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In an optically active medium, such as a plasma that contains a neutrino background, the left-handed and
right-handed polarization photon modes acquire different dispersion relations. We study the propagation of
photons in such a medium, which is otherwise isotropic, within the framework of the covariant collissionless
Boltzmann equation incorporating a term that parametrizes the optical activity. Using the linear response
approximation, we obtain the formulas for the components of the photon polarization tensor, expressed in
terms of integrals over the momentum distribution function of the background particles. The main result here
is the formula for the P- and CP-breaking component of the photon polarization tensor in terms of the
parameter involved in the new term we consider in the Boltzmann equation to describe the effects of optical
activity. We discuss the results for some particular cases, such as long-wavelength and nonrelativistic limits,
for illustrative purposes. We also discuss the generalizations of the P- and CP-breaking term we included in
the Boltzmann equation. In particular we consider the application to a plasma with a neutrino background
and establish contact with calculations of the photon self-energy in those systems in the framework of
thermal field theory.
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I. INTRODUCTION AND OUTLINE

It was shown sometime ago, in the context of thermal
field theory (TFT), that the general expression for the
photon self-energy in an isotropic medium, consistent with
gauge and Lorentz invariance in four dimensions, may
contain a term which signals P- and CP- symmetry
breaking, either in the Lagrangian, or in the background,
or both [1,2]. The effect of this term is that the dispersion
relation of the photon transverse modes, which would
otherwise be degenerate, are split according to the polari-
zation of the propagating mode. A consequence of this is the
rotation of the linear polarization of an electromagnetic
wave traveling in such media, or birefringence. These
effects arise, for example, when photons propagate in a
medium that contains a neutrino background [3–5].
On the other hand it has also been shown that the effect

mentioned can be described in the context of the classical
Maxwell equations in terms of an additional electromag-
netic constant ζ, besides the standard dielectric (ϵ) and

magnetic (μ) constants [6]. A covariant version of this
formulation has also been given [7]. Following Ref. [6] we
refer to ζ as the activity constant, and to this kind of medium
as an optically active medium.
Our objective in the present work is to revisit the study

the propagation of photons in such media, in the frame-
work of the covariant, collisionless, Boltzmann equation,
but incorporating a term that gives rise to the optical
activity effects mentioned above. This approach, which
lies somewhere in the middle between the two approaches
mentioned, that is, TFT on one hand, and a purely
phenomenological description on the other, could be more
suitable than those two approaches in certain situations.
Recently, the optical activity effects on the cosmic

microwave photons as they travel through the medium of
the cosmic neutrino background have been considered in the
context of the cosmic birefringence [8]. Independently of
whether or not the photon-neutrino interactions are respon-
sible for the observed effects in this context, or whether
another source of the optical activity may be required as
suggested in Ref. [8], our work may be useful for further
development in this area, and other astrophysical contexts in
which optical activity plays a role.
While in the present work we restrict ourselves to the

collisionless Boltzman equation, modified to incorporate
the optical activity effects, the method we use can be
extended to include the effect of collisions in an optically
active plasma, for example by adapting the techniques used
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for this purpose in the framework of the Boltzmann equation
for an ordinary plasma (see, e.g., Ref. [9] and references
therein). For example, in the case of photons propagating in
a plasma medium with a neutrino background, it may be
important to include also the effects of collisional inter-
actions. While such interactions typically lead to damping
effects, under the appropriate circumstances can also lead to
growth effects. An example of a growth effect was provided
in Ref. [4], with regard to the evolution of a magnetic field
perturbation in such a medium. This particular phenomena
has been considered by Semikoz and Sokoloff [10] as a
mechanism for the generation of large-scale magnetic fields
in the early Universe as a consequence of the neutrino-
plasma interactions. In this sense the present work provides
the mechanism for considering the effects of collisions in an
optically active medium on a firm ground.
In short, our proposal is to consider the relativistic

collisionless Boltzmann equation for a given particle specie
“a,” of charge qa,

p · ∂ðxÞfa ¼ −qaFμνpν∂
ðpÞ
μ fa; ð1:1Þ

modified by adding a term proportional to the dual
electromagnetic tensor F̃μν, as we state precisely below,
including the explanation of the various symbols that enter
in this equation. The strategy is to use the linear response
approach to obtain the expression for the induced current,
and thereby the photon polarization tensor, in terms of the
particle distribution functions, and study various aspects of
the results that could be useful for applications, such as the
corresponding dispersion relations and the interpretation in
terms of the activity constant. In the present work we
restrict ourselves to implement this program for an isotropic
system, that is, the momentum distribution functions of all
the particle species are isotropic in the rest frame of the
system. The generalization of the approach to other cases,
for example a two-stream component plasma is straightfor-
ward from a conceptual point of view, although of course
the details will be different and they can be important in
specific physical contexts.
The outline of the rest of the paper is as follows. In

