ip given in Eq. (29), the
resummed one-loop effective potential (25) up to O(g*)
is approximated as
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Vit (@) =Volp)+ Vit ()

1 A T\ A=*+Z)c
o | (c2 40 [ 142 s | 222 2B 0
2{( v )< M np2>+ 1672 ]q’

T(M?)3% 1 34 . T?
—Ljﬂ{ﬁ(u 1M)+

32203
12z 4 3272 o

1672
(39)

where ¢z = (Inag)/2. To make the RG invariance of

VHIE(») manifest, we solve ﬁ,(,p and ﬁsll)

perturbatively.
Let us denote a running parameter as X(¢) with ¢ =
In(i1/fig), where ji is an arbitrary scale and j is its initial

value. X() can be expanded as

dX(t) 1d2X(1)

O =20+ e |, T
- 14
— O+ (B 4 HD o+ L2 P
(40)

Using this expansion, 7?(¢) and A(f) to O(t) are, respec-
tively, given by

—22(1) +Zz(—u%+2)<l —I—%t), (41)

_ 3
M) =gl 1 +—=1 ),
(0 ( +16ﬂ2)

where 12 =7*(t=0), and 1y = A(t =0). As noted in

Sec. I, X is given by the parameters at ¢ = (. Using those

expressions, VHIE(¢p) is rewritten as

(42)

1 A=1*+2)c T(M?)3/?
Ve (0) =5 [_VZ(T) TR e B] Ay
1 - 3/126'3
~ar 4 4
+4! {M )+ 16712] ( 3)

where 7(T) and A(T) are the running parameters evaluated
at T evolved from the scale fi. Therefore, VHIE(p) is
manifestly RG invariant, where the explicit scale depend-
ences of j1 are absorbed into the running parameters. This is
not the case if one uses the S-functions in the MS scheme.

Suppose that £ = AT?/24, Eq. (39) is cast into the form

1] M=1*+Z)c
Vi (@ ¢)=> |:_y2(T)|M_S+TB

AT T? 4 2 1T2 5

—_ —n_

24 22 2)|?

T(M?)3? 1 [ 30%¢cy

-+ AT
x4 (1) + 1672

}04, (44)

where 7%(T)|yg = 7%(T)|g—o- Note that the explicit
ji-dependence appearing in the AT?/24 term of the first
line cannot be absorbed into A since the coefficient of
A1In(T?/ii?) /327 is different from the right one in Eq. (42),
reflecting the RG noninvariance in the MS scheme.
Actually, this RG-noninvariant term is also inferred from
Eq. (38). As shown below, the RG noninvariant term would
become the RG-invariant form if one adds two-loop
corrections [6].

Now, we discuss the RG invariance at the two-loop level.
Applying the derivative operator D to the resummed
effective potentials (26), (27), and (34), respectively, each
contribution at the two-loop level is calculated as

v? 1
DVO'two—loop :ﬂg) __ﬂl(j)(pz —"_Zﬂf)go“ + (VZ - Z)}/g)(pz
1
575 '
AM? M
- _2(16ﬂ2)2(p2 “lep e T (45)
— {250 (2 0
Dvl|two—100p = | 2 ov 2+ﬁi __7 (/7%
_AM? 4 Ag? )
= 2062) I(M) + 752, (46)
av,
Dv, |tw0—loop =4 E
PM2@*  AM?+2¢p?) - =M?
My AV A ) jaa) 4 2L (a)
2006227 2(1622) 167
Summing up, one verifies that D(Vy+ V| +V3)|iyo-100p =0-

We here emphasize again that the order-by-order RG
invariance holds by virtue of the p-functions in our
scheme. As we have done in the one-loop analysis, it is
enlightening to discuss the RG invariance in terms of the
high-temperature expanded effective potential. Before
doing so, we obtain the expression of v? up to O(#%).
From the f-expansion formula (40), it follows that

2~ 2 +/10(U(2)_2) 2/1%(1/(2)_2) 2 ’13(_”(2)+Z)
0 1672 (1672)? (1672)?
AZ 2 ),
2+ 2wyt 48
e’ T (48)

Note that —1,Xt/16z% in the second term is canceled by
+192t/ 162 in the fifth term, which originates from ,Blg)
The result would be different if one cancels the whole
22/ (167°0%) terms in 3,2 = ﬂil) + /)71(/?) from the beginning.
By the cancellation of the AyXt/162> terms, the
O(1/(167?)) term coincides with the corresponding term
in the MS scheme. However, the O(1/(162%)?) terms are
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still different from those in the MS scheme due to the
presence of X. From this demonstration, one could infer
that the difference between the two schemes would get
smaller at the two-loop level as long as the two-loop
corrections are moderate. We will quantify this statement in
our numerical analysis.

As for the quartic coupling 4 and the scalar field ¢, their
running parameters up to O(¢?) are found to be

VEEE () = V(o) + VI (p) + VETE(g)

1 A T?
~— | 1+ ——5In—
o[ (5emz)
+’1T2 1+ 3 1nT2 +
24 3222 @
M=1?+2) 222(—1*+2)
+ 2 + 2\2
167 (167%)

2(1672)?

24(167?%)

T

M2)3/2

127 [( R
1

v i

where the terms without explicit i dependences are only
retained up to O(1/(16z%)). One can see that the numerical
coefficient of 11n(7?/i?) /327 in the parenthesis multiplied

by the factor 72 /24 in the second line becomes 3 owing to the
|

4(1672)

32 T2 98
2022+ S

T2
32

MT)T? N
24 24(167?)

T(M*(T))¥? 1 [-
~— 1. tu {l(T) +

4!

which is manifestly RG invariant. This V™ is common
in the MS and our schemes. In the MS scheme, however,
the explicit g dependences would remain in the
O(2*2/(167%)?) terms, and higher-order terms would be
necessary to restore the RG invariance.

Now, we present numerical results on the  dependences
of the RG-improved effective potentials up to the two-loop
level. For practical calculations, we rewrite it as

Ve (@) =5 |=2*(T) +

N[ =

1672

Ve (@:1) = V(@i 1) + Vi (@s1) + Vo(@s1).  (53)

where t = In(f1/y) with fiy representing an initial scale.
Hereafter, the barred quantities Q, 72, A, and ¢ are defined
as the running parameters which are functions of 7. For
example, the running parameters obtained by the one-loop
p functions are, respectively, given by

a(1622) " @

T2
(2 IHF +14cy

322(Tep]
)]

o
t °—
+(167r2)2

643
(167°)

S+ A1)t (49)

t
P = exp [—/0 dt’7q>(t’)]<0oﬁ(1—7§>t)fpo, (50)

where ¢, = @(t = 0). The resummed two-loop effective
potential in the high-temperature limit is

R +E) T 22+ T2

2 21627 “ﬂz}

2T? M?
(211]? +1+ CH>
TZ
ln_—z}cg} @*
H

T2
{A(M2)3/2 +/12(M2)1/2(ﬂ2} lnﬁ]

30 T?

3/?
<]+16ﬂ:21n/}2>CB:|(p4, (51)

343 n T? n
i 1672

(167%)?

