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We newly develop a renormalization group (RG) improvement for thermally resummed effective
potentials. In this method, β-functions are consistently defined in resummed perturbation theories, so that
order-by-order RG invariance is not spoiled after thermal resummation. With this improvement, scale
dependences of phase transition quantities such as a critical temperature, which are known to be notoriously
large at the one-loop order, are greatly reduced compared to calculations with the conventional MS scheme.
By taking advantage of the RG invariance, we also devise a resummation method that can incorporate
potentially harmful large logarithmic terms and temperature-dependent power corrections in a generic
form. We point out that a resummed one-loop effective potential refined by the method can give results that
agree with those obtained by resummed two-loop effective potentials within errors.
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I. INTRODUCTION

Investigating phase transitions in the early Universe is
expected to shed light on new physics searches in particle
physics and cosmology. Much attention has been drawn to
gravitational wave generations from first-order phase tran-
sitions, which could provide useful information on high
energy physics that cannot be obtained by terrestrial
experiments. Furthermore, if electroweak phase transition
(EWPT) is first order, a cosmic baryon asymmetry can be
explained by the electroweak baryogenesis (EWBG)
mechanism [1].
While nonperturbative approaches such as lattice calcu-

lations would be robust, perturbative treatments are still
useful for probing vast parameter space in new physics
models because of their lower costs. One of the vexing
problems at finite temperature is infrared divergences origi-
nating from a zero Matsubara frequency mode, which
could spoil the validity of perturbative expansions even
for small coupling constants at high temperature [2,3]. It is
standard practice to reorganize the perturbative expansion to

incorporate the dominant temperature corrections into the
unperturbed part, which is referred to thermal resummation
[4–6]. One-loop effective potentials with resummation
schemes in Refs. [4–6] have been mostly employed in
studies of EWPT (for other approaches, see, e.g.,Refs. [7,8]).
In perturbative analyses of EWPT, a renormalization

scheme dependence inevitably comes into calculations, and
the magnitude of which implies impacts of higher-order
terms that are missing in the calculations. If the dependence
is too large to make quantitative studies reliable, a renorm-
alization group equation (RGE) can be used to improve the
calculations [9–12]. This can be done by replacing param-
eters appearing in the effective potential with correspond-
ing running parameters derived from β-functions which are
perturbatively defined at some fixed order. One should note
that the derivation of the β-functions follows from the scale
independence of bare parameters together with a specific
renormalization scheme such as a MS scheme [13,14].
Once the effective potential is made scale independent at
some order, one can incorporate a series of higher-order
terms utilizing its scale invariance. As demonstrated in
Refs. [10,11] at zero temperature, a l-loop effective
potential with (lþ 1)-loop β-functions can resum up to
lth-to-leading logarithmic terms. At nonzero temperature,
however, such an RG improvement of the effective poten-
tial would not be straightforward due to the aforementioned
thermal resummation. Unlike the zero temperature case, the
order-by-order RG invariance is lost, and higher-order
terms are required to recover the RG invariance up to a
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certain order in coupling constants. For example, the RG
invariance of the resummed one-loop effective potential
requires a part of two-loop effective potentials. Explicit
calculations using a high-temperature expansion can be
found in Ref. [6] (for a recent study, see Ref. [7]). Another
difference from the zero temperature is that in addition to the
potentially large logarithmic terms, temperature-dependent
power corrections could also be sizable at higher temper-
atures, as described above. Thus, the commonly used log-
resummation scheme is not always appropriate. In light of
this situation, the main issues to be clarified are as follows:

(i) How dowe construct an order-by-order RG invariant
effective potential at finite temperature?

(ii) How do we incorporate both logarithmic terms
and temperature-dependent corrections in a general
manner?

In our recent paper [15], we proposed a novel RG improve-
ment method for the resummed effective potentials to
answer the above questions. In our method, β-functions
are defined in the resummed perturbation theory instead of
using those in the MS scheme, and as a result, the RG
invariance is maintained order by order after the thermal
resummation. In addition to this, the resummation by RG is
generalized to include whole loop functions that contain
both logarithmic terms and thermal corrections. By its
general form, thismethod is reduced to the log-resummation
scheme in the zero temperature limit, while the hard thermal
loop resummation in the high-temperature limit. Due to the
length limitation of the letter [15], we show only a main
result, and some details are omitted.
In this paper, we fill the gap in Ref. [15] by giving all the

details, including lengthy but useful expressions, and adding
more numerical examples to clarify our method further. One
of the main findings is that the resummed one-loop effective
potential in our scheme hasmuch less scale dependence than
that in the MS scheme thanks to the order-by-order RG
invariance, though an exceptional region can, in principle,
be found due to an accidental cancellation between RG-
noninvariant terms and truncation errors in the MS scheme.
If one considers two-loop corrections, both schemes are
equally better than the one-loop result in our scheme. This is
because the two-loop corrections cancel the dominant RG-
noninvariant terms in theMS scheme.As a by-product of the
RG invariance in our scheme, a series of higher-order terms
can be incorporated into the resummed effective potentials.
In the case of a single field theory such as the ϕ4 theory, we
can show that the resummed one-loop effective potential in
our method correctly reproduces dominant two-loop cor-
rections. Even in a two-scalar field theory, our numerical
studies show that vC=TC obtained by the resummed one-
loop effective potential with our two-loop β-functions falls
within the two-loop order scale uncertainties, where TC
denotes a critical temperature and vC is a vacuum expect-
ation value (VEV) at TC. Therefore, our RG-improved
effective potential would be particularly useful when the
complete two-loop effective potential is unavailable.

The paper is organized as follows. In Sec. II, β-functions
of masses and couplings and γ-functions of fields are
generally derived by employing the dimensional regulari-
zation. In Sec. III, as the first application, we demonstrate
the RG invariance of the effective potentials up to the two-
loop order in the ϕ4 theory and make a comparison between
the MS and our schemes analytically and numerically. We
also present how to incorporate higher-order terms based
on the RG invariance at some fixed order. An application of
our method to the ϕ4 theory with an additional real scalar
field is conducted in Sec. IV. The numerical results of first-
order phase transitions are presented in this section. Sec. V
is devoted to the conclusion. Some detailed expressions are
given in Appendices.

II. β-FUNCTIONS IN THE RESUMMED THEORY

Let us collectively denote arbitrary fields and couplings
as ϕiðxÞ and gk and boson and fermion masses as m2

a, and
Mα, respectively, and a vacuum energy is denoted as Ω. We
use dimensional regularization in which the spacetime
dimension is analytically continued to the d ¼ 4 − ϵ
dimension [16]. In this case, the mass dimensions of the
bare couplings gBk become σkϵ, where σk ¼ 1 for scalar
quartic couplings and σk ¼ 1=2 for gauge and Yukawa
couplings, respectively, while that of the bare vacuum
energy ΩB is d. Before discussing our scheme, we begin by
deriving β-functions in mass-independent regularization
schemes such as MS and MS [13,14]. The bare parameters
are decomposed into the renormalized parts and ϵ poles:

gBkμ−σkϵ ¼ gk þ
X∞
n¼1

aðnÞk ðgÞ
ϵn

; ð1Þ

m2
Ba ¼

�
δab þ

X∞
n¼1

bðnÞab ðgÞ
ϵn

�
m2

b; ð2Þ

MBα ¼
�
δab þ

X∞
n¼1

BðnÞ
ab ðgÞ
ϵn

�
Mβ; ð3Þ

Zij ¼ δij þ
X∞
n¼1

cðnÞij ðgÞ
ϵn

; ð4Þ

ΩBμ
ϵ ¼ Ωþ

X∞
n¼1

ωnðgÞ
ϵn

: ð5Þ

From those expressions, one can find the β-functions of
each parameter as

βk ¼ lim
ϵ→0

μ
dgk
dμ

¼ −σka
ð1Þ
k þ

X
l

að1Þk;lσlgl; ð6Þ

m2
aβm2

a
¼ lim

ϵ→0
μ
dm2

a

dμ
¼

X
k;b

bð1Þab;kσkgkm
2
b; ð7Þ
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MαβMα
¼ lim

ϵ→0
μ
dMα

dμ
¼

X
k;β

Bð1Þ
αβ;kσkgkMβ; ð8Þ

γij ¼ lim
ϵ→0

μ
dZij

dμ
¼ −

1

2

X
k

cð1Þij;kσkgk; ð9Þ

βΩ ¼ lim
ϵ→0

μ
dΩ
dμ

¼ ω1; ð10Þ

where að1Þk;l ¼ dað1Þk =dgl, bð1Þab;k ¼ dbð1Þab =dgk, Bð1Þ
αβ;k ¼

dbð1Þαβ =dgk, and cð1Þij;k ¼ dcð1Þij =dgk. For illustrative purposes,
we focus exclusively on scalar theories throughout this
paper.
Following the work of Parwani [4], we reorganize the

Lagrangian as

LB ¼ LR þ LCT

¼
�
LR −

1

2
ΣaðTÞϕ2

a

�
þ
�
LCT þ

1

2
ΣaðTÞϕ2

a

�
; ð11Þ

where ΣaðTÞ are dominant thermal corrections to the
masses of the scalar fields ϕa. ΣaðTÞ is supposed to be
obtained by gap equations or other methods in advance. At
the leading order, one would have ΣaðTÞ ¼ OðgiT2Þ, where
gi are scalar quartic couplings. Though this reorganization
does not change the bare Lagrangian, ΣaðTÞ appearing in
the first square brackets are regarded as the zeroth order in
this new perturbation theory, while those in the second ones
are part of the counterterm (CT) which are one-order higher
in this perturbative expansion (called thermal counterterm
hereafter). In our method, the bare mass parameters of the
scalar fields in resummed perturbation theory are defined as

m2
Ba ¼

�
δab þ

X∞
n¼1

bðnÞab ðgÞ
ϵn

�
m2

b þ
X∞
n¼1

b̃ðnÞab ðgÞ
ϵn

ΣbðTÞ; ð12Þ

where the last terms correspond to temperature-dependent
divergences. Such terms must be absent in all-order
calculations since the divergence structure of the theory
must not be altered by the thermal resummation. At a fixed
order in the resummed perturbation theory, however, one
would encounter temperature-dependent divergences, as
seen in the actual effective potential calculations shown in
the next section. Even though the new divergences are
expected to be canceled by higher-order terms, the order-
by-order renormalizability would be generally unclear. On
the other hand, if CTs are defined in the form of Eq. (12) at
each order in the resummed perturbation theory, the
renormalization would be more apparent. This is the
strategy we adopt here.
The rearrangement of the perturbative expansion seems

to mess up the order-by-order RG invariance. While the
scaling of ΣaðTÞ may be nontrivial, it should be scale

independent for full-order calculations, and thus the scaling
of the resummed effective potential would not be altered. In
principle, it is possible to construct ΣaðTÞ in a self-
consistent way by solving a complete set of Schwinger-
Dyson equations. However, from a practical standpoint, we
assume that ΣaðTÞ is preset as a solution to the gap equation
in a scheme different from the one we are considering here.
For illustration, we have shown in Appendix B that ΣaðTÞ
adopted here is scale invariant up to the two-loop level in
the MS scheme. As always, there exists a residual scale
dependence in perturbatively calculated ΣaðTÞ. However,
this scale dependence is a matter of precision when
computing it, and in principle, we could improve it by
including higher-order terms in the gap equation. From
our standpoint, this is a separate matter from the scale
dependence issue of the effective potential that we will
discuss below, and we do not put the two different
scale dependencies together for consistency. The scale
invariance of ΣaðTÞ allows us to choose the couplings at
a particular fixed scale giðμfixedÞ for ΣaðTÞ. For the sake of
simplicity, we use initial values of the RG running for
ΣaðTÞ and a high-temperature approximation, as detailed in
Appendix B. In this paper, we call dΣaðTÞ=dμ ¼ 0 con-
sistency condition. With this condition, we prove the order-
by-order RG invariance of the resummed effective poten-
tials up to the two-loop level.1 Following the same step as in
the MS scheme but with the consistency condition, it
follows that

m2
aβm2

a
¼

X
k;b

ðbð1Þab;km
2
b þ b̃ð1Þab;kΣbÞσkgk: ð13Þ

The thermal resummation also generates temperature-
dependent divergences in the vacuum energy. However,
the relation βΩ ¼ ω1 is not altered once the consistency
condition is imposed. Furthermore, β-functions of dimen-
sionless couplings remain the same as those in the MS
scheme.

III. ϕ4 THEORY

We first consider the ϕ4 theory to explain our scheme
and show the order-by-order RG invariance up to the two-
loop levels. The bare Lagrangian is given by

LB ¼ 1

2
∂μΦB∂

μΦB − VBðΦBÞ;

VBðΦBÞ ¼ ΩB −
ν2B
2
Φ2 þ λB

4!
Φ4

B: ð14Þ

As shown below, the vacuum energy Ω is also needed
to show the RG invariance of the effective potentials.

