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In subleading powers of soft-collinear effective theory (SCET), the Lagrangian contains couplings
between soft quarks and hard-collinear quarks. Matrix elements of the hard-collinear parts of these
couplings are radiative jet functions. In the position-space formulation of SCET, the Lagrangians are
constructed from operators that appear to be gauge invariant. Nevertheless, we find violations of gauge
invariance arise in the hard-collinear sector because gauge transformations can shift the momentum of a
hard-collinear quark field from the hard-collinear sector to the soft sector, where the hard-collinear fields,
by definition, have no support. The violations of gauge invariance are manifested in perturbation theory in
the hard-collinear sector through the absence of certain Feynman diagrams that would be present in full
QCD. A consequence of the absence of these diagrams is that the radiative jet functions that follow directly
from the position-space Lagrangians are not gauge invariant, and we demonstrate this through explicit
calculations in lower-order perturbation theory. We obtain gauge-invariant Lagrangians by adding to
existing position-space Lagrangians terms that are proportional to the soft-quark equation of motion. These
gauge-invariant Lagrangians are valid for nonzero, as well as zero, quark masses. We also remark briefly on
the gauge invariance of certain Lagrangians that have been constructed in the label-momentum formulation
of SCET.
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I. INTRODUCTION

In soft-collinear effective theory (SCET) [1–5], couplings
between a quark that carries a soft momentum and a quark
that carries a hard-collinear momentum appear in subleading
powers of the SCET expansion parameter λ [6–9]. Matrix
elements that contain the hard-collinear parts of these
couplings are called “radiative jet functions,” and they appear
in factorization theorems for exclusive processes at sublead-
ing power in λ. (See, for example, Refs. [10–12].)
In general, radiative jet functions are written in terms of

operators in which hard-collinear quark and antiquark
fields are accompanied by Wilson-line factors, and all

derivatives are covariant derivatives. We call such operators
“ostensibly gauge-invariant operators.” If one replaces the
hard-collinear quark and antiquark fields with full QCD
fields multiplied by collinear projectors, then the ostensibly
gauge-invariant operators are truly gauge invariant.
However, in SCET, the hard-collinear quark and antiquark
fields must carry hard-collinear momenta, not soft
momenta.1 This requirement can lead to violations of
hard-collinear gauge invariance because hard-collinear
gauge transformations multiply quark fields by a phase
that, in momentum space, can shift the quark-field momen-
tum from the hard-collinear region to the soft region, where
the hard-collinear fields have no support. As we will see,
this phenomenon is manifested diagrammatically by the
absence of certain Feynman diagrams in the hard-collinear*gtb@anl.gov
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1The requirement that hard-collinear quark and gluon fields
carry hard-collinear momenta is essential in working out SCET
power counting and in achieving a factorization of the hard-
collinear sector of the effective theory from the other sectors at
the Lagrangian level. The assumption that the hard-collinear
quark and gluon fields carry hard-collinear momenta is used
explicitly in Refs. [6,7] in constructing the Lagrangians in those
papers.
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sector that would be present in full QCD. These “missing
diagrams” can lead to violations of gauge invariance in the
hard-collinear sector.
We carry out an analysis of the Lagrangians that appear

in the position-space formulation of SCET in Refs. [6,7],
which we refer to as Beneke-Chapovsky-Diehl-Feldmann
(BCDF).2 We demonstrate, through the use of Ward iden-
tities, that the BCDF Lagrangians lead to violations of gauge
invariance in the hard-collinear sector. The violations occur
in order λ2, but not in order λ1. We find that the violations of
gauge invariance can be removed by making use of the soft-
quark equation ofmotion. Therefore, theBCDFLagrangians
lead to gauge-invariant S-matrix elements [13]. However,
off-shell quantities, such as radiative jet functions can be
gauge noninvariant. We use the Lagrangians in Refs. [6,7]
directly to construct radiative jet functions. That is, we define
the radiative jet functions as time-ordered matrix elements of
the hard-collinear-operator factors in the Lagrangians. We
find, through explicit calculations at the lowest nontrivial
order in perturbation theory, that the resulting radiative jet
functions are not gauge invariant.
We modify the BCDF Lagrangians to obtain gauge-

invariant Lagrangians that describe the couplings of a soft
quark to a hard-collinear quark by applying the soft-quark
equation of motion and by making use of the Bauer-Pirjol-
Stewart (BPS) field redefinition in Ref. [4] to factor minus-
polarized soft gluons from the hard-collinear subdiagram.
We use the concept of missing diagrams to argue that the
modified order-λ2 Lagrangians, as well as the order-λ1

Lagrangian, are gauge invariant to all orders in perturbation
theory. We also demonstrate the gauge invariance by using
the modified order-λ2 Lagrangians to construct radiative jet
functions and computing the radiative jet functions in the
Feynman gauge and the light-cone gauge at the lowest
nontrivial order in perturbation theory.
In the label-momentum formulation of SCET [2], the

Lagrangians that describe the interactions of soft quarks
with hard-collinear quarks are also constructed from
ostensibly gauge-invariant operators [3]. We find that the
label-momentum Lagrangians in Refs. [8,9] evade the
gauge invariance issue that we identify in this paper and
that the corresponding operators are truly gauge invariant.
The remainder of this paper is organized as follows. In

Sec. II, we establish the notations and conventions that we
use throughout this paper. In Sec. III, we present the
Lagrangians of Refs. [6,7], discuss the associated Ward
identities in lowest-order perturbation theory, and identify
the sources of violations of gauge invariance as the “missing
diagrams.” In Sec. IV, we use the BCDF Lagrangians to
compute radiative jet functions in the Feynman gauge and in

the light-cone gauge at lowest order in perturbation theory,
and we show that these two gauges give different results,
verifying the violation of gauge invariance. In Sec. V we
modify the BCDF Lagrangians at relative order λ2 to obtain
gauge-invariant Lagrangians that connect a soft quark to a
hard-collinear quark. In Sec. VI, we argue that the order-λ1

Lagrangian and themodified order-λ2 Lagrangians are gauge
invariant to all orders in perturbation theory. We construct
radiative jet functions that follow from the modified gauge-
invariant Lagrangians in Sec. VII, and we calculate these
radiative jet functions in the Feynman gauge and in the light-
cone gauge in lowest-order perturbation theory, verifying
that the radiative jet functions are invariant with respect to
these gauge choices. In Sec. VIII, we observe that certain
versions of the label-momentum formulation of SCETevade
the gauge-invariance problem that we identify in this paper.
Finally, we summarize and discuss our results in Sec. IX.

II. PRELIMINARIES

In this section, we establish the notations and conven-
tions that we use throughout this paper.
We decompose an arbitrary vector in terms of the two

lightlike vectors, n and n̄, as follows:

rμ ¼ r−
n̄μ

2
þ rþ

nμ

2
þ rμ⊥; ð1Þ

where

rþ ¼ n̄ · r; r− ¼ n · r; rμ⊥ ¼ rμ − r−
n̄μ

2
− rþ

nμ

2
; ð2Þ

with n2 ¼ n̄2 ¼ 0 and n · n̄ ¼ 2. n and n̄ are the lightlike
unit vectors along the z axis:

nμ ¼ ð1; 0; 0; 1Þ; n̄μ ¼ ð1; 0; 0;−1Þ: ð3Þ

The perpendicular momentum rμ⊥ satisfies n · r⊥ ¼ n̄ ·
r⊥ ¼ 0. Here, and throughout this paper, we use the
notation

r2⊥ ¼ −r2⊥; ð4Þ
where r⊥ is a (D − 2)-dimensional Euclidean vector.
It is convenient to consider the case of a quark with mass

m ≫ ΛQCD. Then, a soft momentum rs on the quark line
has the scaling behavior

rþs ∼Qλ2; r−s ∼Qλ2; rs⊥ ∼Qλ2; ð5Þ
where3

2The Lagrangians in Eq. (A.1) of Ref. [12] are the BCDF
Lagrangians, but expressed in terms of gauge-invariant building
blocks. In this paper, we carry out our analyses in terms of the
original BCDF forms of the Lagrangians.