I

addition of the two-loop correction, and as a result, this term
obeys the one-loop RG equation (42) [6]. We also note that all
the explicit i dependences in Eq. (51) are absorbed into the
running parameters given in Egs. (48)—(50), resulting in

e ) N z(r)(—vlzg[g ; z>c3] »

(52)

5 = pexp (— / ‘dr’yiﬁkﬂ)) —g. (54

A

— 3,
l6ﬂ'2t

o0

(55)

-z

1/3°
_ 34
|: 167° tj|

- (1»-x)? 31
Q=Q+——|1-|1-—
* 1672

(56)

"] e

where the unbarred parameters are defined at 1 = 0.
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FIG. 1.

Our scheme
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Resummed one- and two-loop effective potential with RG improvement in the MS scheme (left) and our scheme (right) at

T = 250. The reference point of the RG running is iy = 90, where we take v = 50 and m = 90 as the inputs, which gives 1 ~ 10. Note
that X(T) = AT?/24. All the dimensionful parameters are given in units of arbitrary mass dimension.

In our numerical study, we choose a parameter in which
X(T) = A(jig)T?/24 is enhanced to make the difference
between MS and our schemes more extensive. One of the
examples is shown in Fig. 1, where the resummed effective
potentials with the RG improvement in the MS scheme
(left) and our scheme (right) are plotted at 7 = 250. The
reference point of the RG running is set to ji, = 90, and we
take v = 50 and m; = 90 as the inputs, which corresponds
to A~ 10. All the dimensionful parameters are given in
units of arbitrary mass dimension. “l-loop” denotes
Ve (@) = Vo(@; 1) + V,(&; 1) with the one-loop S-func-
tions in the cases of z = T (blue, dotted) and i = 5T (blue,
dashed), while “2-loop” represents Vg (9; 1) = Vo(@51) +
Vi(@;t) + Vy(p; 1) with the two-loop S-functions in the
cases of i = T (red, solid) and i = 5T (red, dot-dashed).
One can see that the ji dependence of V. at the one-loop
level in our scheme is generally smaller than that in the MS
scheme. This is due to the modified f-functions in our
scheme. At the two-loop level, on the other hand, no
significant differences between the two schemes are
observed, and the i dependences of V. are even smaller
than the one-loop case in our scheme. As mentioned below
Eq. (51), the RG invariance in the MS is restored up to
O(A%T?) in the high-temperature limit, which explains our
numerical results well.

The i1 dependence of the effective potential at the one-
loop order obtained by our scheme is smaller than that
obtained by the MS-bar scheme, in the sense that the latter
has a larger error in the D(V + V) ype-100ps @ shown in
Egs. (36)—(38). On the other hand, this does not seem to
hold for the small-¢ region in Fig. 1. To see it easily, we

magnify that region and display it in Fig. 2. This seeming
contradiction is caused by an accidental cancellation
between the one-loop level error and the original two-loop
level one for the parameters.

In this numerical analysis, i = (1-5)T is considered to
see the fi dependence of Vg (¢;1). The next question is
which value of j is preferable among others. At the one-
loop order, for example, it would be useful if there exists ji
that can give similar results as the two-loop order. The
answer to this question would be very practical when the
two-loop effective potential is not at hand. For this purpose,
we refine the one-loop order Vg(@;t) by judiciously
choosing ¢ in the next subsection.

B. Incorporation of higher-order terms

Following the same spirit of the RG improvement
proposed in Refs. [10,11], we incorporate higher-order
terms utilizing the RG invariance of the effective potential
at a given order. Here, we focus exclusively on the case of
Ve (@31) = Vo(@31) + V(@3 1). When Vg(p,1) were
exactly ¢ independent, one could choose any ¢ as far as ¢
is below a Landau pole discussed below, and by which it is
possible to incorporate a series of dominant higher-order
terms via a ¢-dependent 1(¢).” On its trajectory in f-¢
space, V(, t) is always flat in the ¢ direction because of
the ¢ invariance. As stated above Eq. (38), however, the ¢
invariance of V. (@,t) is violated by the two-loop

*When 7 is @ dependent, the running vacuum energy Q also
becomes ¢ dependent so that one cannot simply subtract it from
the effective potential.
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MS scheme

2.5x107
2x107
1.5x10"

[}
= 1x107

5x10°

corrections. It is thus preferable to choose ¢ such that the
truncation error is minimized. With this consideration, we
determine ¢ by the condition

d‘_/eff(@;t) Vi (@3 1) 10M?%_  _
= =04+-——I(M)=0, (58
di or +55, (M) (58)
with
oM?  A(M? + Ag?
_AM i), (59)

ot 1672

where the one-loop f-functions are used. From Eq. (58), it
follows that

8. _
tp) = WI(M)zzo
L [(, 1 1672

On the trajectory given by this #(¢), Vi (, ) would still be
locally flat in the 7 direction, implying that #(¢) in Eq. (60)
yields the minimal ¢ violation of V(®,t) among any
other choices of #(¢). In addition to this approximate ¢
invariance, this #(¢) copes with two potentially harmful
corrections, such as large logarithmic corrections and
temperature-dependent power corrections in a general
way. At zero temperature, Eq. (60) is reduced to #(¢) =
In(m?/ef})/2 which is connected to the well-known log-
resummation scheme 7 = In(m?/f3)/2 [10,11] by chang-
ing our initial scale u, to pg/+/e. At high temperature,
on the other hand, Eq. (60) incorporates temperature-
dependent power corrections arising from

Our scheme

2.5x10"
2x107
1.5x10"

= 1x107

5x10°

T GP)PT WP apT?
THE(A),_~—— B+ (6l
Mo T 162 2 * (61)

Therefore, 7(¢) given in Eq. (60) seems to be the best
choice for the thermally resummed one-loop effective
potential. One thing that needs to be noted here is that
the truncation error in Eq. (58) is estimated under the
assumption that the one-loop f functions are used for the
running parameters. Instead of this assumption, we could
consider the two-loop order running parameters. In this
case, Eq. (58) is modified to

dVerr(@31) _ 0+ 1 aMZI (1) - PMPeT MPE
dt 2 ot 2(16x2%)?  167°
=0, (62)
where

oM?> _A(M? +1¢* = %) 2[S(M* +329%) + 3]

- 6(1672)?

ot 167° (63)

Therefore, the condition of 7(M) = 0 cannot eliminate the
whole truncation error when using the two-loop f func-
tions. Although we could, in principle, determine #(¢) by
the condition (62), we still adopt #(¢) in Eq. (60) through-
out our study due to the benefit described above, i.e., the
link to the ordinary log-resummation at zero temperature
and O(T?) mass resummation at high temperature.

Now we scrutinize if the resummed one-loop effective
potential Vg (@;1) = Vo(@;t) + Vi (p;1) with the t-¢
relation (60) correctly reproduce the fixed-order two-loop
effective potential. For this purpose, Vg(¢;t) is expanded
in powers of 1,
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Veir(@31) = Vege (03 0) _'_W%(t{o;t) z:ot + %% t:Oﬂ + .- (64)

Let us consider the following two cases
Vc(a:f) (@ (@) = Vo(@: t(@)) + V,(p; t(p)) with the one-loop 3 functions, (65)
Ve(:?f)(@ @) = Vo(@; t(p)) + Vi (9; t(@)) with the two-loop 4 functions. (66)

Expanding Vgg(go; t(p)) as the ¢ series, one can find

AM? +2¢%)

Vi (@:1(0)) = V1) (:0) + (67)

The I>(M) terms are exactly the same as those in V,(¢)

shown in Eq. (34). Similarly, the ¢ series of V) (¢:1)
becomes

Vit @:1(0) = Vil (9:0)

AM? +2¢* - %)

8M?

