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Temporary matter domination and late entropy dilution, injected by a “long-lived” particle in the early
Universe, serves as a standard mechanism for yielding the correct dark matter relic density. We recently
pointed out the cosmological significance of diluting particle’s partial decay into dark matter. When
repopulated in such a way, dark matter carries higher momentum than its thermal counterpart, resulting
in a suppression of the linear matter power spectrum that is constrained by the large scale structure
observations. In this work, we study the impact of such constraints on the minimal left-right symmetric
model that accounts for the origin of neutrino mass. We map out a systematic anatomy of possible dilution
scenarios with viable parameter spaces, allowed by cosmology and various astrophysical and terrestrial
constraints. We show that to accommodate the observed dark matter relic abundance the spontaneous left-
right symmetry breaking scale must be above PeV and cosmology will continue to provide the most
sensitive probes of it. In case the dilutor is one of the heavier right-handed neutrinos, it can be much lighter
and lie near the electroweak scale.
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I. INTRODUCTION

The field of particle physics and cosmology is facing at
least three unresolved issues, driven by experiments: the
nature of dark matter, the origin of neutrino mass, and the
origin of the matter-anti-matter asymmetry in the Universe.
They are likely linked to new fundamental laws of nature.
Conceptually, it would be very appealing to have these
puzzles solved within a single unified framework.
A heavy neutrino is one of the oldest, simplest and most

obvious of dark matter candidates. It was first introduced as
a Standard Model (SM) gauge singlet with a small mixing
with the active neutrinos, produced via active-sterile
neutrino oscillations in the early Universe. With improved
astrophysical observations, both the Dodelson-Widrow [1]
and the Shi-Fuller [2] mechanisms are already excluded
[3,4]. To save such oscillation mechanisms, one must resort
to novel neutrino self-interactions [5–8]. A common
assumption here is a vanishing dark matter population at
very early times, which can easily be affected by high-scale
new physics. Right-handed neutrinos are often mandatory

for gauge anomaly cancellation in many extensions of the
SM [9–11]. Assuming the Universe was once sufficiently
hot, new gauge interactions can then bring them into
thermal equilibrium with the SM. A right-handed neutrino
can be made cosmologically stable and comprise 100% of
dark matter in the Universe. While it appears nearly sterile
at low energies, the origin of dark matter (its abundance and
momentum distribution) is governed by details of the high-
scale theory.
The minimal left-right symmetric model (LRSM),

based on SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L [12–14],
was originally proposed as a theory for nonzero neutrino
mass [11]. In the model, parity is implemented as a left-right
Z2 symmetry, acting between left- and right-handed fer-
mions. Since SUð2ÞR is gauged, three generations of right-
handed neutrinos need to be present to cancel the anomalies.
Parity and new gauge symmetries are spontaneously broken
above the electroweak scale and light neutrino masses
originate from both type-I and -II seesaw [11].
Remarkably enough, the Dirac couplings also get

predicted [15], which makes the LRSM a particularly
complete and predictive theory for neutrino masses. The
breaking of lepton number manifests itself in a number of
processes, ranging from direct production at high energy
colliders [16,17], neutrinoless double beta decay [18,19],
lepton flavour violation [20,21], and cosmology [22,23].
Moreover, the model can explain the origin of cosmic
baryon asymmetry via leptogenesis, as long as the LR
scale is sufficiently high [24,25].
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The lightest right-handed neutrino (called N1 hereafter)
as a viable dark matter candidate in the minimal LRSM
was first considered by Bezrukov, Hettmansperger, and
Lindner [26]. It features a dark matter candidate with a light
mass below ∼MeV, in order to be cosmologically stable.
On the other hand, its mass is bounded from below by
several keV scale from phase space packing in dwarf
galaxies, because N1 is a fermion and subject to Pauli
blocking [27,28]. Slightly stronger mass lower bound
applies if N1 had thermal contact with the SM plasma in
the early Universe (warm dark matter) [3,29–34]. The right-
handed current gauge interaction, mediated by the WR,
decouples in the early Universe and always leaves N1

freezing out ultrarelativistically. This overproduces the dark
matter relic abundance, unless there is a “long-lived”matter
component that temporarily dominates the energy density
of the Universe before decaying dominantly into the
SM [35]. The late entropy release causes a relative dilution
of the final dark matter abundance and brings it down to the
observed value. In [26], it was suggested that the role of the
diluting particle can be taken on within the LRSM by one
of the heavier right-handed neutrinos. The corresponding
WR boson mass scale is typically constrained to be rather
high to facilitate the relativistic freeze-out and longevity of
the diluting particle. The possibility of having a lighterWR
boson was investigated in [36], which resorts to a decaying
phase space suppression to keep the lifetime of the diluting
particle sufficiently long.
Recently, the dark matter dilution mechanism was

revisited and a new, model-independent constraint has
been discovered [37]. This new opportunity for testing
dark matter dynamics lies in the partial decay of the dilutor
into dark matter. Such decay modes exist quite generically,
either at tree or loop level, and the branching ratio is
sometimes fixed by the internal structure of a UV complete
model. With dark matter repopulated this way, the relic
density obtains a secondary component on top of the
primary one that comes from the usual freeze-out. Most
importantly, this component is predicted to be much more
energetic than the original thermal one.
Under a reasonable assumption that both the dark matter

and the dilutor freeze-out relativistically,1 the secondary
dark matter particles stay relativistic until the temperature
of the Universe cools down to around eV scale. This
temperature is nearly independent of parameters including
the dark matter mass and the dilutor’s mass and lifetime.
As a result, dark matter free-streaming strongly impacts the
matter power spectrum and the formation of large scale
structures. Using the existing data from the Sloan Digital
Sky Survey (SDSS), an upper bound on the branching ratio

for dilutor into dark matter is set at about≲1%. Because the
primordial perturbations remain linear on large scales,
a robust cosmological constraint can be applied on the
fundamental theories for the origin of dark matter.
In the context of LRSM, the decay of a heavy right-

handed neutrino to the lighter one could occur via the
exchange of theWR gauge boson, similar to weak decays in
the SM. If this is the dominant mode, then the branching
ratio is predicted by the number of lighter fermions and
universality of the SUð2ÞR gauge interactions and comes
out to be larger than 10%, which turns out to be forbidden
by the large scale structure observations [37]. To mitigate
this exclusion, the right-handed neutrino dilutor must
have other significant decay channels to reduce the dark
matter repopulation. Such an important constraint has been
ignored in previous analysis. We are therefore strongly
motivated to revisit the viability of right-handed neutrino
dark matter in the LRSM and, as we shall see, they strongly
affect the allowed parameter space where an appropriate
dark matter relic density can be obtained. In performing a
systematic and thorough analysis, we first focus on the
usual dilutor in the form of another right-handed neutrino,
and then identify a new candidate from the scalar sector of
the LRSM that can also play the role of dilution.
Before our journey begins, we would like to stress

that the entropy dilution explored here in the context of
LRSM is a generic new physics scenario for fixing the
dark matter relic density, or for suppressing the amount of
extra radiation (ΔNeff ) in the early Universe. It has been
employed in a broad range of dark matter models including
the gravitino, twin-Higgs models, and various dark sector
incarnations [38–55]. The same large scale structure con-
straint would also affect the viability of dark matter in these
models and must be taken into account in future studies.
This article is organized as follows. In Sec. II, we give a

lightning review of the minimal LRSM and highlight
several aspects of the model that are important for the
dark matter study in this work. In Sec. III, we discuss the
entropy dilution mechanism that features temporary matter
domination by a “long-lived” diluting particle. We go
beyond the earlier work [37] and provide a detailed
derivation of the Boltzmann equation and distribution
function of secondary dark matter component from dilu-
tor’s decay. The discussion in this section is model
independent and easily applicable to other models, besides
the LRSM, that resort to a similar dilution mechanism. In
Sec. IV, we present the anatomy of right-handed neutrino
dark matter in the minimal LRSM by exhausting all the
possible dilution scenarios that we have envisioned. This
includes the heavier right-handed neutrino or the Higgs
boson counterpart of left-right symmetry breaking (the
right-handed triplet) playing the role of dilutor. For each of
the cases, we establish the viable parameter space for DM,
compatible with the large scale structure limits from SDSS,
along with other constraints that include the correct relic

1We will comment on what happens to the constraint from
dilution when this assumption is relaxed. In the LRSM, relativ-
istic freeze-out is always valid, regardless of which particle plays
the role of the dilutor.
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density, generation of neutrino mass, big-bang nucleosyn-
thesis and x-ray line searches. We also comment on
supernova cooling and existing laboratory constraints on
the LR scale. We conclude and provide an outlook of
opportunities in Sec. V.

II. DARK MATTER IN THE MINIMAL
LEFT-RIGHT SYMMETRIC MODEL

We start with a brief overview of the structure of the
minimal LRSM and highlight several ingredients that are
important for understanding the cosmology in the later
sections. We refer to [12–14] for the original works and in-
depth reviews of the model.

A. The minimal left-right symmetric model

The LRSM is based on the gauge group GLR ¼
SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L, with a discrete
Z2 symmetry interchanging the left and right SUð2Þ
sectors. At low energies, the Z2 symmetry manifests itself
as the parity symmetry of QCD and QED. Quarks and
leptons come in parity symmetric representations

QL ¼
�
uL
dL

�
¼
�
3; 2; 1;

1

3

�
;

QR ¼
�
uR
dR

�
¼
�
3; 1; 2;

1

3

�
;

LL ¼
�

ν

lL

�
¼ ð1; 2; 1;−1Þ;

LR ¼
�

N

lR

�
¼ ð1; 2; 1;−1Þ; ð2:1Þ

where N stands for the right-handed neutrino. The scalar
potential of the minimal model is also parity symmetric. It
consists of three complex fields: a bidoubletΦ¼ ð1;2;2;0Þ
and two triplets ΔL ¼ ð1; 3; 1; 2Þ and ΔR ¼ ð1; 1; 3; 2Þ
under GLR, with the following field assignments:

Φ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�
; ΔL;R¼

�
δþ=

ffiffiffi
2

p
δþþ

δ0 −δþ=
ffiffiffi
2

p
�

L;R
: ð2:2Þ

Under parity, Φ → Φ†, ΔL ↔ ΔR. Starting from the LR
and parity symmetric potential, it was shown that parity is
broken spontaneously [13,14], with either with two
doublets [14] or two triplets [11,18]. The complete form
of the potential was discussed in [56] and studied in some
depth in subsequent years [57–61] with more recent
works focusing on phenomenological signals [62–64].
A strong lower bound from perturbativity of the potential
was worked out in [65], with constraints from vacuum the
vacuum structure [66] and opportunities for gravitational
waves [67].

The above quantum numbers allow for the following
Yukawa terms that couple the fermions to scalars

LYuk¼ Q̄LðYqΦþ ỸqΦ̃ÞQRþ L̄LðYlΦþ ỸlΦ̃ÞLR

þYΔL
LT
Liσ2ΔLLLþYΔR

LT
Riσ2ΔRLRþH:c:; ð2:3Þ

where Φ̃¼ iσ2Φ�iσ2 and the family indices are suppressed.
The σ2 matrices operate within the two SUð2ÞL;R group
spaces and ensure gauge invariance. The first two terms are
of the Dirac type and give the usual mass terms that
connects the left and right chiral fields, as in the SM. An
important component of the LRSM are the Dirac mass term
for neutrinos

MD ¼ vffiffiffi
2

p ðcos βYl þ sin βe−iαỸlÞ; ð2:4Þ

and the Majorana-type Yukawa couplings YΔL;R
in the

second line, that generate lepton number violating masses
for neutrinos.
The spontaneous symmetry breaking occurs in two steps.

First, the SUð2ÞR × Uð1ÞB−L symmetry is broken down to
Uð1ÞY for hypercharge by the vacuum expectation value
(VEV) of the right-handed scalar triplet hΔ0

Ri ¼ vR=
ffiffiffi
2

p
,

which lies well above the electroweak scale. It generates
masses for the new gauge bosons W�

R and Z0, with a mass
relation MZ0 ¼ ffiffiffi

3
p

MWR
. Through the YΔR

Yukawa cou-
pling term in Eq. (2.3), the vR condensate also gives a
Majorana mass to the right-handed neutrinos N.
The second stage of spontaneous symmetry breaking

is triggered by the VEV of the bidoublet scalar, hϕ0
1i¼

vcosβ=
ffiffiffi
2

p
and hϕ0

2i¼vsinβeiα=
ffiffiffi
2

p
, where v ¼ 246 GeV.

Without loss of generality, we choose β∈ ð0; π=2Þ. In view
of SUð2ÞL, the bidoublet effectively behaves as two Higgs
doublets, thus their VEVs can give masses to the regular
W� and Z gauge bosons that mediate the weak interactions.
Through the Yukawa coupling in Eq. (2.3), the electroweak
VEVs also provide Dirac mass matrices for all the
fermions, including the one between left-handed neutrinos
ν and right-handed ones N.

B. Essential model ingredients for the early Universe

1. Right-handed currents

The most important ingredient of the LRSM, relevant for
dark matter cosmology, are the new gauge interactions,
mediated by the W�

R and Z0 gauge bosons. The right-
handed charged-current interactions for fermions take on
the form

Lgauge ¼
gffiffiffi
2

p Wμ
RðN̄γμV

R†
PMNSlR þ ūRγμVR

CKMdRÞ þ H:c:;

ð2:5Þ
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where all the fermions fields are now in their mass
eigenstates. We have introduced the right-handed
Cabibbo–Kobayashi–Maskawa (CKM) and Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrices that transform
the fermions from the weak flavor into the mass basis. Here
we neglected the mixing between the W and WR gauge
bosons, which is constrained to be small (see Sec. II B 4)
and its effects in dark matter pehenomenology will be
accounted for in Sec. IVA 4 and the Appendix.
In the minimal LRSM with parity symmetry, the right-

handed CKM matrix has been solved both numerically
[68–70] and analytically [71,72]. Its off-diagonal elements
are suppressed by similar powers of the Wolfenstein
parameter as the regular CKM matrix, but all the matrix
elements carry extra phase factors with implications for the
strong CP violation [70,73–75]. For the purposes of this
work, the exact form of the quark charged currents is not
really important and we shall approximate VR

CKM with a unit
matrix. The situation is quite different for the leptons.
There, the form of right-handed PMNS matrix is much less
constrained and allowed to be wildly different from the
regular PMNS matrix. The only special case is when the
light neutrino mass contribution is dominated by the type-II
seesaw contribution. In this case, parity requires that VR

PMNS
be identical to its left-handed counterpart.