1The RG-invariant resummed pressure using a different
method can be found in Ref. [17].
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We decompose LB into the renormalized Lagrangian (LR)
and CT (LCT), and subtract and add a dominant thermal
correction ΣðTÞ in each part. The explicit form of the
resummed Lagrangian is given in Appendix A 1.
We derive the effective potentials up to the two-loop

level in this resummed perturbation theory. Let us denote
the classical background field as φ. The tree-level effective
potential is

V0ðφÞ ¼ Ωþ 1

2
ð−ν2 þ ΣðTÞÞφ2 þ λμϵ

4!
φ4; ð15Þ

where ΣðTÞ must be regarded as the zeroth-order term. The
field-dependent mass is given by

M2 ¼ ∂
2V0

∂φ2
¼ m2 þ ΣðTÞ; ð16Þ

with m2 ¼ −ν2 þ λμϵφ2=2. Consequently, the resummed
one-loop effective potential takes the form

μϵV1ðφÞ ¼
M4

4ð16π2Þ
�
−
2

ϵ
þ ln

M2

μ̄2
−
3

2
þOðϵÞ

�
; ð17Þ

where μ̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe−γE

p
μ ≃ 2.66μ with γE being the Euler

constant. Asmentioned in Sec. II, the temperature-dependent
divergence appears in the fixed-order calculation. In our
renormalization scheme, the whole divergences in Eq. (17)
are removed by CTs defined in Eqs. (A7)–(A9), leading to

δð1ÞΩ¼1

ϵ

ðν2−ΣÞ2
32π2

; δð1Þν2¼1

ϵ

λðν2−ΣÞ
16π2

; δð1Þλ¼1

ϵ

3λ2

16π2
:

ð18Þ

Therefore, CTs of the dimensionful parameters are modified
by the thermal resummation. With those CTs, the bare mass
parameters ΩB and νB are expressed as

ΩBμ
ϵ ¼ Ωþ δð1ÞΩ ¼ Ωþ 1

ϵ

ðν2 − ΣÞ2
32π2

; ð19Þ

ν2B ¼Z−1
Φ ðν2þδð1Þν2Þ¼ ν2

�
1þ1

ϵ

λ

16π2

�
−Σ

�
1

ϵ

λ

16π2

�
;

ð20Þ

where ZΦ ¼ 1 at the one-loop level. From our β-function
formulas (10) and (13), it follows that (for the derivation, see
Appendix A 1)

βð1ÞΩ ¼ ðν2 − ΣÞ2
32π2

; ð21Þ

ν2βð1Þ
ν2

¼ λðν2 − ΣÞ
16π2

: ð22Þ

In the limit of Σ ¼ 0, our β-functions are reduced to those in
the MS scheme. Therefore, the difference between the two
schemes could be sizable when Σ is comparable to ν2. If one
uses CTs in the MS scheme, the temperature-dependent
divergences would remain at this order. As pointed out in
Ref. [18] (see also Ref. [19]), higher-order loop corrections
are needed to cancel such divergences.2

As alluded to above, the dimensionless quantities are not
affected by the thermal resummation considered here, and
thus the β-function of λ and γ-function are the same as those
in the ordinary MS scheme, i.e.,

βð1Þλ ¼ 3λ2

16π2
; γð1ÞΦ ¼ 0: ð24Þ

The resummed one-loop effective potential after sub-
tracting the divergences amounts to

VeffðφÞ ¼ V0ðφÞ þ V1ðφÞ; ð25Þ
where

V0ðφÞ ¼ Ωþ 1

2
ð−ν2 þ ΣðTÞÞφ2 þ λ

4!
φ4; ð26Þ

V1ðφÞ ¼
M4

4ð16π2Þ
�
ln
M2

μ̄2
−
3

2

�
þ T4

2π2
IBðA2Þ − 1

2
ΣðTÞφ2;

ð27Þ

with A2 ¼ M2=T2 and the thermal function IBðA2Þ is
defined as

IBðA2Þ ¼
Z

∞

0

dxx2 ln ð1 − e−
ffiffiffiffiffiffiffiffiffiffi
x2þA2

p
Þ ð28Þ

≃−
π4

45
þ π2

12
A2−

π

6
ðA2Þ3=2−A4

32

�
ln
A2

αB
−
3

2

�
; ð29Þ

2One could consider a resummation method shown in
Refs. [20,21], in which the bare Lagrangian is decomposed into

LB ¼LRþLCT

¼
�
1

2
ð∂μΦÞ2þ1

2
M2Φ2−

λ

4!
Φ4þ1

2
ΣΦ2

�

þ
�
A
2
ð∂μΦÞ2þB

2

�
M2−Σ

�
Φ2−C

λ

4!
Φ4þD

�
M2−Σ

�
2
�
;

ð23Þ

where M2 ¼ ν2 − Σ and A, B, C, and D are CTs in the MS
scheme at zero temperature. Orders (denoted as δ) ofM2 and Σ in
the resummed perturbation theory are regarded as M2 ¼ Oðδ0Þ
and Σ ¼ OðδÞ. With this order counting, the one-loop CTs for the
mass and vacuum energy are reduced to B

2
M2Φ2 þDM4, which

are essentially the same as our CTs, and the order-by-order
renormalization works.
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where the high-temperature expansion (HTE) is used in the
second line, and ln αB ¼ 2 ln 4π − 2γE ≃ 3.91. The last
term in V1ðφÞ comes from the thermal CT which avoids
the double counting of ΣðTÞφ2=2.
Now, we move on to the two-loop analysis. As is the

one-loop case, all the divergences appearing in the two-
loop effective potential are removed by CTs defined in
Eqs. (A7)–(A10). Correspondingly, the β-functions of the
theory parameters in our scheme are found to be

γð2ÞΦ ¼ λ2

12ð16π2Þ2 ; ð30Þ

βð2ÞΩ ¼ ðν2 − ΣÞΣ
16π2

; ð31Þ

ν2βð2Þ
ν2

¼ λ2ð−ν2 þ ΣÞ
ð16π2Þ2 þ λΣ

16π2
þ 2ν2γð2ÞΦ

¼ λ2

ð16π2Þ2
�
−
5ν2

6
þ Σ

�
þ λΣ
16π2

; ð32Þ

βð2Þλ ¼ −
6λ3

ð16π2Þ2 þ 4λγð2ÞΦ ¼ 1

ð16π2Þ2
�
−
17λ3

3

�
: ð33Þ

Similarly to the one-loop order, only β-functions of the
dimensionful parameters are modified by the thermal
resummation. One can see that there exists λΣ=ð16π2ν2Þ
in βð2Þ

ν2
which is the same as the temperature-dependent term

in Eq. (22) but the opposite sign. At first sight, they appear

to be canceled out in βν2 ¼ βð1Þ
ν2

þ βð2Þ
ν2
. As shown in the RG

invariance of the effective potential using HTE, however,

one has to regard λΣ=ð16π2ν2Þ in βð2Þ
ν2

as one-order higher

correction than that in βð1Þ
ν2
, implying that λ appearing in the

former is one-order lower than that in the latter [see also

Eq. (48) below]. We also note that βð2ÞΩ is nonzero due to the
thermal correction, which is another difference from the
MS scheme.
After removing all the divergences by CTs, the two-loop

corrections to the resummed effective potential are cast into
the form

V2ðφÞ ¼
λ

8
Ī2ðMÞ − λ2φ2

12
H̃ðMÞ − 1

2
ΣðTÞĪðMÞ; ð34Þ

where the loop functions ĪðMÞ and H̃ðMÞ are defined in
Eqs. (C3) and (C18), respectively. The last term in Eq. (34)
corresponds to the thermal CT at this order, and by which
the double counting of ΣðTÞ corrections and linearlike
terms in φ such as OððM2Þ1=2T3Þ are avoided [6].

A. RG invariance of the thermally
resummed effective potential

Now that we have obtained the renormalized effective
potentials and β-functions in our scheme at one- and two-
loop orders, we show their RG invariance one by one. The
effective potential satisfies [9–12]

0 ¼ μ
dVeff

dμ

¼
�
μ
∂

∂μ
þ ν2βν2

∂

∂ν2
þ βλ

∂

∂λ
− γΦφ

∂

∂φ
þ βΩ

∂

∂Ω

�
Veff

≡DVeff : ð35Þ

We first show the RG invariance of the resummed one-loop
effective potential. Applying the derivative operator D to
the potential (25), one gets

DV0jone-loop ¼ βð1ÞΩ −
ν2

2
βð1Þ
ν2
φ2 þ 1

4!
βð1Þλ φ4 ¼ M4

32π2
; ð36Þ

DV1jone-loop ¼ μ
∂V1

∂μ
¼ −

M4

32π2
; ð37Þ

where the consistency conditionDΣ ¼ 0 is used. Thus, one
obtains DðV0 þ V1Þjone-loop ¼ 0. We note that this invari-
ance is due to the modified β-functions. In order words, the
MS β-functions cannot maintain the RG invariance at this
order. Let us consider the errors of both schemes. In our
scheme, we have the truncation error which starts from the
two-loop order, Oð1=ð16π2Þ2Þ. In the MS scheme, on
the other hand, an additional error comes from the
RG-noinvariant terms, which are found to be

DðV0 þ V1ÞMS
one-loop ¼

−ð2m2 þ ΣÞΣ
32π2

þO
�

1

ð16π2Þ2Þ
�

→
−λφ2Σ
32π2

þO
�

1

ð16π2Þ2Þ
�
; ð38Þ

where φ-independent terms are dropped after the right
arrow assuming Σ ¼ λT2=24. Therefore, in the MS scheme,
there could be a cancellation between the two different
errors depending on model parameters. We will exemplify
such a case below. However, we emphasize that the less-
scale dependence is merely accidental and has no theo-
retical reasoning.
It would also be instructive to see the above RG

invariance using HTE. This demonstration focuses exclu-
sively on the φ-dependent terms and omits the vacuum
energy Ω. Using HTE of IB given in Eq. (29), the
resummed one-loop effective potential (25) up to Oðφ4Þ
is approximated as
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VHTE
eff ðφÞ¼V0ðφÞþVHTE

1 ðφÞ

≃
1

2

�
ð−ν2þΣÞ

�
1þ λ

32π2
ln
T2

μ̄2

�
þλð−ν2þΣÞcB

16π2

�
φ2

−
TðM2Þ3=2

12π
þ 1

4!

�
λ

�
1þ 3λ

32π2
ln
T2

μ̄2

�
þ3λ2cB

16π2

�
φ4;

ð39Þ

where cB ¼ ðln αBÞ=2. To make the RG invariance of

VHTE
eff ðφÞ manifest, we solve βð1Þ

ν2
and βð1Þλ perturbatively.

Let us denote a running parameter as X̄ðtÞ with t ¼
lnðμ̄=μ̄0Þ, where μ̄ is an arbitrary scale and μ̄0 is its initial
value. X̄ðtÞ can be expanded as

X̄ðtÞ ¼ X̄ð0Þ þ dX̄ðtÞ
dt

����
t¼0

tþ 1

2

d2X̄ðtÞ
dt2

����
t¼0

t2 þ � � �

¼ X̄ð0Þ þ ðβð1ÞX þ βð2ÞX Þjt¼0tþ
1

2

dβð1ÞX ðtÞ
dt

����
t¼0

t2 þ � � � :

ð40Þ

Using this expansion, ν̄2ðtÞ and λ̄ðtÞ to OðtÞ are, respec-
tively, given by

−ν̄2ðtÞ þ Σ ≃ ð−ν20 þ ΣÞ
�
1þ λ0

16π2
t

�
; ð41Þ

λ̄ðtÞ ≃ λ0

�
1þ 3λ0

16π2
t

�
; ð42Þ

where ν20 ¼ ν̄2ðt ¼ 0Þ, and λ0 ¼ λ̄ðt ¼ 0Þ. As noted in
Sec. II, Σ is given by the parameters at t ¼ 0. Using those
expressions, VHTE

eff ðφÞ is rewritten as

VHTE
eff ðφÞ≃ 1

2

�
−ν̄2ðTÞ þΣþ λð−ν2 þΣÞcB

16π2

�
φ2 −

TðM2Þ3=2
12π

þ 1

4!

�
λ̄ðTÞ þ 3λ2cB

16π2

�
φ4; ð43Þ

where ν̄2ðTÞ and λ̄ðTÞ are the running parameters evaluated
at T evolved from the scale μ̄. Therefore, VHTE

eff ðφÞ is
manifestly RG invariant, where the explicit scale depend-
ences of μ̄ are absorbed into the running parameters. This is
not the case if one uses the β-functions in the MS scheme.
Suppose that Σ ¼ λT2=24, Eq. (39) is cast into the form

VHTE
eff ðφÞ ≃ 1

2

�
−ν̄2ðTÞjMS þ

λð−ν2 þ ΣÞcB
16π2

þ λT2

24

�
1þ λ

32π2
ln
T2

μ̄2

��
φ2

−
TðM2Þ3=2

12π
þ 1

4!

�
λ̄ðTÞ þ 3λ2cB

16π2

�
φ4; ð44Þ

where ν̄2ðTÞjMS ¼ ν̄2ðTÞjΣ¼0. Note that the explicit
μ̄-dependence appearing in the λT2=24 term of the first
line cannot be absorbed into λ̄ since the coefficient of
λ lnðT2=μ̄2Þ=32π2 is different from the right one in Eq. (42),
reflecting the RG noninvariance in the MS scheme.
Actually, this RG-noninvariant term is also inferred from
Eq. (38). As shown below, the RG noninvariant term would
become the RG-invariant form if one adds two-loop
corrections [6].
Now, we discuss the RG invariance at the two-loop level.