3Our general arguments and specific examples are also valid
for massless quarks for those cases that do not involve an
interaction between a soft-quark and a hard-collinear quark that
is proportional to m. In the massless case, the SCET scaling
parameter is λ ¼ ðΛQCD=QÞ1=2.
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λ ¼
ffiffiffiffi
m
Q

r
; ð6Þ

and Q is the hard scale of the process. A collinear
momentum rc on the quark line along the n direction
has the scaling behavior

rþc ∼Q; r−c ∼Qλ4; rc⊥ ∼Qλ2: ð7Þ

Since a radiative jet function carries a soft momentum
combined with a collinear momentum, the resulting hard-
collinear momentum rhc, taken to be along the n direction,
has the scaling behavior4

rþhc ∼Q; r−hc ∼Qλ2; rhc⊥ ∼Qλ: ð8Þ

Note that the hard-collinear and soft momenta have differ-
ent virtualities in λ: r2hc ∼Q2λ2, and r2s ∼Q2λ4.
The n-hard-collinear Dirac field ψn can be decomposed

into large- and small-component collinear fields by apply-
ing collinear projectors Pn and Pn̄ onto ψn:

ξn ¼ Pnψn; ð9aÞ

ηn ¼ Pn̄ψn; ð9bÞ

where

Pn ¼
nn̄
4
; Pn̄ ¼

n̄n
4
: ð10Þ

We make use of the following additional notations for
SCET fields: qs is a soft-quark field, Gμ

n is an n-hard-
collinear-gluon field, and Gμ

s is a soft-gluon field. qs, ηn
and ξn have scaling of order λ3, λ2 and λ, respectively.
Each component of the field Gμ

n has the same scaling as
the n-hard-collinear momentum in Eq. (8), and each
component of the field Gμ

s has the same scaling as
the soft momentum in Eq. (5). gs ¼

ffiffiffiffiffiffiffiffiffiffi
4παs

p
is the strong

coupling.
We define the n-hard-collinear Wilson line as

WnðxÞ ¼ P exp

�
igs

Z
0

−∞
ds n̄ ·Gnðxþ sn̄Þ

�
; ð11Þ

and we define the covariant derivatives as

Dμ ¼ ∂
μ − igsG

μ
nðxÞ − igsn · GsðxþÞ

n̄μ

2
;

Dμ
n ¼ ∂

μ − igsG
μ
nðxÞ;

Dμ
s ¼ ∂

μ − igsG
μ
sðxÞ: ð12Þ

III. WARD IDENTITIES OF THE BCDF SCET
LAGRANGIANS

A. BCDF Lagrangians

The effective Lagrangians that describe an interaction
between a soft quark qs and an n-hard-collinear quark ξn in
the SCET formulation of Refs. [6,7] are given by

LBCDF
1 ðxÞ ¼ q̄sðxþÞðW†

ni=Dn⊥ξnÞðxÞ þ H:c:; ð13aÞ

LBCDF
2a ðxÞ ¼ q̄sðxþÞ

�
W†

n

�
in ·Dþ i=Dn⊥

1

in̄ ·Dn
i=Dn⊥

�

×
n̄
2
ξn

�
ðxÞ þ H:c:; ð13bÞ

LBCDF
2b ðxÞ ¼ ½q̄sð−iD⃖ρ

s⊥Þ�ðxþÞðix⊥ρW
†
ni=Dn⊥ξnÞðxÞ þ H:c:;

ð13cÞ
LBCDF
2m ðxÞ ¼ q̄sðxþÞð−mW†

nξnÞðxÞ þ H:c:; ð13dÞ

where H.c. denotes the Hermitian conjugate, and the
subscripts 1 and 2 indicate the order in λ of these
expressions. These Lagrangians generalize slightly those
in Refs. [6,7], in that they contain a nonzero quark mass.
However, we refer to them as the BCDF Lagrangians. In
deriving these expressions, we have started in full QCD,
with a quark with mass m, and we have followed the steps
that are given in Refs. [6,7] for the massless case. The
detailed derivation of LBCDF

2m is given in Appendix A.
References [6,7] also contain the ξ̄n…ξn, q̄s…qs, and

pure gauge-field SCET Lagrangians. The modifications of
these Lagrangians for the massive case at orders λ0, λ1, and
λ2 are also shown in Appendix A. In this paper, we do not
use these Lagrangians explicitly. Instead, we employ an
equivalent, but simpler, procedure: we replace the fields ξn
and ξ̄n with hard-collinear Dirac fields, using the expres-
sions in Eq. (9); we use full-QCD Feynman rules, with the
projectors Pn and Pn̄; and we expand to the desired order
in λ.
The power counting in λ in Eq. (13) follows from the fact

that, if we integrate the interaction Lagrangians in Eq. (13)
over d4x, then the integration region is of order λ−4. In
LBCDF
2b ðxÞ, the factor ix⊥ρ should be counted as Oðλ−1Þ

because it scales as the inverse of the transverse momentum
that flows into the hard-collinear subdiagram.
Note that, in Eq. (13), the soft-quark field qs depends

only on xþ. That is, the soft-quark field has been multipole
expanded in the minus and transverse components of its
argument in order to obtain a definite scaling in λ [6].
Square brackets indicate that a derivative acts only inside
the brackets and that soft fields are evaluated at xþ after the
derivative is taken.
The factor ix⊥ρ becomes, in momentum space, a deriva-

tive with respect to the transverse component of the soft4The scaling of rhc⊥ is chosen so that r2hc⊥ ∼ rþhcr
−
hc.

GAUGE INVARIANCE OF RADIATIVE JET FUNCTIONS IN … PHYS. REV. D 109, 056020 (2024)

056020-3



momentum. In momentum space, the multipole expansion
of qs implies that the plus and transverse components
of the soft momentum are ultimately set to zero, but only
after derivatives with respect to the soft momentum have
been taken.
At this stage, minus-polarized soft gluons still attach to

the hard-collinear subdiagram. These attachments can be
factored into Wilson lines by making use of the Grammer-
Yennie approximation [14], followed by the application of
perturbative Ward identities [15]. Equivalently, the decou-
pling can be achieved by making use of the BPS collinear-
field redefinitions [4]:

ξnðxÞ → SnðxþÞξnðxÞ; Gμ
nðxÞ → SnðxþÞGμ

nðxÞS†nðxþÞ;
ð14Þ

where Sn is the soft Wilson line, which is defined by

SnðxÞ ¼ P exp

�
igs

Z
0

−∞
dt n · Gsðxþ tnÞ

�
: ð15Þ

The net effect of the BPS field redefinitions is to
make the simple replacements q̄sðxþÞ → q̄sðxþÞSnðxþÞ,
½q̄sð−iD⃖ρ

s⊥Þ�ðxþÞ → ½q̄sð−iD⃖ρ
s⊥Þ�ðxþÞSnðxþÞ, and in ·D →

in ·Dn in Eq. (13). Note that the arguments of the soft
Wilson lines have been multipole expanded to lowest order
in λ, and, so, it is still true that only the minus component of
the soft momentum enters the momentum-space expres-
sions that derive from the BPS-transformed Lagrangians.

B. Gauge invariance and Ward identities

At first sight, the hard-collinear parts of the interactions in
Eq. (13) would appear to be gauge invariant with respect to
gauge transformation of the hard-collinear fields.We can use
Eq. (9a) to replace ξn with ψn. Then, if we could replace ψn
with the ordinaryDirac fieldψ , the hard-collinear parts of the
interactions in Eq. (13) would be gauge-invariant full-QCD
operators. However, as we will see, the restriction that ψn
(and ξn) carry n-hard-collinear momenta implies that certain
full-QCD diagrams are missing in hard-collinear functions

involving these operators and that, consequently, the hard-
collinear functions are not gauge invariant.
In order to investigate the gauge invariance of the Oðλ2Þ

SCET Lagrangians in Eq. (13), let us consider the inter-
actions that follow from these Lagrangians in order gs. The
corresponding Feynman diagrams are shown on the left sides
of Fig. 1. We imagine that these explicit interactions are
embedded in a radiative jet function, whose remaining
factors are indicated by an ellipsis in the figures and in
the corresponding equations. In these figures, the quark
momentum −p is an n-hard-collinear momentum, the quark
momentum −l is a soft momentum, and the gluon momen-
tum k ¼ p − l is an n-hard-collinear momentum. The
crossed circles in Fig. 1 arise from the covariant-derivative
and x⊥ factors in the Lagrangians. Their Feynman rules are
given in Figs. 2 and 3. The order-g0s contributions to the
crossed circles can appear only in conjunction with one or
more hard-collinear gluons that attach to the Wilson line.
Otherwise, hard-collinear momentum would not be con-
served at the crossed circles. In deriving these Feynman rules,
we make use of the identity

ix⊥ρ ¼
Z

dD−2l⊥
∂

∂lρ
⊥
½δD−2ðl⊥Þ�e−il⊥·x⊥ ; ð16Þ

FIG. 1. Feynman diagrams showing a Ward identity for the operators in Eq. (13). The Ward identity is for the case in which a gluon
attaches to the Wilson line (W†

n) or to the crossed circle ð⊗Þ. The thick, solid line denotes a quark line that has a hard-collinear
momentum (−p), and the solid line denotes a quark line that has a soft momentum (−l). The diagram on the right side of the arrow
shows the contribution of the term kμ in the gauge transformation in Eq. (19). The short, double lines across a propagator indicate that the
propagator has been canceled.