Sec. II we present the covariant Boltzmann equation, that
includes the P- and CP-breaking term to describe the
effects of an optically active medium. For consistency, we
discuss some particular features and consequences of the
equation, including current conservation and the role of the
discrete symmetries of the new term. In Sec. III, we
consider the solution of the equation, using the standard
linearization method. The expression for the induced
current is determined, in terms of integrals of the momen-
tum distribution functions of the particles. There we
establish contact with the photon polarization tensor, or
equivalently the photon self-energy, in the TFT language,
specifically as used in Ref. [1], and the formulas for the
components of the polarization tensor are obtained. The

results for the longitudinal and transverse components of
the photon self-energy are the familiar ones. The formula
for the P- and CP-breaking term is the new result here. In
Sec. IV we discuss some details of the results obtained, and
consider specifically some particular cases (e.g., the long-
wavelength and the nonrelativistic limit) that are useful in
many applications and can serve as benchmark references
for more general situations. We also point out possible
generalizations of the P- and CP-breaking term we
included in the Boltzmann equation, in particular how it
applies in the context of a plasma with a neutrino gas as a
background, and establish contact with calculations of the
photon self-energy in such backgrounds in the framework
of TFT [3]. Possible avenues for extensions and explora-
tion of the present work are mentioned in Sec. V.

II. P- AND CP-BREAKING KINETIC EQUATION

Without further preamble, the equation we consider is,

p · ∂ðxÞfa ¼ ½−qaFμν þ γaF̃μν�pν∂
ðpÞ
μ fa: ð2:1Þ

We will discuss some generalizations of this equation in
Sec. IV B. In this expression, faðx; pÞ is the number
density of the particles specie “a,” of charge qa, in the
plasma, expressed as a function of the four-vectors xμ and
pμ, and normalized as specified below [e.g., see Eq. (2.10)].
Further, F̃μν is the dual electromagnetic field tensor,

F̃μν ≡ 1

2
ϵμναβFαβ; ð2:2Þ

and we are using the shorthand symbols

∂
ðxÞ
μ ¼ ∂

∂xμ
;

∂
ðpÞ
μ ¼ ∂

∂pμ : ð2:3Þ

We use the conventions such that gμν has diagonal elements
ð1;−1;−1;−1Þ and ϵ0123 ¼ þ1.
The parameter γa is a phenomenological parameter,

which in this approach is unknown. However Eq. (2.1),
or its generalizations, as we will discuss, parametrize
effectively the results of the calculations of optical activity
in some systems, such as those considered in the references
already cited (e.g., Refs. [3–5]). In this sense this approach
serves as a bridge between those calculations on one hand,
and a pure phenomenological description in terms of the
electrodynamics equations on the other (e.g., Refs. [1,6,7]).
Before entering in the practical calculations, there are

various aspects of these equations that are worth discussing.
We consider them below.

JOSÉ F. NIEVES and JOHN D. VERGES PHYS. REV. D 109, 056022 (2024)

056022-2



A. Current conservation

The electromagnetic current density is

jμ ¼
X
a

qaJaμ; ð2:4Þ

where

Jaμ ¼ 2

Z
d4p
ð2πÞ3 δðp

2 −m2
aÞθðp · uÞpμfa: ð2:5Þ

We have introduced the velocity four-vector of the medium,
uμ, which has components

uμ ¼ ð1; 0⃗Þ; ð2:6Þ

in the medium’s own rest frame. Notice that

δðp2 −m2
aÞθðp · uÞ ¼ 1

2Eap
δðp0 − EapÞ; ð2:7Þ

with

Eap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

a

q
; ð2:8Þ

since θðp · uÞ ¼ 0 for the negative solution p0 ¼ −Eap.
Therefore Eq. (2.5) reduces to

Jaμ ¼
Z

d3p
ð2πÞ3Eap

pμfa; ð2:9Þ

which is the conventional expression for the current density
four-vector of each specie. In particular, its zeroth compo-
nent is the particle number density of each specie,

na ¼ J0a ¼
Z

d3p
ð2πÞ3 fa: ð2:10Þ

We now consider the divergence of the current density.
From Eq. (2.5),

∂
ðxÞ ·Ja ¼ 2

Z
d4p
ð2πÞ3 δðp

2−m2
aÞθðp ·uÞðp ·∂ðxÞfaÞ; ð2:11Þ

and using Eq. (2.1)