Applying the derivative operator D to the resummed
effective potentials (26), (27), and (34), respectively, each
contribution at the two-loop level is calculated as

DV0jtwo-loop ¼ βð2ÞΩ −
ν2

2
βð2Þ
ν2
φ2 þ 1

4!
βð2Þλ φ4 þ ðν2 −ΣÞγð2ÞΦ φ2

−
1

3!
γð2ÞΦ φ4

¼ −
λ2M2

2ð16π2Þ2φ
2 −

ΣM2

16π2
− γð2ÞΦ Σφ2; ð45Þ

DV1jtwo-loop ¼
�
ν2βð1Þ

ν2
∂

∂ν2
þ βð1Þλ

∂

∂λ
− γð2ÞΦ φ

∂

∂φ

�
V1

¼ λðM2 þ λφ2Þ
2ð16π2Þ ĪðMÞ þ γð2ÞΦ Σφ2; ð46Þ

DV2jtwo-loop¼μ
∂V2

∂μ

¼ λ2M2φ2

2ð16π2Þ2−
λðM2þλφ2Þ
2ð16π2Þ ĪðMÞþΣM2

16π2
: ð47Þ

Summing up, one verifies thatDðV0þV1þV2Þjtwo-loop¼0.
We here emphasize again that the order-by-order RG
invariance holds by virtue of the β-functions in our
scheme. As we have done in the one-loop analysis, it is
enlightening to discuss the RG invariance in terms of the
high-temperature expanded effective potential. Before
doing so, we obtain the expression of ν2 up to Oðt2Þ.
From the t-expansion formula (40), it follows that

ν̄2 ≃ ν20 þ
λ0ðν20 − ΣÞ

16π2
tþ 2λ20ðν20 − ΣÞ

ð16π2Þ2 t2 þ λ20ð−ν20 þ ΣÞ
ð16π2Þ2 t

þ λ0Σ
16π2

tþ 2ν20γ
ð2Þ
Φ t: ð48Þ

Note that −λ0Σt=16π2 in the second term is canceled by

þλ0Σt=16π2 in the fifth term, which originates from βð2Þ
ν2
.

The result would be different if one cancels the whole

λΣ=ð16π2ν2Þ terms in βν2 ¼ βð1Þ
ν2

þ βð2Þ
ν2

from the beginning.
By the cancellation of the λ0Σt=16π2 terms, the
Oð1=ð16π2ÞÞ term coincides with the corresponding term
in the MS scheme. However, the Oð1=ð16π2Þ2Þ terms are
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still different from those in the MS scheme due to the
presence of Σ. From this demonstration, one could infer
that the difference between the two schemes would get
smaller at the two-loop level as long as the two-loop
corrections are moderate. We will quantify this statement in
our numerical analysis.
As for the quartic coupling λ and the scalar field φ, their

running parameters up to Oðt2Þ are found to be

λ̄ ≃ λ0 þ
3λ20
16π2

tþ 9λ30
ð16π2Þ2 t

2 −
6λ30

ð16π2Þ2 tþ 4λ0γ
ð2Þ
Φ t; ð49Þ

φ̄ ¼ exp

�
−
Z

t

0

dt0γΦðt0Þ
�
φ0 ≃ ð1 − γð2ÞΦ tÞφ0; ð50Þ

where φ0 ¼ φ̄ðt ¼ 0Þ. The resummed two-loop effective
potential in the high-temperature limit is

VHTE
eff ðφÞ ¼ V0ðφÞ þ VHTE

1 ðφÞ þ VHTE
2 ðφÞ

≃
1

2

�
−
�
ν2
�
1þ λ

32π2
ln
T2

μ̄2

�
−
λ2ð−ν2 þ ΣÞ
2ð16π2Þ2 ln2

T2

μ̄2
þ λ2ð−ν2 þ ΣÞ

2ð16π2Þ2 ln
T2

μ̄2

	

þ λT2

24

�
1þ 3λ

32π2
ln
T2

μ̄2

�
þ λ2T2

24ð16π2Þ
�
2 ln

M2

T2
þ 1þ cH

�

þ
�
λð−ν2 þ ΣÞ

16π2
þ 2λ2ð−ν2 þ ΣÞ

ð16π2Þ2 ln
T2

μ̄2

	
cB

�
φ2

−
T
12π

�
ðM2Þ3=2 þ 3

4ð16π2Þ
�
λðM2Þ3=2 þ λ2ðM2Þ1=2φ2

	
ln
T2

μ̄2

�

þ 1

4!

��
λþ 3λ2

32π2
ln
T2

μ̄2
þ 9λ3

4ð16π2Þ ln
2
T2

μ̄2
−

3λ3

ð16π2Þ2 ln
T2

μ̄2

	
þ 3λ2

16π2

�
1þ 3λ

16π2
ln
T2

μ̄2

�
cB

�
φ4; ð51Þ

where the terms without explicit μ̄ dependences are only
retained up to Oð1=ð16π2ÞÞ. One can see that the numerical
coefficient of λ lnðT2=μ̄2Þ=32π2 in the parenthesis multiplied
by the factorλT2=24 in thesecond linebecomes3owing to the

addition of the two-loop correction, and as a result, this term
obeys the one-loopRGequation (42) [6].We also note that all
the explicit μ̄ dependences in Eq. (51) are absorbed into the
running parameters given in Eqs. (48)–(50), resulting in

VHTE
eff ðφÞ ≃ 1

2

�
−ν̄2ðTÞ þ λ̄ðTÞT2

24
þ λ2T2

24ð16π2Þ
�
2 ln

M2

T2
þ 1þ cH

�
þ λ̄ðTÞð−ν̄2ðTÞ þ ΣÞcB

16π2

�
φ̄2

−
TðM̄2ðTÞÞ3=2

12π
þ 1

4!

�
λ̄ðTÞ þ 3λ̄2ðTÞcB

16π2

�
φ̄4; ð52Þ

which is manifestly RG invariant. This VHTE
eff is common

in the MS and our schemes. In the MS scheme, however,
the explicit μ̄ dependences would remain in the
Oðλ2Σ=ð16π2Þ2Þ terms, and higher-order terms would be
necessary to restore the RG invariance.
Now, we present numerical results on the μ̄ dependences

of the RG-improved effective potentials up to the two-loop
level. For practical calculations, we rewrite it as

V̄effðφ̄; tÞ ¼ V̄0ðφ̄; tÞ þ V̄1ðφ̄; tÞ þ V̄2ðφ̄; tÞ; ð53Þ

where t ¼ lnðμ̄=μ̄0Þ with μ̄0 representing an initial scale.
Hereafter, the barred quantities Ω̄, ν̄2, λ̄, and φ̄ are defined
as the running parameters which are functions of t. For
example, the running parameters obtained by the one-loop
β functions are, respectively, given by

φ̄ ¼ φ exp
�
−
Z

t

0

dt0γð1ÞΦ ðt0Þ
�

¼ φ; ð54Þ

λ̄ ¼ λ

1 − 3λ
16π2

t
; ð55Þ

ν̄2 − Σ ¼ ν2 − Σh
1 − 3λ

16π2
t
i
1=3 ; ð56Þ

Ω̄ ¼ Ωþ ðν2 − ΣÞ2
2λ

�
1 −

�
1 −

3λ

16π2
t

�
1=3

�
; ð57Þ

where the unbarred parameters are defined at t ¼ 0.
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In our numerical study, we choose a parameter in which
ΣðTÞ ¼ λðμ̄0ÞT2=24 is enhanced to make the difference
between MS and our schemes more extensive. One of the
examples is shown in Fig. 1, where the resummed effective
potentials with the RG improvement in the MS scheme
(left) and our scheme (right) are plotted at T ¼ 250. The
reference point of the RG running is set to μ̄0 ¼ 90, and we
take v ¼ 50 and mϕ ¼ 90 as the inputs, which corresponds
to λ ≃ 10. All the dimensionful parameters are given in
units of arbitrary mass dimension. “1-loop” denotes
V̄effðφ̄; tÞ ¼ V̄0ðφ̄; tÞ þ V̄1ðφ̄; tÞ with the one-loop β-func-
tions in the cases of μ̄ ¼ T (blue, dotted) and μ̄ ¼ 5T (blue,
dashed), while “2-loop” represents V̄effðφ̄; tÞ ¼ V̄0ðφ̄; tÞ þ
V̄1ðφ̄; tÞ þ V̄2ðφ̄; tÞ with the two-loop β-functions in the
cases of μ̄ ¼ T (red, solid) and μ̄ ¼ 5T (red, dot-dashed).
One can see that the μ̄ dependence of V̄eff at the one-loop
level in our scheme is generally smaller than that in the MS
scheme. This is due to the modified β-functions in our
scheme. At the two-loop level, on the other hand, no
significant differences between the two schemes are
observed, and the μ̄ dependences of V̄eff are even smaller
than the one-loop case in our scheme. As mentioned below
Eq. (51), the RG invariance in the MS is restored up to
Oðλ2T2Þ in the high-temperature limit, which explains our
numerical results well.
The μ̄ dependence of the effective potential at the one-

loop order obtained by our scheme is smaller than that
obtained by the MS-bar scheme, in the sense that the latter
has a larger error in the DðV0 þ V1Þone-loop, as shown in
Eqs. (36)–(38). On the other hand, this does not seem to
hold for the small-φ region in Fig. 1. To see it easily, we

magnify that region and display it in Fig. 2. This seeming
contradiction is caused by an accidental cancellation
between the one-loop level error and the original two-loop
level one for the parameters.
In this numerical analysis, μ̄ ¼ ð1–5ÞT is considered to

see the μ̄ dependence of V̄effðφ; tÞ. The next question is
which value of μ̄ is preferable among others. At the one-
loop order, for example, it would be useful if there exists μ̄
that can give similar results as the two-loop order. The
answer to this question would be very practical when the
two-loop effective potential is not at hand. For this purpose,
we refine the one-loop order V̄effðφ; tÞ by judiciously
choosing t in the next subsection.

B. Incorporation of higher-order terms

Following the same spirit of the RG improvement
proposed in Refs. [10,11], we incorporate higher-order
terms utilizing the RG invariance of the effective potential
at a given order. Here, we focus exclusively on the case of
V̄effðφ̄; tÞ ¼ V̄0ðφ̄; tÞ þ V̄1ðφ̄; tÞ. When V̄effðφ̄; tÞ were
exactly t independent, one could choose any t as far as t
is below a Landau pole discussed below, and by which it is
possible to incorporate a series of dominant higher-order
terms via a φ-dependent tðφÞ.3 On its trajectory in t-φ
space, V̄effðφ̄; tÞ is always flat in the t direction because of
the t invariance. As stated above Eq. (38), however, the t
invariance of V̄effðφ̄; tÞ is violated by the two-loop
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FIG. 1. Resummed one- and two-loop effective potential with RG improvement in the MS scheme (left) and our scheme (right) at
T ¼ 250. The reference point of the RG running is μ̄0 ¼ 90, where we take v ¼ 50 andmϕ ¼ 90 as the inputs, which gives λ ≃ 10. Note
that ΣðTÞ ¼ λT2=24. All the dimensionful parameters are given in units of arbitrary mass dimension.

3When t is φ dependent, the running vacuum energy Ω̄ also
becomes φ dependent so that one cannot simply subtract it from
the effective potential.
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corrections. It is thus preferable to choose t such that the
truncation error is minimized. With this consideration, we
determine t by the condition

dV̄effðφ̄; tÞ
dt

¼ ∂V̄effðφ̄; tÞ
∂t

¼ 0þ 1

2

∂M̄2

∂t
ĪðM̄Þ ¼ 0; ð58Þ

with

∂M̄2

∂t
¼ λ̄ðM̄2 þ λ̄φ2Þ

16π2
; ð59Þ

where the one-loop β-functions are used. From Eq. (58), it
follows that

tðφÞ ¼ 8π2

M̄2
ĪðM̄Þt¼0

¼ 1

2

��
ln
M̄2

μ̄20
− 1

�
þ 16T2

M̄2
I0BðĀ2Þ

�
: ð60Þ

On the trajectory given by this tðφÞ, V̄effðφ̄; tÞwould still be
locally flat in the t direction, implying that tðφÞ in Eq. (60)
yields the minimal t violation of V̄effðφ̄; tÞ among any
other choices of tðφÞ. In addition to this approximate t
invariance, this tðφÞ copes with two potentially harmful
corrections, such as large logarithmic corrections and
temperature-dependent power corrections in a general
way. At zero temperature, Eq. (60) is reduced to tðφÞ ¼
lnðm̄2=eμ̄20Þ=2 which is connected to the well-known log-
resummation scheme t ¼ lnðm̄2=μ̄20Þ=2 [10,11] by chang-
ing our initial scale μ0 to μ0=

ffiffiffi
e

p
. At high temperature,

on the other hand, Eq. (60) incorporates temperature-
dependent power corrections arising from

ĪHTEðM̄Þt¼0≃
T2

12
−
ðM̄2Þ1=2T

4π
þ M̄2

16π2
ln
αBT2

μ̄20
þ�� � : ð61Þ

Therefore, tðφÞ given in Eq. (60) seems to be the best
choice for the thermally resummed one-loop effective
potential. One thing that needs to be noted here is that
the truncation error in Eq. (58) is estimated under the
assumption that the one-loop β functions are used for the
running parameters. Instead of this assumption, we could
consider the two-loop order running parameters. In this
case, Eq. (58) is modified to

dV̄effðφ̄; tÞ
dt

¼ 0þ 1

2

∂M̄2

∂t
ĪðM̄Þ − λ̄2M̄2φ̄2

2ð16π2Þ2 −
M̄2Σ
16π2

¼ 0; ð62Þ

where

∂M̄2

∂t
¼ λ̄ðM̄2 þ λ̄φ̄2 − ΣÞ

16π2
−
λ̄2½5ðM̄2 þ 3λ̄φ̄2Þ þ Σ�

6ð16π2Þ2 : ð63Þ

Therefore, the condition of ĪðM̄Þ ¼ 0 cannot eliminate the
whole truncation error when using the two-loop β func-
tions. Although we could, in principle, determine tðφÞ by
the condition (62), we still adopt tðφÞ in Eq. (60) through-
out our study due to the benefit described above, i.e., the
link to the ordinary log-resummation at zero temperature
and OðT2Þ mass resummation at high temperature.
Now we scrutinize if the resummed one-loop effective

potential V̄effðφ̄; tÞ ¼ V̄0ðφ̄; tÞ þ V̄1ðφ̄; tÞ with the t-φ
relation (60) correctly reproduce the fixed-order two-loop
effective potential. For this purpose, V̄effðφ; tÞ is expanded
in powers of t,
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FIG. 2. The same plots as in Fig. 1 but the range of φ is limited to 0 ≤ φ ≤ 50.
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V̄effðφ̄; tÞ ¼ V̄effðφ; 0Þ þ
∂V̄effðφ̄; tÞ