2. Lightest right-handed neutrino as dark matter

The minimal LRSM does not preserve any exact Z2

symmetry that would stabilize DM, even LR parity gets
broken spontaneously and its quality is not crucial for
dark matter stability. As a result, none of the new particles
beyond the SM are absolutely stable. As argued in [36], the
only candidate for dark matter in the model is the lightest
right-handed neutrino, N1.

2 Without fine-tuning the flavor
structure of VR

PMNS, the Feynman diagram in Fig. 1 shows
the dominant interaction for N1 to couple with the charged
leptons and quarks.
If heavy enough, then N1 could decay into an electron

and a charged pion, and it would not be cosmologically
stable, unless the WR boson is ultraheavy, near the

grand unified theories (GUT) scale.3 In this work, we
are interested in finding lower (and upper) bounds of WR,
and we will focus on the N1 dark matter mass below
∼100 MeV, where there is a wide portion of parameter
space for N1 to be sufficiently stable. To be more specific,
the upper bound on N1 mass can be written as

mN1
< max

��
96π3

τG2
F

�
1=5
�
MWR

MW

�
4=5

; mπ

�

≃mπ × max

��
MWR

1010 GeV

�
4=5

; 1

�
; ð2:6Þ

where we require dark matter decay rate τ−1 ≲ 10−50 GeV,
which corresponds to a typical bound from cosmic ray
positrons and x-ray searches. As for laboratory constraints,
the mass of theWR boson is chiefly bounded by searches at
the LHC. For right-handed (RH) neutrinos below a few 10
of GeV, the signal from WR → lN1 looks like a very
energetic charged lepton and missing energy, because N1

escapes detection. Recasting the genericW0 → l=E searches
[80], the current bounds set the LR scale to be
MWR

≳ 5 TeV, depending on the flavor of the charged
lepton. This channel is particularly clean and may probe the
scales up to 37 TeV at a future 100 TeV collider [81].
With such super-weak interactions, mediated by the

Feynman diagram in Fig. 1, the RH neutrinos thermalize
in the early Universe and decouple at temperatures

Td ∼ 1 MeV

�
MWR

MW

�
4=3 ≳ 300 MeV; ð2:7Þ

where in the second step we apply the existing lower
bound on MWR

from the LHC. Comparing with Eq. (2.6),
we find that

Td > mN1
ð2:8Þ

always holds. We will assume that the reheating temper-
ature of the early Universe was sufficiently high, such that
all the RH neutrinos (and other particles in the LRSM) were
once kept in thermal equilibrium by gauge interactions. The
above comparison implies that N1 must decouple when it
was still ultra relativistic, similar to the decoupling of SM
neutrinos. As will be sharpened in Sec. III A, this leads to a
severe dark matter overproduction problem and requires a
nonstandard cosmology after the freeze out.

3. Neutrino mass contributions

Neutrino masses in the minimal LRSM come from two
sources. First, the Dirac neutrino mass term together with

N1 u

de

WR*

FIG. 1. Feynman diagram for right-handed charged-current
interaction of dark matter N1 in LRSM.

2The real part of Δ0
R in (2.2) may also be cosmologically stable

if it is made to be much lighter than MWR
. This brings in issues

with vacuum stability, similar to the case of the SM [76,77], and
may require fine-tuning of couplings in the LRSM [65,78,79],
therefore we do not pursue this option any further.

3One may consider the PMNS coupling of N1 to τ only, which
would prevent the tree-level decay to eπ and allow for slightly
heavier N1.
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the Majorana mass for N, generated by spontaneous
symmetry breaking, can give mass to the active neutrinos
through the type-I seesaw mechanism. In addition, the
model features another contribution through the type-II
seesaw. It comes from the VEV of the left-handed scalar
triplet hΔ0

Li ¼ vL=
ffiffiffi
2

p
and the λ Yukawa coupling term in

Eq. (2.3). The vL condensate originates from terms in the
scalar potential of the form, e.g., TrðΔLΦΔRΦ†Þ, which
is a tadpole term for ΔL after Φ and ΔR have obtained
their condensates.
The full neutrino mass matrix in the model is then

given by

Mν ¼ −MT
DM

−1
N MD þML;

MD ¼ vffiffiffi
2

p ðcos βYl þ sin βe−iαỸlÞ; ð2:9Þ

MN ¼ vRffiffiffi
2

p YΔR
; ML ¼ vLffiffiffi

2
p YΔL

: ð2:10Þ

Accommodating the neutrino masses and mixings, needed
to explain neutrino masses and fit the neutrino oscillations,
is one of the primary motivations for considering the LRSM

as a plausible beyond the Standard Model theory. We will
use it as an important guiding principle when exploring
cosmological aspects of the model.
Within the LRSM, the Dirac Yukawa couplings can

be solved for in terms of the Majorana mass matrix in case
of C [15] and P [82–84]. Thus one can predict theMD mass
matrix from mN and VR and calculate the heavy-light
neutrino mixing. Note that the charged lepton mass matrix
Ml comes from a different linear combination of Yl and Ỹl
and is therefore independent of MD. This renders the mass
scale of right-handed neutrinos free parameters in the
LRSM. In this work we do not concern ourselves much
with fine-tunings of Yl and Ỹl but take a phenomenological
approach by scanning the entire parameter space and
figuring out which parts can accommodate the dark matter
relic abundance.

4. W −WR gauge boson mixing

Because the scalar bidoublet Φ transforms under both
SUð2ÞL and SUð2ÞR, its VEVs allow for a mixing between
the W and WR gauge bosons. The corresponding mass
terms take on the form

LW ¼ −ðA−
Lμ A−

RμÞ g
2

2

 
1
2
ðv2 þ 2v2LÞ −v2 sin β cos βe−iα

−v2 sin β cos βeiα 1
2
ðv2 þ 2v2RÞ

! 
Aμþ
L

Aμþ
R

!
; ð2:11Þ

where A�
L;R are the gauge bosons in the flavor basis. After

diagonalization, the mass eigenstates are the SM-like W
boson, which is a linear superposition of mostly AL and a
small admixture of AR that mediates RH currents. Vice
versa, the WR mass eigenstate is mostly right handed.
Phenomenologically, the relevant scales in the LRSM need
to hierarchical, such that vR ≫ v ≫ vL and the W −WR
mixing is approximated by

ξLR≃sinβcosβeiα
�
v
vR

�
2

≃sinð2βÞeiα
�
MW

MWR

�
2

; ð2:12Þ

where in the last step we used M2
W ≃ g2v2=4 and M2

WR
≃

g2v2R=2. As we will see, ξLR is one of the key LRSM
parameters for resolving the dark matter repopulation issue.
Clearly ξLR is suppressed due to the small mass ratio

ðMW=MWR
Þ2. The magnitude of ξLR also depends on

tan β, i.e., the ratio of the two VEVs from the bidoublet
for which there exist an upper bound from the perturba-
tivity of Yukawa couplings. To make the point, we
consider the quark mass generation in the minimal
LRSM here and explain the logic by approximating with
the third family only, which has the largest Yukawa
couplings. For a single generation, the top and bottom
quark masses are given by

mt ¼
vffiffiffi
2

p ðYq cos β þ Ỹq sin βe−iαÞ;

mb ¼
vffiffiffi
2

p ðYq sin βeiα þ Ỹq cos βÞ: ð2:13Þ

These can be inverted and solved for the Yukawa
couplings

Yqeiα ¼
ffiffiffi
2

p

v cos 2β
ðmteiα cos β −mb sin βÞ;

Ỹq ¼
ffiffiffi
2

p

v cos 2β
ð−mteiα sin β þmb cos βÞ: ð2:14Þ

By requiring jYqj and jỸqj to take on perturbative values
(≲3) for α∈ ½0; 2πÞ, we get the following allowed range
for tan β

tan β < −1.24 ∪ −0.77 < tan β < 0.77 ∪ tan β > 1.24:

ð2:15Þ

In other words, the large difference between the top and
bottom quark masses forbids the angle β to be close to
�π=4, where cos 2β approaches to zero blowing up Yq
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and Ỹq. See [70] for more details and a full numerical
study with three generations.

5. The Majorana Higgs

As mentioned earlier, the gauge symmetry breaking from
LRSM to the SM is triggered by the VEV of the SUð2ÞR
scalar triplet ΔR. Its components δ�R , and the imaginary part
of δ0R, become the longitudinal components of the W�

R and
Z0 bosons, respectively. The real part of δ0R is the “Higgs
boson” for this step of symmetry breaking, a massive
propagating particle that reveals the nature of spontaneous
breaking. We denote the properly normalized physical state
as Δ, where

Δ≡ ffiffiffi
2

p
δ0R − vR: ð2:16Þ

Because vR violates lepton number and serves as the source
of Majorana neutrino mass,Δ is referred to as the Majorana
Higgs [79]. The doubly charged component Δþþ

R is left
over as another physical state.
As will be discussed Sec. IV B, Δ can also play a crucial

role of dilution for addressing the dark matter relic density.
Here, we list its interactions that are relevant for under-
standing its role in the early Universe. The Δ is the
excitation above the VEV vR, which is mostly responsible
for the mass generation for the right-handed neutrinos N
and W�

R , Z
0 gauge bosons. The corresponding couplings

can be derived by shifting vR → vRð1þ Δ=vRÞ,

L ¼ −
mN

vR
N̄NΔþ 2

M2
WR

vR
Wþ

RμW
−μ
R ΔþM2

Z0

vR
Z0
μZ0μΔ;

ð2:17Þ

where we keep the interaction terms linear in Δ, which are
useful for calculating its decay rates. TheΔ − N coupling is
diagonal in the mass basis of N.
Another important parameter that controls the decay

rates of Δ is its mixing with the Higgs boson, θΔh. In the
presence of such mixing, Δ can decay into all the SM
particles that the Higgs boson couples to. In particular,
when the mass of Δ is much above the electroweak
scale, it mainly decays into WþW−, ZZ, and hh, with a
ratio of 2∶1∶1, as dictated by the equivalence principle.
The scalar potential terms that couple Δ to Higgs are
α1TrðΦ†ΦÞTrðΔ†

RΔRÞ þ ½α2TrðΦ†Φ̃ÞTrðΔ†
RΔRÞ þ H:c:� þ

α3TrðΦ†ΦΔ†
RΔRÞ [59]. After the right-handed triplet ΔR

develops the VEV, but before the electroweak symmetry
breaking, these terms allow Δ to decay into a pair of SM
Higgs bosons, as well as the wouldbe Goldstone bosons
that eventually become the longitudinal components of
the W and Z bosons.

III. GENERAL DILUTION MECHANISM VS
LARGE SCALE STRUCTURE

We review the dark matter dilution mechanism under the
sudden decay approximation [35], which is a useful tool for
exploring the late decay of long-lived particles in the early
Universe. This approximation allows us to analytically
derive the important parametrical dependence in relevant
quantities, such as the final dark matter relic density ΩX,
and the reheating temperature TRH immediately after the
decay of the dilutor. To keep the discussion here as general
as possible, we call here the dark matter particle X and the
cosmologically “long-lived” particle for entropy dilution Y.
We will assign their identities within the LRSM (X → N1,
Y → N2;Δ) in the next section, when we discuss the
concrete dark matter dilution scenarios.

A. Relativistic freeze out and overproduction problem

Consider the dark matter X, which freezes out from the
SM thermal plasma relativistically. The yield YX ¼ nX=s is
then defined as the ratio of number density nX to the total
entropy density s of the SM plasma, and is given by

YX ¼ 135ζð3Þ
4π4g�ðTfoÞ

; ð3:1Þ

where we assumed that X is a Majorana fermion with two
degrees of freedom. The Tfo is the photon temperature
when X freezes out, and g�ðTfoÞ counts the corresponding
number of relativistic degrees of freedom in the Universe in
the plasma. Because most of our discussion will be
restricted to temperatures above the MeV scale for suc-
cessful big bang nucleosynthesis (BBN), we will not
distinguish g�ðTÞ and g�SðTÞ hereafter. If nothing else
happened after the freeze out, then YX would be a
conserved quantity, and the dark matter relic density today
would be

Ω0
X ¼ mXYXs0

ρ0
≃ 2.6

�
mX

1 keV

��
100

g�ðTfoÞ
�
; ð3:2Þ

where s0 ¼ 2891.2 cm−3 is the entropy density in the
Universe today, and ρ0 ¼ 1.05 × 10−5h2 GeV=cm3 repre-
sents today’s critical density with h ¼ 0.67 [85]. In con-
trast, the Planck experiment observes that the value of
Ωdarkmatter is 0.26 [86]. Because mX is constrained to be
heavier than several keV due to various warm dark matter
constraints, the above result creates the dark matter over-
production problem.