∂
ðxÞ · Ja ¼ Aμν

a Jaμν; ð2:12Þ

where we have defined

Aμν
a ¼ −qaFμν þ γaF̃μν; ð2:13Þ

and

Jaμν ≡
Z

d4pδðp2 −m2
aÞθðp · uÞpν∂

ðpÞ
μ fa

¼ −
Z

d4pfa∂
ðpÞ
μ ½pνδðp2 −m2

aÞθðp · uÞ�: ð2:14Þ

In the second equality in Eq. (2.14) we have integrated by
parts, dropping the surface term since fa vanishes for
infinite momentum. Current conservation is a consequence
of the fact that, while Aμν

a is antisymmetric,

Aμν
a ¼ −Aνμ

a ; ð2:15Þ

Jaμν is, as we show below, symmetric,

Jaμν ¼ Jaνμ: ð2:16Þ

Therefore,

Aμν
a Jaμν ¼ 0; ð2:17Þ

which together with Eq. (2.12) imply that

∂
ðxÞ · Ja ¼ 0: ð2:18Þ

The proof of Eq. (2.16) is by straightforward algebra.
Taking derivative that appears in the integrand of Eq. (2.14)
we obtain,

∂
ðpÞ
μ ½pνδðp2 −m2

aÞθðp · uÞ� ¼ gμνδðp2 −m2
aÞθðp · uÞ

þpν∂
ðpÞ
μ ½δðp2 −m2

aÞθðp · uÞ�;
ð2:19Þ

and for the second term in Eq. (2.19)

∂
ðpÞ
μ ½δðp2 −m2

aÞθðp · uÞ� ¼ pμδ
0ðp2 −m2

aÞθðp · uÞ
þ uμδðp2 −m2

aÞδðp · uÞ: ð2:20Þ

In the last formula, the product of the two delta functions
give zero because the two conditions,

p0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

a

q
; ð2:21Þ

and

p0u0 ¼ p⃗ · u⃗; ð2:22Þ

cannot be satisfied simultaneously. Therefore we get
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Jaμν¼−
Z

d4pfθðp ·uÞ½gμνδðp2−m2
aÞþpμpνδ

0ðp2−m2
aÞ�;

ð2:23Þ

which explicitly verifies Eq. (2.16).

B. Modification of the Boltzmann equation

If the distribution function is treated as a function only
of p⃗ rather than p⃗ and p0 separately, in other words we
explicitly set

fðsÞa ðt; x⃗; p⃗Þ≡ faðpÞjp0¼Ep
; ð2:24Þ

it is well known that the covariant equation given in
Eq. (1.1) is equivalent to (see, e.g., Ref. [11])

∂tf
ðsÞ
a þ v⃗a · ∇xf

ðsÞ
a ¼ −F⃗a · ∇pf

ðsÞ
a ; ð2:25Þ

with

F⃗a ¼ qaðE⃗þ v⃗a × B⃗Þ: ð2:26Þ

Equation (2.25) is the standard form of the Boltzmann
equation for charged particles in an electromagnetic field.
In the case that fa satisfies Eq. (2.1) the corresponding

equation, analogous to Eq. (2.25), is

∂tf
ðsÞ
a þ v⃗a · ∇xf

ðsÞ
a ¼ ð−F⃗a þ G⃗aÞ ·∇pf

ðsÞ
a ; ð2:27Þ

where F⃗a is given above, and

G⃗a ¼ γaðB⃗ − v⃗a × E⃗Þ: ð2:28Þ

The result given in Eq. (2.27) follows easily from the fact
that the elements of F̃μν are obtained from Fμν by making
the replacement

E⃗ → B⃗;

B⃗ → −E⃗; ð2:29Þ

which implies that G⃗a is obtained from F⃗a by making the
same replacement. Thus, for example, in the presence of
only a magnetic field B⃗, the equation is

∂tf
ðsÞ
a þ v⃗a ·∇xf

ðsÞ
a ¼ ð−qav⃗a× B⃗þ γaB⃗Þ ·∇pf

ðsÞ
a : ð2:30Þ

A quick observation that follows from Eq. (2.27) is that
some discrete space-time symmetries are broken in the
system when the F̃μν term is present in the Boltzmann
equation. This is obvious, for example for parity (P), from
the fact that E⃗ and B⃗ have opposite phase under a P
transformation, and therefore the same holds for F⃗ and G⃗.