∂t

����
t¼0

tþ 1

2

∂
2V̄effðφ̄; tÞ

∂t2

����
t¼0

t2 þ � � � : ð64Þ

Let us consider the following two cases

V̄ð1Þ
eff ðφ̄; tðφÞÞ≡ V̄0ðφ̄; tðφÞÞ þ V̄1ðφ̄; tðφÞÞwith the one-loop β functions; ð65Þ

V̄ð2Þ
eff ðφ̄; tðφÞÞ≡ V̄0ðφ̄; tðφÞÞ þ V̄1ðφ̄; tðφÞÞwith the two-loop β functions: ð66Þ

Expanding V̄ð1Þ
eff ðφ; tðφÞÞ as the t series, one can find

V̄ð1Þ
eff ðφ̄; tðφÞÞ¼ V̄ð1Þ

eff ðφ;0Þþ
λðM2þλφ2Þ

8M2
Ī2ðMÞt¼0: ð67Þ

The Ī2ðMÞ terms are exactly the same as those in V2ðφÞ
shown in Eq. (34). Similarly, the t series of V̄ð2Þ

eff ðφ; tÞ
becomes

V̄ð2Þ
eff ðφ̄; tðφÞÞ ¼ V̄ð2Þ

eff ðφ; 0Þ

þ λðM2 þ λφ2 − ΣÞ
8M2

�
1þ Σ

M2

�
Ī2ðMÞt¼0

−
1

2

�
λ2φ2

32π2
þ Σ

�
ĪðMÞt¼0: ð68Þ

In this case, V̄ð2Þ
eff ðφ̄; tðφÞÞ contains not only OðĪ2ðMÞÞ but

the OðĪðMÞÞ terms appearing in V2ðφÞ. One should note
that Σ terms in OðĪ2ðMÞÞ, which are not present in V2ðφÞ,
are the consequence of the use of the two-loop β functions
in V̄effðφ̄; tðφÞÞ. From the viewpoint of its RG invariance,
such terms can be regarded as higher order terms so that
they can be dropped, as we have done in the proof of
the RG invariance given in Sec. III A. In this sense,

V̄ð2Þ
eff ðφ̄; tðφÞÞ correctly resums up toOðĪðMÞÞ. This appears

parallel to the leading and next-to-leading logarithmic
resummations in the scheme of tðφÞ ¼ lnðm̄2=μ̄20Þ=2 at
zero temperature [10,11].
Before closing this subsection, we discuss the upper limit

of t. As seen from Eq. (55), tðφÞ could hit the Landau pole
tLP ¼ 16π2=3λ ≃ 52.6=λ at which λ̄ diverges. From the
condition tðφÞ < tLP, it follows that

ĪðM̄Þt¼0

M̄2
<

2

3λ
: ð69Þ

When the λ × logarithmic terms are large and/or temper-
ature is significantly high, this condition would not be
satisfied. Actually, although the parameter set adopted in
Fig. 1 illustrates the differences between MS and our
schemes clearly, λ ≃ 10 and T ¼ 250 are too large to
satisfy the condition (69). In addition to this, since our

interest is the case of first-order phase transition required by
the gravitational wave generation and EWBG, we extend
the ϕ4 theory and apply our tðφÞ to it in the next section.

IV. ϕ4 THEORY WITH AN ADDITIONAL
REAL SCALAR

One of the simplest extensions of the ϕ4 theory is to add
another real scalar field. The bare Lagrangian we consider
is defined by

LB ¼
X
i¼1;2

1

2
∂μΦBi∂

μΦBi − V0ðΦB1;ΦB2Þ; ð70Þ

V0ðΦB1;ΦB2Þ ¼ ΩB þ ν2B1
2

Φ2
1 þ

ν2B2
2

Φ2
B2 þ

λB1
4!

Φ4
B1

þ λB2
4!

Φ4
B2 þ

λB3
4

Φ2
B1Φ2

B2; ð71Þ

where two Z2 symmetries ΦB1 → −ΦB1 and ΦB2 → −ΦB2
are imposed to make our analysis simpler. As we have
done in the ϕ4 theory, we subtract and add the dominant
temperature corrections to the masses of Φ1 and Φ2

(denoted as Σ1 and Σ2) in LR and LCT, respectively.
Their explicit forms are given in Appendix A 2. For the
sake of further simplicity, we also assume that only Φ1

develops VEV and investigate the thermal phase transition
in the Φ1 direction. We define the classical constant
background fields and their fluctuation fields as ΦiðxÞ ¼
φi þ ϕiðxÞ, and VEV of ϕ1 is denoted as v.
After removing all the divergences of the resummed one-

loop effective potential by CTs in Eq. (A27) and improving
it by RGE (35), one would arrive at4

V̄effðφ̄1; tÞ ¼ V̄0ðφ̄1; tÞ þ V̄1ðφ̄1; tÞ; ð72Þ

where

V̄0ðφ̄1; tÞ ¼ Ω̄þ 1

2
ðν̄21 þ Σ1ðTÞÞφ̄2

1 þ
λ̄1
4!
φ̄4
1; ð73Þ

4We suppress the φ2 dependence by the assumption that only
Φ1 has nonzero VEV.
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V̄1ðφ̄1; tÞ ¼
X
i¼1;2

M̄4
i

4ð16π2Þ
�
ln

M̄2
i

e2tμ̄20
−
3

2

�

þ T4

2π2
IBðĀ2

i Þ −
1

2
Σ1ðTÞφ̄2

1; ð74Þ

with

M̄2
1¼ ν̄21þΣ1ðTÞþ

λ̄1
2
φ̄2
1; M̄2

2¼ ν̄22þΣ2ðTÞþ
λ̄3
2
φ̄2
1; ð75Þ

Σ1ðTÞ ¼
T2

24
ðλ1 þ λ3Þ; Σ2ðTÞ ¼

T2

24
ðλ2 þ λ3Þ: ð76Þ

Note that ΣiðTÞ are given by the parameters at t ¼ 0 to
fulfill the consistency condition as explained in Sec. II, Our
next step is to refine V̄effðφ̄1; tÞ by incorporating a series of
higher-order terms in ĪðM̄iÞ via a proper t. As in the ϕ4

theory, we choose t for each φ1 such that

∂V̄effðφ̄1; tÞ
∂t

¼ 0þ 1

2

X
i

∂M̄2
i

∂t
ĪðM̄iÞ ¼ 0; ð77Þ

from which one obtains

tðφ1Þ ¼
8π2

P
i
∂M̄2

i
∂t ĪðM̄iÞt¼0P
iM̄

2
i
∂M̄2

i
∂t

: ð78Þ

Let us approximate V̄effðφ̄1; tÞ in terms of the t-expansion
and compare it with the two-loop correction to the effective

potential (A40). V̄ð1Þ
eff ðφ̄1; tðφ1ÞÞ defined in Eq. (65) is found

to be

V̄ð1Þ
eff ðφ̄1;tðφ1ÞÞ¼ V̄ð1Þ

eff ðφ1;0Þþ
ðPi¼1;2αiĪðMiÞt¼0Þ2

8
P

i¼1;2αiM
2
i

; ð79Þ

where αi ¼ 16π2ð∂M̄2
i =∂tÞjt¼0, i.e.,

α1 ¼ λ1M2
1 þ λ3M2

2 þ ðλ21 þ λ23Þφ2
1; ð80Þ

α2 ¼ λ3M2
1 þ λ2M2

2 þ 2λ23φ
2
1: ð81Þ

One can see that OðĪ2ðMiÞÞ terms in Eq. (79) do not agree
with those in the V2ðφ1Þ in Eq. (A40). This is because the
single parameter t alone cannot, in principle, incorporate
the multiple Ī2ðMiÞ terms simultaneously. Only in a special
case, such as jλ1j ≫ jλ2j; jλ3j ∼ 0, the OðĪ2ðMiÞÞ terms in
Eq. (79) would coincide with the corresponding terms
of V2ðφ1Þ.
Similarly, it is straightforward to obtain V̄ð2Þ

eff ðφ1; tðφ1ÞÞ
defined in Eq. (66) as

V̄ð2Þ
eff ðφ̄1; tÞ ¼ V̄ð2Þ

eff ðφ1; 0Þ þ
�
1

2

X
i¼1;2

∂M̄2
i

∂t

����
t¼0

ĪðMiÞt¼0

−
X
i¼1;2

M2
iΣi

16π2
−
ðλ21 þ λ23ÞM2

1 þ 2λ23M
2
2

2ð16π2Þ2 φ2
1

�
t

þ 1

2

�
−
X
i¼1;2

M2
i þ Σi

16π2
∂M̄2

i

∂t

����
t¼0

�
t2 þ � � � ð82Þ

where

∂M̄2
1

∂t

����
t¼0

≃
α1

16π2
−
λ1Σ1 þ λ3Σ2

16π2
; ð83Þ

∂M̄2
2

∂t

����
t¼0

≃
α2

16π2
−
λ3Σ1 þ λ2Σ2

16π2
: ð84Þ

The OðĪðMiÞÞ terms do not agree with those in
V2ðφ1Þ either. Here one may ask wether linear-like terms

ðM2
i Þ1=2T3 in V̄ð2Þ

eff ðφ̄1; tÞ are canceled or not. As shown
below, the answer is positive. Recalling that such terms
arise from the high-temperature limit of Ī2ðMiÞ, i.e.,
ðT2=12 − ðMiÞ1=2T=4π þ � � �Þ2, we take the first derivative
of the OðĪ2ðMiÞÞ terms in V̄ð2Þ

eff ðφ̄1; tÞ with respect to
ĪðMjÞt¼0, which goes like

∂V̄ð2Þ
eff ðφ̄1;tÞjĪ2ðMiÞ
∂ĪðMjÞt¼0

¼ αj
4
P

iM
2
i αi

�X
i

αiĪðMiÞt¼0−2
X
i

M2
iΣi

�

≃
αj

4
P

iM
2
i αi

�
T2

12

X
i

αi−2
X
i

M2
iΣi

�

¼ αjT2

48
P

iM
2
i αi

½ðλ21þλ23Þφ2
1þ2λ23φ

2
1�: ð85Þ

Therefore, the linearlike terms are absent in

V̄ð2Þ
eff ðφ̄1; tÞ. Although OðĪ2ðMiÞÞ and OðĪðMiÞÞ terms

in V̄ð1;2Þ
eff ðφ̄1; tðφ1ÞÞ are different from those in V2ðφ1Þ

in a strict sense, they may still capture the two-loop order
corrections that are absent in the resummed one-loop
effective potential Veffðφ̄1Þ ¼ V0ðφ̄1Þ þ V1ðφ̄1Þ commonly
used in the literature. Wewill quantify to what extent results

obtained from V̄ð1;2Þ
eff ðφ̄1; tðφ1ÞÞ are close to those from

the resummed two-loop effective potential V̄effðφ̄1; tÞ ¼
V̄0ðφ̄1; tÞ þ V̄1ðφ̄1; tÞ þ V̄2ðφ̄1; tÞ.

A. Numerical analysis

Here, we present our numerical results. There are 5
independent parameters in this model, ðν21; ν22; λ1; λ2; λ3Þ.
Some of them can be traded with physical parameters, such
as ðv; ν22; mϕ1

; λ2; mϕ2
Þ using the vacuum and mass con-

ditions. We search for a parameter set that gives the first-
order phase transition. In particular, we select a case in
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which differences between the MS and our schemes could
be sufficiently large. For that purpose, we take a rather large
λ2 that enhances Σ2. Moreover, we consider a case in which
an imaginary part of the effective potential does not arise
near a critical temperature TC, where the effective potential
has two degenerate minima. One of parameter sets is
given by v¼200.0, mϕ1

¼ 5.0, mϕ2
¼ 125.0, ν22 ¼ 85.02,

λ2 ¼ 5.0, where those values are given at the initial scale μ̄0
which is fixed by the condition tðφ1 ¼ vÞ ¼ 0. It is found
that μ̄0 ≃ 75.81 at both the one- and two-loop levels. From
the input parameters, ν21 and λ1 are determined by tadpole
and mass conditions at a given order while λ3 at the tree

level. All the dimensionful parameters are given in units of
any mass scale.
Figure 3 shows vðTÞ=T as functions of the temperature T

in the MS (left) and our (right) schemes, respectively.
1-loop denotes the results using V̄effðφ1; tÞ ¼ V̄0ðφ1; tÞ þ
V̄1ðφ1; tÞ with the one-loop β-functions in the cases of
t ¼ 0 (blue, dotted) and t ¼ ln 5 (blue, dashed), while
2-loop represents those using V̄effðφ1; tÞ ¼ V̄0ðφ1; tÞ þ
V̄1ðφ1; tÞ þ V̄2ðφ1; tÞ with the two-loop β-functions in
the cases of t ¼ 0 (red, dot-dashed) and t ¼ ln 5 (red,
two-dot-dashed). The intersections between each curve
and horizontal axis correspond to TC. One can see that t

FIG. 3. vðTÞ=T as a function of T in the MS scheme (left) and our scheme (right).