1 (22¢?

2 (32752

In this case, ng)((p; t(¢)) contains not only O(1*(M)) but

the O(I(M)) terms appearing in V,(¢). One should note

that X terms in O(I?>(M)), which are not present in V,(¢),

are the consequence of the use of the two-loop f functions

in Ve(®;1(¢)). From the viewpoint of its RG invariance,

such terms can be regarded as higher order terms so that

they can be dropped, as we have done in the proof of
the RG invariance given in Sec. III A. In this sense,

(1 + %) X(M),_,

+ 2)7(M),0.

(68)

\7gf) (p; t(@)) correctly resums up to O(I(M)). This appears
parallel to the leading and next-to-leading logarithmic
resummations in the scheme of 7(¢) = In(im*/i3)/2 at
zero temperature [10,11].

Before closing this subsection, we discuss the upper limit
of . As seen from Eq. (55), #(¢) could hit the Landau pole
tip = 162%/31~52.6/4 at which 1 diverges. From the
condition #(¢) < fp, it follows that

I(M),
MZ

2

<.
31

(69)

When the 1 x logarithmic terms are large and/or temper-
ature is significantly high, this condition would not be
satisfied. Actually, although the parameter set adopted in
Fig. 1 illustrates the differences between MS and our
schemes clearly, 1~ 10 and T =250 are too large to
satisfy the condition (69). In addition to this, since our

interest is the case of first-order phase transition required by
the gravitational wave generation and EWBG, we extend
the ¢* theory and apply our #(¢) to it in the next section.

IV. ¢* THEORY WITH AN ADDITIONAL
REAL SCALAR

One of the simplest extensions of the ¢* theory is to add
another real scalar field. The bare Lagrangian we consider
is defined by

1
LB = Z Eaﬂ(I)Bia’l@Bi - VO((DBI7 QBZ)’ (70)
i=1,2

Vi 2 Vi 2 AB1 <4
VO((DBI’q)BZ) = Qp +7q)1 +7¢Bz +?¢Bl
482 A3
+ﬂ®%2+7®%1¢%2, (71)

where two Z, symmetries ®g; — —DPp; and Ppy, - —Dp,
are imposed to make our analysis simpler. As we have
done in the ¢* theory, we subtract and add the dominant
temperature corrections to the masses of ®; and @,
(denoted as X; and X,) in Lp and Lct, respectively.
Their explicit forms are given in Appendix A 2. For the
sake of further simplicity, we also assume that only ®,;
develops VEV and investigate the thermal phase transition
in the ®; direction. We define the classical constant
background fields and their fluctuation fields as ®;(x) =
@; + ¢i(x), and VEV of ¢, is denoted as v.

After removing all the divergences of the resummed one-
loop effective potential by CTs in Eq. (A27) and improving
it by RGE (35), one would arrive at*

Vet (@1.1) = Vo(@1. 1) + Vi(@1. 1), (72)
where
- = 1 2 -2 /"_’l —4
Vo(@r, 1) = Q+§(V1 +Z1(7))p1 +$(P1’ (73)

“We suppress the ¢, dependence by the assumption that only
@, has nonzero VEV.
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- w3
V1(§01,t) = Z 4(1671'2) <1n62[-2 _2)

=12 Ho
T -, 1 ,
+2—”213(Ai> _521(71)4”1, (74)
with
M2=i21y ’_11—2 72 5 ’_13—2 5
1=v+ 1(T)+E(P1v M3 =03+2,(T )"‘2601’ (75)
T2 T2
I(T) = ﬁ(’ll + 43), 5(T) = ﬁ(ﬁz +43).  (76)

Note that X,(T) are given by the parameters at t = 0 to
fulfill the consistency condition as explained in Sec. II, Our
next step is to refine V(%,, t) by incorporating a series of
higher-order terms in I(M;) via a proper . As in the ¢*
theory, we choose t for each ¢; such that

from which one obtains

Ly
8723 5 I(M:) =g

om?
> M} 5

t(p1) = (78)

Let us approximate Vg (@;;1) in terms of the t-expansion
and compare it with the two-loop correction to the effective

potential (A40). V(. t(¢,)) defined in Eq. (65) is found
to be

(Zi=1.2ai7(Mi)t=o>2

Var (@ri0(1)) = Vit (01:0) +- =530, (79)
where a; = 1672 (0M3/0t)|,_y, i.e.,

ay = WM; + M3+ (4] + 23)ei (80)

ay = 3M3 4+ M3 + 223¢7. (81)

One can see that O(I>(M;)) terms in Eq. (79) do not agree
with those in the V,(¢,) in Eq. (A40). This is because the
single parameter ¢ alone cannot, in principle, incorporate
the multiple 7%(M;) terms simultaneously. Only in a special
case, such as |4,| > |4,|,|43] ~ 0, the O(I*(M;)) terms in
Eq. (79) would coincide with the corresponding terms
of Vy(e1).

Similarly, it is straightforward to obtain V(tt) (@15t(@1))
defined in Eq. (66) as

7(]Vli)z:()

), - _ 1 < oif?
Vi (@1:0) = Vi (01:0) + [— >
t=0

2 . ot
oM
1672

i=1.2

(A2 + B3)M? +223M3 2]

@
5 2(1672)? !
1 M? + %, 0M?
Z = l it & 2. (82
+2{ i:zl.:Z 167> ot z—o} - (82)
where
OM% ~ (112 _/1121 +j322 ’ (83)
ot |, l6x 167
oM3 BE) 4+ HE
2l o 0522_ 3 1+22 2 (84)
a |, 167 167
The O(I(M;)) terms do not agree with those in

V,(¢,) either. Here one may ask wether linear-like terms
(M?)'2T3 in ng)((pl;t) are canceled or not. As shown
below, the answer is positive. Recalling that such terms
arise from the high-temperature limit of I*(M,), i..,
(T?/12 — (M;)'/?T/4x + - - ), we take the first derivative
of the O(I2(M,)) terms in V(p:1) with respect to
I(M;),_o, which goes like

i M2 [Zal ,0—2ZM§2,}
@
i 22

=(2)
‘)Vc(:ff) (@102,
al(Mj),:O

2
o, T (2422
= (4] + 45 )(p +242 (p] (85)
485", M?a; BT
Therefore, the linearlike terms are absent in

V3(p1:1). Although O(12(M;)) and O(I(M;)) terms
in Vg;f’m (@1,t(¢py)) are different from those in V,(¢)
in a strict sense, they may still capture the two-loop order
corrections that are absent in the resummed one-loop
effective potential V(@) = Vo(@,) + V(@) commonly
used in the literature. We will quantify to what extent results

obtained from Viif’z) (@1,t(py)) are close to those from
the resummed two-loop effective potential V(1) =

Vo(@131) + Vi(@1:1) + Va3 1).