B. Entropy dilution mechanism
with a long-lived particle

To address the issue of overproduction, we introduce a
dilutor particle Y. For simplicity, we assume it is also
a Majorana fermion that freezes out relativistically and
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has a similar yield as the dark matter before decaying away,
mostly into the SM particles. To achieve sufficient dilution,
Y must dominate the total energy density of the Universe
(as matter) before it decays away and dumps most of its
energy (or entropy) into the SM sector.
In the sudden decay approximation, we have

τ−1Y ¼ Hbefore ¼ Hafter; ð3:3Þ

where τY is the lifetime of Y, andHbefore; after are the Hubble
parameters (H ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πGNρ=3
p

) immediately before and
after the decay, respectively.
Before the decay of Y, the Universe is dominated by the

energy density of nonrelativistic massive Y particles,

ρ ¼ ρY ¼ YYsbeforemY; ð3:4Þ

where sbefore is the total entropy density of relativistic
species before the decay. Here we assume that Y experi-
ences a similar relativistic freeze out as dark matter and YY
is the same as YX given in Eq. (3.1). Note that the Universe
is already matter dominated right before Y decays.
However, this does not prevent us from defining Y as
the ratio of nY to the relativistic entropy density s, and
YY ¼ nY=s remains conserved in the time window between
the freeze-out and Y’s decay. With these inputs, the first of
Eq. (3.3) leads to

sbefore ¼
π3g�ðTfoÞ
90ζð3Þ

M2
pl

mYτ
2
Y
: ð3:5Þ

Assuming that the decay of Y takes no time, the energy
density of Y immediately before its decay is equal to the
radiation energy density immediately after. The latter is
related to the corresponding “reheating” temperature TRH
of the SM plasma,

ρ ¼ ρR ¼ π2

30
g�ðTRHÞT4

RH: ð3:6Þ

The second equation of Eq. (3.3), τ−1Y ¼ Hafter, leads to

TRH≃0.6g�ðTRHÞ−1=4
ffiffiffiffiffiffiffiffi
Mpl

τY

s
≃

0.93MeV

g�ðTRHÞ1=4

ffiffiffiffiffiffiffiffiffiffi
1 sec
τY

s
; ð3:7Þ

where Mpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1=GN

p ¼ 1.2 × 1019 GeV is the Planck
constant. The entropy density of the SM plasma immedi-
ately after Y decay can then be calculated in terms of TRH,

safter ¼
2π2

45
g�ðTRHÞT3

RH: ð3:8Þ

With Eqs. (3.5) and (3.8) we can derive the dilution
factor S,

S ≡ safter
sbefore

≃
0.7g�ðTRHÞ1=4

g�ðTfoÞ
mY

ffiffiffiffiffi
τY

pffiffiffiffiffiffiffiffi
Mpl

p : ð3:9Þ

The diluted relic density of X today is given by

ΩX ¼ Ω0
X

S
≃
0.72g�ðTRHÞ1=4

g�ðTfoÞ
mY

ffiffiffiffiffi
τY

pffiffiffiffiffiffiffiffi
Mpl

p
≃ 0.26

�
mX

1 keV

��
2.2 GeV

mY

� ffiffiffiffiffiffiffiffiffiffiffi
1 sec
τY

s
: ð3:10Þ

This is the standard dark matter dilution mechanism that
has been employed in various contexts for addressing the
dark matter relic density.

C. Dilutor to dark matter decay

We recently pointed out [37] new opportunities to test
the dark matter dilution mechanism. We showed that the
repopulation of dark matter in Y decays leaves an imprint
on structure formation and gets constrained by the existing
data (or gives a characteristic signal upcoming data). While
in [37] we worked in a largely model independent way, in a
concrete UV realization of such mechanisms, the model
predicts not only the relic density, but also the spectrum—
the phase space distribution of dark matter with a primary
and secondary component. To account for all these pos-
sibilities, we consider the following decay channels of Y,
where it can decay into SM particles as well as dark
matter X,

Y → SM; Y → nXðþmSMÞ; ð3:11Þ

where n;m∈Zþ count the multiplicity of X and SM
particles, respectively, in the final states. The first decay
channel is desired for dumping entropy into the visible
sector and dilutes the primordial thermal population of X.
If this were the only final state of Y decay, then the resulting
X would remain a purely thermal distribution with a
temperature TX, which would be relatively lower than
the counterpart in the absence of dilution.
The other decay mode, whose branching ratio is assumed

to be BrX, produces a secondary nonthermal population
of X that also contributes to the final dark matter relic
abundance. The bracket in (3.11) also includes the pos-
sibility that this second decay channel is completely dark,
without any “SM” in the final state. In the absence of
extended dark sectors, the branching ratio of the first
channel is simply 1 − BrX. With a nonzero BrX, the final
dark matter relic density becomes

ΩX ≃ 0.26ð1þ nBrXÞ
�

mX

1 keV

��
2.2 GeV

mY

� ffiffiffiffiffiffiffiffiffiffiffi
1 sec
τY

s
:

ð3:12Þ
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Requiring ΩX to agree with the Planck measured value
fixes τY in terms of mX and mY , we can rewrite Eq. (3.7) as

TRH ≃
0.4 MeV

g�ðTRHÞ1=4
mY

106mX
: ð3:13Þ

Because g� is always larger than 1, and for successful big
bang nucleosynthesis to work, for which TRH ≳ 1 MeV is
needed, the dilutor Y must be heavier than dark matter X by
a factor of at least 106.
Before deriving and solving the equation for dark matter

phase space distribution, we first give a qualitative dis-
cussion and introduce an important temperature relevant for
large scale structure of the Universe. Immediately after the
Y → nX þmSM decay, each secondary X particle roughly
carries the energy of mY=ðmþ nÞ. Under the sudden decay
approximation, the corresponding temperature of the
Universe is given by TRH in Eq. (3.7). The velocity of X
particles will then redshift with the expansion of the
Universe. After a while the X particles start to turn
nonrelativistic when the energy drops to around their mass.
This requires the scale factor of the Universe to grow by a
factor of

aNR
aRH

≃
mY

ðmþ nÞmX
: ð3:14Þ

The corresponding temperature TNR can be found with
entropy conservation in the SM sector

g�SðTNRÞT3
NRa

3
NR ¼ g�ðTRHÞT3

RHa
3
RH; ð3:15Þ

which leads to

TNR ¼ TRH

�
g�ðTRHÞ
g�ðTNRÞ

�
1=3 aRH

aNR
≃ 0.25 eVng�ðTRHÞ 1

12:

ð3:16Þ

In the second step we used Eq. (3.13) and the late-time
value for g�SðTNRÞ ¼ 3.91, valid for TNR well below the
electron mass.
Note that TNR defines the time when both the primordial

X particles and the secondary ones from Y decay have
become matterlike. Dialing the clock back to temperatures
above TNR, the dark matter fluid is made out of the
nonrelativistic primordial and the relativistic secondary
component. The energy density of the latter is more
important at temperatures above TNR=BrX. In this regime,
the overall X fluid is relativistic and features a large
pressure, which can interrupt the regular logarithmic
growth of matter density perturbations in X. This sup-
presses the matter power spectrum PðkÞ for wavelengths
of the perturbation smaller than the Hubble radius at
temperature equal to TNR=BrX. The resulting PðkÞ may

then potentially disagree with the large scale structure
(LSS) measurements, unless BrX ≪ 1.

D. Phase space distribution of dark matter

Let us go beyond the sudden decay approximation and
derive the equations governing the dark matter phase space
distribution. Because the temperature TNR, when the
secondary dark matter particles from dilutor decay turn
nonrelativistic, is found to be rather low, they act as a hot
dark matter component for a period of time that overlaps
with the observational data. Consequently, they may sup-
press the large and small scale structures, which in turn
allows one to derive a powerful constraint on the dilutor →
dark matter branching ratio using cosmological data from
the SDSS [37].
Without loss of generality, we write the dilutor to dark

matter decay channel as

Y → X þ 2þ 3þ � � � þ N ¼ nX þmSM; ð3:17Þ

where particles 2; 3;…; N ¼ mþ n represent either the SM
or additional X particles in the final state. As before, we
assume that nX particles are produced in this decay. The
phase space distribution for the produced X is governed by
the Liouville’s equation that relates the phase space dis-
tribution functions of dark matter fX and the dilutor fY

�
∂

∂t
−H

jp⃗Xj2
EX

∂

∂EX

�
fXðEX; tÞ ¼

Z
d3p⃗Y

ð2πÞ3
1

2EY
fYðEY; tÞA;

ð3:18Þ

A¼ 1

2EX

YN
i¼1

Z
d3p⃗i

ð2πÞ3
1

2Ei
ð2πÞ4δ4

�
pY−pX−

X
i

pi

�
jMj2:

ð3:19Þ

Hereafter we work in the ultrarelativistic X limit (from Y
decay) and approximate jp⃗Xj ≃ EX. M is the decay matrix
element related to the decay in (3.17) and A can be rewritten
in terms of the partial decay rate of Y → X þ � � � þ N in its
rest frame as

ΓY→X ¼ 1

2mY

Z
d3p⃗X

ð2πÞ3 A ¼ 1

4π2mY

Z
dEXE2

XA; ð3:20Þ

where it is assumed that the X particles from Y decay are
ultrarelativistic throughout most of the phase space. Here it
is useful to introduce a dimensionless spectral function
gðωÞ, which satisfies

n
dΓY→X

dω
¼ΓY→XgðωÞ;

Z
dωgðωÞ¼n; ω¼EX

mY
: ð3:21Þ
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It allows us to establish a relation between A and g and
simplify the Liouville’s equation to�
∂

∂t
−HEX

∂

∂EX

�
fXðEX; tÞ

¼ 4π2

E2
X
ΓY→Xg

�
EX

mY

�Z
d3p⃗Y

ð2πÞ3
1

2EY
fYðEY; tÞ: ð3:22Þ

Next, we assume that Y had already turned nonrelativ-
istic when the decay occurs, i.e., EY ≃mY . This is a
necessary condition for the dilution mechanism to work,
because Y is assumed to dominate the energy content in the
Universe as a matter component. It allows us to complete
the pY integral in (3.22) and express it with the number
density, nYðtÞ ¼ ρYðtÞ=mY . ρY is the energy density of
nonrelativistic Y particles.
For the left-hand side of Eq. (3.22), we change the

variables of fX to x≡ EX=TX and t, where TX is the
temperature of primordial X warm dark matter defined
above. The appealing reason for such a change is that as
long as the X particles remain ultrarelativistic, the ratio
EX=TX stays invariant in the expanding Universe. Using the
identity,�

∂

∂t
−HEX

∂

∂EX

�
fXðEX; tÞ ¼

∂

∂t
fXðx; tÞ; ð3:23Þ

we finally obtain the phase space equation for secondary
dark matter from dilutor decay,

T3
X

2π2
x2

∂

∂t
fXðx; tÞ ¼ nYðtÞΓY→X

TX

mY
g

�
TX

mY
x

�
: ð3:24Þ

This equation is to be solved along with the following set
of energy density Boltzmann equations for X, Y, and the
SM particles

ρ̇Y þ 3HρY ¼ −ΓYρY; ð3:25Þ

ρ̇X þ 4HρX ¼ yBrXΓYρY; ð3:26Þ

ρ̇SM þ
�
4H −

ġ�
3g�

�
ρSM ¼ ð1 − yBrXÞΓYρY; ð3:27Þ

where ρSM is the energy density carried by relativistic
visible particles and H2 ¼ 8πGNðρY þ ρX þ ρSMÞ=3 is
the Hubble parameter. This set of equations applies
for nonrelativistic Y, while the X population remains
ultrarelativistic.
Using TX to keep track of time, the phase space function

fX at late times can be solved

fXðxÞ ¼
1

ex þ 1
þ 2π2

x2
ΓYBrX
m2

Y

Z
T ini

Tfin

dTX

TX

ρY
T2
XH

g

�
TX

mY
x

�
:

ð3:28Þ

The first term of (3.28) is the primordial Fermi-Dirac
distribution of X and the second is the nonthermal
repopulation of X. The TX integral should cover the entire
temperature range relevant for the production of the
secondary component of dark matter. It goes from an
arbitrary high initial temperature T ini, which in practice we
take T ini ¼ mY=10 in order for Y to already be non-
relativistic, as assumed below (3.22). The final result is
insensitive to the exact choice of T ini, because the
ρY=ðT2

XHÞ factor in the integrand is suppressed at higher
TX, as long as TX ≪ mY . Moreover, the g function cannot
lift this suppression, because TX is bounded from above for
a given fixed x.
On the lower limit of integration, we need to go to

sufficiently low temperatures, such that all of the Y is
depleted by decays into SM and X. Because of the
exponential suppression in ρY , the exact Tfin is also not
relevant. In practice we integrate down to temperatures
corresponding to t ¼ 10τY , which sufficiently covers the
entire period of nonrelativistic Y decay.
The resulting distributions fX are shown in Fig. 2, which

are plotted at late times after the dilution has completed.
The two options for two and three body decays correspond
to two scenarios that are relevant for the minimal LRSM
under consideration in this work.
(1) The case when X is the lightest right-handed

neutrino N1 and Y is a heavier N2, which undergoes
a three-body decay into N1 plus two charged
leptons, mediated by the WR gauge boson.

(2) Y is a long-lived scalar ΔR with a partial decay width
into two N1.