TABLE I. The values of vC and TC are summarized in the case of λ2 ¼ 1, 3, 5 for the MS and our renormalization
schemes. Here, 1-loop and 2-loop denote the values obtained by the t-dependent effective potential at the one- and
two-loop orders, respectively, for t in the range of 0 < t < ln 5.

MS scheme Our scheme

TC

1-loop 2-loop V̄ð1Þ
eff V̄ð2Þ

eff 1-loop 2-loop V̄ð1Þ
eff V̄ð2Þ

eff

λ2 ¼ 5 48.6–53.6 47.6–48.1 48.5 48.6 48.6–49.6 47.6–48.1 48.2 48.6
λ2 ¼ 3 48.5–51.2 48.1–48.3 48.5 48.6 48.5–48.8 48.1–48.3 48.2 48.6
λ2 ¼ 1 48.4–49.0 48.4 48.1 48.4 48.0–48.4 48.4 48.1 48.4

vC=TC

1-loop 2-loop V̄ð1Þ
eff V̄ð2Þ

eff
1-loop 2-loop V̄ð1Þ

eff V̄ð2Þ
eff

λ2 ¼ 5 1.9 2.1–2.3 2.1 2.2 1.6–1.9 2.2–2.3 1.9 2.2
λ2 ¼ 3 2.0–2.1 2.1–2.3 2.1 2.1 1.8–2.0 2.1–2.3 2.0 2.1
λ2 ¼ 1 2.2 2.1–2.3 2.3 2.3 2.1–2.2 2.1–2.3 2.2 2.3
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dependence of TC at the one-loop order in the MS scheme
is about 5 times larger than that in our scheme. Such a large
t dependence in the MS scheme is reflected by the large RG
noninvariance at the order. At the two-loop order, on the
other hand, the t dependences in both schemes are equally
smaller than the one-loop order result in our scheme. The
significant improvement in the MS scheme is due to the
partial restoration of the RG invariance as discussed in
the ϕ4 theory. As explicitly given in Appendix A 2, the
effective potential follows the RG invariance up to

the Oðλ2i T2Þ order in the high-temperature limit. In this
parameter choice, the residual RG-violating terms are
numerically unimportant, and thus, the t dependence is
dominated by the truncation error, leading to similar results
in both schemes. We also overlay vðTÞ=T obtained by

V̄ð1Þ
eff ðφ1; tðφ1ÞÞ (gray, solid) and V̄ð2Þ

eff ðφ1; tðφ1ÞÞ (black,
thick-solid). It is found that in the two schemes, vC=TC

in the case of V̄ð2Þ
eff ðφ̄1; tðφ1ÞÞ lie within the two-loop level

scale uncertainties, while not in that of V̄ð1Þ
eff ðφ̄1; tðφ1ÞÞ.

FIG. 4. vðTÞ=T as a function of T in the MS scheme (left) and our scheme (right) in the cases of λ2 ¼ 3 (upper plots) and λ2 ¼ 1 (lower
plots). The remaining input parameters are the same as in Fig. 3.
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This demonstration suggests that up to the OðĪðM̄ÞÞ terms
are necessary to obtain the results closer to those at the two-
loop order. TC and vC=TC in each case are summarized in
Table I.
As a reference, we also consider the cases of λ2 ¼ 1, 3,

which give the smaller Σ2 compared to the λ2 ¼ 5 case, to
see to what extent the two schemes can differ. In Fig. 4, v=T
is shown as a function of T, with the upper plots
corresponding to the λ2 ¼ 3 case and the lower ones to
the λ2 ¼ 1 case. The general consequences in those plots
are the same as in Fig. 3, but the differences between the
two schemes in the one-loop order results get smaller as λ2
becomes smaller. TC and vC=TC in all the cases are listed in
Table I.

V. CONCLUSION AND DISCUSSIONS

We have presented our RG improvement for the ther-
mally resummed effective potentials in detail. In our
method, β-functions are defined in the resummed theory,
and thus, the order-by-order RG invariance of the effective
potential holds consistently, which is in stark contrast to the
case of MS scheme. As a simple example, we applied our
method to the ϕ4 theory and made a comparison with the
MS scheme both analytically and numerically. At the one-
loop order, our scheme generally gives less scale depend-
ences than the MS scheme does. At the two-loop order,
however, the differences between the two schemes are not
pronounced since the scale invariance is restored up to
Oðλ2T2Þ in the MS scheme. Our numerical study also
exemplifies the case that the scale dependence in the MS
scheme can become smaller than that in our scheme due to
the accidental cancellation between the RG-noninvariant
terms and truncation errors. This demonstration illustrates
the need to exercise caution when interpreting the scale
dependence. We also proposed the refinement for the
resummed one-loop effective potential in which the one-
loop function (ĪðM̄Þ) as a whole is resummed by fully
utilizing the RG invariance. Because of its general form, the
potentially dangerous large logarithmic terms and power
corrections of temperature are simultaneously tamed.
Moreover, this method is less sensitive to truncation errors
than any other choice.
We also discussed the first-order phase transition in the

ϕ4 theory augmented by another real scalar field. We
showed that the scale dependence of TC obtained by the
resummed one-loop effective potential is much smaller than
that in the MS scheme owing to the modified β-functions.
At the two-loop order, however, both schemes are equally
good as in the ϕ4 theory. Our numerical study shows that
the resummed one-loop effective potential with the two-

loop β-functions (V̄ð2Þ
eff ) can yield the same vC=TC as those

in the two-loop order calculations within their scale
uncertainties, implying that the dominant two-loop order

contributions are incorporated into V̄ð2Þ
eff to a good approxi-

mation. This suggests that V̄ð2Þ
eff could be practically useful

when the full two-loop effective potentials are not at hand.
In Ref. [22], we show the renormalizability of resummed

two-loop effective potentials without resorting to HTE in
Abelian gauge theories. It would be interesting to clarify
whether our method also leads to the same conclusion
obtained here. We leave this to future research [23].

APPENDIX A: COUNTERTERMS
AND β-FUNCTIONS IN THE
RESUMMED THEORIES

1. ϕ4 theory

We divide the bare Lagrangian (14) into the renormal-
ized part and counterterms:

LB ¼ LR þ LCT; ðA1Þ

where

LR ¼ 1

2
∂μΦ∂

μΦ − Ωþ ν2

2
Φ2 −

λμϵ

4!
Φ4; ðA2Þ

LCT¼
1

2
ðZΦ−1Þ∂μΦ∂

μΦ−δΩþδν2

2
Φ2−

δλμϵ

4!
Φ4: ðA3Þ

The relationships between the bare and renormalized
parameters are, respectively, given by

ΦB ¼ Z1=2
Φ Φ; ν2B ¼ Z−1

Φ ðν2 þ δν2Þ;
λBμ

−ϵ ¼ Z−2
Φ ðλþ δλÞ; ΩBμ

ϵ ¼ Ωþ δΩ: ðA4Þ

LR and LCT in the resummed ϕ4 theory are modified as

LR ¼ 1

2
∂μΦ∂

μΦ −Ωþ ν2 − ΣðTÞ
2

Φ2 −
λμϵ

4!
Φ4; ðA5Þ

LCT ¼ 1

2
ðZΦ − 1Þ∂μΦ∂

μΦ − δΩ

þ δν2 þ ΣðTÞ
2

Φ2 −
δλμϵ

4!
Φ4: ðA6Þ

Note that the relations in Eq. (A4) remain intact. When the
spontaneous symmetry breaking occurs, the scalar field is
shifted as ΦðxÞ ¼ φþ ϕðxÞ. As in the ordinary perturba-
tion theory, CTs are perturbatively expanded as

δΩ ¼ δð1ÞΩþ δð2ÞΩþ � � � ; ðA7Þ

δν2 ¼ δð1Þν2 þ δð2Þν2 þ � � � ; ðA8Þ

δλ ¼ δð1Þλþ δð2Þλþ � � � ; ðA9Þ

ZΦ ¼ 1þ zð1ÞΦ þ zð2ÞΦ þ � � � ; ðA10Þ
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and determined order-by-order in the resummed perturba-
tion theory. At the one-loop level, CTs are given in Eq. (18)
and at the two-loop level, one can find

δð2ÞΩ ¼ λðν2 − ΣÞ2
2ð16π2Þ2

1

ϵ2
þ ðν2 − ΣÞΣ

16π2
1

ϵ
; ðA11Þ

δð2Þν2 ¼ λ2ðν2 − ΣÞ
ð16π2Þ2

�
2

ϵ2
−

1

2ϵ

�
þ λΣ
16π2

1

ϵ
; ðA12Þ

δð2Þλ ¼ 3λ2

ð16π2Þ2
�
3

ϵ2
−
1

ϵ

�
; ðA13Þ

zð2ÞΦ ¼ −
λ2

12ð16π2Þ2
1

ϵ
: ðA14Þ

It would be instructive to show the derivation of βð1Þ
ν2

and

βð1ÞΩ in more detail. The bare mass ν2B is expressed as

ν2B ¼ ν2
�
1þ

X∞
n¼1

bnðλÞ
ϵn

�
þ ΣðTÞ

X∞
n¼1

b̃nðλÞ
ϵn

: ðA15Þ

Applying d=dt ¼ μd=dμ in both sides, one gets

0 ¼ ν2βðϵÞ
ν2

�
1þ

X∞
n¼1

bnðλÞ
ϵn

�
þ ðν2 þ ΣðTÞÞ

X∞
n¼1

βðϵÞλ

ϵn
dbnðλÞ
dλ

þ dΣðTÞ
dλ

βðϵÞλ

X∞
n¼1

b̃nðλÞ
ϵn

; ðA16Þ

where βðϵÞλ ¼ dλ=dt ¼ P∞
n¼0 xnϵ

n. Since xn ¼ 0 for n ≥ 2,

βðϵÞλ ¼ x0 þ x1ϵ ¼ x0 − λϵ, which leads to

ν2βν2 ¼ λν2
db1ðλÞ
dλ

þ λΣðTÞ db̃1ðλÞ
dλ

þ λb̃1
dΣðTÞ
dλ

: ðA17Þ

At the one-loop level, one obtains b1ðλÞ ¼ −b̃1ðλÞ ¼
λ=16π2 from Eq. (17). One finally arrives at

ν2βð1Þ
ν2

¼ λðν2 − ΣðTÞÞ
16π2

−
λ2

16π2
dΣðTÞ
dλ

: ðA18Þ

If we adopt the resummation method in which
dΣðTÞ=dt ≠ 0, the last term should be kept. However,
such a term would not preserve the RG invariance at the
one-loop order. In our resummation method with the

consistency condition, on the other hand, βð1Þ
ν2

is reduced to

ν2βð1Þ
ν2

¼ λðν2 − ΣðTÞÞ
16π2

: ðA19Þ

Now we move on to derive βð1ÞΩ . The bare vacuum energy
is expressed as

ΩBμ
ϵ ¼ Ωþ

X∞
n¼1

ωnðλÞ
ϵn

; ðA20Þ

where the λ dependence of ωnðλÞ arise from ΣðTÞ. Taking
the t-derivative of both sides, one finds

ϵΩBμ
ϵ ¼ ϵ

�
Ωþ

X∞
n¼1

ωnðλÞ
ϵn

�

¼ βðϵÞΩ þ
X∞
n¼1

1

ϵn
μ
dωnðλÞ
dμ

; ðA21Þ

where βðϵÞΩ ¼ μdΩ=dμ. With βðϵÞΩ ¼ P∞
n¼0 dnϵ

n and βðϵÞλ ¼
x0 − λϵ and taking ϵ → 0,

βΩ ¼ lim
ϵ→0

βðϵÞΩ ¼ d0 ¼ ω1 þ λ
dω1ðλÞ
dλ

; ðA22Þ

where the second term is induced by the running of ΣðTÞ.
Thus, such a term should be discarded if the consistency
condition applies, and we are left with

βð1ÞΩ ¼ ðν2 − ΣÞ2
32π2

: ðA23Þ

2. ϕ4 theory with additional scalar

Following the same procedure in the ϕ4 theory, the
renormalized Lagrangian and CTs after the thermal resum-
mation are, respectively, given by

LR ¼
X
i¼1;2

1

2
∂μΦi∂

μΦi − V0ðΦ1;Φ2Þ; ðA24Þ

LCT ¼ 1

2

X
i

ðZΦi
− 1Þ∂μΦi∂

μΦi − δV0ðΦ1;Φ2Þ; ðA25Þ

where

V0ðΦ1;Φ2Þ ¼Ωþ ν21þΣ1ðTÞ
2

Φ2
1 þ

ν22 þΣ2ðTÞ
2

Φ2
2þ

λ1
4!
Φ4

1

þ λ2
4!
Φ4

2þ
λ3
4
Φ2

1Φ2
2; ðA26Þ

δV0ðΦ1;Φ2Þ¼δΩμ−ϵþδν21−Σ1ðTÞ
2

Φ2
1þ

δν22−Σ2ðTÞ
2

Φ2
2

þδλ1μ
ϵ

4!
Φ4

1þ
δλ2μ

ϵ

4!
Φ4

2þ
δλ3μ

ϵ

4
Φ2

1Φ2
2: ðA27Þ

The relationships between the bare and renormalized
parameters are
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ΦiB ¼ Z1=2
Φi