A. Numerical analysis

Here, we present our numerical results. There are 5
independent parameters in this model, (ul,u2,11,22,/13)
Some of them can be traded with physical parameters, such
as (v,v%,m(/,l,/lz,m(/,z) using the vacuum and mass con-
ditions. We search for a parameter set that gives the first-
order phase transition. In particular, we select a case in
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MS scheme Our scheme
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W
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FIG. 3.

which differences between the MS and our schemes could
be sufficiently large. For that purpose, we take a rather large
A, that enhances %,. Moreover, we consider a case in which
an imaginary part of the effective potential does not arise
near a critical temperature T -, where the effective potential
has two degenerate minima. One of parameter sets is
given by v=200.0, m; = 5.0, m;, = 125.0, v% = 85.02,
A, = 5.0, where those values are given at the initial scale
which is fixed by the condition #(¢; = v) = 0. It is found
that jiy ~ 75.81 at both the one- and two-loop levels. From
the input parameters, v2 and 1, are determined by tadpole
and mass conditions at a given order while 45 at the tree

TABLE 1.

T

v(T)/T as a function of T in the MS scheme (left) and our scheme (right).

level. All the dimensionful parameters are given in units of
any mass scale.

Figure 3 shows v(T)/T as functions of the temperature 7
in the MS (left) and our (right) schemes, respectively.
1-loop denotes the results using Vg (@131) = Vo(o151) +
Vi(p;;t) with the one-loop p-functions in the cases of
t =0 (blue, dotted) and # =1In5 (blue, dashed), while
2-loop represents those using Veg(p;t) = Vol(gi:t) +
Vi(g1;t) + Vy(@;t) with the two-loop p-functions in
the cases of r =0 (red, dot-dashed) and ¢ =1In5 (red,
two-dot-dashed). The intersections between each curve
and horizontal axis correspond to 7. One can see that ¢

The values of v and T are summarized in the case of 4, = 1, 3, 5 for the MS and our renormalization

schemes. Here, 1-loop and 2-loop denote the values obtained by the 7-dependent effective potential at the one- and
two-loop orders, respectively, for ¢ in the range of 0 < ¢ < In5.

MS scheme Our scheme
Tc
1-loop 2-loop Vi}f) VSf) 1-loop 2-loop ‘_/gf) ng)
Ay =5 48.6-53.6 47.6-48.1 48.5 48.6 48.6-49.6 47.6-48.1 48.2 48.6
Ay =3 48.5-51.2 48.1-48.3 48.5 48.6 48.5-48.8 48.1-48.3 48.2 48.6
A =1 48.4-49.0 48.4 48.1 48.4 48.0-48.4 48.4 48.1 48.4
ve/Te
- - o (1 52 i, - (1 5 (2
1-loop 2-loop Viff) Véfﬁ 1-loop 2-loop Viff) Viff)
A =5 1.9 2.1-2.3 2.1 2.2 1.6-1.9 22-23 1.9 2.2
Ay =3 2.0-2.1 2.1-2.3 2.1 2.1 1.8-2.0 2.1-2.3 2.0 2.1
Ay =1 2.2 2.1-2.3 2.3 2.3 2.1-2.2 2.1-2.3 2.2 2.3
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dependence of T at the one-loop order in the MS scheme
is about 5 times larger than that in our scheme. Such a large
t dependence in the MS scheme is reflected by the large RG
noninvariance at the order. At the two-loop order, on the
other hand, the 7 dependences in both schemes are equally
smaller than the one-loop order result in our scheme. The
significant improvement in the MS scheme is due to the
partial restoration of the RG invariance as discussed in
the ¢* theory. As explicitly given in Appendix A2, the
effective potential follows the RG invariance up to

MS scheme
6 T T T T T
1-loop: t =10 -oeeeve t=1In5 ———
5 2-loop: t=0 —— ¢ =1n5 —— ]
S R
4 ]
& of f
>
2 \I ]
|
1r : N
| |
0H‘\H‘\H‘\H‘ﬁ?H\Hl‘\”\
40 42 44 46 48 50 52 54
T
MS scheme
6 T T T T T
t=Inb ——-
5 t=_1n5 == ]
|74 —
4 ]
&3 ]
>
\
2 | ]
[
[
|
1F | ]
[
|
|
0 ! ! ! ! | ! ! !

40 42 44 46 48 50 52 54

T

FIG. 4.
plots). The remaining input parameters are the same as in Fig. 3.

the O(43T?) order in the high-temperature limit. In this
parameter choice, the residual RG-violating terms are
numerically unimportant, and thus, the ¢ dependence is
dominated by the truncation error, leading to similar results
in both schemes. We also overlay v(7T)/T obtained by

Vil (@1 1(p1) (gray, solid) and Vi) (gi51(1)) (black,
thick-solid). It is found that in the two schemes, vo/T ¢
in the case of ng) (@1, (1)) lie within the two-loop level

scale uncertainties, while not in that of ‘_/gg(@l, t(@1)).

Our scheme

\
|
|
|
|
|
|
|
|
i

0 | | |
40 42 44 46 48 50 52 54

T

Our scheme

0 I I I \i‘: I I I

40 42 44 46 48 50 52 54
T

v(T)/T as a function of T in the MS scheme (left) and our scheme (right) in the cases of 4, = 3 (upper plots) and 4, = 1 (lower
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This demonstration suggests that up to the O(1(M)) terms
are necessary to obtain the results closer to those at the two-
loop order. T and v-/T in each case are summarized in
Table 1.

As a reference, we also consider the cases of 4, = 1, 3,
which give the smaller ¥, compared to the 4, = 5 case, to
see to what extent the two schemes can differ. In Fig. 4, v/T
is shown as a function of 7, with the upper plots
corresponding to the 1, = 3 case and the lower ones to
the 4, = 1 case. The general consequences in those plots
are the same as in Fig. 3, but the differences between the
two schemes in the one-loop order results get smaller as 4,
becomes smaller. T and v/T in all the cases are listed in
Table L.

V. CONCLUSION AND DISCUSSIONS

We have presented our RG improvement for the ther-
mally resummed effective potentials in detail. In our
method, f-functions are defined in the resummed theory,
and thus, the order-by-order RG invariance of the effective
potential holds consistently, which is in stark contrast to the
case of MS scheme. As a simple example, we applied our
method to the ¢* theory and made a comparison with the
MS scheme both analytically and numerically. At the one-
loop order, our scheme generally gives less scale depend-
ences than the MS scheme does. At the two-loop order,
however, the differences between the two schemes are not
pronounced since the scale invariance is restored up to
O(2’T?) in the MS scheme. Our numerical study also
exemplifies the case that the scale dependence in the MS
scheme can become smaller than that in our scheme due to
the accidental cancellation between the RG-noninvariant
terms and truncation errors. This demonstration illustrates
the need to exercise caution when interpreting the scale
dependence. We also proposed the refinement for the
resummed one-loop effective potential in which the one-
loop function (I(M)) as a whole is resummed by fully
utilizing the RG invariance. Because of its general form, the
potentially dangerous large logarithmic terms and power
corrections of temperature are simultaneously tamed.
Moreover, this method is less sensitive to truncation errors
than any other choice.

We also discussed the first-order phase transition in the
¢* theory augmented by another real scalar field. We
showed that the scale dependence of 7 obtained by the
resummed one-loop effective potential is much smaller than
that in the MS scheme owing to the modified S-functions.
At the two-loop order, however, both schemes are equally
good as in the ¢* theory. Our numerical study shows that
the resummed one-loop effective potential with the two-

loop p-functions (ijg ) can yield the same v/T as those
in the two-loop order calculations within their scale
uncertainties, implying that the dominant two-loop order

contributions are incorporated into \_/gf) to a good approxi-

mation. This suggests that ng) could be practically useful

when the full two-loop effective potentials are not at hand.
In Ref. [22], we show the renormalizability of resummed
two-loop effective potentials without resorting to HTE in
Abelian gauge theories. It would be interesting to clarify
whether our method also leads to the same conclusion
obtained here. We leave this to future research [23].