FIG. 2. The Feynman rules for the crossed circles in Fig. 1 for the
Lagrangians in Eqs. (13a), (13b), and (13d). V1, V2a, and V2m are
the crossed-circle contributions that arise from LBCDF

1 , LBCDF
2a , and

LBCDF
2m , respectively. The superscripts (0) and (1) denote the order-

g0s and order-g1s contributions of the crossed circle, respectively.
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and we define the operator

Δl⊥
ρ ≡

Z
dD−2l⊥δD−2ðl⊥Þ

∂

∂lρ
⊥
; ð17Þ

which picks up the coefficient of lρ
⊥.

The amplitudes for LBCDF
1 , LBCDF

2a , LBCDF
2b , and LBCDF

2m ,
which correspond to the diagram in Fig. 1, are

A1 ¼ ϵμðkÞ
�ð−igsÞðiÞn̄μ
n̄ · kþ iε

ð−=p⊥Þ þ gsγ⊥μ

�
Pn…;

A2a ¼ ϵμðkÞ
�ð−igsÞðiÞn̄μ
n̄ · kþ iε

�
−n · p −

p2⊥
n̄ · p

�

þ gs

�
nμ þ γ⊥μ

=p⊥
n̄ · p

��
n̄
2
Pn…;

A2b ¼ ϵμðkÞ
�ð−igsÞðiÞn̄μ
n̄ · kþ iε

lρ
⊥Δ

l⊥
ρ ð−=p⊥Þ

þ gsl
ρ
⊥Δ

l⊥
ρ γ⊥μ

�
Pn…;

A2m ¼ ϵμðkÞ ð−igsÞðiÞn̄μ
n̄ · kþ iε

ð−mÞPn…; ð18Þ

respectively. Here, ϵμðkÞ is the polarization of a hard-
collinear gluon with momentum k. Note that, in A1, A2a,
and A2m, pþ ¼ kþ and p⊥ ¼ k⊥, owing to the multipole
expansion of the soft-quark field. In A2b, pþ ¼ kþ, but p⊥
is set equal to k⊥ only after differentiation with respect to
l⊥, in accordance with Eq. (17).
We can work out the Ward identities for these amplitudes

by carrying out a gauge transformation on the gluon field,
which, at the lowest order in gs, simply shifts the gluon
polarization vector ϵμðkÞ by an amount that is proportional
to the gluon momentum k:

ϵμðkÞ → ϵμðkÞ þ βkμ: ð19Þ

We drop the constant of proportionality β in subsequent
discussions. The gauge term kμ gives the following con-
tributions to the amplitudes A1, A2a, and A2m in Eq. (18):

Agauge
1 ¼ gsð−p⊥ þ k⊥ÞPn…

¼ 0; ð20aÞ

Agauge
2a ¼ gs

��
−n · p −

p2⊥
n̄ · p

�
þ
�
n · kþ k⊥p⊥

n̄ · p

��
n̄
2
Pn…

¼ −gsn · l
n̄
2
Pn…; ð20bÞ

Agauge
2m ¼ gsð−mÞPn…; ð20cÞ

where we have used k⊥ ¼ p⊥, which follows from
the multipole expansion of the soft-quark field qs, and
n · k ¼ n · p − n · l. The gauge term kμ gives the following
contribution to the amplitude A2b in Eq. (18):

Agauge
2b ¼ gs½lρ

⊥Δ
l⊥
ρ ð−=p⊥Þ þ lρ

⊥Δ
l⊥
ρ k⊥�Pn…

¼ gs½lρ
⊥Δ

l⊥
ρ ð−l⊥Þ�Pn…

¼ −gsl⊥Pn…; ð20dÞ
where we have used k⊥ ¼ p⊥ − l⊥, owing to the insertion
of the l⊥ into the hard-collinear subdiagram, which follows
from the identity in Eq. (16). Note that the contributions
in which Δl⊥

ρ acts on the ellipsis (the remainder of the
diagram) cancel between the first and second terms after the
first equality in Eq. (20d).
We see that the order-λ1 Lagrangian in Eq. (13) gives a

vanishing contribution to the Ward identities. That is, it is
gauge invariant. However, each of the order-λ2 Lagrangians
in Eq. (13) produces a nonzero contribution to the Ward
identity, i.e., a violation of gauge invariance, andwe find that

Agauge
2a þ Agauge

2b þ Agauge
2m ¼ gs

�
−n · l

n̄
2
− l⊥ −m

�
Pn…

¼ gsð−l −mÞPn…; ð21Þ
where we have used nPn ¼ 0. We note that the violations of
gauge invariance are proportional to soft-quark free equation
ofmotion. This suggests that we can obtain a gauge-invariant
form of the Lagrangian by discarding terms that are propor-
tional to the soft-quark equation of motion. In Sec. V, we
will see that this is the case.5

A complete factorization formula, including both the
radiative jet (hard-collinear) function and the soft function,
must be gauge invariant because it reproduces full QCD to
a given accuracy in λ. Therefore, we expect gauge invari-
ance to be restored if we consider the soft function in
conjunction with the radiative jet function. As we have
seen, the order-λ2 contributions to the radiative jet function
that violate gauge invariance are proportional to the inverse
of the soft-quark propagator −l −m. At the lowest order in

FIG. 3. The Feynman rules for the crossed circles in Fig. 1 for the
Lagrangians in Eq. (13c). V2b describes the crossed-circle con-
tribution that arises fromLBCDF

2b . The superscripts (0) and (1) denote
the order-g0s and order-g1s contributions of the crossed circle,
respectively. The definition of the operatorΔl⊥

ρ is given in Eq. (17).

5Subtractions of terms that are proportional to the soft-quark
equation of motion are used to derive the Lagrangian in Ref. [8].
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gs, the soft function is just the soft-quark propagator.
Hence, soft function is canceled by the gauge-invariance
violating contributions. Consequently, as we can see from
the result for the radiative jet functions in Secs. IVand VII,
all of the poles in the l− complex plane are in the upper half
plane. We can then close the l− contour of integration in
the lower half plane to obtain a vanishing result for the
gauge-invariance-violating contribution. As we have men-
tioned, in Sec. V, we will use the formal procedure of
discarding Lagrangian terms that are proportional to the
soft-quark equation of motion in order to implement gauge
invariance in the radiative jet function at the integrand level.
The phenomenon that we see here, namely, the vanishing of
contributions that are proportional to the soft-quark equa-
tion of motion, demonstrates the correctness of the formal
procedure in lowest-order perturbation theory.