The corresponding g functions and n, y integrals are
summarized in Table I, where the masses of final-state
charged leptons were neglected.
It is clear from Fig. 2 that the primary component of

dark matter dominates at small x, while the secondary

primordial

secondary

BrX=0.1

0.1 10 1000 105

10–7

10–4

0.1

x=EX TX

x2
f X
(x
)

FIG. 2. Phase space distribution of ultrarelativistic dark matter
species N1. We hold mN1

¼ 10 keV for all the curves. The blue
(orange) curve corresponds to the three-body decay of N2 (two-
body decay ofΔ) doing the job of dilution, as listed in Table I. The
solid (dashed) curves correspond to mN2;Δ ¼ 100 GeV ð1 PeVÞ,
respectively. We set BrX ¼ 0.1 for all the cases.
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component features a significantly smaller occupancy, but
carries more energy and thereby affects structure formation.
On the plotted curves we kept fixed mX and BrX and took
two different values of mY to demonstrate that the shape
of the secondary component is roughly independent of the
mass of the dilutor. This follows from Eq. (3.12), where
the relic density requires the scaling mY ∼ 1=

ffiffiffiffiffi
τY

p
and the

reheating temperature is set by the Hubble time TRH ∼ffiffiffiffi
H

p
∼ 1=

ffiffiffiffiffi
τY

p
. Immediately after Y → X decay, EX ≲mY

and TX ∼ TRH. As a result, the kinematic end point xmax ∼
mY=TRH is roughly held constant for fixedmX, irrespective
of the values of mY or τY.
In the case where the dilutor is a long-lived scalar Δ (see

Sec. II B 5), the kinematics is so simple that we can further
derive an explicit closed form for fX. Since it is a two body
decay, g is a Dirac-δ function and we can complete the TX
integral in Eq. (3.28) to obtain

x2fXðxÞ ¼
x2

ex þ 1
þ 8π2BrXΓY

m2
Y

�
ρY
T2
XH

�
TX⋆

; ð3:29Þ

≃
x2

exþ1
þ0.16 secBrX

�
10 keV
mX

�
2
�

ρY
T2
XH

�
TX⋆

;

ð3:30Þ

where we used the relic equation (3.12), set ΩX ¼ 0.26 and
approximated with small BrX in the second step. With such
a simple expression in (3.30) we can understand the
behavior of fX in Fig. 2 that emerges from solving
Eq. (3.28). First of all, g is a δ function in temperature,
which essentially selects a particular moment in TX⋆ ¼
mY=ð2xÞ for a fixed x and thus completely removes any
dependence on the boundary conditions T ini; fin.
Furthermore, we can derive the explicit dependence

on x for various moments in the expansion of the
Universe during the dilutors’ decay. For this, we only have
to examine the x dependence of the factor ðρY=T2

XHÞTX⋆
in

Eq. (3.30); the rescaling with ΩX and mX is trivial.
Note that for the purpose of this discussion, Y is always
nonrelativistic and ρY ∝ mYT3

X. In the early stages of
radiation domination we have H ∝ T4

X and therefore

ðρY=T2
XHÞTX⋆

∝ mY=TX⋆ ∼ x. Once Y starts to dominate,

the Hubble parameter goes as H ∼ ffiffiffiffiffi
ρY

p
and the relevant

term goes as ðρY=T2
XHÞTX⋆

∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mY=TX⋆

p
∼

ffiffiffi
x

p
. In both

cases,mY cancels out, that is why the orange curve in Fig. 2
remains almost identical for difference choices of mY .
Finally, large x corresponds to low TX⋆ when all the Y has
decayed away and the secondary part of fX is exponentially
suppressed. These x dependencies explain the shape of the
two-body orange curves in the x > 10 region.
For the three-body decay, the spectral function g is not

as sharply peaked as the Dirac δ, but has a maximum at
ω ¼ 1=2 and similar considerations go through, with
transitions between different x dependencies becoming
less sharp. The bottom line is that, once we fix BrX and
mX, the fX does not dependent on the mass of the dilutor Y,
the behavior of fX is roughly the same for different decay
topologies and it extends to large x, beyond the usual
primary component. In the following section we will
examine how this behavior translates onto the physical
matter power spectrum PðkÞ.
Let us emphasize that we assume the X particles remain

collisionless after the Y decay throughout this work. This
means that the imprint of the dark matter model (funda-
mental physics) on the phase space distribution is preserved
until later times and can directly affect cosmological
observations. We do not consider the possibility of having
strong DM self-interactions. They could rethermalize the
dark sector and soften the above phase space distribution.
At the same time, they would facilitate excessive dark
matter production, which is adverse to the dilution mecha-
nism considered here.

E. Imprint on the matter power spectrum

Let us turn to a quantitative numerical analysis in the
parameter space of mX versus mY . For each point we first
set the dilutor lifetime τY using Eq. (3.13). Next, we
determine the phase space distribution fX with Eq. (3.28)
and evolve the density perturbations using the linear
Boltzmann solver code CLASS [87–89] to obtain the
corresponding matter power spectrum PðkÞ. We scan
over 200 points in the mass range mX ∈ ð1 keV; 1 MeVÞ
and mY ∈ ð1 GeV; 1016 GeVÞ for both decay channels

TABLE I. The energy fraction distribution gðωÞ, taken away by dark matter X in the rest frame of the decaying
dilutor Y, and its integrals n ¼ R g; y ¼ R ωg. In the context of LRSM, the first row corresponds to N2 as dilutor
which can undergo a three-body decay into a N1 plus two charged leptons (n ¼ 1) and θ is the Heaviside unit step
function. The second corresponds to the Majorana scalar boson Δ dilution scenario, where each Δ → N1N1

produces two dark matter states (n ¼ 2) and δ is the Dirac delta function.

Dark matter X Dilutor Y Y → X decay n gðωÞ y

N1 N2 N2 → N1 þ SM 1 16ω2ð3 − 4ωÞθð1
2
− ωÞ 7

20

N1 Δ Δ → N1N1 2 2δðω − 1=2Þ 1
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considered in Table I. The results are shown by the colored
curves in Fig. 3, where we set BrX ¼ 0.1. The black solid
curve is the fiducial ΛCDM (Λ cold dark matter) model.
The experimental data points come from the SDSS DR7

on luminous red galaxies [90] (blue) and the Lyman-α
forest [91] (orange) measurements. All the curves in
scenarios with secondary X share a common feature with
significant deviations from data in the k≳ 0.03 h=Mpc
region. These occur at a much lower k compared to other
dark matter production mechanisms such as thermal freeze-
in [92,93]. This is mainly due to the large hierarchy
between the dilutor and the dark matter mass, required
by Eq. (3.13). Based on a simpleΔχ2 fit to the data, we find
that the LSS data from SDSS sets a much stronger
constraint on these scenarios than Lyman-α, making this

probe particularly robust. The conflict with data increases
with BrX, which translates into an upper bound, shown in
Fig. 4 for the two models in Table I. The bound does not
depend much on the precise shape of the phase space
distribution (because it is integrated over) and the message
is similar for both cases: the branching ratio of the dilutor
decaying into dark matter is constrained to be

BrX ≲ 1%; @95% CL: ð3:31Þ

This bound is nearly independent of mY , simply because
the secondary component of the phase space distribution fX
in (3.28) is mostly independent of mY , as explained in the
paragraph below (3.28). The BrX limit gets slightly relaxed
for larger mY, because holding the dark matter relic density
fixed in Eq. (3.13) requires the lifetime τY to be shorter,
leading to a higher reheating temperature after the decay
of dilutor. The corresponding temperature for the secondary
dark matter component to become nonrelativistic also
increases, which is a

ffiffiffiffiffi
12

p
g� effect, see Eq. (3.16).

Eventually, this shifts the deviation of PðkÞ to a slightly
higher k, where the data is less precise and thus becomes
less constraining.
The constraint derived here comes predominantly from

the LSS data, which relies only on the evolution of matter
density perturbations in the linear regime. LSS thus
provides a robust test of these models and we expect
similar constraints to apply broadly for other dilutor→ dark
matter decay topologies.
Our result can be generalized to initial abundances for Y

and X beyond the relativistic freeze-out. A subthermal
initial population of Y needs to be heavier and/or longer
lived in order to provide the same amount of entropy
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FIG. 4. Upper bound on BrX , the branching ratio of dilutor Y decaying into X from the fit to LSS data (SDSS DR7 LRG), for the two
dilution scenarios considered in Table I in the context of LRSM. For each point in the mX −mY parameter space, the Y lifetime is
determined by requiring X to comprise all of the dark matter in the Universe and the upper bound on BrX can be read from the value of
the contour passing the point.
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FIG. 3. Primordial matter power spectrum in standard ΛCDM
(black solid curve) and a set of diluted dark matter models listed
in Table I (colorful curves). Like in Fig. 2, we set BrX ¼ 0.1. Data
points from SDSS DR7 LRG and Lyman-α observations are
shown in blue and orange, respectively.
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injection. The secondary X particles from Y decay become
more energetic and take even longer to become matterlike.
This impacts the primordial matter power spectrum down to
even lower k and leads to a more stringent constraint on BrX
than Eq. (3.31). On the contrary, starting with a smaller
overpopulation of X, the constraint on BrX will be weaker.

IV. ANATOMY OF DILUTION SCENARIOS
IN LRSM

Remarkably, the minimal LRSM contains all the ingre-
dients for the dark matter dilution mechanism, described in
the previous section, to occur. Throughout this work, we
consider the lightest right-handed neutrino N1 to be the
dark matter, i.e.,

X ¼ N1: ð4:1Þ

Following the discussion in Sec. II B 2, with a mass below
100 MeV, it always freezes out relativistically and is
generically overproduced. The role of the diluting particle
Y can be played by either a heavier right-handed neutrino or
the Majorana Higgs boson Δ; the latter option is explored
here for the first time. In this section, we carefully examine
the viability of each scenario and point out the correspond-
ing opportunities for experimental tests.

A. Heavy neutrino dilutor

In this subsection, we first consider one of the two
heavier right-handed neutrinos N2 to play the role of the
dilutor Y. We begin with the implications of LSS constraint
obtained from the previous section, which results in a
nontrivial no-go theorem. We then discuss the options
for bypassing such constraints and describe the viable
scenarios.

1. Implication of the SDSS constraint

Let us label the dilutor of Sec. IVA as Y ¼ N2. The most
obvious decay channels of N2 are those mediated by the
heavy WR boson in the LRSM. Corresponding Feynman
diagrams for the decays are depicted in Fig. 5 below.
Similarly to weak decays of the τ lepton in the SM, there
are semileptonic and pure-leptonic decay channels.

All the decay products in the first channel are SM
particles, which makes it a perfect decay mode for the DM
dilution mechanism to work. In contrast, the second
channel has a dark matter N1 in the final state. The
corresponding decay branching ratio is tightly constrained
by large scale structure observations, to be smaller than 1%,
as pointed out in Sec. III E.
In the minimal LRSM, the ratios among the above WR

mediated decay are fixed by the structure (particle content
and gauge interactions) of the model. If these were the
only N2 decay channels, then the decay branching into the
final state containing N1 would be 10% for mass of N2

well above the electroweak scale. This branching ratio
only gets higher for lighter N2. The large scale structure
constraint from SDSS thus firmly excludes such simplest
dilution scenario. What may save the day are other
possible decay channels of N2. These may arise either
due to neutrino or gauge boson mixing in the LRSM, as
will be discussed next.

2. A no-go theorem

If minimality is one’s first priority, then it would be most
desirable to open up the extra decay channel(s) for the
right-handed neutrino dilutor and also allow it to participate
in the type-I seesaw mechanism for generating the active
neutrino masses. Naïvely, both could occur through a
mixing of N2 with the active neutrinos. However, there
is a no-go theorem against such a possibility.
If the dilutor N2 participates in the seesaw mechanism,

then the mixing between N2 and light neutrinos is bounded
from below

θN2ν ≳
ffiffiffiffiffiffiffiffi
mν

mN2

r
: ð4:2Þ

The value of θN2ν could be much larger than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m⊙

ν =mN2

p
due to additional degrees of freedom involved in type-I
seesawmechanism [94], but it cannot be made smaller ifN2

is responsible for neutrino mass generation. For this
contribution to the neutrino mass to be significant and at
least explain the mass difference for solar neutrino oscil-
lation, we require mν ≳m⊙

ν ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 × 10−5 eV2

p
.

We first consider the case where the N2 mass lies below
the weak scale. The partial decay width of N2 via this
mixing and an off-shell W boson is then

τ−1N2
≳mG2

Fm
5
N2
θ2N2ν

96π3
≳ 10−23 GeV

�
mN2

1 GeV

�
4

; ð4:3Þ

where m is the final state multiplicity factor within the
range ∼1–10. In the first step, we neglect contributions to
the decay via the Z boson or possible interference effects.
This approximation would only affect our estimate by an
order of 1 factor, but keep our conclusion intact. The first

N2

u

de

WR* N2

e

WR*

e

N1

FIG. 5. Feynman diagram for dilutor N2 decay via right-handed
charged-current interaction mediated by WR. The flavor or final
state charged leptons and quarks is dictated by the matrix
elements of VR

PMNS and VR
CKM.
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inequality also accounts for other possible (subdominant)
N2 decay channels (e.g., viaWR) and the second inequality
follows from Eq. (4.2). Plugging Eq. (4.3) into Eq. (3.12),
we find a lower bound on the dark matter relic density

ΩN1
≳ 2.9

�
mN1

6.5 keV

��
mN2

1 GeV

�
: ð4:4Þ

The reference mass forN1 is the lower bound on warm dark
matter found by the DES collaboration [3], which is
consistent with other constraints using the Lyman-α forest
[29,30], strong gravitational lensing observations [31,32],
and recent combined analysis [33,34]. The observed dark
matter relic abundance then sets an upper bound on the
mass of N2,

mN2
≲ 90 MeV: ð4:5Þ

Applying this bound again back in Eq. (3.12), we obtain a
lower bound on the lifetime of N2,

τN2
≳ 160 sec: ð4:6Þ

Because the Universe was matter-dominated before the N2

decayed away, the above lower bound on its lifetime is
strongly excluded by the big bang nucleosynthesis, which
would require τN2

≲ 1 sec.
On the other hand, if N2 is heavier than the weak scale,

the decay induced by the mixing parameter Eq. (4.2) would
be into an on-shell W boson at a much higher rate,

τ−1N2
≳ GFm3

N2
θ2N2ν

4
ffiffiffi
2

p
π

�
1 −

M2
W

m2
N2

��
1þ M2

W

m2
N2

−
2M4

W

m4
N2

�

≳ 10−12 GeV

�
mN2

100 GeV

�
2

: ð4:7Þ

The factor GFm2
N2

properly accounts for a longitudinal
enhancement in the limit when mN2

≫ MW . Plugging this
into Eq. (3.12) leads to a lower bound on the dark matter
relic density

ΩN1
≳ 1.7 × 105

�
mN1

6.5 keV

�
: ð4:8Þ

All the N2 mass dependency cancels out completely and
dark matter is considerably overproduced.
This completes the proof of the no-go theorem. It is

derived by combining the constraints on the dark matter relic
density and the dilutor lifetime. Although we have used
some ∼ in the above reasoning, the results in Eqs. (4.6)
and (4.8) are in sharp contradiction with the existing
constraints, making it convincing that there is no room to

avoid the theorem. It is also worth pointing out that the
theorem not only applies to the LRSM focused in this work,
but also to other gauge extensions, such as the Uð1ÞB−L
model [26,95,96].