III. LINEARIZATION OF THE KINETIC
EQUATION AND πμν

A. Linearization and the induced current

The dispersion relations for the propagating photons are
obtained by linearizing the kinetic equation. We put

fa ¼ fa0 þ fa1 þ � � � ; ð3:1Þ

where fa0 is the equilibrium distribution, and fa1 is linear
in Fμν. Substituting Eq. (3.1) in Eq. (2.1), and retaining
only terms that are linear in Fμν, gives

p · ∂ðxÞfa1 ¼ ½−qaFμν þ γaF̃μν�pν∂
ðpÞ
μ fa0: ð3:2Þ

The next step is to consider the momentum space equation
corresponding to Eq. (3.2). Denoting the wave vector by kμ,
the momentum space equation is obtained from Eq. (3.2)
by making the replacements

Fμν → fμν;

F̃μν → f̃μν;

fa1 → f̂a1;

∂
ðxÞ
μ fa1 → −ikμf̂a1; ð3:3Þ

with the understanding that the functions on the right-hand
side are the Fourier transforms of those on the left. In
particular,

f̃μν ¼ 1

2
ϵμναβfαβ; ð3:4Þ

in correspondence with Eq. (2.2). Furthermore, remember-
ing that we are considering an isotropic system, fa0 is a
function only of

E ≡ p · u; ð3:5Þ

in which case

∂
ðpÞ
μ fa0 ¼ uμf0a0; ð3:6Þ

where

f0a0 ≡ ∂fa0
∂E

: ð3:7Þ

With these substitutions, the momentum space equation
corresponding to Eq. (3.2) is,

ð−ik · pÞf̂a1 ¼ ½−qafμν þ γaf̃
μν�uμpνf0a0; ð3:8Þ

which gives
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f̂a1 ¼
�

i
k · p

�
½−qafμν þ γaf̃

μν�uμpνf0a0: ð3:9Þ

The induced current is obtained from Eqs. (2.4) and (2.9)
using Eqs. (3.1) and (3.9). The terms containing the
equilibrium distributions fa0 do not contribute. This is
most easily seen by going to the medium’s own rest frame.
Due to the isotropy condition, the vector current density j⃗a
is zero, while the total j0 is zero assuming that the charge
density is zero in equilibrium. Thus,

jμ ¼ i
X
a

qa½−qafλν þ γaf̃
λν�uλIð1Þaμν; ð3:10Þ

where

Ið1Þaμν ¼
Z

d3p
ð2πÞ3Eap

f0a0
k · p

pμpν: ð3:11Þ

The next step is to write Eq. (3.10) in terms of the vector
potential rather than the field. We consider separately the
two terms in Eq. (3.10).

1. f μν term

For the term with fμν, using

fαβ ¼ −i½kαAβ − kβAα�; ð3:12Þ

we have

uαpβfαβ ¼ −i½ðk · uÞpν − ðk · pÞuν�Aν; ð3:13Þ

which gives

fλνuλI
ð1Þ
aμν ¼ −i½ðk · uÞIð1Þaμν − Ið2Þa uμuν�Aν; ð3:14Þ

where Ið1Þaμν is given in Eq. (3.11) and

Ið2Þa ¼
Z

d3p
ð2πÞ3Eap

ðp · uÞf0a0: ð3:15Þ

To arrive at Eq. (3.14) we have used again the fact that we
are considering an isotropic system so fa0 is a function of
p · u, and therefore

Z
d3p

ð2πÞ3Eap
f0a0pμ ¼ Ið2Þa uμ: ð3:16Þ

For the sake of completeness, we mention that the con-
tribution to the current from the term given in Eq. (3.14) is
transverse by itself, as can be easily verified explicitly by
multiplying by kμ and using Eq. (3.16).

2. f̃ μν term

We now derive the relation analogous to Eq. (3.14) for
the f̃μν term. From Eqs. (3.4) and (3.12), relabeling some of
the Lorentz indices, it follows that

f̃λνuλI
ð1Þ
aμν ¼ −iϵλναβkαuβAνI

ð1Þ
aμλ; ð3:17Þ

where Ið1Þaμν is defined in Eq. (3.11). Since Ið1Þaμν is a
symmetric in μ, ν, and depends only on kμ and uμ, it is
of the form

Ið1Þaμν¼CgμνþX1uμuνþX2kμkνþX3ðkμuνþuμkνÞ: ð3:18Þ

Only the C term contributes in Eq. (3.17) and therefore

f̃λνuλI
ð1Þ
aμν ¼ −iCaϵμναβkαuβAν: ð3:19Þ

Ca can in turn be written in terms of the tensor Rλρ defined
in Eq. (A6) as

Ca ¼
1

2
RλρIð1Þaλρ: ð3:20Þ

B. πμν and πT;L;P

Using Eqs. (3.14) and (3.19) in Eq. (3.10), the induced
current is then expressed in the form jμ ¼ −πμνAν

[Eq. (A1)], with

πμν ¼
X
a

fq2a½ðk · uÞIð1Þaμν − Ið2Þa uμuν� − qaγaCaϵμναβkαuβg:

ð3:21Þ

This expression for πμν can be decomposed in terms of
πT;L;P as given in Eq. (A2). πP can be written by inspection,
while πT;L can be obtained by projecting the term in square
brackets in Eq. (3.21), which is symmetric and transverse,
with Rμν and Qμν, using Eqs. (A10) and (A9). Thus,

πL ¼ −
X
a

q2a

�
k2Da

κ2

�
;

πT ¼
X
a

q2aðk · uÞCa;

πP ¼
X
a

iqaγaκCa; ð3:22Þ

where Ca has been defined in Eq. (3.20), while

Da ¼ uμuν½ðk · uÞIð1Þaμν − Ið2Þa uμuν�: ð3:23Þ

Using Eqs. (3.11) and (3.15), the integral formulas for Ca
and Da can be written in the form
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Ca ¼
1

2

Z
d3p

ð2πÞ3Eap

�
p2 − ðp · uÞ2

þ 1

κ2
½p · k − ðk · uÞðp · uÞ�2

�
f0a0
k · p

;

Da ¼
Z

d3p
ð2πÞ3Eap

fðk · uÞðp · uÞ2

− ðp · uÞðk · pÞg f0a0
k · p

: ð3:24Þ

We consider the evaluation of the integrals for Ca andDa
in the medium’s rest frame, and thus we set

uμ ¼ ð1; 0⃗Þ: ð3:25Þ

We decompose kμ in the form

kμ ¼ ðω; κ⃗Þ; ð3:26Þ

and in the integrands we will write

pμ ¼ ðEap; p⃗Þ; ð3:27Þ

with the understanding that we are working in the rest
frame of the medium. In particular fa0 is a function only of
Eap, and

f0a0 ¼
∂fa0
∂Eap

: ð3:28Þ

Thus, for example, the numerator of the integrand forDa in
Eq. (3.24)

ðk · uÞðp · uÞ2 − ðp · uÞðk · pÞ
¼ ωE2

ap − EapðωEap − κ⃗ · p⃗Þ ¼ Eapκ⃗ · p⃗; ð3:29Þ

while the denominator can be written as

Eapðω − κ⃗ · v⃗aÞ; ð3:30Þ

with

v⃗a ¼
p⃗
Eap

: ð3:31Þ

Substituting these in the expression for Da in Eq. (3.24),

Da ¼
Z

d3p
ð2πÞ3

�
κ⃗ · v⃗a

ω − κ⃗ · v⃗a

�
f0a0; ð3:32Þ

and similarly,

Ca ¼ −
1

2

Z
d3p
ð2πÞ3

v⃗2a⊥
ω − κ⃗ · v⃗a

f0a0; ð3:33Þ

where

v⃗a⊥ ¼ v⃗a −
1

κ2
ðκ⃗ · v⃗aÞκ⃗: ð3:34Þ

Although we do not indicate it explicitly, it is understood
that in these formulas for Ca and Da, as well as in
the formulas for πL;T;P given below, the singularity of the
integrand at ω ¼ κ⃗ · v⃗a is to be handled by making the
replacement

ω → ωþ i0þ; ð3:35Þ

as usual.
From Eq. (3.22) we then obtain

πL ¼ −
k2

κ2
X
a

q2a

Z
d3p
ð2πÞ3

�
κ⃗ · v⃗a

ω − κ⃗ · v⃗a

�
f0a0;

πT ¼ −
ω

2

X
a

q2a

Z
d3p
ð2πÞ3

v⃗2a⊥
ω − κ⃗ · v⃗a

f0a0;

πP ¼ −
iκ
2

X
a

qaγa

Z
d3p
ð2πÞ3

v⃗2a⊥
ω − κ⃗ · v⃗a

f0a0: ð3:36Þ

The corresponding expressions for ϵl;t obtained from
Eq. (A23) reproduce the standard classic results, e.g.,

ϵl − 1 ¼ 1

κ2
X
a

q2a

Z
d3p
ð2πÞ3

�
κ⃗ · v⃗a

ω − κ⃗ · v⃗a

�
f0a0; ð3:37Þ

and similarly for ϵt. On the other hand, the formula for πP,
and the corresponding formula for ϵp obtained from
Eq. (A23), are new.