C. Missing diagrams

The violations of gauge invariance that we have noted
arise because certain diagrams that would be present in full
QCD are missing from the hard-collinear function because
they contain a soft-quark propagator. The diagram of this
type that appears in order gs is shown on the left side of
Fig. 4. Note that, because we are considering diagrams that
contain a soft-quark propagator, momentum conservation
no longer requires that the order-g0s factors from the crossed
circles appear in conjunction with hard-collinear gluons
that attach to the Wilson line.
The amplitudes for the diagram in Fig. 4 that correspond

to the crossed vertices from LBCDF
1 , LBCDF

2a , LBCDF
2b , and

LBCDF
2m are

A1;miss ¼ 0; ð22aÞ

A2a;miss ¼ ϵμðkÞð−n · lÞ n̄
2
Pn

i
−l −mþ iε

ðigsÞγμ…;

ð22bÞ

A2b;miss ¼ ϵμðkÞlρ
⊥Δ

l⊥
ρ ð−l⊥ÞPn

i
−l −mþ iε

ðigsÞγμ…;

ð22cÞ

A2m;miss ¼ ϵμðkÞð−mÞPn
i

−l −mþ iε
ðigsÞγμ…; ð22dÞ

respectively. Here, in keeping with the multipole expansion
of the soft-quark field qs in the Lagrangians in Eq. (13), we
have discarded terms in the hard-collinear part that are
proportional to l⊥, except in A2b;miss. In the case of A2b;miss,

we set l⊥ to zero only after the derivative in Δl⊥
ρ has been

taken. After we carry out the gauge transformation in
Eq. (19), we obtain the following contributions of the gauge
term kμ to Eq. (22a):

Agauge
1;miss ¼ 0; ð23aÞ

Agauge
2a;miss ¼ −n · l

n̄
2
Pn

i
−l −mþ iε

ðigsÞk…

¼ −gsn · l
n̄
2
Pn

1

−l −mþ iε

× ½ð−=p −mÞ − ð−l −mÞ�…; ð23bÞ

Agauge
2b;miss ¼ lρ

⊥Δ
l⊥
ρ ð−l⊥ÞPn

i
−l −mþ iε

ðigsÞk…

¼ gsl
ρ
⊥Δ

l⊥
ρ ð−l⊥ÞPn

1

−l −mþ iε

× ½ð−=p −mÞ − ð−l −mÞ�…; ð23cÞ

Agauge
2m;miss ¼ ð−mÞPn

i
−l −mþ iε

ðigsÞk…

¼ gsð−mÞPn
1

−l −mþ iε

× ½ð−=p −mÞ − ð−l −mÞ�…; ð23dÞ

which are represented by the diagram on the right side of
Fig. 4. If the quark line with momentum −p is an external
line, then the first terms in the square brackets in each of the
contributions above vanish on multiplying the quark spinor.
Otherwise, they cancel contributions that arise from the
gauge transformations for the sum over all attachments of
the gluon with momentum k to other parts of the radiative
jet function (the ellipses in Figs. 1 and 4).6 The second term
in the square brackets in each of the contributions above

FIG. 4. Left: the Feynman diagram in order gs that is missing from the hard-collinear function. Right: the corresponding Ward-identity
contribution. The crossed vertex derives from the operators in Eq. (13).

6This can be seen by direct application of the Ward identities
for the elementary QCD vertices and the Wilson line Wn that
appears in the radiative jet function.
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cancels the corresponding gauge terms in Eqs. (20b)–(20d).
This cancellation confirms our assertion that the violations
of gauge invariance arise because of missing diagrams
involving soft-quark propagators. Note that the contribu-
tion in Eq. (23a) that arises from the order-λ1 Lagrangian
vanishes, in keeping with the gauge invariance of that
Lagrangian.

IV. RADIATIVE JET FUNCTION IN ORDER αs
FROM THE BCDF LAGRANGIANS

Now let us test the gauge invariance of radiative jet
functions that are derived from the BCDF Lagrangians.
From the BCDF Lagrangians at Oðλ2Þ in Eq. (13), we can
construct the following radiative jet functions:

Aðl−Þ ¼
Z

dDxe−i
l−xþ

2 hQQ̄ð3S½1�1 ; p; pÞjT
�
W†

n

�
in ·Dn þ i=Dn⊥

1

in̄ ·Dn
i=Dn⊥

�
n̄
2
ξn

�
β;b

ðxÞðξ̄nWnÞα;að0Þj0i;

Bρðl−Þ ¼
Z

dD−2l⊥
∂

∂lρ
⊥
½δD−2ðl⊥Þ�

Z
dDxe−i

l−xþ
2 e−il⊥·x⊥hQQ̄ð3S½1�1 ; p; pÞjTðW†

ni=Dn⊥ξnÞβ;bðxÞðξ̄nWnÞα;að0Þj0i;

Mðl−Þ ¼
Z

dDxe−i
l−xþ

2 hQQ̄ð3S½1�1 ; p; pÞjTð−mW†
nξnÞβ;bðxÞðξ̄nWnÞα;að0Þj0i; ð24Þ

where α, β and a, b are Dirac and color indices,
respectively. In these expressions, the first factors of
the SCET operators arise from the BCDF Lagrangians
LBCDF
2a , LBCDF

2b , and LBCDF
2m in Eq. (13), respectively, while

the second factors of the SCET operators, namely, ξ̄nWn,
arise from the hard-collinear part of the hard-to-
hard-collinear transition operator in the amplitude for a
hard-scattering process. The couplings of minus-polarized
soft-gluon fields to hard-collinear fields have been
removed by making use of the BPS field redefinitions
[Eq. (14)]. This has the effect of replacing D in Aðl−Þ
with Dn. We have taken the vacuum to QQ̄ matrix
elements of these operators, where Q and Q̄ are massive,
on shell quark states. These matrix elements are conven-
ient because, for them, the difficulty with gauge invari-
ance appears at the Born level, rather than at the loop
level. For definiteness, we take the Q and the Q̄ to be in
a spin-triplet, color-singlet state with zero relative mo-
mentum between the Q and the Q̄. (This is an S-wave
state.) Then, we can take both the Q and the Q̄ to have
momentum p. We can, without loss of generality, choose
a frame in which p⊥ ¼ 0. Note that, because the
momentum p is on the mass shell, it satisfies collinear
scaling, rather than hard-collinear scaling:

pþ ∼Qλ0;

p⊥ ¼ 0;

p− ¼ m2=pþ ∼Qλ4: ð25Þ

Note also that the Ward-identity arguments of Sec. III,
which were presented for the case of hard-collinear
scaling, are also valid for the case of collinear scaling.
We realize the QQ̄ color and spin states through the

application of the standard spin and color projection
operators, whose product is given by

Πcd
3S½1�

1

¼ −
ϵ�ð=pþmÞ
2

ffiffiffi
2

p
m

×
δcdffiffiffiffiffiffi
Nc

p ; ð26Þ

where ϵ� is the polarization vector of the external 3S½1�1 state,
which satisfies ϵ� · p ¼ 0.
The OðαsÞ diagrams for the radiative jet functions are

given in Fig. 5. Note that the gluon must connect the soft-
quark side of the diagram,which is to the left of theQQ̄ state,
to the hard-quark side of the diagram, which is to the right of
the QQ̄ state, in order for hard-collinear-momentum con-
servation to be satisfied. The left two diagrams involve the

FIG. 5. The LO diagrams for the radiative jet functions. Note that the soft momentum lμ flows in through the vertex on the soft-
quark side at x and flows out through the vertex on the hard-quark side at 0. The Feynman rules for the crossed circle vertex are given in
Figs. 2 and 3.
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Feynman rule Vð0Þ
i (Figs. 2 and 3) on their soft-quark sides,

and the right two diagrams involve the Feynman

rule Vð1Þ
i (Figs. 2 and 3) on their soft-quark sides with

i ¼ 2a; 2b; 2m.

A. Feynman gauge

First, let us consider the computations of the radiative jet
functions in the Feynman gauge.
For the A radiative jet function, only the diagram of

Fig. 5(c) contributes. The diagram of Fig. 5(b) vanishes
because the Wilson-line vertices give n̄ · n̄ ¼ 0. The dia-
grams of Figs. 5(a) and 5(d) are power suppressed, as we
show in Appendix B.