APPENDIX A: COUNTERTERMS
AND S-FUNCTIONS IN THE
RESUMMED THEORIES

1. ¢* theory

We divide the bare Lagrangian (14) into the renormal-
ized part and counterterms:

EB - ER + ECT? (Al)
where
Co=tooro_arle e (a2
K= OPIP QAT OO (A2)
1 o2 SAuE
ECTZE(ZCD—1)aﬂq>a#q>—5g+%q>2—4—’fq>4. (A3)

The relationships between the bare and renormalized
parameters are, respectively, given by

oy = 770, V3 = Zg' (V* + 82),

j’B/’l_g — ZE)Z(}, —|— 5&), QBIL{E = Q + 59 (A4)

L and Lcr in the resummed ¢* theory are modified as

1 V2 —X(T e
;CR:EG”(DMCD—Q‘FACI)z——

> i 4, (AS5)

1
Lot =5 (Zo = 1)0,000 ~ 5Q

ov* + X(T) o M

5 e (A6)

Note that the relations in Eq. (A4) remain intact. When the
spontaneous symmetry breaking occurs, the scalar field is
shifted as ®(x) = ¢ + ¢(x). As in the ordinary perturba-
tion theory, CTs are perturbatively expanded as

oQ=60Q+6PQ+ -, (A7)
o2 = 8W1 + 6@ .-, (A8)
84 =8WA+6P0+ -, (A9)
Zo=1+70 478+, (A10)
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and determined order-by-order in the resummed perturba-
tion theory. At the one-loop level, CTs are given in Eq. (18)
and at the two-loop level, one can find

APA-%21 (A-3%)=1

s2Q = — —, (A1l
2(167%)* €? N 167> € (All)
522 = W—_Z) 2 1 +’1_21 (A12)
- (1622)? \e* 2¢) l67%€’
o, 32 (31
2

o) A1
S Al4
@ T T 06) e (A14)

It would be instructive to show the derivation of ﬂg) and

ﬁg ) in more detail. The bare mass v% is expressed as

v =12 (1 + z‘”: br;(nll)) +3(T) i’: 5"69) .

Applying d/dt = ud/du in both sides, one gets

(A15)

. b, (A © 3 ap (4
0=028 (1 + Z#) + (A + (7)) ;ﬂﬂn —d; )

€

(A16)

where A\ = di/dt = % x,€". Since x, = 0 for n > 2,
B = xo + x,€ = xo — 4e, which leads to
dby(4)

2B = P ——L+ (T
v = 7 + AX(T)

db, ()
di

_ d¥(T)
+ b = (AT)

At the one-loop level, one obtains b;(1) = —b,(1) =
1/16x* from Eq. (17). One finally arrives at

o) AR =X(T))  A* dX(T)
= - . Al8
vhe 1622 l6x2 di (A1)
If we adopt the resummation method in which

dX(T)/dt # 0, the last term should be kept. However,
such a term would not preserve the RG invariance at the
one-loop order. In our resummation method with the

consistency condition, on the other hand, /35? is reduced to

2
vp V2 1672 : ( )

Now we move on to derive ﬂg ). The bare vacuum energy
is expressed as

@, (4)

’
€}’l

Qput =Q+ ) (A20)
n=1

where the 1 dependence of w, (1) arise from X(7T'). Taking
the ¢-derivative of both sides, one finds

eQuut — e{g + iwe( )]

n=1

(¢) - 1 da)n (ﬂ)
= — e A21
Po' + ;6,,//‘ du ( )
where f) = udQ/du. With g = 7% d,e" and ) =
Xo — A€ and taking € — 0,

do, (4)
di -’

Bo = 1in01ﬂ§§> =dy=aw, + A (A22)

where the second term is induced by the running of X(7).
Thus, such a term should be discarded if the consistency
condition applies, and we are left with

my (@A -%)?

p = (A23)

2. ¢* theory with additional scalar

Following the same procedure in the ¢* theory, the
renormalized Lagrangian and CTs after the thermal resum-
mation are, respectively, given by

1
L= 5 0u@i®; = Vo (@, @), (A24)
i=1,2
1
Ler = EZ(Z‘I"‘ —1)9,0,0'D; — 5V (D, D,),  (A25)
where
2(T 2 > (T )
VO(®1’®2):Q+V1+21( )®%+V2+22< )<I)§+4_1,C[)‘1‘
A A
+5; @3+ i3, (A26)
SA=2(T) , SB=(T
Vo (D, Dy) =06Qu~+ “i 21( )q)%Jr 1% 22( )q)%
5/11/,{6 5/12/46 6,13'“5
+=y O @l ofes. (A27)

The relationships between the bare and renormalized
parameters are
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O, = 7V, 1P =75 (P + 8P),
=% = o, (Vi +8v7) sp AT A BEAHT)L
/IiBﬂ € = Zd’i (il —+ 5&,’), 1= 1, 2 (A28) 1 — 16ﬂ'2 € ’
Aapp ¢ = Z,},}Z;i (A3+643), Qput =Q+86Q. (A29)
3(A3+4)1
sy ==L 37 (A32)
As in Egs. (A7)—(A10), CTs are determined order by order 167> €’
in the resummed perturbation theory. The one-loop order
CTs are, respectively, given by X
2 = 0. (A33)
5(1)92 (V%+Zl)2+ (y%+22)21 <A30)
2(162°) € while the two-loop order CTs are
|
SO0 — WA+ Z) +h3+5) + 240 +2) (3 +3) 1 Zi(0f +5) + (13 +3) 1 (A34)
2(167°)? €? 1672 e’
52 — 204 +43) (07 +Z0) + A3(4 + A +24) (15 +2) |
: (167%)? e
[ AR ) F24505 +5) | AT A% 1 (A33)
2(16x%)? 1672 €’
507 — 334 +4MAS + 43 +413) 1 34 (4F +43) +243] 1 (A36)
! (162%)? €’ (162%)2 €’
243221
O B (A37)

The classical constant background fields and their
fluctuation fields are denoted as ®@;(x) = @; + ¢;(x).
After the renormalization in our scheme, the resummed
effective potential up to the two-loop level is

1 )
Vole)) =Q+ 5(”% + (7))} +4—1,€0‘117 (A38)
M? M? 3 T
1% =N (o) 4 (A2
1(91) i;4(16ﬂ2) (n;ﬂ 2) 22 1A
1
- E Z (T>fﬂ%, (A39)

2192
o1 AT ~ -
Valpy) = ==1 {%H(Ml) +/1%H(M17M2,M2>]

+ % MIA (M) + 212 (My) + 22:1(M, ) (M,)]

_ % £,7(My) + S,1(M)], (A40)

where H(M,) = H(M, M, M) defined in Eq. (C9), A; =
M;/T and

12(162%)% ¢

[

A A
M%=V%+21(T)+3‘cpi M3 =13 +5,(T) + 2 g2,

2
(A41)
T2 T2
Z(T) :ﬂ(/ll +43), Z,(T) :ﬁ(%‘f—%)- (A42)