IV. DISCUSSION

A. Dispersion relations in the long-wavelength limit

The longitudinal dispersion relation is not affected by the
γa terms, as already indicated. Therefore, we focus on the
transverse ones (i.e., polarizations perpendicular to κ⃗)
which involve both πT and πP. Moreover, we consider
specifically the long-wavelength limit,

ω ≫ κva; ð4:1Þ

which is a particularly useful and representative of more
general situations.
Using the fact that we are considering the case that the

distribution functions fa0 are isotropic, by straightforward
manipulation of the integrand,
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Caðω; κ → 0Þ ¼ Ω2
a

ω
; ð4:2Þ

where

Ω2
a ¼

Z
d3p

ð2πÞ3Eap

�
1 −

v2a
3

�
fa0: ð4:3Þ

For reference, recall that the plasma frequency (ωpl;a) of
each specie is given by

ω2
pl;a ¼ q2aΩ2

a: ð4:4Þ

For example, in the nonrelativistic limit,

Ω2
a ¼

na0
ma

; ð4:5Þ

where na0 is the equilibrium particle number density of the
specie [see Eq. (2.10)]. From Eq. (3.22) we then obtain in
the long-wavelength limit

πPðω; κ → 0Þ ¼ iκγP
ω

; ð4:6Þ

and the well-known result

πTðω; κ → 0Þ ¼ Ω2
0; ð4:7Þ

where

Ω2
0 ¼

X
a

q2aΩ2
a; ð4:8Þ

and

γP ¼
X
a

qaγaΩ2
a: ð4:9Þ

As reviewed in Appendix, the transverse dispersion
relations are determined as the solutions of

k2 − ðπT þ λπPÞ ¼ 0; ðλ ¼ �Þ: ð4:10Þ

Substituting in this equation the results for πP and πT given
in Eqs. (4.6) and (4.7), respectively, in the long-wavelength
limit the equation becomes

ω2 − ðκ2 þ Ω2
0Þ −

iλκγP
ω

¼ 0: ð4:11Þ

In the limit γP → 0 we obtain the standard transverse
solutions,

ω ¼ ωTðκÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þΩ2

0

q
; ð4:12Þ

for either polarization. In the more general situation,
assuming

jγPj ≪
2ω3

TðκÞ
κ

; ð4:13Þ

the solutions are

ωðκÞ ¼ ωTðκÞ þ i
λκγP

2ω2
TðκÞ

: ð4:14Þ

The dispersion relations are such that one polarization mode
is damped (absorption by the medium) while the other one
grows (emission by the medium). Which is one or the other
depends on the sign of γP, which in turn depends on the
relative signs and values of the qaγa terms in Eq. (4.9).

B. Generalization

Equation (2.1) is probably the simplest equation of the
kind we are discussing, but there are some possible
generalizations. Here we mention some of them. We will
write them in the generic form

p · ∂ðxÞfa ¼ ½−qaFμν þ Γμν
a �pν∂

ðpÞ
μ fa: ð4:15Þ

The requirement is that Γμν must contain, in some form, the
dual tensor F̃αβ, and that it is antisymmetric in μ, ν so that
the proof of current conservation given in Sec. II A applies
in this case as well, with the identification of Aμν ¼
−qaFμν þ Γμν in place of Eq. (2.13).
One possibility is

Γμν
a ¼ γð1Þa ðu · ∂ðxÞÞF̃μν; ð4:16Þ

where γð1Þa is a constant parameter. The steps to arrive at
Eq. (3.9) for f̂a1 apply also in this case, with the
identification

γa ¼ −iðk · uÞγð1Þa : ð4:17Þ

Thus for example, from Eqs. (4.6) and (4.9), we can see that
in the long wavelength limit this gives a contribution to πP
of the form

κqaγ
ð1Þ
a Ω2

a: ð4:18Þ

The main qualitative difference, relative to the case in
which γa is independent of ω, is that in the present case the
corresponding contribution to πP is real, which in turn
produces a real term in the dispersion relations of opposite
sign for the (�) polarizations.
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More generally, we can consider the equation

Γμν
a ¼

Z
d4x0Γaðx − x0ÞF̃μνðx0Þ: ð4:19Þ

The momentum space equation in the linear approximation
for f̂a1 is again Eq. (3.9), but with γa being the Fourier
transform of Γaðx − x0Þ, that is, γa defined by writing

Γaðx − x0Þ ¼
Z

d4k
ð2πÞ4 e

−ik·ðx−x0ÞγaðkÞ: ð4:20Þ

The fact that Γaðx − x0Þ is real implies that

γ�aðkÞ ¼ γaðkÞjk→−k: ð4:21Þ

Being a scalar, γa is a function of the scalar variables ω and
κ defined in Eq. (A3), a fact that we indicate by writing it as
γaðω; κÞ when needed. In particular, Eq. (4.21) actually
implies the condition

γ�aðω; κÞ ¼ γað−ω; κÞ: ð4:22Þ

This case includes the original Eq. (2.1) (constant γa) as
well as Eq. (4.16) as special cases, and of course Eq. (4.17)
is consistent with Eq. (4.22), as it should be.