3. Type-II seesaw dominance and dilutor decay
via N − ν mixing

The no-go theorem presented above implies that if one
of the heavier right-handed neutrinos (e.g., N2) plays the
role of dilutor, its mixing with light active neutrinos
must be much smaller than Eq. (4.2). In other words, the
contribution to neutrino mass from N2 via the type-I
seesaw must be well below what is needed for explaining
the observed neutrino oscillation phenomena. At the same
time, the dark matter candidate N1 also cannot fully
participate in the seesaw, because of the x-ray constraints.
The only remaining right-handed neutrino N3 is free from
constraints and does contribute to neutrino masses in the
type-I seesaw, but is unable to explain the two mass square
differences needed for neutrino oscillations. As a conse-
quence, light neutrino masses must be accounted for by
additional sources.4

A way out within the minimal LRSM is by considering
another source of mass for the light neutrinos, which comes
from the vacuum condensate of the left-handed scalar
triplet ΔL, through the type-II seesaw mechanism. By
relieving the dilutor N2 from the role of neutrino mass
generation, we can treat its mixing with light neutrinos θN2ν

as a free parameter, which can be arbitrarily small. This
enables a viable window in the model parameter space for
the dark matter dilution mechanism to work.
In Fig. 6, the blue and orange curves show where in the

θN2ν versus mN2
plane the dark matter N1 can obtain the

correct relic density after theN2 dilution, for two choices of
N1 mass. The value 6.5 keV is the lowest allowed warm
dark matter mass by the DES result. The purple region is
excluded by BBN because the lifetime of N2 is longer than
a second. Clearly, viable values of θN2ν must be very tiny
≲10−9 to satisfy both constraints. In contrast, the region
above the green line indicates the required values of θN2ν if
N2 participates in the type-I seesaw mechanism, which
offers a way to visualize and quantify the above no-go
theorem. We also find a lower bound on the dilutorN2 mass
of around 20 GeV.
The dark matter relic curves in Fig. 6 are valid under the

assumption that the WR mediated decay modes of the
dilutor N2 (see Fig. 5) are subdominant to those induced
by the N2 − ν mixing. This condition is mostly easily
satisfied if N2 is heavier than theW boson but still close to

4This argument also implies that the minimal Uð1ÞB−L model
where the new gauge symmetry is broken by a Standard Model
singlet scalar is unable to account for both the dark matter
dilution mechanism and neutrino masses. Additional degrees of
freedom (e.g., the counterpart of ΔL, see below) are needed.
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the weak scale. This leads to a lower bound on the mass
scale of WR boson,

MWR
≳ 10 GeVffiffiffiffiffiffiffiffiffi

θN2ν

p ≳ 106 GeV ¼ 1 PeV; ð4:9Þ

where in the second step we read from Fig. 6 that for
mN2

> MW , the highest value of θN2ν is around 10−10,
which is also orders of magnitude below the seesaw line,
required for neutrino mass generation.

4. Dilutor decay via W −WR mixing and x-ray limits

The previous subsections explored the possibility of the
dilutorN2 decaying dominantly through its mixing with the
active light neutrinos. Here, we discuss another possible N2

decaying channel inherent to the minimal LRSM, via the
gauge boson mixing ξLR, mentioned in Sec. II B 4 and
shown in the Feynman diagram on Fig. 7 below. Because
the absolute value of ξLR is bounded from above by
M2

W=M
2
WR

[see Eq. (2.12)], if N2 is lighter than the W
boson and decays via off-shellW, the corresponding partial
decay rate will have the same parametric dependence as
those in Fig. 5. It cannot provide sufficient suppression to
the branching ratio of N2 → N1 decay and the resulting
dark matter production/dilution mechanism still suffers
from the strong constraint from large scale structure.

This observation forces the viable parameter space to the
window where MWR

> mN2
> MW .

In this case, the available decay rates for N2 are

ΓN2→N1lþl0− ¼ G2
Fm

5
N2

96π3

�
MW

MWR

�
4

;

ΓN2→lqq̄0 ¼
mG2

Fm
5
N2

96π3

�
MW

MWR

�
4

;

ΓN2→lW ¼ g2jξLRj2mN2

32π

�
mN2

MW

�
2
�
1 −

M2
W

m2
N2

�

×

�
1þ M2

W

m2
N2

−
2M4

W

m4
N2

�
; ð4:10Þ

where the first two decays occur via diagrams in Fig. 5
and the last one via Fig. 7. Again, m is the final state
multiplicity factor, which equals 12 (9) for mN2

>
ð<Þmt þmb. In the absence of θN2ν, the three rates
in (4.10) sum up to the total decay rate of N2.
Like before, we impose three requirements on the

dilution scenario here:
(1) Dark matter N1 obtains the correct relic density.
(2) The decay branching ratio of dilutor N2 to dark

matter is smaller than 1%.
(3) Dilutor decays faster than 1 second.

Our main results are then summarized in Fig. 8.
The left-panel shows the parameter space of mN2

versus
tan β. Outside the darkest green shaded region, the dilutor
to dark matter decay branching ratio exceeds 1% and the
parameter space is excluded by the LSS data. From
Eq. (4.10), it is useful to note that the branching ratio
and the LSS constraint is independent of other parameters
of the model such as MWR

or mN1
. In contrast, the total

decay rate of dilutor N2 does depends onMWR
and so is the

allowed parameter space that is consistent with the BBN
constraint. The two blue curves show the lower limit on

N2

WR*

e

W

FIG. 7. Feynman diagram for N2 decay via W −WR mixing in
LRSM. Blue cross indicates an insertion of ξLR mixing.FIG. 6. Parameter space for correct dark matter relic density,

where N2 serves as the dilutor and decays via a mixing with the
active neutrino. We obtain ΩN1

¼ 0.26 along the blue and orange
curves for mN1

¼ 6.5 and 100 keV, respectively. The purple
shaded region is excluded by BBN, because the lifetime of N2 is
longer than a second. Along with the relic curves, it sets an upper
bound on the mixing θN2ν. This upper bound is stronger for
heavier N1. In contrast, the region above the green line in the
upper-right corner of the figure shows the mixing angle needed
for N2 to participate in the type-I seesaw mechanism and explain
the neutrino mass difference for solar neutrino oscillation. This is
clearly incompatible with the dilution mechanism and verifies the
no-go theorem presented in Sec. IVA 2.
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mN2
for two choices of MWR

¼ 108 GeV (lower) and
2.25 × 108 GeV (upper), respectively. Clearly, the latter
case is marginal where the available parameter space for
dilution mechanism closes. From this, we derive a upper
bound on MWR

< 2.25 × 108 GeV. In the same plot, the
vertical pink dashed line corresponds to the theoretical
upper bound on tan β derived in Eq. (2.15). Viable
parameter space for dark matter relic only occurs in the
darkest green region with proper arrangement of other
parameters.
Next, we address the x-ray line search limits on dark

matterN1 decay, as shown in the right panel of Fig. 8. In the
minimal LRSM, the dark matter candidate is not absolutely
stable and there are in fact two contributions to the radiative
decay of N1 → νγ. One is via the N1 − ν mixing and
applies also to the regular sterile neutrino dark matter. The
other is through the W −WR mixing and both occur at the
one loop level with coherent amplitudes. In the presence of
a nonzero θN1ν, the radiative decay rate of dark matter is a
well-known result [97,98],

ΓN1→νγ ¼
9α

256π4
G2

Fm
5
N1

sin2 θN1ν: ð4:11Þ

In the presence of a nonzero ξLR, there are new Feynman
diagrams for the radiative decay of dark matter N1. We
derive the leading-order decay rate

ΓN1→νγ ¼
αξ2LR
8π4

G2
Fm

3
N1

X
l

jðVR
PMNSÞl1j2m2

l: ð4:12Þ

See the Appendix for a detailed derivation of this rate. In
this case, because of theWR and tan β dependencies in ξLR,
we find a closer interplay between the x-ray search bounds
and the requirements on the dilution mechanism found in
the previous subsection.
The implications from x-ray constraints are shown in

Fig. 8 (right). We fix mN2
¼ 200 GeV and tan β ¼ 0.5

which is an allowed point in Fig. 8 (left), and show the
other constraint in the dark matter mass mN1

versus MWR

parameter space. As discussed earlier, for the dilutor N2 to
decay before BBN, there is an upper bound on MWR

for
given mN2

. This excludes the blue shaded region. The
purple shaded region is then excluded by the existing x-ray
line searches for dark matter decay [99–101], which sets
a lower bound on MWR

and upper bound on mN1
.

Interestingly, the remaining window for viable dark matter
in this scenario can be tested by the upcoming x-ray
experiments ATHENA [102] and XRISM [103,104],
as shown by the dashed and dot-dashed purple curves.
Here, we assume generic flavor mixing matrix where all
the elements are Oð1Þ in magnitude and approximateP

l jðVR
PMNSÞl1j2m2

l ∼m2
τ in Eq. (4.12). The x-ray limit

could be weakened if the right-handed leptonic mixing
matrix element ðVR

PMNSÞτ1 is suppressed or if destructive

FIG. 8. Left: viable parameter space for the dark matter dilution to work in the mN2
versus tan β plane, where the diluting particle N2

dominantly decays via the mixing between W and WR gauge bosons. The region outside the darkest green is excluded by the LSS
constraint in Eq. (3.31). The region to the right of the vertical pined dashed line is excluded by the theoretical constraint on the range of
tan β, Eq. (2.15). The two dark blue curves corresponds to lower bound onmN2

to pass the BBN constraint, for two choices ofWR mass,
108 and 2.25 × 108 GeV, respectively. Right: further constraints in the MWR

versus mN1
plane, with other parameters fixed, mN2

¼
200 GeV and tan β ¼ 0.5. The blue shaded region again indicates the upper bound onMWR

from the BBN constraint. The purple region
is excluded by the existing x-ray line searches for dark matter decay N1 → νγ via the loop processes shown in Fig. 11. The dashed and
dot-dashed purple curves corresponds to the reach of future x-ray experiments ATHENA and XRISM, respectively. The orange shaded
region is the warm dark matter exclusion limit set by the DES experiment. The green band is where dark matter obtains the correct relic
density after the entropy dilution.

ANATOMY OF DILUTED DARK MATTER IN THE MINIMAL … PHYS. REV. D 109, 056021 (2024)

056021-15



interference between amplitudes is strong enough. As
explained in Sec. III D [see also Eq. (3.28)], for sufficiently
small BrY→X, the phase space distribution of dark matterN1

follows exactly the thermal distribution, exactly like a
warm dark matter is defined [105,106]. The orange shaded
region corresponds to a lower bound of 6.5 keV on warm
dark matter mass.

5. Lower bound on the WR mass scale

So far, we have discussed several options of having the
light right-handed neutrino N1 to comprise all the dark
matter in the Universe, through the dilution mechanism
where the dilutor is a heavier right-handed neutrino N2. In
all cases, we find that the mass scale of theWR gauge boson
must be rather high. In the case where N2 dominantly
decays via its mixing with light neutrinos, the lower bound
is around PeV scale, as found in Eq. (4.9). In the case where
N2 dominantly decays via W −WR gauge boson mixing,
lower bound on MWR

is higher (tens of PeV), due to the
relic density explanation and constraints on the radiative
decay of dark matter N1, as shown in Fig. 8 (right). In both
cases when calculating the decay rate of dilutor N2, we
have made the assumption that the masses of its decay
products are much smaller than mN2

. The lower bounds on
MWR

are derived based on this assumption, which are
generic and does require special arrangement of the
parameters of the model.
Here, we wish to scrutinize if the mass scale of WR is

allowed to be even lighter at all if some amount of tuning of
parameters is arranged. While this might be less appealing,
the main motivation behind is the prospect of other
experimental probes (such as high-energy colliders) of
the LR symmetry scale. Such a possibility was first
explored in [36], which resorts to a compress spectrum
with the mass of dilutor N2 being close to the sum of
charged pion and a charged lepton masses. This leads to a
phase space suppression in the dilutor decay rate
(N2 → π þ l) and enables sufficient longevity while keep-
ing WR mass near the TeV scale. Moreover, the flavor
structure of the right-handed lepton mixing matrix VR

PMNS
must also be tuned, such that N1 primarily couples to the τ
lepton in the right-handed current interaction, thus kine-
matically forbidding the N2 → N1 decay (via off-shellWR)
that is constrained by large scale structure as discussed in
Sec. IVA 1. In this scenario, light neutrino masses can be
explained via a mixed type-I (whereN3 mainly contributes)
and type-II seesaw mechanism.
To explain the dark matter relic density using the dilution

mechanism [see Eq. (3.12)], it seems challenging to have a
dilutor N2 mass well below 2.2 GeV, because BBN forbids
the lifetime of N2 to be longer than a second, while at the
same time the Tremaine-Gunn bound forbids dark matter
mass to be well below a keV. To get around this difficulty,
[36] noticed a special mass window around MWR

∼ 5 TeV
could work, where the above flavor structure allows dark

matter N1 to freeze out slightly before the QCD phase
transition whereas the dilutorN2 freezes out slightly after. It
leads to an enhancement factor in the dilution factor S in
Eq. (3.9), given by the ratio of g� at temperatures above and
below ΛQCD, and in turn a suppression in the final dark
matter relic density. Thanks to this effect, [36] found viable
solutions for dark matter mass around 0.5 keV. However,
after the recent substantial progress in constraining the
warm dark matter mass, e.g., mN1

> 6.5 keV, found by the
DES collaboration from ultrafaint dwarfs [3], such a low
mass WR window has been firmly closed. This leads us to
conclude that with a right-handed neutrino dilutor, the up-
to-date lower bound on MWR

for consistent dark matter
cosmology in LRSM is pushed to above the PeV scale,
given by Eq. (4.9).