For the B radiative jet function, only the diagram of
Fig. 5(d) contributes. The diagram of Fig. 5(b) vanishes
because the Wilson-line vertices give n̄ · n̄ ¼ 0. The dia-
gram of Fig. 5(c) vanishes because the crossed vertex gives
n̄ · γ⊥ ¼ 0. The diagram of Fig. 5(a) is power suppressed
because of the scaling in Eq. (25).
For the M radiative jet function, only the diagram of

Fig. 5(a) contributes. The diagram of Fig. 5(b) vanishes
because the Wilson-line vertices give n̄ · n̄ ¼ 0, and the
diagrams of Figs. 5(c) and 5(d) do not contribute because

Vð1Þ
2m ¼ 0 (Fig. 2).
Then, a straightforward calculation in the Feynman gauge

yields the following Born-level radiative jet functions:

AðcÞ;Feynmanðl−Þ ¼ ðTeÞbcðTeÞda
�
gs

�
nμ þ γ⊥μ

=p⊥
n̄ · p

�
n̄
2
PnΠcd

3S½1�
1

Pn̄

�
βα iðigsn̄μÞ
−n̄ · ðp − lÞ þ iε

−i
ðp − lÞ2 þ iε

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ
�
n̄nϵ�

4

�
βα

;

BρðdÞ;Feynmanðl−Þ ¼
Z

dD−2l⊥
∂

∂lρ
⊥
½δD−2ðl⊥Þ�ðTeÞbcðTeÞda

�
ðgsγ⊥μÞPnΠcd

3S½1�
1

ðigsγμÞ
i

2=p − l −mþ iε
Pn̄

�
βα −i
ðp − lÞ2 þ iε

¼ 0;

MðaÞ;Feynmanðl−Þ ¼ ðTeÞbcðTeÞda
�
ð−mÞPnΠcd

3S½1�
1

ðigsγμÞ
i

2=p − l −mþ iε
Pn̄

�
βα ið−igsn̄νÞ
n̄ · ðp − lÞ þ iε

−igμν

ðp − lÞ2 þ iε

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
pþ

1

ð−l− þ iεÞ2
�
nϵ�

2

�
βα

; ð27Þ

where we have kept only the leading nonzero power in λ
in the last lines of these expressions. In the case of
BρðdÞ;Feynmanðl−Þ, we have used

½γ⊥μ Pnϵ
�ð=pþmÞγμð2=p − lþmÞPn̄�βα ¼ 0; ð28Þ

which is valid through the power in λ in which we are
interested.

B. Light-cone gauge

Next, let us consider the radiative jet functions in
the light-cone gauge, which is defined by the gauge
condition

n̄ ·Gnjlight-cone gauge ¼ 0; ð29Þ

from which it follows that the gluon-propagator polariza-
tion sum is

−gμν þ kμn̄ν þ n̄μkν

k · n̄
: ð30Þ

Here, k is the gluon momentum. In the light-cone gauge,
the n-hard-collinear Wilson line [defined in Eq. (11)]
becomes unity, and so the diagrams involving Wilson lines
vanish. [Equivalently, one can see that the polarization sum
in Eq. (30) vanishes on contraction with the Wilson-line
vertex −ign̄μ.] Consequently, in the light-cone gauge, only
the diagram of Fig. 5(d) can contribute.
The calculation of the contribution of the diagram

of Fig. 5(d) in the light-cone gauge is straightforward.
We obtain
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AðdÞ;light-coneðl−Þ ¼ ðTeÞbcðTeÞda
�
gs

�
nμ þ γ⊥μ

=p⊥
n̄ · p

�
PnΠcd

3S½1�
1

ðigsγνÞ
i

2=p − l −mþ iε
Pn̄

�
βα

×
i

ðp − lÞ2 þ iε

�
−gμν þ ðp − lÞμn̄ν þ n̄μðp − lÞν

ðp − lÞ · n̄
�

¼ −
2ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ
�
n̄nϵ�

4

�
βα

;

BρðdÞ;light-coneðl−Þ ¼
Z

dD−2l⊥∂l⊥ρ½δD−2ðl⊥Þ�ðTeÞbcðTeÞda
�
ðgsγ⊥μ ÞPnΠcd

3S½1�
1

ðigsγνÞ
i

2=p − l −mþ iε
Pn̄

�
βα

×
i

ðp − lÞ2 þ iε

�
−gμν þ ðp − lÞμn̄ν þ n̄μðp − lÞν

ðp − lÞ · n̄
�

¼
Z

dD−2l⊥∂l⊥ρ½δD−2ðl⊥Þ�
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ2
�
l⊥nϵ�

2

�
βα

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ2
�
γ⊥ρnϵ�

2

�
βα

;

MðdÞ;light-coneðl−Þ ¼ 0; ð31Þ

where we have kept only the leading nonzero power of λ in the last line of each expression. Note thatMðdÞ;light-coneðl−Þ ¼ 0

because Vð1Þ
2m ¼ 0 in Fig. 2. By comparing the light-cone-gauge results in Eq. (31) with the Feynman-gauge results in

Eq. (27), we conclude that all three radiative jet functions in Eq. (24) are not gauge invariant. The difference between the
light-cone-gauge and the Feynman-gauge calculations is

½AðdÞ;light-coneðl−Þ þ ð−lρ
⊥ÞBρðdÞ;light-coneðl−Þ þMðdÞ;light-coneðl−Þ�

− ½AðcÞ;Feynmanðl−Þ þ ð−lρ
⊥ÞBρðdÞ;Feynmanðl−Þ þMðaÞ;Feynmanðl−Þ�

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ2
�
ð−l −mÞ nϵ

�

2

�
βα

; ð32Þ

where we have contracted ð−lρ
⊥Þ into Bρ since an addi-

tional factor of ð−lρ
⊥Þ is present in the soft function that is

associated with Bρ, relative to the soft functions that are
associated with A and M. In the last line of Eq. (32), we

have inserted −lþ n
2
n ¼ 0 in order to obtain the factor

−l −m. As is expected from our Ward-identity analysis,
the gauge-variant terms are proportional to the inverse of
the soft-quark propagator.

C. Covariant gauge

We can also consider the radiative jet functions in a
general covariant gauge, in which the gluon polarization
sum is given by

−gμν þ α
kμkν

k2
; ð33Þ

where α is the gauge parameter.
In order αs in a general covariant gauge, the sum over all

connections of the gluon to the quark line and the Wn
Wilson line (on the right side of a radiative-jet diagram) is
gauge invariant, independently of the rest of the diagram.
Hence, the term in the polarization sum that is proportional

to α vanishes in the sum over all connections of the gluon to
the quark line and the Wn Wilson line, and one obtains the
Feynman-gauge result.
However, in order α2s the situation is more complicated.

We have checked that, in the Abelian case, there is a
remnant from the terms that are proportional to α in the
polarization sum that is nonzero at the integrand level. This
suggests that a gauge dependence exists in general covar-
iant gauges in order α2s.

V. GAUGE INVARIANT SCET LAGRANGIANS

In this section, we modify the BCDF Lagrangians to
obtain gauge-invariant Lagrangians that describe the cou-
pling of a soft quark to a hard-collinear quark. In order to
account for the gauge-violating contribution in Eq. (21), we
introduce the following subtraction Lagrangian:

ΔL2ðxÞ ¼ ½q̄sð−i=⃖Ds −mÞ�ðxþÞðW†
nξnÞðxÞ

¼
�
q̄s

�
n̄
2
in ·Ds − i=⃖Ds⊥ −m

��
ðxþÞðW†

nξnÞðxÞ;

ð34Þ
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where, in the second line, we have used nξn ¼ nPnψn ¼ 0,
and performed an integration by parts for the term that is
proportional to in ·Ds. This integration by parts is valid
because the minus component of the soft momentum flows
into the hard-collinear parts of the Lagrangian. We remind
the reader that the position arguments of the soft fields have
been multipole expanded (depend only on the plus com-
ponent of the coordinate), but only after the derivatives
acting on the soft fields have been taken.
The modified Lagrangian that describes the coupling of a

soft quark to a hard-collinear quark in order λ2 is

Lmod
2 ¼ LBCDF

2a þ LBCDF
2b þ LBCDF

2m − ΔL2

¼ q̄sW
†
nin ·D

n̄
2
ξn − q̄sin ·DsW

†
n
n̄
2
ξn

þ q̄sW
†
ni=Dn⊥

1

in̄ ·Dn
i=Dn⊥

n̄
2
ξn þ q̄sð−iD⃖s⊥Þ

· ix⊥W†
ni=Dn⊥ξn − q̄sð−i=⃖Ds⊥ÞW†

nξn; ð35Þ

where we omit the position arguments for simplicity. Note
that the quark-mass-dependent Lagrangian LBCDF

2m is can-
celed by the mass term ofΔL2 in Eq. (34), and so theOðλ2Þ
interactions between a soft quark and a hard-collinear quark
are independent of the quark mass.
At this stage, longitudinally polarized soft gluons can

still interact with the hard-collinear subdiagram. As we
have mentioned previously, such interactions can be
factored into Wilson lines by making use of the BPS field
redefinitions [4], which are shown in Eq. (14). Using the
BPS field redefinitions and the identities