Φi; ν2i ¼ Z−1
Φi
ðν2i þ δν2i Þ;

λiBμ
−ϵ ¼ Z−2

Φi
ðλi þ δλiÞ; i ¼ 1; 2 ðA28Þ

λ3Bμ
−ϵ ¼ Z−1

Φ1
Z−1
Φ2
ðλ3 þ δλ3Þ; ΩBμ

ϵ ¼ Ωþ δΩ: ðA29Þ

As in Eqs. (A7)–(A10), CTs are determined order by order
in the resummed perturbation theory. The one-loop order
CTs are, respectively, given by

δð1ÞΩ ¼ ðν21 þ Σ1Þ2 þ ðν22 þ Σ2Þ2
2ð16π2Þ

1

ϵ
; ðA30Þ

δð1Þν21 ¼
λ1ðν21 þ Σ1Þ þ λ3ðν22 þ Σ2Þ

16π2
1

ϵ
; ðA31Þ

δð1Þλ1 ¼
3ðλ21 þ λ23Þ

16π2
1

ϵ
; ðA32Þ

zð1ÞΦ1
¼ 0: ðA33Þ

while the two-loop order CTs are

δð2ÞΩ ¼ λ1ðν21 þ Σ1Þ2 þ λ2ðν22 þ Σ2Þ2 þ 2λ3ðν21 þ Σ1Þðν22 þ Σ2Þ
2ð16π2Þ2

1

ϵ2
−
Σ1ðν21 þ Σ1Þ þ Σ2ðν22 þ Σ2Þ

16π2
1

ϵ
; ðA34Þ

δð2Þν21 ¼
2ðλ21 þ λ23Þðν21 þ Σ1Þ þ λ3ðλ1 þ λ2 þ 2λ3Þðν22 þ Σ2Þ

ð16π2Þ2
1

ϵ2

−
�ðλ21 þ λ23Þðν21 þ Σ1Þ þ 2λ23ðν22 þ Σ2Þ

2ð16π2Þ2 þ λ1Σ1 þ λ3Σ2

16π2

�
1

ϵ
; ðA35Þ

δð2Þλ1 ¼
3ð3λ31 þ 4λ1λ

2
3 þ λ2λ

2
3 þ 4λ33Þ

ð16π2Þ2
1

ϵ2
−
3½λ1ðλ21 þ λ23Þ þ 2λ33�

ð16π2Þ2
1

ϵ
; ðA36Þ

zð2ÞΦ1
¼ −

λ21 þ 3λ23
12ð16π2Þ2

1

ϵ
: ðA37Þ

The classical constant background fields and their
fluctuation fields are denoted as ΦiðxÞ ¼ φi þ ϕiðxÞ.
After the renormalization in our scheme, the resummed
effective potential up to the two-loop level is

V0ðφ1Þ ¼ Ωþ 1

2
ðν21 þ Σ1ðTÞÞφ2

1 þ
λ1
4!

φ4
1; ðA38Þ

V1ðφ1Þ ¼
X
i¼1;2

M4
i

4ð16π2Þ
�
ln
M2

i

μ̄2
−
3

2

�
þ T4

2π2
IBðA2

i Þ

−
1

2
Σ1ðTÞφ2

1; ðA39Þ

V2ðφ1Þ ¼ −
φ2
1

4

�
λ21
3
H̃ðM1Þ þ λ23H̃ðM1;M2;M2Þ

�

þ 1

8
½λ1Ī2ðM1Þ þ λ2Ī2ðM2Þ þ 2λ3ĪðM1ÞĪðM2Þ�

−
1

2
½Σ1ĪðM1Þ þ Σ2ĪðM2Þ�; ðA40Þ

where H̃ðM1Þ ¼ H̃ðM1;M1;M1Þ defined in Eq. (C9), Ai ¼
Mi=T and

M2
1 ¼ ν21 þ Σ1ðTÞ þ

λ1
2
φ2
1; M2

2 ¼ ν22 þ Σ2ðTÞ þ
λ3
2
φ2
1;

ðA41Þ

Σ1ðTÞ ¼
T2

24
ðλ1 þ λ3Þ; Σ2ðTÞ ¼

T2

24
ðλ2 þ λ3Þ: ðA42Þ

As is the ϕ4 theory case, one can verify the order-by-order
RG invariance of the above effective potential in terms of
the β-functions in our scheme. One-loop β-functions are
given by

γð1ÞΦ1
¼ γð1ÞΦ2

¼ 0; ðA43Þ

βð1ÞΩ ¼ 1

32π2
½ðν21 þ Σ1Þ2 þ ðν22 þ Σ2Þ2�; ðA44Þ

ν21β
ð1Þ
ν2
1

¼ 1

16π2
½λ1ðν21 þ Σ1Þ þ λ3ðν22 þ Σ2Þ�; ðA45Þ

ν22β
ð1Þ
ν2
2

¼ 1

16π2
½λ3ðν21 þ Σ1Þ þ λ2ðν22 þ Σ2Þ�; ðA46Þ

βð1Þλ1
¼ 3

16π2
ðλ21 þ λ23Þ; ðA47Þ
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βð1Þλ2
¼ 3

16π2
ðλ22 þ λ23Þ; ðA48Þ

βð1Þλ3
¼ λ3ðλ1 þ λ2 þ 4λ3Þ

16π2
; ðA49Þ

and two-loop β-functions we need are

βð2ÞΩ ¼ −
1

16π2
½ðν21 þ Σ1ÞΣ1 þ ðν22 þ Σ2ÞΣ2�; ðA50Þ

ν21β
ð2Þ
ν2
1

¼ −
1

ð16π2Þ2 ½ðλ
2
1 þ λ23Þðν21 þ Σ1Þ þ 2λ23ðν22 þ Σ2Þ�

−
λ1Σ1 þ λ3Σ2

16π2
þ 2ν21γ

ð2Þ
Φ1
; ðA51Þ

ν22β
ð2Þ
ν2
2

¼ −
1

ð16π2Þ2 ½ðλ
2
2 þ λ23Þðν22 þ Σ2Þ þ 2λ23ðν21 þ Σ1Þ�

−
λ2Σ2 þ λ3Σ2

16π2
þ 2ν22γ

ð2Þ
Φ2
; ðA52Þ

βð2Þλ1
¼ −6

ð16π2Þ2 ½λ1ðλ
2
1 þ λ23Þ þ 2λ33� þ 4λ1γ

ð2Þ
Φ1
; ðA53Þ

βð2Þλ2
¼ −6

ð16π2Þ2 ½λ2ðλ
2
2 þ λ23Þ þ 2λ33� þ 4λ2γ

ð2Þ
Φ2
; ðA54Þ

γð2ÞΦ1
¼ λ21 þ 3λ23

12ð16π2Þ2 ; ðA55Þ

γð2ÞΦ2
¼ λ22 þ 3λ23

12ð16π2Þ2 : ðA56Þ

As in the previous special case, one can find

DV0jone-loop ¼ βð1ÞΩ þ ν21
2
βð1Þ
ν2
1

φ2
1 þ

1

4!
βð1Þλ1

φ4
1 ¼

M4
1 þM4

2

2ð16π2Þ ;

ðA57Þ

DV1jone-loop ¼ μ
∂V1

∂μ
¼ −

M4
1 þM4

2

2ð16π2Þ ; ðA58Þ

which verifies that DðV0 þ V1Þjone-loop ¼ 0.

Now we consider VHTE
eff ðφ1Þ.

VHTE
eff ðφ1Þ ¼ V0ðφ1Þ þ VHTE

1 ðφ1Þ

≃
1

2

��
ν21 þ

λ1ðν21 þ Σ1Þ þ λ3ðν22 þ Σ2Þ
32π2

ln
T2

μ̄2

	
þ ðλ1 þ λ3ÞT2

24
þ 1

16π2
fλ1ðν21 þ Σ1Þ þ λ3ðν22 þ Σ2ÞgcB

�
φ2
1

−
TððM2

1Þ3=2 þ ðM2
2Þ3=2Þ

12π
þ 1

4!

��
λ1 þ

3ðλ21 þ λ23Þ
32π2

ln
T2

μ̄2

�
þ 3ðλ21 þ λ23ÞcB

16π2

�
φ4
1 þ � � � ;

¼ 1

2

�
ν̄21ðTÞ þ

ðλ1 þ λ3ÞT2

24
þ 1

16π2
fλ1ðν21 þ Σ1Þ þ λ3ðν22 þ Σ2ÞgcB

�
φ2
1

−
TððM2

1Þ3=2 þ ðM2
2Þ3=2Þ

12π
þ 1

4!

�
λ̄1ðTÞ þ

3ðλ21 þ λ23ÞcB
16π2

�
φ4
1 þ � � � ; ðA59Þ

where ν̄21 and λ̄1 are the running parameters in our scheme. To see difference between the MS and our schemes, we rewrite
VHTE
eff ðφ1Þ by taking Σ1 ¼ ðλ1 þ λ3ÞT2=24 and Σ2 ¼ ðλ2 þ λ3ÞT2=24, resulting in

VHTE
eff ðφ1Þ ¼

1

2

�
ν̄21ðTÞjMSþ

T2

24

�
λ1

�
1þ λ1þ λ3

32π2
ln
T2

μ̄2

�
þ λ3

�
1þ λ2þ λ3

32π2
ln
T2

μ̄2

�	
þ 1

16π2
fλ1ðν21þΣ1Þþ λ3ðν22þΣ2ÞgcB

�
φ2
1

−
TððM2

1Þ3=2þðM2
2Þ3=2Þ

12π
þ 1

4!

�
λ̄1ðTÞþ

3ðλ21þ λ23ÞcB
16π2

�
φ4
1þ�� � ; ðA60Þ

where ν̄21ðTÞjMS ¼ ν̄21ðTÞjΣ1¼Σ2¼0. The OðT2Þ term in the first line breaks the RG invariance. After including terms arising
from the sunset diagrams, they would become the RG invariant form, as shown below.
Taking D derivatives of Veffðφ1Þ at the two-loop level, one finds

DV0jtwo-loop ¼ βð2ÞΩ þ ν21
2
βð2Þ
ν2
1

φ2
1 þ

1

4!
βð2Þλ1

φ4
1 − ðν21 þ Σ1Þγð2ÞΦ1

φ2
1 −

1

3!
γð2ÞΦ1

φ4
1

¼ −
M2

1Σ1 þM2
2Σ2

16π2
−
ðλ21 þ λ23ÞM2

1 þ 2λ23M
2
2

2ð16π2Þ2 φ2
1 − Σ1γ

ð2Þ
Φ1
φ2
1; ðA61Þ

REFINED RENORMALIZATION GROUP IMPROVEMENT FOR … PHYS. REV. D 109, 056023 (2024)

056023-17



DV1jtwo-loop ¼
ĪðM1Þ
2ð16π2Þ ½λ1M

2
1 þ λ3M2

2 þ ðλ21 þ λ23Þφ2
1� þ

ĪðM2Þ
2ð16π2Þ ½λ3M

2
1 þ λ2M2

2 þ 2λ3φ
2
1� þ Σ1γ

ð2Þ
Φ1
φ2
1; ðA62Þ

DV2jtwo-loop ¼ −
ĪðM1Þ
2ð16π2Þ ½λ1M

2
1 þ λ3M2

2 þ ðλ21 þ λ23Þφ2
1� −

ĪðM2Þ
2ð16π2Þ ½λ3M

2
1 þ λ2M2

2 þ 2λ3φ
2
1� þ

ðλ21 þ λ23ÞM2
1 þ 2λ23M

2
2

2ð16π2Þ2 φ2
1

þM2
1Σ1 þM2

2Σ2

16π2
: ðA63Þ

Summing up, one gets DðV0 þ V1 þ V2Þjtwo-loop ¼ 0.
Let us look into what the μ̄-dependent terms look like using HTE.

VHTE
eff ðφ1Þ ¼ V0ðφ1Þ þ VHTE

1 ðφ1Þ þ VHTE
2 ðφ1Þ

¼ 1

2

��
ν21 þ

λ1ν
2
1 þ λ3ν

2
2

32π2
ln
T2

μ̄2
þ 2ðλ21 þ λ23Þðν21 þ Σ1Þ þ λ3ðλ1 þ λ2 þ 2λ3Þðν22 þ Σ2Þ

4ð16π2Þ2 ln2
T2

μ̄2

−
ðλ21 þ λ23Þðν21 þ Σ1Þ þ 2λ23ðν22 þ Σ2Þ

2ð16π2Þ2 ln
T2

μ̄2

	
þ ðλ21 þ λ2λ3ÞT2

8ð16π2Þ

þ T2

24

��
λ1 þ

3λ21 þ 3λ23
32π2

ln
T2

μ̄2

�
þ
�
λ3 þ

λ3ðλ1 þ λ2 þ 4λ3Þ
32π2

ln
T2

μ̄2

�	

þ
�
λ1ðν21 þ Σ1Þ þ λ3ðν22 þ Σ2Þ

16π2
þ 2ðλ21 þ λ23Þðν21 þ Σ1Þ þ λ3ðλ1 þ λ2 þ 2λ3Þðν22 þ Σ2Þ

ð16π2Þ2 ln
T2

μ̄2

	
cB

þ ðλ21 þ λ23Þðν21 þ Σ1Þ þ λ3ðλ1 þ λ3Þðν22 þ Σ2Þ
ð16π2Þ2 c2B

�
φ2
1

−
T
12π

�
ðM2

1Þ3=2 þ
3

4ð16π2Þ fλ1ðM
2
1Þ3=2 þ λ3M2

2ðM2
1Þ1=2 þ ðλ21 þ λ23ÞðM2

1Þ1=2φ2
1g ln

T2

μ̄2

þ ðM2
2Þ3=2 þ

3

4ð16π2Þ fλ2ðM
2
2Þ3=2 þ λ3M2

1ðM2
2Þ1=2 þ 2λ23ðM2

2Þ1=2φ2
1g ln

T2

μ̄2

þ 3

2ð16π2Þ fλ1ðM
2
1Þ3=2 þ λ2ðM2

2Þ3=2 þ λ3ðM2
1ðM2

2Þ1=2 þM2
2ðM2

1Þ1=2ÞgcB
�

þ 1

4!