B. Majorana Higgs dilutor

In this subsection, we explore the other dilutor candidate
in LRSM, the Majorana Higgs Δ, introduced in Sec. II B 5.
The role of dark matter is still played by N1. To our
knowledge, such a possibility has not been considered in
any previous dark matter analysis of the model.
Through the spontaneous gauge symmetry breaking

SUð2ÞR ×Uð1ÞB−L → Uð1ÞY , the couplings of Δ are tied
to mass generation of the gauge bosons W�

R ; Z
0 and the

right-handed neutrinos Ni. To be long lived and qualify as
the diluting particle, the mass of Δ must be well below
those of WR and Z0. We will work in the parameter space
where Δ is also much lighter than two of the right-handed
neutrinosN2, N3. As a result, the decays ofΔ into these on-
shell final state particles are forbidden. Its possible decay
channels are shown by the Feynman diagrams in Fig. 9.

WR*

WR*

WR*

N1

N1

W, Z, h

W, Z, h

FIG. 9. Feynman diagrams for the decay rate of the dilutor Δ in
the minimal LRSM. The coupling of Δ to right-handed neutrino
and W�

R are proportional to their masses, whereas the blue cross
in the last diagram represents Δ-Higgs boson mixing, generated
by the scalar potential. In the second diagram, the fermion final
states that connect to virtualWR include quark pairs andN1 plus a
charged lepton.
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The decay rate of Δ into two dark matter particles N1 is
suppressed by the small massmN1

. The decays via off-shell
WR into light fermions or two photons are suppressed by
the small ratio of MΔ=MWR

. The decay via off-shell Z0 is
always subdominant, because Z0 is heavier than WR by a
factor of

ffiffiffi
3

p
and a relatively smaller decay branching ratio

into N1 [107]. Finally, Δ could decay via a mixing with the
SMHiggs boson. ForMΔ well above the electroweak scale,
the dominant decays via the Higgs mixing are into
WþW−; ZZ, and hh final states.
With the mass hierarchy MW ≪ MΔ ≪ MWR

, the partial
decay rates of Δ are

ΓΔ→N1N1
¼GFM2

Wm
2
N1
MΔ

4
ffiffiffi
2

p
πM2

WR

; ΓΔ→W�
RW

�
R
¼ 5G3

FM
6
WM

7
Δ

576
ffiffiffi
2

p
π3M6

WR

;

ð4:13Þ

ΓΔ→γγ ¼
49α2GFM2

WM
3
Δ

128
ffiffiffi
2

p
π3M2

WR

; ΓΔ→h� ≃
θ2ΔhGFM3

Δ

4
ffiffiffi
2

p
π

: ð4:14Þ

For simplicity, we work in the limit where all final state
particle masses are negligible. The Δ → W�

RW
�
R decay

occurs through two off-shell W�
R bosons and has four

right-handed fermions in the final states. For this partial
rate, we apply the four-body decay formula Eq. (2.35)
of [108] and work in the heavyWR limit. The kinematically
allowed fermion final states are quark pairs and N1 plus a
charged lepton.
Among the above four decay channels of the dilutor, the

first two can produce energetic dark matter N1 in the final
state and get constrained by the large scale structure

observations. The third channel, where Δ decays into a
pair of photons, can bypass the LSS constraint. Indeed, we
find that the ratios

ΓΔ→N1N1

ΓΔ→γγ
≃ 1.2 × 10−7

�
mN1

MΔ

�
2

;

ΓΔ→W�
RW

�
R

ΓΔ→γγ
≃ 2.3 ×

�
MΔ

MWR

�
4

; ð4:15Þ

can both be made much smaller than 1% if mN1
≪

MΔ ≪ MWR
. This mass-scale hierarchy is consistent with

the above mass spectrum assumptions. It allows the LRSM
to evade the LSS constraint, even in the absence ofΔ-Higgs
boson mixing.
In the left panel of Fig. 10, we first work in the θΔh ¼ 0

limit and the blue and orange curves show the MΔ versus
MWR

parameter space, where dark matter N1 obtains the
correct relic abundance through the Δ-dilution mechanism,
for two values of mN1

¼ 6.5 and 100 keV, respectively.
We apply Eq. (3.10) by identifying Y ¼ Δ. Dark matter is
overproduced in regions to the left of the curves. The purple
region is excluded by LSS observations, because the
branching ratio for Δ → W�

RW
�
R → light fermions decay

is too high [see Eq. (4.15)]. We find that the mass scale of
WR must be very high, above ∼1011 GeV, but the mass
scale of Δ can be much lower. However, the price of having
a lighter Δ is to increase the mass hierarchy between Δ and
WR, as indicated by the green dashed lines. Similar to the
argument in footnote 2 against a very light Δ to be the dark
matter, we do not considerΔ to be lighter thanWR by much
more than a loop factor. Taking into account of this
theoretical constraint, we end up finding that both Δ and

mN1=6.5keV, MWR MΔ=10
3

mN1=6.5keV, MWR MΔ=10
4

mN1=100keV, MWR MΔ=10
4

mN1=100keV, MWR MΔ=10
3

Overproduction

10–23 10–20 10–17
1010

1012

1014

1016

M
Δ
(G

eV
)

FIG. 10. Blue and orange curves show the parameter space where dark matter obtains the correct relic abundance via the dilution
mechanism, where the Majorana HiggsΔ plays the role of dilutor. In the left panel, we set θΔh ¼ 0. The purple region is excluded by the
LSS observations. The green dashed curves indicate different MWR

=MΔ mass ratios. In the right panel, we turn on θΔh but fix the
MWR

=MΔ mass ratio for each relic curve.
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WR masses are pushed to rather high values, close to the
GUT scale. We have also checked that the lifetime of Δ is
much shorter than 1 second along the entire curves, thus
safely evading the BBN constraint.
In the right panel of Fig. 10, we project the relic curves to

the θΔh versusMΔ parameter space for two realistic choices
of the mass ratio MWR

=MΔ. On each relic curve, the
horizontal part has no θΔh dependence because the total
decay rate is dominated by Δ → γγ. The decay via Higgs
mixing takes over in the region with larger θΔh and heavier
Δ. On each relic curve, there is also an upper bound on θΔh
otherwise Δ would decay too fast.
To justify the use of Eq. (3.10), we must verify that Δ

decouples from the rest of the plasma while it was still
ultrarelativistic. First of all, at temperatures around the LR
symmetry breaking scale, Δ is in thermal equilibrium with
heavy particles that receive their mass from vΔ, which are
N2;3 and WR; Z0. When the temperature of the Universe
falls around the MΔ, the N2;3 and WR; Z0 particles already
decouple from the thermal plasma because they are much
heavier. The remaining processes to consider are similar to
those in Fig. 9. Among them, the process Δ ↔ γγ is
suppressed by the heavy WR mass and remains decoupled
until the temperature of the Universe cools down to
(set by ΓΔ↔γγ ¼ H)

T ∼ 109 GeV

�
MΔ

1013 GeV

�
1=2
�

103

MWR
=MΔ

�
: ð4:16Þ

This temperature is well below MΔ, thus the inverse decay
will be Boltzmann suppressed and never reach equilibrium.
As discussed in Eq. (4.15), the other processes Δ ↔ N1N1

and Δ ↔ 4q have rates much smaller than Δ ↔ γγ and
cannot keep Δ thermalized either. Therefore, the decou-
pling of Δ must occur at a temperature between MWR

and MΔ. The particle mass spectrum considered for the
Δ-dilution mechanism is indeed compatible with the
assumption that Δ freezes out relativistically.

V. CONCLUSION AND OUTLOOK

In this work, we explore the entropy dilution mechanism
for dark matter relic density in the minimal LRSM that also
addresses the origin of neutrino mass. In this model, the
lightest right-handed neutrino (N1) is the sole dark matter
candidate and its mass must be below the QCD scale in
order to stay cosmologically stable. We first emphasize that
N1 always decouples relativistically from the right-handed
current interactions and an entropy release afterwards must
happen for producing the observed dark matter relic
abundance in the Universe. This requires the presence of
a “long-lived” diluting particle which comes to dominate
the energy content of the Universe as a matter component,
before decaying away mainly into SM particles. One of the
heavier right-handed neutrinos (N2) or the Higgs boson

from spontaneous SUð2ÞR ×Uð1ÞB−L gauge symmetry
breaking (Δ) can play the role of the diluting particle.
Our original contribution here is a new opportunity

of such a mechanism in cosmology. The matter power
spectrum for the large scale structure of the Universe is
sensitive to the diluting particle’s partial decay model into
dark matter. When produced this way, dark matter can
remain relativistic until the onset of recombination and
suppress the primordial matter density perturbations.
Through a detailed analysis, we derive an upper bound
on such a decay branching ratio to be less than ∼1%, using
the existing SDSS data. Such a large scale structure
constraint is generic and can be applied to various dark
matter models that require an entropy dilution mechanism.
In the context of LRSM, the decay of N2 into N1 can
happen via right-handed charged-current interaction (medi-
ated by theW�

R gauge boson) and the decay of Δ into N1 is
tied to dark matter mass generation. Therefore, the large
scale structure constraint plays a crucial role in determining
the viable parameter space for the dark matter relic density.
We carry out an anatomy of possible dark matter dilution
scenarios in the left-right symmetric model:
(1) In the scenario of N2 dilution, we point out that the

decays of N2 cannot be dominated by the right-
handed currents, otherwise the N2 → N1 branching
ratio is too high (≳10%). Thus, additional decay
modes must be present due to a N2-light-neutrino
mixing or W −WR gauge boson mixing. In both
cases, we find that the mass scale of the WR boson
must be rather high, above the PeV scale. On the
other hand, the dilutor N2 can have a mass as low as
the weak scale. We also derive the monochromatic
x-ray constraint on dark matter N1 from W −WR
mixing, which further narrows down the viable mass
range of N1 to a mass window of 6.5–30 keV.

(2) The possibility of Δ dilution is original to this work.
This scenario requires Δ to be lighter than the right-
handed gauge bosons and neutrinos (except for N1).
We find the Δ → γγ mode to be the most useful for
suppressing the Δ → N1N1 decay and passing the
strong large scale structure constraint. The corre-
sponding mass scales of Δ and WR need to be very
high, close to the GUT scale. Because of this, the
W −WR mixing contribution to N1 dark matter
radiative decay is negligible. The N1 → νγ decay
will only proceed via its mixing with light active
neutrinos, as is the case of a regular sterile neutrino.

Based on the above results, we point out the following
opportunities of diluted dark matter in the light of the
upcoming experimental efforts:
(1) The primordial dark matter power spectrum will be

more precisely measured by the upcoming large
scale galaxy surveys, including Euclid and Rubin
LSST [109,110]. Future high-redshift surveys such
as MegaMapper and PUMA have the promise to
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extend the precision measurement up to wave
number k ∼ 0.9 h=Mpc [111]. A discovery of sup-
pressed matter power spectrum, starting from
k≳ 0.03 h=Mpc, will serve as a smoking-gun evi-
dence for dark matter entropy dilution mechanism in
the early Universe with a nonzero dilutor to dark
matter decay branching ratio.

(2) Related to the thermal dark matter population that
gets diluted, future experimental facilities exploring
the small scale structure of the Universe will be
instrumental as well. Observations of low mass dark
matter halos and the lensing of cosmic microwave
background may allow the discovery and measure-
ments of the dark matter mass, if it lies not far above
the current lower bound (∼6.5 keV) [112,113].

(3) Future experiments including ATHENA and XRISM
[102–104] will search for monochromatic x-ray
emission from the radiative decay of N1 dark matter
in the Milky Way and nearby galaxies. A positive
measurement will be useful as another input to
discriminate between the various dark matter dilu-
tion scenarios and neutrino mass generation mech-
anisms in the LRSM, and map out the favored
parameter space.