S†nin ·DsSn ¼ in · ∂; ð36aÞ

S†nin ·D0Sn ¼ S†nn · ðSngsGnS
†
n þ iDsÞSn ¼ in ·Dn; ð36bÞ

we rewrite Eq. (35) as follows:

Lmod;BPS
2 ¼ Lmod;BPS

2a þ Lmod;BPS
2b ; ð37Þ

where

Lmod;BPS
2a ¼ q̄sSn

�
W†

nð−in · D⃖nÞ þW†
ni=Dn⊥

1

in̄ ·Dn
i=Dn⊥

�

×
n̄
2
ξn; ð38aÞ

Lmod;BPS
2b ¼ q̄sð−iD⃖ρ

s⊥ÞSnðix⊥ρW
†
ni=Dn⊥ξn − γ⊥ρW

†
nξnÞ:

ð38bÞ

Here, in the first term of Lmod;BPS
2a , the covariant derivative

ð−in · D⃖nÞ should be understood as acting only on the
Wilson line W†

n. The Feynman rules for these modified

Lagrangians are given in Fig. 6. Again, we note that, owing
to the use of the multipole expansion, the soft transverse
momentum l⊥ should be set to zero, except in the terms
involving the operator Δl⊥

ρ [Eq. (17)]. For those terms, l⊥
is set to zero after differentiation with respect to l⊥.

A. Gauge invariance and Ward identities
of the modified Lagrangians

Let us repeat the gauge-invariance analysis of Sec. III B
for the modified Oðλ2Þ SCET Lagrangians in Eq. (38). The
amplitudes for Lmod;BPS

2a and Lmod;BPS
2b , which correspond to

the diagram in Fig. 1, are

Amod
2a ¼ ϵμðkÞ

�ð−igsÞðiÞn̄μ
n̄ · kþ iε

�
−n · k −

p2⊥
n̄ · p

�

þ gs

�
nμ þ γ⊥μ

=p⊥
n̄ · p

��
n̄
2
Pn…; ð39aÞ

Amod
2b ¼ ϵμðkÞ

�ð−igsÞðiÞn̄μ
n̄ · kþ iε

lρ
⊥ðΔl⊥

ρ ð−=p⊥Þ þ γ⊥ρÞ

þ gsl
ρ
⊥Δ

l⊥
ρ γ⊥μ

�
Pn…; ð39bÞ

respectively. We obtain the Ward identities for these
amplitudes by replacing the polarization vector ϵμðkÞ with
the factor kμ from the gauge transformation in Eq. (19).
The results are as follows:

Amod;gauge
2a ¼ gs

��
−n ·k−

p2⊥
n̄ ·p

�
þ
�
n ·kþk⊥=p⊥

n̄ ·p

��
n̄
2
Pn…

¼ 0; ð40aÞ

Amod;gauge
2b ¼ gs½lρ

⊥ðΔl⊥
ρ ð−=p⊥Þ þ γ⊥ρÞ þ lρ

⊥Δ
l⊥
ρ k⊥�Pn…

¼ 0; ð40bÞ

where we have used k⊥ ¼ p⊥ for Amod;gauge
2a , owing to

the multipole expansion of the soft-quark field, and
k⊥ ¼ p⊥ − l⊥ for Amod;gauge

2b , owing to the insertion of

FIG. 6. The Feynman rules for the crossed circles in Fig. 1 for
the Lagrangians in Eq. (38). Vmod

2a and Vmod
2b represent the crossed-

circle contributions that arise from Lmod;BPS
2a and Lmod;BPS

2b ,
respectively. The superscripts (0) and (1) denote the order-g0s
and order-g1s contributions of the crossed circle, respectively.
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l⊥ that follows from the identity in Eq. (16). Note that the
contributions in which Δl⊥

ρ acts on the ellipsis (the
remainder of the diagram) cancel between the first and
third terms after the first equality in Eq. (40b). We conclude
that the modified Lagrangians in Eq. (38) are separately
gauge invariant.

B. Missing diagrams for the modified Lagrangians

Now let us consider the contributions of the modified
Lagrangians to the missing diagram in Fig. 4. The
amplitudes for the diagram in Fig. 4 that correspond to
the crossed vertices from Lmod;BPS

2a and Lmod;BPS
2b are

Amod
2a;miss ¼ 0; ð41aÞ

Amod
2b;miss ¼ ϵμðkÞlρ

⊥ðΔl⊥
ρ ð−l⊥Þ þ γ⊥ρÞPn

×
i

−l −mþ iε
ðigsÞγμ…

¼ 0; ð41bÞ
respectively. Here, for Amod

2a;miss, we have performed the
multipole expansion to set l⊥ to 0, and for Amod

2b;miss, we
have used

lρ
⊥ðΔl⊥

ρ ð−l⊥Þ þ γ⊥ρÞ ¼ ðlρ
⊥Δ

l⊥
ρ ð−l⊥Þ þ l⊥Þ ¼ 0: ð42Þ

We see that the modified Lagrangians in Eq. (38) give
vanishing contributions in order gs to the missing diagram
in Fig. 4 and are, therefore, gauge invariant to this order.

VI. GAUGE INVARIANCE TO ALL ORDERS IN gs

We now argue that the gauge invariances of order-λ1

Lagrangian in Eq. (13a) and the modified order-λ2

Lagrangians in Eq. (38) hold to all orders in gs. First,
we note that the all-orders missing diagrams have exactly
one soft-quark propagator and that all collinear gluon
attachments are to the collinear-subdiagram side of the
soft-quark propagator. These diagrams are of the form that
is shown in Fig. 7. A crucial feature of these diagrams

is that the crossed-vertex factors are independent of the
hard-collinear gluon attachments. That is, they are equal to
the lowest-order crossed-vertex factors. Furthermore, we
have seen in Eqs. (22a) and (41) that each crossed-vertex
factor gives a vanishing result when no hard-collinear
momentum flows through the crossed vertex. Therefore,
the missing diagrams give vanishing contributions, ensur-
ing the gauge invariance of the Lagrangians in Eqs. (13a)
and (38).

VII. RADIATIVE JET FUNCTION IN ORDER αs
FROM THE MODIFIED LAGRANGIANS

In this section, we consider radiative jet functions that
arise from the gauge-invariant Lagrangians in Eq. (38).
Using the two Oðλ2Þ gauge-invariant Lagrangians, we
construct the following radiative jet functions:

Amodðl−Þ ¼
Z

dDx e−i
l−xþ

2 hQQ̄ð3S½1�1 ; p; pÞj

× T

��
W†

nð−in · D⃖nÞ þW†
ni=Dn⊥

1

in̄ ·Dn
i=Dn⊥

�

×
n̄
2
ξn

�
β;b
ðxÞðξ̄nWnÞα;að0Þj0i;

Bmod
1ρ ðl−Þ ¼

Z
dD−2l⊥

∂

∂lρ
⊥
½δD−2ðl⊥Þ�

×
Z

dDx e−i
l−xþ

2 e−il⊥·x⊥hQQ̄ð3S½1�1 ; p; pÞj

× TðW†
ni=Dn⊥ξnÞβ;bðxÞðξ̄nWnÞα;að0Þj0i;

Bmod
2ρ ðl−Þ ¼

Z
dDx e−i

l−xþ
2 hQQ̄ð3S½1�1 ; p; pÞj

× Tð−γ⊥ρW
†
nξnÞβ;bðxÞðξ̄nWnÞα;að0Þj0i: ð43Þ

Here, we have split the contribution from Lmod;BPS
2b in

Eq. (38) into the contributions Bmod
1ρ and Bmod

2ρ because
these contributions contain different prescriptions for
the multipole expansion of the soft momentum l. In
accordance with our Ward-identity result in Eq. (40b), we
will find that only the sum of Bmod

1ρ and Bmod
2ρ is gauge

invariant.
In the Feynman gauge, we find that the diagrams of

Figs. 5(a) and 5(c) contribute to the Amod radiative jet
function. [When we use the modified Feynman rules in
Fig. 6, diagram (a) is no longer power suppressed.] We
also find that the sole contribution to the Bmod

1ρ radiative
jet function arises from the diagram of Fig. 5(d), and the
sole contribution to the Bmod

2ρ radiative jet function arises
from the diagram of Fig. 5(a). (The reasoning is the
same as for the B and M radiative jet functions in
Sec. IVA.) By making use of the Feynman rules in
Fig. 6, we obtain