��
λ1 þ

3ðλ21 þ λ23Þ
32π2

ln
T2

μ̄2
þ 3ð3λ31 þ 4λ1λ

2
3 þ λ2λ

2
3 þ 4λ33Þ

4ð16π2Þ ln2
T2

μ̄2
−
3fλ1ðλ21 þ λ23Þ þ 2λ33g

ð16π2Þ2 ln
T2

μ̄2

	

þ 3

16π2

�
λ21 þ λ23 þ

3λ31 þ 4λ1λ
2
3 þ λ2λ

2
3 þ 4λ33Þ

16π2
ln
T2

μ̄2

	
cB þ

3ðλ31 þ λ2λ
2
3 þ 2λ1λ

2
3Þ

ð16π2Þ2 c2B

�
φ4
1

þ λ3T2

4ð16π2Þ ðM
2
1Þ1=2ðM2

2Þ1=2 þ � � �

¼ 1

2

�
ν1

2ðTÞ þ T2

24
ðλ̄1ðTÞ þ λ̄3ðTÞÞ þ

1

16π2
fλ̄1ðTÞðν̄21ðTÞ þ Σ1Þ þ λ̄3ðTÞðν̄22ðTÞ þ Σ2ÞgcB

þ ðλ21 þ λ2λ3ÞT2

8ð16π2Þ þ ðλ21 þ λ23Þðν21 þ Σ1Þ þ λ3ðλ1 þ λ3Þðν22 þ Σ2Þ
ð16π2Þ2 c2B

�
φ2
1

−
T
12π

�
ðM̄2

1ðTÞÞ3=2 þ ðM̄2
2ðTÞÞ3=2 þ

3

2ð16π2Þ fλ1ðM
2
1Þ3=2 þ λ2ðM2

2Þ3=2 þ λ3ðM2
1ðM2

2Þ1=2 þM2
2ðM2

1Þ1=2ÞgcB
�

þ 1

4!

�
λ̄1ðTÞ þ

3ðλ̄21ðTÞ þ λ̄23ðTÞÞcB
16π2

þ 3ðλ31 þ λ2λ
2
3 þ 2λ1λ

2
3Þ

ð16π2Þ2 c2B

�
φ4
1 þ

λ3T2

4ð16π2Þ ðM
2
1Þ1=2ðM2

2Þ1=2 þ � � � : ðA64Þ

Note that all the μ̄ dependencies are absorbed into the running parameters, and the RG invariance is manifest.
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APPENDIX B: GAP EQUATION AND THE
CONSISTENCY CONDITION

We give more details about the consistency condition.
For illustrative purposes, we focus on the ϕ4 theory. After
regularizing the gap equation in the MS scheme, it is cast
into the form [2,24,25]

M2 ¼ m̄2 þ ΣðM2Þ

¼ m̄2 þ λ̄

2
ĪðMÞ þ ΣφðM2Þ þ ΣðsunsetÞðM2Þ; ðB1Þ

where the first three terms on the rightmost-hand side are
pictorially represented as each diagram in the first line in
Fig. 5 and ΣðsunsetÞ includes the sunset-type diagrams shown
in the second line in Fig. 5. We will use Eq. (B1) both at
zero and finite temperatures to define M2 and M2jT¼0. For
now, we concentrate on the first three terms, where ĪðMÞ is
defined as Eq. (C3) and ΣφðM2Þ as

ΣφðM2Þ ¼ λ̄2φ̄2

�
1

2ð16π2Þ ln
M2

μ̄20
þ 1

2π2
I00BðA2Þ

�
−
tλ̄2φ̄2

16π2

≡ ΣφðM2Þt¼0 −
tλ̄2φ̄2

16π2
: ðB2Þ

In Eq. (B1), the MS running parameters are denoted as the
barred quantities, and I00BðA2≡M2=T2Þ¼∂

2IBðA2Þ=∂ðA2Þ2.

Note that ĪðMÞ incorporates daisy and super-daisy dia-
grams but not sunset-type diagrams (see Ref. [2]). ΣðM2Þ
without the sunset-type diagrams can be rearranged as

ΣðM2Þ ¼ −
tλ̄

16π2
ðm̄2 þ λ̄φ̄2Þ þ 1

2

�
λ̄ −

tλ2

16π2

�
ĪðMÞt¼0

þ
�
1 −

tλ̄
16π2

�
ΣφðM2Þt¼0

þ t2
λ̄2ðM2 þ λ̄φ̄2Þ

ð16π2Þ2 ; ðB3Þ

where we have used

ĪðMÞ ¼ ĪðMÞt¼0 −
2tM2

16π2

¼ ĪðMÞt¼0 −
2t

16π2

�
m̄2 þ λ̄

2
ĪðMÞ þ ΣφðM2Þ

�

¼ ĪðMÞt¼0 −
2t

16π2

�
m̄2 þ λ̄

2

�
ĪðMÞt¼0 −

2tM2

16π2

�

þ ΣφðM2Þt¼0 −
tλ̄2φ̄2

16π2

�
: ðB4Þ

The thermal correction ΣðTÞ that is used in Eq. (11) is
defined as

ΣðTÞ≡M2 −M2jT¼0

¼ 1

2

�
λ̄ −

tλ2

16π2

�
ðĪðMÞt¼0 − Ī0ðMÞt¼0jT¼0Þ þ

�
1 −

tλ̄
16π2

�
ðΣφðM2Þt¼0 − ΣφðM2Þt¼0jT¼0Þ þ

t2λ̄2ΣðTÞ
ð16π2Þ2

≃
T2

2π2

�
λ̄ −

tλ̄2

16π2

�
I0BðA2Þ þ φ̄2

2π2

�
λ̄2 −

tλ̄3

16π2

�
I00BðA2Þ þ � � � ; ðB5Þ

where the ellipsis in the last line denotes higher-order terms that are irrelevant below. Now, we show the t independence of
M2 and ΣðTÞ. Taking the t derivative of the gap equation (B1), one has

dM2

dt
¼ dm̄2

dt
þ dΣðM2ÞjT¼0

dt
þ dΣðTÞ

dt
: ðB6Þ

FIG. 5. The gap equation for the scalar mass. The thick solid lines represent the full propagators, while the thin lines are the tree ones.
The second diagram on the right-hand side incorporates daisy and super-daisy diagrams, which becomes dominant in the high-
temperature limit [2].
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At the one-loop order, the zero-temperature part is
calculated as

dm̄2

dt
þdΣðM2ÞjT¼0

dt
¼ λ̄

16π2
ðm̄2þ λ̄φ̄2Þ− λ̄

16π2
ðm̄2þ λ̄φ̄2Þ

¼ 0: ðB7Þ
For the temperature-dependent part ΣðTÞ, on the other
hand, it follows from Eq. (B5) that

dΣðTÞ
dt

¼ T2

2π2

�
βð1Þλ −

λ̄2

16π2

�
I0BðA2Þ

þ φ̄2

2π2

�
2λ̄βð1Þλ −

λ̄3

16π2

�
I00BðA2Þ þ � � � : ðB8Þ

Since this quantity is the two-loop order, it can be ignored
in the calculation of the one-loop order.
Now we move on to the two-loop order calculation

focusing on ΣðTÞ. In this case, the contributions of the
sunset-type diagrams are necessary to show the t inde-
pendence of ΣðTÞ. It is straightforward to derive the two-
loop contribution by taking the second derivative of V2

with respect to φ̄ and replacing m̄2 with M2. The relevant
part has the form

∂
2V2

∂φ̄2

����
m̄2→M2

∋ ΣðsunsetÞðM2Þ

¼
�

λ̄2T2

2π2ð16π2Þ I
0
BðA2Þ þ 5λ̄3φ̄2

4π2ð16π2Þ I
00
BðA2Þ

�

× ln
M2

μ̄20e
2t : ðB9Þ

After taking the two-loop contributions into account, ΣðTÞ
is modified to

ΣðTÞ ≃ T2

2π2

�
λ̄ − t

3λ̄2

16π2

�
I0BðA2Þ

þ φ̄2

2π2

�
λ̄2 − t

6λ̄3

16π2

�
I00BðA2Þ; ðB10Þ

from which, since βð1Þλ ¼ 3λ̄2=16π2, it follows that

dΣðTÞ
dt

¼ T2

2π2

�
βð1Þλ −

3λ̄2

16π2

�
I0BðA2Þ

þ φ̄2

2π2

�
2λ̄βð1Þλ −

6λ̄3

16π2

�
I00BðA2Þ þO

�
λ̄3

ð16π2Þ3
�

¼ 0þO
�

λ̄3

ð16π2Þ3
�
: ðB11Þ

Therefore, ΣðTÞ is t independent up to the two-loop order.
We emphasize that, besides the MS scheme, it is possible to
formulate a scheme such that dΣðTÞ=dt ¼ 0 by modifying
the β-functions, although in a nontrivial form. In any

scheme, the t-invariant ΣðTÞ up to a certain order can be
obtained, which underpins our consistency condition.
In the high-temperature limit with λ̄=24 < 1, Eq. (B10) is

reduced to

ΣðTÞ ≃ λ̄T2

24

�
1 − t

3λ̄

16π2
þO

�
φ̄2

T2

��
: ðB12Þ

The t invariance of ΣðTÞ allows one to have the simplified
form ΣðTÞ ¼ λT2=24 by choosing t ¼ 0, and we use it in
this work. By the same token, Σ1ðTÞ and Σ2ðTÞ in the
extension of the ϕ4 model discussed in Sec. IV are also
defined at t ¼ 0.

APPENDIX C: LOOP FUNCTIONS

Let us define the sum-integral symbol as

XZ
k

≡ μϵT
X∞
n¼−∞

Z
dd−1k
ð2πÞd−1 ; ðC1Þ

where n denote integers and d ¼ 4 − ϵ. A thermal function
for the one-loop bubble diagram is defined as

IðmÞ ¼
XZ
k

1

k2 þm2

¼ −
m2

16π2
2

ϵ
þ ĪðmÞ þ ϵiϵðmÞ þOðϵ2Þ; ðC2Þ

with

ĪðmÞ ¼ m2

16π2

�
ln
m2

μ̄2
− 1

�
þ T2

π2
I0B

�
m2

T2

�

≡ Ī0ðmÞ þ T2

π2
I0B

�
m2

T2

�
; ðC3Þ

where k2 ¼ ω2
n þ k2 with ωn ¼ 2nπT.5 The explicit form

of iϵðmÞ, which is needed when one goes beyond the one-
loop level, is

iϵðmÞ¼−
m2

64π2

��
ln
m2

μ̄2
−1

�
2

þ1þπ2

6

�

−
T2

2π2

��
ln
T2

μ̄2
þ ln4−2

�
I0Bða2Þþ jða2Þ

�
; ðC4Þ

where

jða2Þ ¼
Z

∞

0

dx
x2 ln xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p 1

e
ffiffiffiffiffiffiffiffiffi
x2þa2

p
− 1

: ðC5Þ

The contributions from the function iϵðmÞ are canceled
among the diagrams and do not appear in the renormalized
effective potential.