On the theory side, a follow-up exercise will be to
calculate the evolution of primordial matter density per-
turbations by taking into account the nonlinear terms in the
Boltzmann equations, which start to become non-negligible
(bringing in corrections of percent level or higher) for wave
numbers k≳ 0.2 h=Mpc and observations made at redshift
z ≈ 0 [89,114,115]. Because the hot dark matter component
from dilutor decay acts to suppress the perturbations, we
expect the nonlinear effect to be smaller than the case of
regular cold/warm dark matter. Nonetheless, a more careful
analysis is warranted and can serve as a useful tool for
discovering this piece of new physics in the upcoming
precision cosmology era.
We wrap up with a further comment on the validity of

leptogenesis in LRSM given the new constraints found in
this work. We have considered two options of entropy
dilution, using either N2 or Δ. In both cases, we have left
the mass and couplings of N3 arbitrary, so it may also be
degenerate with N2 to fulfill the resonant leptogenesis
condition [116]. In the case of Δ dilution, both N2;3 have
arbitrary masses and they can be degenerate or heavy and
take on the role of lepton number asymmetry generators.
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APPENDIX: RADIATIVE N1 DECAY
VIA W −WR MIXING

The radiative decay of dark matter to a monochromatic
photon N1 → νγ gives a very stringent constraint on its
couplings from the x-ray spectra measurements, shown in
Fig. 8. Here we provide some details on the calculation of
the rate in Eq. (4.12), which has new sources within the
LRSM. There are two possible contributions, one from
the Dirac mixing of N1 with ν, which is well known and the
same as for the sterile neutrinos. In the presence of gauge
boson mixing ξLR, another amplitude is present, coming
from the SM-like W having a coupling to the right-handed
charged current. In the small ξLR limit we have

LCC ≃
gffiffiffi
2

p ½ν̄lγμPLlþ ξLRðVR†
PMNSÞilN̄iγ

μPRl�Wþ
μ þ H:c:;

ðA1Þ

where VR†
PMNS is the right-handed PMNS matrix introduced

in Eq. (2.5). With this coupling turned on, there are two
new diagrams contributing to radiative N1 decay, and their
topologies are shown in Fig. 11.
The N1 → νγ decay always occurs via the dimension-

five effective operator

Leff ¼ Cν̄σμνPRN1Fμν þ H:c:; ðA2Þ

where C is the Wilson coefficient, to be determined next,
and σμν ≡ i

2
½γμ; γν�. The chiral projection operator in front

of the N1 field must be PR ¼ ð1þ γ5Þ=2. The correspond-
ing decay amplitude for N1ðp1Þ → νðp2ÞγðqÞ is

iM ¼ −iCūνðp2; s2Þð=q=ε� − =ε�=qÞPRuNðp1; s1Þ; ðA3Þ

FIG. 11. Feynman diagrams forN1 radiative decay viaW −WR
mixing in the LRSM. The W − N1 − l vertex labeled by PR is
induced by the W −WR mixing and the corresponding Feynman
rule is obtained from the second term in Eq. (A1).
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where ε�μ is the photon polarization vector and q · ε�ðqÞ ¼ 0

for an on-shell transverse photon. The partial decay rate of
N1 → νγ is

ΓN1→νγ ¼
1

4π
jCj2m3

N1
: ðA4Þ

For a Majorana N1, it can also decay into ν̄γ with the same
partial rate.
With the momentum assignments shown in Fig. 11, the

first diagram has an amplitude

iM1 ¼ −
eg2

2
ξLR
X
l

ðVR†
PMNSÞ1lml

Z
d4k
ð2πÞ4

1

ðk2 −m2
lÞ½ðk − p1Þ2 −M2

W �½ðp2 − kÞ2 −M2
W �

× fð2k − p1 − p2Þ · ε�ūνðp2; s2ÞγμγμPRuNðp1; s1Þ þ ūνðp2; s2Þ=ε�ð=p2 − =k − =qÞPRuNðp1; s1Þ
þ ūνðp2; s2Þð=q − =kþ =p1Þ=ε�PRuNðp1; s1Þg; ðA5Þ

where we have dropped terms that are suppressed by additional powers of 1=MW . For the γ matrices between the fermion
spinors, we are interested in the structure =q=ε� − =ε�=q, as in Eq. (A3). This immediately implies that the first term in fg does
not contribute. In addition, because the external fermions already have the correct chirality, we can drop the chirality-
flipping terms (upon equation of motion) such as =p1 acting on uNðp1; s1Þ and =p2 acting on ūνðp2; s2Þ. This allows us to
reduce the fg bracket in Eq. (A5) into

fg → ūðp2; s2Þð=ε�ð−=k − 2=qÞ þ ð2=q − =kÞ=ε�ÞPRuðp1; s1Þ: ðA6Þ

After completing the k integral, the remaining relevant term is

iM1 ¼ i
eg2

16π2
ξLR
X
l

ðVR†
PMNSÞ1l

ml

M2
W
ūðp2; s2Þð=q=ε� − =ε�=qÞPRuðp1; s1Þ: ðA7Þ

The second diagram of Fig. 11 has an amplitude

iM2 ¼ −
eg2

2
ξLR
X
l

ðVR†
PMNSÞ1lml

Z
d4k
ð2πÞ4

1

ðk2 −m2
lÞ½ðk − qÞ2 −m2

l�½ðk − p1Þ2 −M2
W �

×fūνðp2; s2Þγμ=ε�=kγμPRuNðp1; s1Þ þ ūνðp2; s2Þγμð=k − =qÞ=ε�γμPRuNðp1; s1Þg: ðA8Þ

Using the identity γμγβγργμ ¼ 4gβρ, all the γ matrices
between ūνðp2; s2Þ and uNðp1; s1Þ are gone. Thus, we
conclude that this diagram dose not contribute to the
N1 → νγ decay.
Comparing Eqs. (A3) and (A7), we get

C ¼ −
eGFξLR

P
lðVR†

PMNSÞ1lml

2
ffiffiffi
2

p
π2

: ðA9Þ

The corresponding N1 radiative decay rate is

ΓN1→νγ ¼
αξ2LR
8π4

G2
Fm

3
N1

X
l

jðVR
PMNSÞl1j2m2

l: ðA10Þ

This is how we get Eq. (4.12) in the main text.

[1] S.DodelsonandL.M.Widrow,Phys.Rev.Lett.72, 17 (1994).
[2] X.-D. Shi and G.M. Fuller, Phys. Rev. Lett. 82, 2832

(1999).
[3] E. O. Nadler et al. (DES Collaboration), Phys. Rev. Lett.

126, 091101 (2021).

[4] K. N. Abazajian, Phys. Rep. 711–712, 1 (2017).
[5] A. De Gouvêa, M. Sen, W. Tangarife, and Y. Zhang, Phys.

Rev. Lett. 124, 081802 (2020).
[6] K. J. Kelly, M. Sen, W. Tangarife, and Y. Zhang, Phys.

Rev. D 101, 115031 (2020).

MIHA NEMEVŠEK and YUE ZHANG PHYS. REV. D 109, 056021 (2024)

056021-20

https://doi.org/10.1103/PhysRevLett.72.17
https://doi.org/10.1103/PhysRevLett.82.2832
https://doi.org/10.1103/PhysRevLett.82.2832
https://doi.org/10.1103/PhysRevLett.126.091101
https://doi.org/10.1103/PhysRevLett.126.091101
https://doi.org/10.1016/j.physrep.2017.10.003
https://doi.org/10.1103/PhysRevLett.124.081802
https://doi.org/10.1103/PhysRevLett.124.081802
https://doi.org/10.1103/PhysRevD.101.115031
https://doi.org/10.1103/PhysRevD.101.115031


[7] K. J. Kelly, M. Sen, and Y. Zhang, Phys. Rev. Lett. 127,
041101 (2021).

[8] R. An, V. Gluscevic, E. O. Nadler, and Y. Zhang, As-
trophys. J. Lett. 954, L18 (2023).

[9] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); 11,
703(E) (1975).

[10] H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.) 93, 193
(1975).

[11] R. N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44,
912 (1980).

[12] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558
(1975).

[13] G. Senjanović and R. N. Mohapatra, Phys. Rev. D 12, 1502
(1975).

[14] G. Senjanović, Nucl. Phys. B153, 334 (1979).
[15] M. Nemevšek, G. Senjanović, and V. Tello, Phys. Rev.

Lett. 110, 151802 (2013).
[16] W.-Y. Keung and G. Senjanović, Phys. Rev. Lett. 50, 1427

(1983).
[17] M. Nemevsek, F. Nesti, G. Senjanovic, and Y. Zhang,

Phys. Rev. D 83, 115014 (2011).
[18] R. N. Mohapatra and G. Senjanović, Phys. Rev. D 23, 165

(1981).
[19] V. Tello, M. Nemevšek, F. Nesti, G. Senjanović, and F.

Vissani, Phys. Rev. Lett. 106, 151801 (2011).
[20] V. Cirigliano, A. Kurylov, M. J. Ramsey-Musolf, and P.

Vogel, Phys. Rev. D 70, 075007 (2004).
[21] M. Nemevsek, F. Nesti, G. Senjanovic, and V. Tello,

arXiv:1112.3061.
[22] R. N. Mohapatra and X. Zhang, Phys. Rev. D 46, 5331

(1992).
[23] A. S. Joshipura, E. A. Paschos, and W. Rodejohann, Nucl.

Phys. B611, 227 (2001).
[24] J.-M. Frere, T. Hambye, and G. Vertongen, J. High Energy

Phys. 01 (2008) 051.
[25] P. S. Bhupal Dev, C.-H. Lee, and R. N. Mohapatra, Phys.

Rev. D 90, 095012 (2014).
[26] F. Bezrukov, H. Hettmansperger, and M. Lindner, Phys.

Rev. D 81, 085032 (2010).
[27] S. Tremaine and J. Gunn, Phys. Rev. Lett. 42, 407 (1979).
[28] A. Boyarsky, O. Ruchayskiy, and D. Iakubovskyi, J.

Cosmol. Astropart. Phys. 03 (2008) 005.
[29] M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt,

Phys. Rev. D 88, 043502 (2013).
[30] V. Iršič et al., Phys. Rev. D 96, 023522 (2017).
[31] D. Gilman, S. Birrer, A. Nierenberg, T. Treu, X. Du,

and A. Benson, Mon. Not. R. Astron. Soc. 491, 6077
(2020).

[32] J.-W. Hsueh, W. Enzi, S. Vegetti, M. Auger, C. D.
Fassnacht, G. Despali, L. V. E. Koopmans, and J. P.
McKean, Mon. Not. R. Astron. Soc. 492, 3047 (2020).

[33] W. Enzi et al., Mon. Not. R. Astron. Soc. 506, 5848
(2021).

[34] E. O. Nadler, S. Birrer, D. Gilman, R. H. Wechsler, X. Du,
A. Benson, A. M. Nierenberg, and T. Treu, Astrophys. J.
917, 7 (2021).

[35] R. J. Scherrer and M. S. Turner, Phys. Rev. D 31, 681
(1985).

[36] M. Nemevšek, G. Senjanović, and Y. Zhang, J. Cosmol.
Astropart. Phys. 07 (2012) 006.

[37] M. Nemevšek and Y. Zhang, Phys. Rev. Lett. 130, 121002
(2023).

[38] T. Moroi and L. Randall, Nucl. Phys. B570, 455 (2000).
[39] E. A. Baltz and H. Murayama, J. High Energy Phys. 05

(2001) 067.
[40] T. Asaka, M. Shaposhnikov, and A. Kusenko, Phys. Lett. B

638, 401 (2006).
[41] J. Hasenkamp and J. Kersten, Phys. Rev. D 82, 115029

(2010).
[42] G. Arcadi and P. Ullio, Phys. Rev. D 84, 043520 (2011).
[43] Y. Zhang, J. Cosmol. Astropart. Phys. 05 (2015) 008.
[44] A. V. Patwardhan, G. M. Fuller, C. T. Kishimoto, and A.

Kusenko, Phys. Rev. D 92, 103509 (2015).
[45] Z. Chacko, N. Craig, P. J. Fox, and R. Harnik, J. High

Energy Phys. 07 (2016) 023.
[46] M. Cirelli, P. Panci, K. Petraki, F. Sala, and M. Taoso,

J. Cosmol. Astropart. Phys. 05 (2016) 036.
[47] A. Soni, H. Xiao, and Y. Zhang, Phys. Rev. D 96, 083514

(2017).
[48] R. Contino, A. Mitridate, A. Podo, and M. Redi, J. High

Energy Phys. 02 (2019) 187.
[49] J. A. Evans, A. Ghalsasi, S. Gori, M. Tammaro, and J.

Zupan, J. High Energy Phys. 02 (2019) 151.
[50] C. Cosme, M. Dutra, T. Ma, Y. Wu, and L. Yang, J. High

Energy Phys. 03 (2020) 026.
[51] J. A. Dror, D. Dunsky, L. J. Hall, and K. Harigaya, J. High

Energy Phys. 07 (2020) 168.
[52] P. Chanda and J. Unwin, J. Cosmol. Astropart. Phys. 06

(2021) 032.
[53] P. Asadi, T. R. Slatyer, and J. Smirnov, Phys. Rev. D 106,

015012 (2022).
[54] S. Baumholzer and P. Schwaller, J. Cosmol. Astropart.

Phys. 06 (2021) 013.
[55] K. Bleau, J. Bramante, and C. Cappiello, J. Cosmol.

Astropart. Phys. 01 (2024) 021.
[56] J. Basecq, Scalar sector in SUð2ÞL × SUð2ÞR × Uð1ÞðB−LÞ

models, Other thesis, Carnegie Mellon University, 1986.
[57] J. F. Gunion, J. Grifols, A. Mendez, B. Kayser, and F. I.

Olness, Phys. Rev. D 40, 1546 (1989).
[58] K. Kiers, J. Kolb, J. Lee, A. Soni, and G.-H. Wu, Phys.

Rev. D 66, 095002 (2002).
[59] N. G. Deshpande, J. F. Gunion, B. Kayser, and F. I. Olness,

Phys. Rev. D 44, 837 (1991).
[60] P. Duka, J. Gluza, and M. Zralek, Ann. Phys. (N.Y.) 280,

336 (2000).
[61] O. Khasanov and G. Perez, Phys. Rev. D 65, 053007

(2002).
[62] W. Dekens and D. Boer, Nucl. Phys. B889, 727 (2014).
[63] G. Bambhaniya, J. Chakrabortty, J. Gluza, T. Jelinski, and

R. Szafron, Phys. Rev. D 92, 015016 (2015).
[64] P. S. B. Dev, R. N. Mohapatra, and Y. Zhang, J. High

Energy Phys. 05 (2016) 174.
[65] A. Maiezza, M. Nemevšek, and F. Nesti, Phys. Rev. D 94,

035008 (2016).
[66] P. S. Bhupal Dev, R. N. Mohapatra, W. Rodejohann, and

X.-J. Xu, J. High Energy Phys. 02 (2018) 154.
[67] V. Brdar, L. Graf, A. J. Helmboldt, and X.-J. Xu, J.

Cosmol. Astropart. Phys. 12 (2019) 027.
[68] Y. Zhang, H. An, X. Ji, and R. N. Mohapatra, Nucl. Phys.

B802, 247 (2008).