C. Neutrino background

An example case in which γa has the form given in
Eq. (4.17) is afforded by an electron plasma with a neutrino
background. The calculation of πP in that case gives [3]

πPðω; κ → 0Þ ¼
ffiffiffi
2

p
GFα

3π

�
ω2
pl;e

m2
e

�
ðnνe − nν̄eÞκ; ð4:23Þ

where nνe and nν̄e stand for the number densities of the
electron neutrinos and antineutrinos, andωpl;e is the electron
plasma frequency. For simplicity let us consider the non-
relativistic limit, so that only the electrons (no positrons) are
present, in which case [i.e., Eqs. (4.4) and (4.5)]

ω2
pl;e ¼ q2eΩ2

e ¼
q2ene0
me

; ð4:24Þ

where qe is the electron charge and ne0 is the equilibrium
electron number density. On the other hand, for this case that
we are considering, in the framework of the kinetic equation

πP ¼ iκqeγeΩ2
e

ω
: ð4:25Þ

Therefore, in the framework of the kinetic equation, the
effects of the neutrino background can be parametrized in
terms of a γe parameter for the electron of the form

γe ¼ −iωγð1Þe ; ð4:26Þ

with

γð1Þe ¼ qe

ffiffiffi
2

p
GFα

3πm2
e

ðnνe − nν̄eÞ: ð4:27Þ

The main lesson here is that the kinetic approach allows
us to parametrize the effects produced by the πP term in the
photon polarization tensor in terms of the parameter γa. In
this framework, γa is a phenomenological parameter that
must be determined by other means, e.g., thermal field
theory in the case of an electron plasma with neutrino
background, as we have seen. Nevertheless, the kinetic
approach allows us to study further the consequences of the
presence of the πP term, such as the effects of external
fields [10], streaming neutrino background [5] or collisional
plasmas [9], among others.

V. CONCLUSIONS AND OUTLOOK

In this work we have proposed a method to study the
propagation of photons in an optically active isotropic
medium, based on the covariant collisionless Boltzmann
equation. As shown in Sec. II, the covariant Boltzmann
equation can be modified by adding a term that gives rise
to the optical activity effects, in a way that is consistent
with the general requirements of current conservation and
symmetry considerations. In Sec. III, using the linear
response method, we obtained an expression for the
induced current, expressed in terms of integrals over the
momentum distribution function of the background par-
ticles. There we established contact with the photon
polarization tensor, or equivalently the photon self-energy,
in the TFT language, specifically as used in Ref. [1], and
the formulas for the components of the polarization tensor
were obtained. The results for the longitudinal and trans-
verse components of the photon self-energy, πL;T respec-
tively, are the familiar ones. The new result here is the
formula for the P- and CP-breaking component πP due to
the new term we considered in the Boltzmann equation to
describe the effects of optical activity. In Sec. IV we
discussed some details of the results obtained, and con-
sidered specifically some particular cases (e.g., the long-
wavelength and the nonrelativistic limit) that are useful in
practical applications and representative of more general
situations. To emphasize the usefulness of the method, we
pointed out how the P- and CP-breaking term we included
in the Boltzmann equation can be generalized, in particular
how it applies to a plasma with a neutrino gas as a
background, and established contact with calculations of
the photon self-energy in such contexts in the framework
of TFT [3]. The strength and advantages of the method
here presented comes from its semiclassical standpoint,
which in many circumstances is more suitable than the
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thermal field theory approach for incorporating other
potentially important effects such as collisions, external
fields, stream backgrounds and multicomponent plasmas.

APPENDIX: NOTATION AND CONVENTIONS

We use the notation and conventions used in Ref. [1],
which we briefly review here for convenience. The
momentum of the propagating photon is denoted by kμ,
and uμ is the velocity four-vector of the medium, already
introduced in Eq. (2.5).

1. Photon polarization tensor

In the context of TFT, the photon self-energy, πμν gives
rise to a contribution to the effective Lagrangian of the
photon and the corresponding field equation that leads to
identify

jμ ¼ −πμνAν; ðA1Þ

as the induced current in the presence in the external field,
and whence πμν as the polarization tensor. As discussed in
that reference, the most general form of πμν in an isotropic
medium is

πμνðk; uÞ ¼ πTðω; κÞRμνðk; uÞ þ πLðω; κÞQμνðk; uÞ
þ πPðω; κÞPμνðk; uÞ; ðA2Þ

where ω and κ are the scalar variables

ω ¼ k · u; κ ¼ ðω2 − k2Þ12; ðA3Þ

which have the interpretation of the energy and the
magnitude of the momentum of the photon, in the rest
frame of the medium. The tensors R, Q, P are defined as
follows. First, the component of uμ transverse to kμ is

ũμ ¼ g̃μνuν; ðA4Þ

where

g̃μν ¼ gμν −
kμkν
k2

: ðA5Þ

Then,

Qμν ¼
ũμũν
ũ2

;