5We focus exclusively on the bosonic case.
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The sunset-type diagram composed of all the scalar
fields is defined as

Hðm1;m2;m3Þ

¼
XZ
k

XZ
q

1

ðk2 þm2
1Þðq2 þm2

2Þ½ðkþ qÞ2 þm2
3�
; ðC6Þ

where k2 ¼ ω2
n þ k2 and q2 ¼ ω2

m þ q2 with ω2
n ¼ 2nπT

and ω2
m ¼ 2mπT. We parametrize Hðm1; m2; m3Þ in terms

of the divergent and finite parts as

Hðm1; m2; m3Þ ¼ Hdivðm1; m2; m3Þ þ H̃ðm1; m2; m3Þ

þ 1

8π2
X3
j¼1

iϵðmjÞ ðC7Þ

where

Hdivðm1; m2; m3Þ ¼ −
1

ð16π2Þ2
�
2

ϵ2
þ 1

ϵ

�
ðm2

1 þm2
2 þm2

3Þ

þ 1

16π2
2

ϵ
ðĪðm1Þ þ Īðm2Þ þ Īðm3ÞÞ:

ðC8Þ

The divergences in the first line are removed by the local
counterterms. As discussed in Sec. II, only a single ϵ pole
contributes to the β-functions. On the other hand, the
divergences proportional to ĪðmÞ are canceled among the
diagrams.
The finite part is given by

H̃ðm1;m2;m3Þ ¼
1

16π2
ðĪ0ðm1Þ þ Ī0ðm2Þ þ Ī0ðm3ÞÞ−

1

ð4πÞ4 ðm
2
1 þm2

2 þm2
3Þ

−
1

2

�
m2

1 þm2
2 −m2

3

m2
1m

2
2

Ī0ðm1ÞĪ0ðm2Þ þ
m2

2 þm2
3 −m2

1

m2
2m

2
3

Ī0ðm2ÞĪ0ðm3Þ þ
m2

3 þm2
1 −m2

2

m2
3m

2
1

Ī0ðm3ÞĪ0ðm1Þ
	

þ 1

ð4πÞ4RΦðm1;m2;m3Þ−
T2

ð2πÞ4 ½φðm1;m2;m3ÞI0Bða21Þ þ φðm2;m3;m1ÞI0Bða22Þ þ φðm3;m1;m2ÞI0Bða23Þ�

þ T2

4ð2πÞ4 ½K−−ða1; a2; a3Þ þK−−ða2; a3; a1Þ þK−−ða3; a1; a2Þ�; ðC9Þ

where R2 ¼ ðm2
1 þm2

2 −m2
3Þ2 − 4m2

1m
2
2 and

Φðm1; m2; m3Þ ¼ Li2

�
m2

1 þm2
2 −m2

3 − R
2m2

1

�
þ Li2

�
m2

1 −m2
2 þm2

3 − R
2m2

1

�
þ 1

2
ln
m2

2

m2
1

ln
m2

3

m2
1

− ln

�
m2

1 þm2
2 −m2

3 − R
2m2

1

�
ln

�
m2

1 −m2
2 þm2

3 − R
2m2

1

�
−
π2

6
: ðC10Þ

Note that the dilogarithmic function Li2ðzÞ has an imagi-
nary part if z > 1, i.e., if m2

1 −m2
2 þm2

3 þ R < 0 or
m2

1 þm2
2 −m2

3 þ R < 0, Li2 in the first line has the
imaginary part. However, the log term in the second line
also has the imaginary part that cancels the imaginary
part of the former. For the numerical calculation of
Φðm1; m2; m3Þ, to evaluate the real part, we use

Re½Li2ðzÞ� ¼
π2

6
−
Z

z

1

dt
ln j1 − tj

t
: ðC11Þ

Furthermore, for R2 < 0, R and Φðm1; m2; m3Þ have the
imaginary parts. They are canceled to each other and
RΦðm1; m2; m3Þ is reduced to

RΦðm1;m2;m3Þ

¼ jRj
�
2

Z
1

0

dt
t
tan−1

�
m2tsinη

m1−m2tcosη

�
þθ ln

m2
2

m2
1

�
; ðC12Þ

where

η ¼ arctan

� jRj
m2

1 þm2
2 −m2

3

�
;

θ ¼ arctan

�
−jRj

m2
1 −m2

2 þm2
3

�
; ðC13Þ

and φðm1; m2; m3Þ is defined as

φðm1;m2;m3Þ

¼
Z

1

0

dx ln

�
−xð1−xÞm2

1þð1−xÞm2
2þxm2

3

μ̄2

�
; ðC14Þ
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and

K−−ða1; a2; a3Þ ¼
Z

∞

0

dx
xn−ðx; a1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a21
p

Z
∞

0

dy
yn−ðy; a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ a22
p

× ln

���� Ỹþðx; y; a1; a2; a3Þ
Ỹ−ðx; y; a1; a2; a3Þ

���� ðC15Þ

with

n−ðx; aÞ ¼
1

e
ffiffiffiffiffiffiffiffiffi
x2þa2

p
− 1

; ðC16Þ

Ỹ�ðx; y;a1; a2; a3Þ
¼ ½ða21 þ a22 − a23Þ2 − 4a21a

2
2

− 4fa22x2 � ða21 þ a22 − a23Þxyþ a21y
2g�2: ðC17Þ

For m1 ¼ m2 ¼ m3, H̃ðm;m;mÞ is reduced to

H̃ðmÞ≡ H̃ðm;m;mÞ

¼ 3

�
−
Ī2ðmÞ
2m2

þ ĪðmÞ
16π2

−
m2

ð16π2Þ2
�
1þ 2

3
f2

�

−
1

2m2

T2

π2
ðI0Bða2ÞÞ2 −

T2

16
ffiffiffi
3

p
π3

I0Bða2Þ

þ 4T2

ð16π2Þ2KðaÞ
�
; ðC18Þ

where KðaÞ≡ K−−ða; a; aÞ and we have used

φðm;m;mÞ ¼ ln
m2

μ̄2
− 2þ πffiffiffi

3
p ; ðC19Þ

Φðm;m;mÞ ¼ −
π2

18
þ 2Li2

�
1 −

ffiffiffi
3

p
i

2

�
; ðC20Þ

and f2 ¼ −
ffiffi
3

p
2
iΦðm;m;mÞ ≃ −1.76.

In our numerical analysis, we use an approximation [6]

K−−ða1; a2; a3Þ ¼ K

�
a1 þ a2 þ a3

3

�
: ðC21Þ

APPENDIX D: TADPOLE AND MASS
CONDITIONS FOR RG-IMPROVED

ONE-LOOP EFFECTIVE POTENTIALS

Some parameters in the Lagrangian can be expressed in
terms of VEVand the scalar masses using tadpole and mass
conditions. In the cases of the RG-improved effective
potentials with our tðφÞ, their relations are more involved
than those in fixed-order calculations. In this appendix,
we explicitly give the first and second derivatives of the
RG-improved one-loop effective potentials with respect to
the background fields. Although we do not use such a

potential in our numerical analysis in the ϕ4 theory, we still
present all the formulas to know how they differ from the
fixed-order expressions.

1. ϕ4 theory

At zero temperature, the t-φ relation (60) is reduced to
tðφÞ ¼ lnðm̄2=eμ̄20Þ=2. With this, the one-loop effective
potential is cast into the form

V̄effðφ; tðφÞÞ ¼ V̄0ðφ; tðφÞÞ þ V̄1ðφ; tðφÞÞ

¼ Ω̄ −
ν̄2

2
φ2 þ λ̄

4!
φ4 −

m̄4

8ð16π2Þ ; ðD1Þ

where m̄2 ¼ −ν̄2 þ λ̄φ2=2. The first derivative of
V̄effðφ; tðφÞÞ with respect to φ is

dV̄effðφ; tðφÞÞ
dφ

¼ ∂V̄effðφ; tðφÞÞ
∂φ

þ dtðφÞ
dφ

∂V̄effðφ; tÞ
∂t

����
t¼tðφÞ

¼ φ

�
−ν̄2 þ λ̄

6
φ2 −

λ̄m̄2

4ð16π2Þ
�

þ dtðφÞ
dφ

·
m̄2ð2m̄2 −N Þ

4ð16π2Þ

¼ φ

�
−ν̄2 þ λ̄

6
φ2

�
; ðD2Þ

where N ¼ λ̄ðm̄2 þ λ̄φ2Þ=16π2 and

dtðφÞ
dφ

¼ λ̄φ

2m̄2 −N
: ðD3Þ

Since we determine μ̄0 by the condition tðφ ¼ vÞ ¼ 0,
i.e., μ̄20 ¼ ð−ν2 þ λv2=2Þ=e, it is easy to solve the tadpole
condition ðdV̄eff=dφÞjφ¼v ¼ 0, which gives

ν2 ¼ λ

6
v2: ðD4Þ

The second derivative of V̄effðφ; tðφÞÞ is found to be

d2V̄effðφ;tðφÞÞ
dφ2

¼−ν̄2þ λ̄

2
φ2þ λ̄2φ2

2ð16π2Þ
1

1−N =2m̄2
: ðD5Þ

Thus, the mass in the vacuum (denoted as mϕ) is
obtained by
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m2
ϕ ¼ d2V̄effðφ; tðφÞÞ

dφ2

����
φ¼v

¼ λ

3
v2

1 − λ=32π2

1 − λ=8π2

¼ λ

3
v2
�
1þ 3λ

2ð16π2Þ þ
3λ2

ð16π2Þ2 þ � � �
�
: ðD6Þ

One should note that mϕ would agree with a one-loop
fixed-order result if the higher-order terms are dropped, as
it should.

2. ϕ4 theory with an additional real scalar

We obtain the first and second derivatives of
V̄effðφ1; tðφ1ÞÞ in Eq. (72) with the t − φ1 relation (78)
at zero temperature. The first derivative of V̄eff with respect
to φ1 is

dV̄effðφ̄1;tðφ1ÞÞ
dφ1

¼φ1

�
ν̄21þ

λ̄1
6
φ2
1þ

1

2
ðλ̄1Ī0ðm̄1Þþ λ̄3Ī0ðm̄2ÞÞ

�

¼0; ðD7Þ

where

Ī0ðm̄Þ ¼ m̄2

16π2

�
ln

m̄2

e2tμ̄20
− 1

�
: ðD8Þ

As in the ϕ4 theory, we determine μ̄0 by the condition
∂V̄effðφ̄1;tÞ

∂t jt¼0 ¼ 0, i.e., tðφ1 ¼ vÞ ¼ 0, from which it follows
that

ln μ̄20 ¼
P

i¼1;2
∂m̄2

i
∂t jt¼0m

2
i ðlnm2

i − 1ÞP
i¼1;2

∂m̄2
i

∂t jt¼0m
2
i

; ðD9Þ

where

m2
1 ¼ ν21 þ

λ1
2
v2; m2

2 ¼ ν22 þ
λ3
2
v2; ðD10Þ

∂m̄2
1

∂t

����
t¼0

¼ 1

16π2

�
λ1ν

2
1 þ λ3ν

2
2 þ

3

2
ðλ21 þ λ23Þv2

�
; ðD11Þ

∂m̄2
2

∂t

����
t¼0

¼ 1

16π2

�
λ3ν

2
1 þ λ2ν

2
2 þ

1

2
λ3ðλ1 þ λ2 þ 4λ3Þv2

�
:

ðD12Þ

With this μ̄0, the tadpole condition is simplified to

dV̄effðφ̄1; tðφ1ÞÞ
dφ1

����
φ1¼v

¼ v

�
ν21þ

λ1
6
v2þ1

2
ðλ1Ī0ðm1Þþλ3Ī0ðm2ÞÞ

�
¼ 0; ðD13Þ

which determines ν21 as

ν21 ¼ −
�
λ1
6
v2 þ λ1m2

1

32π2

�
ln
m2

1

μ̄20
− 1

�
þ λ3m2

2

32π2

�
ln
m2

2

μ̄20
− 1

��
:

ðD14Þ

This coincides with the one-loop fixed-order result, but μ̄0
is given by Eq. (D9).
The second derivative is cast into the form

m2
ϕ1

¼ d2V̄effðφ1; tðφ1ÞÞ
dφ2

1

����
φ1¼v

¼ m2
1 þ

1

2
½λ1Ī0ðm1Þ þ λ3Ī0ðm2Þ þ ðλ21Ī00ðm1Þ þ λ23Ī

0
0ðm2ÞÞv2�

þ dtðφ1Þ
dφ1

����
φ1¼v

1

2

X
i¼1;2

�
∂
2m̄2

i

∂φ1∂t
Ī0ðmiÞ þ

∂m̄2
i

∂φ1

∂m̄2
i

∂t
Ī00ðmiÞ

�
t¼0

; ðD15Þ

where

dtðφ1Þ
dφ1

����
φ1¼v

¼
P

i¼1;2

h
∂
2m̄2

i
∂φ1∂t

Ī0ðmiÞ þ ∂m̄2
i

∂φ1

∂m̄2
i

∂t Ī
0
0ðmiÞ

i
t¼0P

i¼1;2

h
m2

i
8π2

∂m̄2
i

∂t − ∂
2m̄2

i
∂t2 Ī0ðmiÞ − ð∂2m̄2

2

∂t2 Þ
2
Ī00ðmiÞ

i
t¼0

; ðD16Þ

and

∂
2m̄2

1

∂φ1∂t
¼ 3ðλ̄21 þ λ̄23Þφ1

16π2
; ðD17Þ
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∂
2m̄2

2

∂φ1∂t
¼ λ̄3ðλ̄1 þ λ̄2 þ 4λ̄3Þφ1

16π2
; ðD18Þ

∂
2m̄2

1

∂t2
¼ 1

16π2

�
βð1Þλ1

ðm̄2
1 þ 2λ̄1φ

2
1Þ þ βð1Þλ3

ðm̄2
2 þ 2λ̄3φ

2
1Þ þ λ̄1

∂m̄2
1

∂t
þ λ̄3

∂m̄2
2

∂t

�

¼ 1

ð16π2Þ2 ½4ðλ̄
2
1 þ λ̄23Þm̄2

1 þ 2λ̄3ðλ̄1 þ λ̄2 þ 2λ̄3Þm̄2
2 þ f7λ̄1ðλ̄21 þ λ̄23Þ þ 2λ̄23ðλ̄1 þ λ̄2 þ 5λ̄3Þgφ2

1�; ðD19Þ

∂
2m̄2

2

∂t2
¼ 1

16π2

�
βð1Þλ3

ðm̄2
1 þ 4λ̄3φ

2
1Þ þ βð1Þλ2

m̄2
2 þ λ̄3

∂m̄2
1

∂t
þ λ̄2

∂m̄2
2

∂t

�

¼ 1

ð16π2Þ2 ½2λ̄3ðλ̄1 þ λ̄2 þ 2λ̄3Þm̄2
1 þ 4ðλ̄22 þ λ̄23Þm̄2

2 þ λ̄3ðλ̄21 þ 4λ̄1λ̄3 þ 6λ̄2λ̄3 þ 17λ̄23Þφ2
1�; ðD20Þ

Ī00ðmÞ ¼ dĪ0ðmÞ
dm2

¼ 1

16π2
ln

m2

e2tμ̄20
: ðD21Þ
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