As is the ¢* theory case, one can verify the order-by-order
RG invariance of the above effective potential in terms of
the f-functions in our scheme. One-loop fB-functions are
given by

o, =15, = 0. (A43)

P =R+ E + 35 ()
Y = D) A0+ (Ad)
B = Ua0i 3+ a0E + )] (AdS)
B = 1o+ A, (A47)
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2
g = 16 (B4R, (A48) pY = (16 6y o(I3+23) +223) + 4hory).  (AS4)
A(A; + A, + 44
ﬁgj) — 3( 1 22 3)’ (A49) 5 124—3/12
167 @ _ 1T (A55)
o T 2(1622)2
and two-loop p-functions we need are
2 2
@__ 1 @ _ M +34
bo = 1622 (3 +Z)Z + (15 + )], (A50) Yo, = 2016227 (A56)
1
2
vi ,E%) == (1622)? (AT + 23) (1] + Z1) +243(15 + Z)] As in the previous special case, one can find
AR e 2,(2) 2 4 4
- Wire, (AS1) a0 Vi) o Ly g MY+ MG
1671'2 DV0|one—loop - ﬂQ + Eﬂy% P + I!ﬂﬂ] ¢ = m’
2
ipy = - (6 (B + )03 +22) + 2807 + 2] (A57)
M + HZ
e (A52) v MMy
N T N 1 lone-loop = M ()//l - 2(1671’2) s
) — A (/12 + /12) + 2/13] +40ye,  (A53)
Ao (lea?)r T TR T i which verifies that D(Vo + V1) |ope100p = 0-

~ HTE
Now we consider Vg " (¢).

VEirE (1) = Vo(o1) vHTE< 1)

1 vt ”1+2)+33(V%+22)1n?_§ +(/11+/13)T2
2 32x 7 24
T((M})Y + (M3)*2) 1[(11 REGERD T2>+3<ﬁ%+z%>c3

— In— ISR
127 ta 22 R 1672 ](pl+

A+ 4)T?
AT ) 63+ m)e]

T((M22 + (M2)32) 1 3(22 + 22)e
_T((M7) 127[( 2) ) 4'[1(T) %](P?"‘"" (A59)

R

1
+ 1622 {7 +20) + 103 + %) Yep| ¢

:% [ﬁ%(T) +

where 72 and 4, are the running parameters in our scheme. To see difference between the MS and our schemes, we rewrite
VHIE(9,) by taking X, = (4; + 43)T?/24 and %, = (4, + 43)T?/24, resulting in

1[_ T? A+ A iy T? 1
Vi) =3[R + 2 {a (1480 )+ (142 D ) L s 0+ 20 + 6+ Db

2\3/2 213/2 24 2)ep)
_T((m}) 1;(%) )+4'[“) (/1176%2) ](pﬁ..., (A60)

where 73(T) g5 = 21(T)lg, —s,—o- The O(T?) term in the first line breaks the RG invariance. After including terms arising

from the sunset diagrams, they would become the RG invariant form, as shown below.
Taking D derivatives of Vg (¢;) at the two-loop level, one finds

2
2 1% 2 1 2 2 1
DV0|tW0—loop = ﬁgl) T zlﬂl(/?)(p% T Eﬁﬁl)(pj‘ N (U% + 21)7/51)1)(,0% 3! 7/51)1)(,0?
M2Z, + M3%, (2 +23)M? +23M3 2
__MiZ 4 M3%, (i )M 23 —Zlyé,f(p%, (A61)

167? 2(167%)?
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1(M,)

DV =
1 |two—loop 2 2( 1671'2)

M2+ 2a M3+ (2 + 23)g3) + UsM? + M3 + 22503) + 275 0%, (A62)

1(M5)
2(1672)

_IMy)

2(167°)

M2E, + M3,
1672

(4 +B)MT +25M3

(M3 + A3M3 + (23 + 23) 93] — 2(167%)2 i

DV2|tw0-loop M3M% + )'ZM% + 2&340%] +

(A63)

Summing up, one gets D(Vy + Vi + V2)lwot00p = O-
Let us look into what the ji-dependent terms look like using HTE.

VETE(01) = Vo(e1) + VT (gy) + VETE(g))
{ 2 A +l3l/21 Tz 2(8 +23) (1] +Z0) + A3(A + A +24) (13 "‘22)
1

1%
—2[° e P 4(167°)
_ A+ E) 250+ 1) | TP (4 Aads) T
2(1672)? i 8(1672)
T? 32 +3)3, T? I3(A + Ay +443), T?
41 — - In—
Fard (e ) (G )
ﬂl(l/% —|—21) +lg(l/% +22) 2(22 +ﬂ.2)(l/1 + Z]) +ﬂg(ﬂl +)~2 + 2)/;)(1/2 +22) T2
+ 5 1n_—2 Cp
167 (167°)? i
LA B0 H2) A ARG+ E) o] o
(1672)? e

T2
{41 (M7 + 2 M (MD)'2 + (2 + 23) (M7) 21 } In 25

T e

3
127 4(16x%)
2

T
{A(M3)*2 + 1M (M3)' 2 + 21§(M§)1/2¢?}1nﬁ—2

M2)32
+ (M) +4(167r2)

3

e G MD) + a M2) 4 & MR 4 MR )

1H/1 +3(,12+,12)1 T2 3(3,1§+4,11/1§+,12/1§+4,1§)1 T2 3{4 (13 +23) +243} T2}
X I

n>— — In—
4! 2

- 327° > 4(167%) i’ (167°)?

+1632{/12+/12 | 3 A 5 445) TZ} ) 3(A + A3 +24,43) 2]¢4

1672 Iz st (1672)2 5|1

() O3 -

4(16x%)
_E[VTZ(THﬁ(/h( )+ 35(T >>+#{%<T><a%m+zl>+13<T><D%<T>+Zz>}03

B+ 0T (B+3)0]+Z) + 4 +/13)(’/%+22)62] ’

_|_

8(1672) (1672)? B |91
o | BT (BB 4 52 (0 (MR 2 M3 4 2 MEME) 4 MO )
72 2(T))ep 3 2 e 2
+Z |:/_11(T)+3(/1](T)1—16—7;123(T)) 3(11 +(/126/1;2-)+-22/1 i ) 2:| 4+4(’116T )( %)1/2(M%)1/2+'“. (A64)

Note that all the ;i dependencies are absorbed into the running parameters, and the RG invariance is manifest.

056023-18



REFINED RENORMALIZATION GROUP IMPROVEMENT FOR ... PHYS. REV. D 109, 056023 (2024)

APPENDIX B: GAP EQUATION AND THE Note that I(M) incorporates daisy and super-daisy dia-
CONSISTENCY CONDITION grams but not sunset-type diagrams (see Ref. [2]). Z(M?)