Rμν ¼ g̃μν −Qμν;

Pμν ¼
i
κ
ϵμναβkαuβ: ðA6Þ

It is useful to remember that all three tensors are transverse
to kμ, that is

kμTμν ¼ 0 ¼ kνTμν; ðT ¼ R;Q; PÞ; ðA7Þ

and also that R and P are transverse to uμ as well,

uμTμν ¼ 0 ¼ uνTμν; ðT ¼ R; PÞ: ðA8Þ

They satisfy various product relations, among them

RμνRμν ¼Rμ
μ ¼ 2; QμνQμν ¼Qμ

μ ¼ 1; PμνPμν ¼−2;

ðA9Þ

and

RμλQλν ¼ 0; QμλPλν ¼ 0; PμλRλν ¼ Pμ
ν;

PμλPλν ¼ Rμ
ν: ðA10Þ

In the rest frame of the medium, the components of Rμν

and Pμν are,

R00 ¼ R0i ¼ Ri0 ¼ 0; Rij ¼ δij þ
κiκj
κ2

;

P00 ¼ P0i ¼ Pi0 ¼ 0; Pij ¼
i
κ
ϵijkκ

k: ðA11Þ

2. Dispersion relations

The equation ∂
μFμν ¼ jν, in momentum space becomes

½ðk2 − πTÞRμν þ ðk2 − πLÞQμν − πPPμν�Aν ¼ 0; ðA12Þ

which determines the dispersion relations and polarization
vectors of the propagating modes. To discuss them we
recall the definition of the transverse vectors eμ1;2, which in
the rest frame of the medium have components

eμ1;2 ¼ ð0; e⃗1;2Þ; ðA13Þ

where e⃗1;2 are unit vectors with

e⃗1;2 · κ̂ ¼ 0; e⃗2 ¼ κ̂ × e⃗1: ðA14Þ

In covariant form, they satisfy

Rμνeνa ¼ eaμ; Qμνeνa ¼ 0; ða ¼ 1; 2Þ; ðA15Þ

and

eμ2 ¼ −iPμνe1ν; eμ1 ¼ iPμνe2ν: ðA16Þ

In addition it is useful to introduce

eμ3 ¼
ũμffiffiffiffiffiffiffiffi
−ũ2

p ; ðA17Þ
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which together with eμ1;2 form a basis in the subspace
orthogonal to kμ.
From the fact that Rμν and Pμν acting on ũν give zero, it

follows that Aμ ∼ eμ3 is a solution of Eq. (A12) provided

k2 − πL ¼ 0; ðA18Þ

which is the equation for the dispersion relation ωLðκÞ for
the longitudinal mode. Since the presence of the γa term
does not affect πL, the dispersion relation for the longi-
tudinal mode is not affected.
In the absence of the πP term, Eq. (A15) implies that

Aμ ∼ eμ1;2, or any combination of them, give a solution of
Eq. (A12) if

k2 − πT ¼ 0; ðA19Þ

which gives the dispersion relation ωTðκÞ, The transverse
modes, corresponding to the polarization vectors eμ1;2 are
therefore degenerate, with the same dispersion rela-
tion ωTðκÞ.
As a consequence of the relations in Eq. (A16), neither

Aμ ∼ eμ1 nor Aμ ∼ eμ2 are separately solutions of the equa-
tion. At this point it is useful to introduce the circular
polarization vectors

eð�Þμ ¼ 1ffiffiffi
2

p ðeμ1 � ieμ2Þ; ðA20Þ

which satisfy

PμνeðλÞν ¼ λeðλÞμ; λ ¼ �; ðA21Þ

in addition to identities analogous to Eq. (A15). It then
follows that Aμ ∼ eð�Þμ are each a solution of the equation,
with the corresponding dispersion relation being the
solution of

k2 − ðπT þ λπPÞ ¼ 0: ðA22Þ

3. Dielectric tensor

An equivalent way to express the presence of the πP term
in the photon self-energy is in terms of the components of
the dielectric tensor, which are given by [12]

1− ϵt¼ πT=ω2; 1− ϵl ¼ πL=k2; ϵp ¼ πP=ω2: ðA23Þ

The interpretation is that, in the rest frame of the medium,
the induced current vector is given by

j⃗ ¼ iω½ð1 − ϵlÞE⃗l þ ð1 − ϵtÞE⃗t − iϵpκ̂ × E⃗�; ðA24Þ

where we are writing, in that frame,

kμ ¼ ðω; κ⃗Þ; ðA25Þ

while E⃗l and E⃗t denote the components of the electric field
parallel and transverse to κ⃗, respectively. The ϵp term
breaks the degeneracy between the two transverse polari-
zation states of the propagating photon.
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