ANATOMY OF DILUTED DARK MATTER IN THE MINIMAL … PHYS. REV. D 109, 056021 (2024)

056021-21

https://doi.org/10.1103/PhysRevLett.127.041101
https://doi.org/10.1103/PhysRevLett.127.041101
https://doi.org/10.3847/2041-8213/acf049
https://doi.org/10.3847/2041-8213/acf049
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevD.11.2558
https://doi.org/10.1103/PhysRevD.11.2558
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1016/0550-3213(79)90604-7
https://doi.org/10.1103/PhysRevLett.110.151802
https://doi.org/10.1103/PhysRevLett.110.151802
https://doi.org/10.1103/PhysRevLett.50.1427
https://doi.org/10.1103/PhysRevLett.50.1427
https://doi.org/10.1103/PhysRevD.83.115014
https://doi.org/10.1103/PhysRevD.23.165
https://doi.org/10.1103/PhysRevD.23.165
https://doi.org/10.1103/PhysRevLett.106.151801
https://doi.org/10.1103/PhysRevD.70.075007
https://arXiv.org/abs/1112.3061
https://doi.org/10.1103/PhysRevD.46.5331
https://doi.org/10.1103/PhysRevD.46.5331
https://doi.org/10.1016/S0550-3213(01)00346-7
https://doi.org/10.1016/S0550-3213(01)00346-7
https://doi.org/10.1088/1126-6708/2008/01/051
https://doi.org/10.1088/1126-6708/2008/01/051
https://doi.org/10.1103/PhysRevD.90.095012
https://doi.org/10.1103/PhysRevD.90.095012
https://doi.org/10.1103/PhysRevD.81.085032
https://doi.org/10.1103/PhysRevD.81.085032
https://doi.org/10.1103/PhysRevLett.42.407
https://doi.org/10.1088/1475-7516/2008/03/005
https://doi.org/10.1088/1475-7516/2008/03/005
https://doi.org/10.1103/PhysRevD.88.043502
https://doi.org/10.1103/PhysRevD.96.023522
https://doi.org/10.1093/mnras/stz3480
https://doi.org/10.1093/mnras/stz3480
https://doi.org/10.1093/mnras/stz3177
https://doi.org/10.1093/mnras/stab1960
https://doi.org/10.1093/mnras/stab1960
https://doi.org/10.3847/1538-4357/abf9a3
https://doi.org/10.3847/1538-4357/abf9a3
https://doi.org/10.1103/PhysRevD.31.681
https://doi.org/10.1103/PhysRevD.31.681
https://doi.org/10.1088/1475-7516/2012/07/006
https://doi.org/10.1088/1475-7516/2012/07/006
https://doi.org/10.1103/PhysRevLett.130.121002
https://doi.org/10.1103/PhysRevLett.130.121002
https://doi.org/10.1016/S0550-3213(99)00748-8
https://doi.org/10.1088/1126-6708/2001/05/067
https://doi.org/10.1088/1126-6708/2001/05/067
https://doi.org/10.1016/j.physletb.2006.05.067
https://doi.org/10.1016/j.physletb.2006.05.067
https://doi.org/10.1103/PhysRevD.82.115029
https://doi.org/10.1103/PhysRevD.82.115029
https://doi.org/10.1103/PhysRevD.84.043520
https://doi.org/10.1088/1475-7516/2015/05/008
https://doi.org/10.1103/PhysRevD.92.103509
https://doi.org/10.1007/JHEP07(2016)023
https://doi.org/10.1007/JHEP07(2016)023
https://doi.org/10.1088/1475-7516/2016/05/036
https://doi.org/10.1103/PhysRevD.96.083514
https://doi.org/10.1103/PhysRevD.96.083514
https://doi.org/10.1007/JHEP02(2019)187
https://doi.org/10.1007/JHEP02(2019)187
https://doi.org/10.1007/JHEP02(2019)151
https://doi.org/10.1007/JHEP03(2020)026
https://doi.org/10.1007/JHEP03(2020)026
https://doi.org/10.1007/JHEP07(2020)168
https://doi.org/10.1007/JHEP07(2020)168
https://doi.org/10.1088/1475-7516/2021/06/032
https://doi.org/10.1088/1475-7516/2021/06/032
https://doi.org/10.1103/PhysRevD.106.015012
https://doi.org/10.1103/PhysRevD.106.015012
https://doi.org/10.1088/1475-7516/2021/06/013
https://doi.org/10.1088/1475-7516/2021/06/013
https://doi.org/10.1088/1475-7516/2024/01/021
https://doi.org/10.1088/1475-7516/2024/01/021
https://doi.org/10.1103/PhysRevD.40.1546
https://doi.org/10.1103/PhysRevD.66.095002
https://doi.org/10.1103/PhysRevD.66.095002
https://doi.org/10.1103/PhysRevD.44.837
https://doi.org/10.1006/aphy.1999.5988
https://doi.org/10.1006/aphy.1999.5988
https://doi.org/10.1103/PhysRevD.65.053007
https://doi.org/10.1103/PhysRevD.65.053007
https://doi.org/10.1016/j.nuclphysb.2014.10.025
https://doi.org/10.1103/PhysRevD.92.015016
https://doi.org/10.1007/JHEP05(2016)174
https://doi.org/10.1007/JHEP05(2016)174
https://doi.org/10.1103/PhysRevD.94.035008
https://doi.org/10.1103/PhysRevD.94.035008
https://doi.org/10.1007/JHEP02(2018)154
https://doi.org/10.1088/1475-7516/2019/12/027
https://doi.org/10.1088/1475-7516/2019/12/027
https://doi.org/10.1016/j.nuclphysb.2008.05.019
https://doi.org/10.1016/j.nuclphysb.2008.05.019


[69] Y. Zhang, H. An, X. Ji, and R. N. Mohapatra, Phys. Rev. D
76, 091301 (2007).

[70] A. Maiezza, M. Nemevšek, F. Nesti, and G. Senjanović,
Phys. Rev. D 82, 055022 (2010).

[71] G. Senjanović and V. Tello, Phys. Rev. Lett. 114, 071801
(2015).

[72] G. Senjanović and V. Tello, Phys. Rev. D 94, 095023
(2016).

[73] A. Maiezza and M. Nemevšek, Phys. Rev. D 90, 095002
(2014).

[74] S. Bertolini, A. Maiezza, and F. Nesti, Phys. Rev. D 101,
035036 (2020).

[75] S. Bertolini, L. Di Luzio, and F. Nesti, Phys. Rev. Lett.
126, 081801 (2021).

[76] S. Weinberg, Phys. Rev. Lett. 36, 294 (1976).
[77] A. D. Linde, JETP Lett. 23, 64 (1976).
[78] J. Basecq and D. Wyler, Phys. Rev. D 39, 870 (1989).
[79] M. Nemevšek, F. Nesti, and J. C. Vasquez, J. High Energy

Phys. 04 (2017) 114.
[80] M. Nemevšek, F. Nesti, and G. Popara, Phys. Rev. D 97,

115018 (2018).
[81] M. Nemevšek and F. Nesti, Phys. Rev. D 108, 015030

(2023).
[82] G. Senjanović and V. Tello, Phys. Rev. Lett. 119, 201803

(2017).
[83] G. Senjanović and V. Tello, Phys. Rev. D 100, 115031

(2019).
[84] J. Kiers, K. Kiers, A. Szynkman, and T. Tarutina, Phys.

Rev. D 107, 075001 (2023).
[85] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.

Phys. 2020, 083C01 (2020).
[86] N. Aghanim et al. (Planck Collaboration), Astron. As-

trophys. 641, A6 (2020).
[87] J. Lesgourgues, arXiv:1104.2932.
[88] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astro-

part. Phys. 07 (2011) 034.
[89] J. Lesgourgues and T. Tram, J. Cosmol. Astropart. Phys.

09 (2011) 032.
[90] S. Roychowdhury, J. N. Chengalur, A. Begum, and I. D.

Karachentsev, Mon. Not. R. Astron. Soc. 404, L60 (2010).
[91] K.-G. Lee et al., Astron. J. 145, 69 (2013).
[92] F. D’Eramo and A. Lenoci, J. Cosmol. Astropart. Phys. 10

(2020) 045.

[93] Q. Decant, J. Heisig, D. C. Hooper, and L. Lopez-Honorez,
J. Cosmol. Astropart. Phys. 03 (2021) 041.

[94] J. A. Casas and A. Ibarra, Nucl. Phys. B618, 171 (2001).
[95] A. Davidson, Phys. Rev. D 20, 776 (1979).
[96] R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44,

1316 (1980); 44, 1643(E) (1980).
[97] R. Shrock, Phys. Rev. D 9, 743 (1974).
[98] P. B. Pal and L. Wolfenstein, Phys. Rev. D 25, 766

(1982).
[99] A. Boyarsky, D. Malyshev, A. Neronov, and O.

Ruchayskiy, Mon. Not. R. Astron. Soc. 387, 1345 (2008).
[100] A. Merle and V. Niro, Phys. Rev. D 88, 113004 (2013).
[101] K. C. Y. Ng, B. M. Roach, K. Perez, J. F. Beacom, S.

Horiuchi, R. Krivonos, and D. R. Wik, Phys. Rev. D 99,
083005 (2019).

[102] A. Neronov and D. Malyshev, Phys. Rev. D 93, 063518
(2016).

[103] XRISM Science Team, arXiv:2003.04962.
[104] C. Dessert, O. Ning, N. L. Rodd, and B. R. Safdi, arXiv:

2305.17160.
[105] S. Colombi, S. Dodelson, and L. M. Widrow, Astrophys. J.

458, 1 (1996).
[106] M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and

A. Riotto, Phys. Rev. D 71, 063534 (2005).
[107] R. N. Mohapatra, Adv. Ser. Dir. High Energy Phys. 3, 384

(1989).
[108] A. Djouadi, Phys. Rep. 457, 1 (2008).
[109] A. Ealet, Cosmology with the EUCLID satellite: Mapping

the large structures of the universe probing dark energy
(2017), https://indico.cern.ch/event/527550/.

[110] S. Ferraro, N. Sailer, A. Slosar, and M. White, arXiv:
2203.07506.

[111] N. Sailer, E. Castorina, S. Ferraro, and M. White, J.
Cosmol. Astropart. Phys. 12 (2021) 049.

[112] S. Chakrabarti et al., in Snowmass 2021 (2022), arXiv:
2203.06200.

[113] A. Drlica-Wagner et al., arXiv:2209.08215.
[114] V. Junk and E. Komatsu, Phys. Rev. D 85, 123524

(2012).
[115] J. J. M. Carrasco, S. Foreman, D. Green, and L. Senatore,

J. Cosmol. Astropart. Phys. 07 (2013) 057.
[116] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B692, 303

(2004).

MIHA NEMEVŠEK and YUE ZHANG PHYS. REV. D 109, 056021 (2024)

056021-22

https://doi.org/10.1103/PhysRevD.76.091301
https://doi.org/10.1103/PhysRevD.76.091301
https://doi.org/10.1103/PhysRevD.82.055022
https://doi.org/10.1103/PhysRevLett.114.071801
https://doi.org/10.1103/PhysRevLett.114.071801
https://doi.org/10.1103/PhysRevD.94.095023
https://doi.org/10.1103/PhysRevD.94.095023
https://doi.org/10.1103/PhysRevD.90.095002
https://doi.org/10.1103/PhysRevD.90.095002
https://doi.org/10.1103/PhysRevD.101.035036
https://doi.org/10.1103/PhysRevD.101.035036
https://doi.org/10.1103/PhysRevLett.126.081801
https://doi.org/10.1103/PhysRevLett.126.081801
https://doi.org/10.1103/PhysRevLett.36.294
https://doi.org/10.1103/PhysRevD.39.870
https://doi.org/10.1007/JHEP04(2017)114
https://doi.org/10.1007/JHEP04(2017)114
https://doi.org/10.1103/PhysRevD.97.115018
https://doi.org/10.1103/PhysRevD.97.115018
https://doi.org/10.1103/PhysRevD.108.015030
https://doi.org/10.1103/PhysRevD.108.015030
https://doi.org/10.1103/PhysRevLett.119.201803
https://doi.org/10.1103/PhysRevLett.119.201803
https://doi.org/10.1103/PhysRevD.100.115031
https://doi.org/10.1103/PhysRevD.100.115031
https://doi.org/10.1103/PhysRevD.107.075001
https://doi.org/10.1103/PhysRevD.107.075001
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arXiv.org/abs/1104.2932
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/09/032
https://doi.org/10.1088/1475-7516/2011/09/032
https://doi.org/10.1111/j.1745-3933.2010.00835.x
https://doi.org/10.1088/0004-6256/145/3/69
https://doi.org/10.1088/1475-7516/2020/10/045
https://doi.org/10.1088/1475-7516/2020/10/045
https://doi.org/10.1088/1475-7516/2021/03/041
https://doi.org/10.1016/S0550-3213(01)00475-8
https://doi.org/10.1103/PhysRevD.20.776
https://doi.org/10.1103/PhysRevLett.44.1316
https://doi.org/10.1103/PhysRevLett.44.1316
https://doi.org/10.1103/PhysRevLett.44.1644.2
https://doi.org/10.1103/PhysRevD.9.743
https://doi.org/10.1103/PhysRevD.25.766
https://doi.org/10.1103/PhysRevD.25.766
https://doi.org/10.1111/j.1365-2966.2008.13003.x
https://doi.org/10.1103/PhysRevD.88.113004
https://doi.org/10.1103/PhysRevD.99.083005
https://doi.org/10.1103/PhysRevD.99.083005
https://doi.org/10.1103/PhysRevD.93.063518
https://doi.org/10.1103/PhysRevD.93.063518
https://arXiv.org/abs/2003.04962
https://arXiv.org/abs/2305.17160
https://arXiv.org/abs/2305.17160
https://doi.org/10.1086/176788
https://doi.org/10.1086/176788
https://doi.org/10.1103/PhysRevD.71.063534
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1016/j.physrep.2007.10.004
https://indico.cern.ch/event/527550/
https://indico.cern.ch/event/527550/
https://indico.cern.ch/event/527550/
https://arXiv.org/abs/2203.07506
https://arXiv.org/abs/2203.07506
https://doi.org/10.1088/1475-7516/2021/12/049
https://doi.org/10.1088/1475-7516/2021/12/049
https://arXiv.org/abs/2203.06200
https://arXiv.org/abs/2203.06200
https://arXiv.org/abs/2209.08215
https://doi.org/10.1103/PhysRevD.85.123524
https://doi.org/10.1103/PhysRevD.85.123524
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1016/j.nuclphysb.2004.05.029