We give more details about the consistency condition. without the sunset-type diagrams can be rearranged as

For illustrative purposes, we focus on the ¢* theory. After

— 3 pry)
regularizing the gap equation in the MS scheme, it is cast v 32y _ _ 1o 152 1 71— 1 (M
into the form [2,24,25] M) = =1 (" T 407) T3 | A= g2 ) [ (M=o
1A
M? = m? + 2(M?) + <1 - @> z,(M?),_
I un 2002 1772
= m? +J1(M) + T, (M?) + X0 (M?), - (B1) L ptM o ). (B3)
(1677)
where the first three terms on the rightmost-hand side are
pictorially represented as each diagram in the first line in ~ where we have used
Fig. 5 and (") includes the sunset-type diagrams shown
in the second line in Fig. 5. We will use Eq. (B1) both at ~ _ - 2tM?
. . 2 2 I(M):I(M):O_
zero and finite temperatures to define M= and M~|;_,,. For ! 1672
now, we concentrate on the first three terms, where (M) is B 24 1
defined as Eq. (C3) and Z(p(Mz) as =1(M),_o— 1622 ["_12 + EI(M) + Zw(MZ)}
o 1 M 1 112> _: 2 [, A5 _ame
Ew(Mz) :/Izqoz (16” )1 _2 +2 I”(AZ) _ e —I(M)t:() T m +2 I(M)l:() 62
7229
/12402 » Rz
= Z(p(Mz)[:O BETFR (B2) +Z,(M7) - 1622 (B4)

In Eq. (B1), the MS running parameters are denoted as the ~ The thermal correction X(7') that is used in Eq. (11) is
barred quantities, and I'4(A2=M?/T?)=0’15(A%)/0(A?)?.  defined as
|

X(T) = M? — M2|T 0

i’ y 272
:% <}L 1t6/17z )(HM),:() —Io(M),_glr—o) + <1 - %) (Zy(M?),g — Z,(M?),_ol7—0) + %
zZT—ﬂz</1 lté )]/ (A2)+F</12_%>1//(A2)+ " (B5)

where the ellipsis in the last line denotes higher-order terms that are irrelevant below. Now, we show the 7 independence of
M? and X(T). Taking the ¢ derivative of the gap equation (B1), one has

dM> _di® | dE(MP)]roy | dX(T)
dr  dt dt dr

S,

e

(B6)

FIG.5. The gap equation for the scalar mass. The thick solid lines represent the full propagators, while the thin lines are the tree ones.
The second diagram on the right-hand side incorporates daisy and super-daisy diagrams, which becomes dominant in the high-
temperature limit [2].
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At the one-loop order,
calculated as

the zero-temperature part is

din? N d(M?)|7— _ yi :
dt dt 167
=0. (B7)

For the temperature-dependent part X(7), on the other
hand, it follows from Eq. (B5) that

dx(T)

i Tz(i )
o () s )y +

Since this quantity is the two-loop order, it can be ignored
in the calculation of the one-loop order.

Now we move on to the two-loop order calculation
focusing on X(7T). In this case, the contributions of the
sunset-type diagrams are necessary to show the ¢ inde-
pendence of X(T). It is straightforward to derive the two-
loop contribution by taking the second derivative of V,
with respect to & and replacing m> with M?. The relevant
part has the form

(B8)

2
w =) ¥ (sunset) (Mz)
6(1_02 m2—M?
ZZTZ 5/_13@2
— I/ AZ I// A2
{27;2(16;;2) B )+4ﬂ'2(1677:2) 5(4%)
MZ
xIn— . (B9)
Hoe

After taking the two-loop contributions into account, X(7')

is modified to
T? /(- 322
(T) =5 <,1— >1;9(A2)

1672

=2
@ 2 6’1 11 (A2
+— (A —t—= |1} (A B10
2ﬂ2< 1672 > 3(4%), ( )

from which, since 4" = 372/16z2, it follows that

d¥(T) T? 322
= (P = ) 1o

dt 2 167
-2 73 23
% 7 (1) 04 1 2 A
L 2 ] -
s < P T > 54 )+O<(16ﬂ2)3
/‘13
=0 — ). B11
+O<<16n2>3) (B11)

Therefore, X(T) is ¢ independent up to the two-loop order.
We emphasize that, besides the MS scheme, it is possible to
formulate a scheme such that dX(7')/dt = 0 by modifying
the p-functions, although in a nontrivial form. In any

scheme, the z-invariant (7)) up to a certain order can be
obtained, which underpins our consistency condition.

In the high-temperature limit with /24 < 1, Eq. (B10) is
reduced to

AT? 31 e
EXT)—|1=-t—+0|=|]|.
(T) 24 [ 622 <T2)]
The ¢ invariance of X(7) allows one to have the simplified
form X(T) = AT?/24 by choosing ¢ = 0, and we use it in
this work. By the same token, X,(7) and %,(7) in the

extension of the ¢* model discussed in Sec. IV are also
defined at + = 0.

(B12)

APPENDIX C: LOOP FUNCTIONS

Let us define the sum-integral symbol as

Ty [k
I T / 2m)d=1"
k n=-—0oo

where n denote integers and d = 4 — e. A thermal function
for the one-loop bubble diagram is defined as

k

(C1)

m: 2 -

T +1(m) + €i.(m) + O(e?), (C2)
with
- m? m? T2 m?
- T2 m?2

where k? = w? + k* with @, = 2nzT.” The explicit form
of i.(m), which is needed when one goes beyond the one-
loop level, is

) m? m? 2 7
T2 T2 5 5
—— | (m=+ma-2]\r, ' . (c4
| (g rma=2) @) i@ | (o
where
o 21 1
j(@) = —— (C5)

X
VT @ e

The contributions from the function i.(m) are canceled
among the diagrams and do not appear in the renormalized
effective potential.

5 . .
We focus exclusively on the bosonic case.
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The sunset-type diagram composed of all the scalar
fields is defined as

ml,mz,m3

1
Ii (K +m?)(g* +m3)[(k+q)* +m3]’

where k> = w? +k? and ¢ = w2, + ¢* with w? = 2naT
and w2, = 2mxaT. We parametrize H(m,, m,, m3) in terms
of the divergent and finite parts as

(Co)

H(my, my, my) = H™(my, my, m3) + H(my, my, m3)

where

1 2 1
~ 6 (—2+E>(m%+m§+m§)

+#% (T(my) + T(my) + I(ms)).

Hdiv(ml , My, m3)

(C8)

The divergences in the first line are removed by the local
counterterms. As discussed in Sec. II, only a single € pole
contributes to the p-functions. On the other hand, the

13 divergences proportional to I(m) are canceled among the
T2 > ic(my) (C7)  diagrams.
Jj=1 The finite part is given by
|
- 1 1 5 3 5
H(my,my,my) = Tom — (Iy(my) + Io(my) + Io(ms)) — W(”ﬁ +mj3 +m3)
1 (m?+m3—m3 - - m3 +m3 —m? - m3 +m? —m3 -
) {%Io(ml)lo(mz) + 22—y (my) o (m3) + ———15—2To(m3)Io(m))
mym; mams mzn
T2
+WR¢(’”1, my, ms) —W[(P(’”l, my, m3)I(a7) + @(my, my, my)Ip(a3) + @(mz, my, my)Iy(a3)]
T2
‘*‘4(2—”)4[1(——(01,027613) +K__(a.a3,a1) + K__(a3,a;,a3)], (€9)
where R? = (m} + m3 — m3)* — 4mim3 and
2 2 2 2_R 1 2 2
q)(m],mz,m3) :L12 ml +m2 +L12 m m2 —i_zm:; + = In @ m—;
2m1 2my 2 mi om?
T m} +m3 —m3 —R n m} —m3 +m3 —R _7[72' (C10)
2m? 2m? 6