FIG. 7. The general form of the missing diagrams at all orders
in gs. The blob includes gluon self interactions and ghost loops.
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Amod
ðaÞ;Feynmanðl−Þ ¼ ðTeÞbcðTeÞda

��
−n · ðp− lÞ n̄

2

�
PnΠcd

3S½1�
1

ðigsγμÞ
i

2=p− l−mþ iε
Pn̄

�
βα ið−igsn̄μÞ
n̄ · ðp− lÞ þ iε

−i
ðp− lÞ2 þ iε

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ
�
n̄nϵ�

4

�
βα

;

Amod
ðcÞ;Feynmanðl−Þ ¼ AðcÞ;Feynmanðl−Þ

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ
�
n̄nϵ�

4

�
βα

;

Bmod
1ρ;ðdÞ;Feynmanðl−Þ ¼ BρðdÞ;Feynmanðl−Þ

¼ 0;

Bmod
2ρ;ðaÞ;Feynmanðl−Þ ¼ ðTeÞbcðTeÞda

�
ð−γ⊥ρÞPnΠcd

3S½1�
1

ðigsγμÞ
i

2=p− l−mþ iε
Pn̄

�
βα ið−igsn̄νÞ
n̄ · ðp− lÞ þ iε

−igμν

ðp− lÞ2 þ iε

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ2
�
γ⊥ρnϵ�

2

�
βα

: ð44Þ

We note that Amod
ðcÞ;Feynmanðl−Þ ¼ AðcÞ;Feynmanðl−Þ and Bmod

1ρ;ðdÞ;Feynmanðl−Þ ¼ B1ρ;ðdÞ;Feynmanðl−Þ, which follows from

Vmodð1Þ
2a ¼ Vð1Þ

2a and Vmodð1Þ
2b ¼ Vð1Þ

2b (Figs. 2, 3, and 6).
In the light-cone gauge, only the diagram of Fig. 5(d) contributes to the radiative jet function. We find that

Amod
ðdÞ;light-coneðl−Þ ¼ AðdÞ;light-coneðl−Þ

¼ −
2ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ
�
n̄nϵ�

4

�
βα

;

Bmod
1ρ;ðdÞ;light-coneðl−Þ ¼ BρðdÞ;light-coneðl−Þ

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ2
�
γ⊥ρnϵ�

2

�
δα

;

Bmod
2ρ;ðdÞ;light-coneðl−Þ ¼ 0; ð45Þ

where we have used the results in Eq. (31), since Vmodð1Þ
2a ¼ Vð1Þ

2a and Vmodð1Þ
2b ¼ Vð1Þ

2b (Figs. 2, 3, and 6). Note that
Bmod
2ρ;ðdÞ;light-coneðl−Þ ¼ 0 because, as can be seen from Fig. 6, the relevant order-gs vertex vanishes.
We conclude that the radiative jet functions are identical in the Feynman gauge and the light-cone gauge:

Amod
ðaÞ;Feynmanðl−Þ þ Amod

ðcÞ;Feynmanðl−Þ ¼ Amod
ðdÞ;light-coneðl−Þ;

Bmod
1ρ;ðdÞ;Feynmanðl−Þ þ Bmod

2ρ;ðaÞ;Feynmanðl−Þ ¼ Bmod
1ρ;ðdÞ;light-coneðl−Þ þ Bmod

2ρ;ðdÞ;light-coneðl−Þ: ð46Þ

As is expected from our Ward-identity analysis [Eq. (40)],
Amod is separately gauge invariant, while the sum of Bmod

1ρ

and Bmod
2ρ is gauge invariant.

VIII. GAUGE INVARIANCE IN THE LABEL-
MOMENTUM FORMULATION OF SCET

Finally, we mention that certain versions of the label-
momentum formulation of SCET [8,9] also contain expres-
sions for the interactions between a soft-quark and a
hard-collinear quark that are constructed from ostensibly
gauge-invariant operators. The final expressions for the
soft-quark-to-hard-collinear-quark Lagrangians are given

in Eqs. (33) and (35) of Ref. [8] and Eq. (27) of Ref. [9].
They are derived by making use of the soft-quark equation
of motion, which, as we have seen, is a crucial ingredient in
deriving a gauge-invariant Lagrangian that describes the
transitions of a soft quark to a hard-collinear quark.
The soft-quark-to-hard-collinear-quark Lagrangians in

Eqs. (33) and (35) of Ref. [8] are proportional to the
quantities M and Bc⊥, and the soft-quark-to-hard-collinear-
quark Lagrangians in Eq. (27) of Ref. [9] are proportional
to the quantities and n ·M and Bc⊥. Since these quantities
are commutators of covariant derivatives, the correspond-
ing Lagrangians vanish when the gauge fields are set to
zero. That is, these Lagrangians must produce at least one
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gluon emission if they are to give nonvanishing con-
tributions to amplitudes. Consequently, the missing
diagrams (Fig. 7) receive vanishing contributions from
these Lagrangians, and these Lagrangians evade the gauge-
invariance issue that we have identified in this paper.
That is, the corresponding operators are truly gauge
invariant.
As a further check, we have used the Lagrangians in

Eqs. (33) and (35) of Ref. [8], to compute radiative jet
functions in order αs and found agreement with our results
for the radiative jet functions in Sec. VII. Here, it was
necessary to sum the contributions from the order-λ
operator in Eq. (33) and the M⊥ order-λ2 operator in
Eq. (35) in order to obtain gauge-invariant results, in
accordance with the observation in Ref. [9] that collinear
gauge transformations of these Lagrangians mix operators
that have different scaling in λ.
We have also used the Lagrangians in Eq. (27) of Ref. [9]

to compute radiative jet functions in order αs. Again, we
have found agreement with our results for the radiative jet
functions in Sec. VII. In this computation, we used the
Feynman rules that are given in the erratum to Ref. [8]. In
order to obtain all of the contributions to the radiative jet
functions of order λ2, it was also necessary, in the case of
these Lagrangians, to consider the order-λ correction to the
gluon propagator.7 We derived the Feynman rule for this
correction to the gluon propagator by applying the field
redefinitions in Eq. (14) of Ref. [9] to the gauge-fixed
gauge-field action.

IX. DISCUSSION

In this paper we have pointed out that the Lagrangians
in Refs. [6,7] (BCDF) are not gauge invariant in the
hard-collinear sector. This is surprising because these
Lagrangians are constructed from operators that are osten-
sibly gauge invariant: hard-collinear fields are accompanied
by Wilson-line factors, and all derivatives are covariant
derivatives. The violations of gauge invariance are some-
what subtle. They arise because hard-collinear gauge
transformations multiply the quark fields by a phase
that, in momentum space, can shift the quark-field momen-
tum from the hard-collinear region to the soft region,
where the hard-collinear quark field, by definition, has
no support. This phenomenon is manifested in perturbation
theory in the hard-collinear sector through the absence of
certain diagrams that would be present in full QCD.
One consequence of the absence of these diagrams is that,
if one uses the BCDF Lagrangians directly to construct
radiative jet functions, then the radiative jet functions are
not gauge invariant by themselves.