Note that the dilogarithmic function Li,(z) has an imagi-
nary part if z>1, ie, if m}—m3+m3+R<0 or
m}+m3—m3+R <0, Li, in the first line has the
imaginary part. However, the log term in the second line
also has the imaginary part that cancels the imaginary
part of the former. For the numerical calculation of
®(my, m,, m3), to evaluate the real part, we use

7’ z In|l —1
S el
6 [ t

Furthermore, for R?> < 0, R and ®(m;, m,, m3) have the
imaginary parts. They are canceled to each other and
R®(m;, m,y, m3) is reduced to

Re|Li,(z)] (C11)

I
RCD(ml ,mz,m3

o

where

tsi 2
e i N >+91nm—§], (C12)
—mytcosy my

R
mi+m3 —m3)’

—IR|
mi—ms+m3)

n= arctan<
0= arctan< (C13)

and @(my, m,, m3) is defined as

¢(m1,m2,m3)

i —x(1—-x)m? +(1
:/ dxln< X x>m1+_(2
0 i

—x)m3 —I—xm%) (C14)
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and
K. (ay.ay.a5) xn_(x;a,) yyn-(y;az)
Y \/x +a1 \/yz—l—a%
x In ¥+(x’y;“1’“2’”3) (C15)
Y—(X’)’Za17a2,a3>
with
(x:a) 1 (C16)
n_(x;a) =
eVaitd _ |

Yj:(x’y;al’ab‘h)
= [(af + a3 — a3)*
—Ha3x® * (ai + a3 — a3)xy + a1y’ }.

—4aia;
(C17)
For m; = my = mj, Fl(m m,m) is reduced to
I:I(m) = I:I(m,m,m)
I’(m) I(m) m? 2
3|— - 142
{ w16 (16227 T3/
1 72 T2

—w;U’B(Cﬂ))z -

477
o <)

I 2
16\/57[3 B(a)

(C18)

where K(a) = K__(a,a,a) and we have used

2

N =2+
7

\/_§’
2 _ .
®(m,m,m) = ———|—2L12<1 \/§l>,

@(m,m,m) = (C19)

18 5 (C20)

and f = — 2 i®(m, m, m) ~ —1.76.

In our numerical analysis, we use an approximation [6]

al-l—ag-l—a;

3 ) (C21)

APPENDIX D: TADPOLE AND MASS
CONDITIONS FOR RG-IMPROVED
ONE-LOOP EFFECTIVE POTENTIALS

K__(al, as, Cl3) = K(

Some parameters in the Lagrangian can be expressed in
terms of VEV and the scalar masses using tadpole and mass
conditions. In the cases of the RG-improved effective
potentials with our #(¢), their relations are more involved
than those in fixed-order calculations. In this appendix,
we explicitly give the first and second derivatives of the
RG-improved one-loop effective potentials with respect to
the background fields. Although we do not use such a

potential in our numerical analysis in the ¢* theory, we still
present all the formulas to know how they differ from the
fixed-order expressions.

1. ¢* theory

At zero temperature, the t-¢ relation (60) is reduced to
() = In(/m*/epg)/2. With this, the one-loop effective
potential is cast into the form

Verr (@3 1(9)) = Vo(o: 1(9)) + V(03 1))

-2 — 4
1/214m

Q__ - - bl
27 1Y 36

(D1)

where m? = —7* +1¢?/2. The first

7= derivative of
Veir(@; t(p)) with respect to ¢ is

AV (03 () _ Wei(@:t(g)) | di() Vg (@st)
do 1) do ot

oA, am?
=07+ 57 416
dt(p) m?*(2m* - N)
dp 4(167%)

A
_¢Pﬂ+—¢}

1=t(¢)

+

: (D2)

where N = A(im? + Ap?)/16x* and

dilp) Ay
dp  2m>-N~

(D3)

Since we determine ji, by the condition #(¢ =

v) =0,

ie., i3 = (—1* + Av?/2)/e, it is easy to solve the tadpole
condition (dVg/dg)|,—, = 0, which gives
A
12 =292 (D4)

The second derivative of Vg (¢;#(¢)) is found to be

22¢? 1
67°)1 =N /2m>

PV (pit(p) 5 4,
7 +2(1

(D5)

Thus, the mass in the vacuum (denoted as my) is
obtained by
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me = Vi (@3 1(9))
¢ dg02

,1—2/3272

2
==
30 1-1/87

p=v
Al 3 312
K 2(162%) ~ (167%)

St (D6)

One should note that m, would agree with a one-loop
fixed-order result if the higher-order terms are dropped, as
it should.

2. ¢* theory with an additional real scalar

We obtain the first and second derivatives of
Veir(@i;t(@y)) in Eq. (72) with the t — ¢, relation (78)
at zero temperature. The first derivative of V¢ with respect
to ¢ is

dVest(@1:1(p1))

- -
o, 6§0%+§(/1110(m1)+/1310(m2))]

=0, (D7)

2
=% [’7% +2

where

- n? m?

Iy(m)=—=|In—5=—-1). D8
o) = o (g =1). o)
As in the ¢* theory, we determine ji, by the condition

M|, o =0,ie.,t(p, = v) =0, from which it follows

where
A A
m? =13+ 21 2, m} =15+ 231)2 (D10)
i Mvi + 2 §(/12+/12) 2 (D11)
o |y 1622 Wi A 5 (B
om3 1
7 _ 16 P /131/1 +ﬂzl/2 + 13(11 +ﬂ«2 + 4/13)
(D12)
With this fi, the tadpole condition is simplified to
AV (P131(91))
d(p] P1=v
A . 1, - -
=0 V1+6 5(/1110('”1)4‘/1310(”12)) =0, (D13)
which determines 17 as

2 y 2 2 y) 2
= [ LAt () A m ()]
6 32 i 3272 :”0

that (D14)
. Sl % l—om?(Inm? — 1) This coincides with the one-loop fixed-order result, but j,
Injig = ’ om? 3 ; (D9) s given by Eq. (D9).
Zi:lla_f li—om; The second derivative is cast into the form
o _ PVa(0131(¢1))
¢ ng% o=
1. - - _ _
=mi+ 3 [aIo(my) 4 4310 (my) + (4715 (my) + 2315 (m))v?)
dt 1 *m? om2 om? -
o) S [ ) + S Ty | (D13)
dey |, =y 2,-=1,2 0@, 0t dp, ot =0
where
oms om
al)| Lo |mlotm) + 55 Tm)| o16)
- ms om* 0”3 ’
Wi o= oo [fa = S Tom) = (5 Ty(mp)|
and
P30+ B, o
O, 0t 1672 ’
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()2]/71% _ 23(21 —+ 22 -;—413)(p1 ’ (Dlg)
0g, 0t 167
m? 1 _ - om 0_2
- {ﬂﬁ?(m% +201g%) + B (3 + 20ag}) + 115 T = ]
= oyt 4 + R+ 20s(h + o+ 20)m3 + (TH(B + 2) + 2B + 1o+ SK)lefl, (D19)
0% i3 1 o
AT [ﬂ( 7+ 430 + )7 B2, azz}
1 S o )
- (1627 2232y + A5 + 223)m3 + 4(23 + 23)in3 + 25(A3 + 42,13 + 62,43 + 1723) 93], (D20)
Vi dIy(m) 1 m?
Ty(m) == 25> = In o (D21)
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