We have demonstrated the violations of gauge invariance
by examining theWard identities for the BCDF Lagrangians
and also by computing the radiative jet functions that follow
directly from the BCDF Lagrangians at the leading order in
gs in the Feynman gauge and in the light-cone gauge. These
analyses show that the violations of gauge invariance are, at
the leading nontrivial order in gs, proportional to the inverse
of the soft-quark propagator.
Motivated by the Ward-identity and radiative-jet-

function analyses, we have modified the BCDF
Lagrangians by adding terms that are proportional to
the soft-quark equation of motion. Then, after making
use of the BPS field redefinition to factor minus-polarized
soft gluons from the hard-collinear subdiagram, we have
arrived at gauge-invariant Lagrangians, through order λ2,
that describe the couplings of a soft quark to a hard-
collinear quark. The fact that the violations of gauge
invariance can be removed through the use of a field
redefinition that is proportional to the soft-quark equation
of motion implies that S-matrix elements of the original
BCDF Lagrangians are gauge invariant.
The modified gauge-invariant Lagrangians that we have

derived are somewhat more general than the BCDF
Lagrangians, in that we have considered the case of a
nonzero quark mass. We have demonstrated the gauge
invariance of the modified Lagrangians through examina-
tion of Ward identities in order gs and through calculations
of radiative jet functions in order αs in the Feynman gauge
and the light-cone gauge. We have also given a Ward-
identity argument to show that the gauge invariance holds
to all orders in gs.
In Refs. [11,16], the order-λ1 Lagrangian in Eq. (13a)

was used to construct a radiative jet function that involves a
single-photon external state, and that radiative jet function
was computed at one and two loops in perturbation theory
in the light-cone gauge.8 As we have seen in Sec. VI, the
Lagrangian in Eq. (13a) is gauge invariant to all orders in
perturbation theory. Consequently, the calculations in
Refs. [11,16] are gauge invariant.
We have also examined the label-momentum formu-

lation of SCET in the incarnations that are given in
Refs. [8,9]. The Lagrangians in these papers that describe
the interactions between a soft quark and a hard-collinear
quark contain commutators of covariant derivatives.
Consequently, these Lagrangians must produce at least
one gluon emission if they are to give nonvanishing
contributions to amplitudes. It follows that the missing
diagrams that correspond to these Lagrangians vanish and
that the formulations of SCET in Refs. [8,9] evade the

7This contribution to the radiative jet functions corresponds to
the contribution of the M⊥ term in Eq. (35) of Ref. [8]. The M⊥
term is absent in the Lagrangian in Eq. (27) of Ref. [9].

8When the transition of soft quark to a hard-collinear quark
involves the emission of a single external photon, the corre-
sponding radiative jet function of leading order in λ derives from
the order-λ1 Lagrangian in Eq. (13a). In this case, the order-λ2
Lagrangians in Eq. (38) yield radiative jet functions that are
suppressed by at least one power of λ.
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gauge-invariance problem that we have identified in
this paper.

Note added. Recently, a paper [17] was submitted to the
arXiv that addresses the same gauge invariance issue
that we address. That paper presents the gauge-invariance
issue from an alternative point of view in which the hard-
collinear quark fields are not constrained to carry a hard-
collinear momentum.
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APPENDIX A: DERIVATION OF THE
MASS-DEPENDENT SCET LAGRANGIANS

In this appendix, we discuss the derivation of the mass-
dependent Lagrangian LBCDF

2m in Eq. (13). We follow the
general outline of the analysis in Ref. [6], but we start with
the full QCD Lagrangian with a quark mass, namely,

L ¼ ψ̄ði=D −mÞψ : ðA1Þ

We note thatm scales as λ2. We decompose this Lagrangian
in terms of the SCET fields, using ψ ¼ ξn þ ηn þ qs.
Then, we use the equation of motion for the small
component of the hard-collinear field ηn to eliminate ηn
from the Lagrangian. This leads to the following mass-
dependent Lagrangian, in addition to the terms in Eq. (34)
of Ref. [6]:

Lm ¼ −mq̄sqs þmξ̄n
1

in̄ ·D
n̄
2
i=D⊥ξn þmξ̄ni=D⊥

1

in̄ ·D
n̄
2
ξn

−m2ξ̄n
1

in̄ ·D
n̄
2
ξn þmξ̄n

1

in̄ ·D
gsn̄ · Gnqs

þmq̄sgsn̄ ·Gn
1

in̄ ·D
ξn þmξ̄

1

in̄ ·D
n̄
2
gsGn⊥qs

þmq̄sgsGn⊥
1

in̄ ·D
n̄
2
ξ; ðA2Þ

where

in̄ ·D ¼ in̄ · ∂þ gsn̄ · Gn þ gsn̄ ·Gs;

iDμ
⊥ ¼ iDμ

n⊥ þ gsG
μ
s⊥: ðA3Þ

The first term of Eq. (A2) gives the order-λ0 contribution to
the action, and it yields the mass term of the leading-power
soft-quark Lagrangian

Lð0Þ
s ¼ q̄sði=Ds −mÞqs: ðA4Þ

Note that the second and third terms on the right side of
Eq. (A2) are of order λ or smaller, while the fourth through
sixth terms are of order λ2, and the seventh and eighth terms
are of order λ3.
Next, let us perform the expansions in powers of λ that

are required for homogeneous scaling for each term of the
Lagrangian. We can accomplish this by making use of the
identity in Eq. (36) of Ref. [6],

1

in̄ ·D
gsn̄ ·Gnqs ¼ ð1 −WZ†Þqs

−
1

in̄ ·D
ð1 −WZ†Þin̄ ·Dsqs; ðA5Þ

and the power expansions of the Wilson lines and the
covariant derivatives,

WZ† ¼ Wn½1þOðλ2Þ�;
1

in̄ ·D
¼ 1

in̄ ·Dn
½1þOðλ2Þ�;

iDμ
⊥ ¼ iDμ

n⊥½1þOðλÞ�; ðA6Þ
where we have given the relative orders in λ of the
corrections. Then, through order λ2, we obtain the follow-
ing mass-dependent Lagrangians:
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Lð0Þ
m ¼ −mq̄sqs;

Lð1Þ
m ¼ mξ̄n

1

in̄ ·Dn

n̄
2
i=Dn⊥ξn þmξ̄ni=Dn⊥

1

in̄ ·Dn

n̄
2
ξn;

Lð2Þ
m ¼ −m2ξ̄n

1

in̄ ·Dn

n̄
2
ξn −mq̄sW

†
nξn −mξ̄nWnqs: ðA7Þ

Here, in order to ensure homogeneous scaling in λ, one
should multipole expand the position arguments of qs and

q̄s in Lð2Þ
m as follows:

qsðxÞ ¼ qsðxþÞ þ ½ðx⊥ · ∂⊥Þqs�ðxþÞ þOðλ2qsÞ: ðA8Þ

Note that the mass terms in Lð1Þ
m and the first term of Lð2Þ

m

would have given the mass term of the leading-power
SCET Lagrangian if we had used the power counting

m ∼ λ, rather than m ∼ λ2, as would be appropriate for
collinear modes, rather than hard-collinear modes. This
would have led to the following leading-power Lagrangian:

Lð0Þ
n jm∼OðλÞ ¼ ξ̄n

�
in ·Dn þ ði=Dn⊥ −mÞ 1

in̄ ·Dn

× ði=Dn⊥ þmÞ
�
n̄
2
ξn: ðA9Þ

APPENDIX B: POWER SUPPRESSED DIAGRAMS
OF Aðl− Þ IN FEYNMAN GAUGE

In this appendix, we show that the diagrams of Figs. 5(a)
and 5(d) lead to power-suppressed contributions in the
Feynman gauge.
The diagram of Fig. 5(a) gives

AðaÞ;Feynmanðl−Þ ¼ ðTeÞbcðTeÞda
��

−n · p
n̄
2

�
PnΠcd

3S½1�
1

ðigsγμÞ
i

2=p − l −mþ iε
Pn̄

�
βα ið−igsn̄μÞ
n̄ · ðp − lÞ þ iε

−i
ðp − lÞ2 þ iε

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ
�
n̄nϵ�

4

�
βα p−

ð−l− þ iεÞ ; ðB1Þ

where we have kept only the leading nonzero power in λ in the last line, which, in effect, enforces the multipole expansion.
Here, we are using the scalings with λ of l and p that are given in Eqs. (5) and (25), respectively. We see that the expression
in Eq. (B1) has an additional power λ2 relative to the contribution in Eq. (27). That is, it is power suppressed.
The diagram of Fig. 5(d) gives

AðdÞ;Feynmanðl−Þ ¼ ðTeÞbcðTeÞda
�
gs

�
nμ þ γ⊥μ

=p⊥
n̄ · p

�
PnΠcd

3S½1�
1

ðigsγμÞ
i

2=p − l −mþ iε
Pn̄

�
βα −i
ðp − lÞ2 þ iε

¼ −
ig2sCFδ

ba

ffiffiffiffiffiffiffiffi
2Nc

p
mpþ

1

ð−l− þ iεÞ
−m2

	
n̄nϵ�
4



βα þm

	
n̄nϵ�l⊥

4



βα

2pþð−l− þ iεÞ ; ðB2Þ

where we have kept only the leading nonzero power in λ in the last line. Again, we are using the scalings with λ of l and p
that are given in Eqs. (5) and (25), respectively. The expression in Eq. (B2) has an additional power λ2 relative to the
contribution in Eq. (27). That is, it is power suppressed.
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