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We derive an expression for the local transverse polarization of a boost-invariant expanding system of
massive particles, which involves a set of dynamical spin moments. Starting from spin kinetic theory, we
obtain a closed set of equations of motion for these spin moments. These equations are valid during the full
evolution of the system, from free streaming to local equilibrium, and can be used to study polarization
phenomena in relativistic heavy-ion collisions.
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I. INTRODUCTION

Since the first measurement of the polarization of
Lambda hyperons in relativistic heavy-ion collisions [1],
polarization phenomena have been actively investigated
both on the experimental [2–4] and theoretical [5–11] sides.
While it is commonly believed, and confirmed, that the
global polarization along the orbital angular momentum of
the system is mainly caused by the conversion of (thermal)
vorticity into spin polarization [12–15], resembling the
nonrelativistic Barnett effect [16], the origin of the momen-
tum dependence of the local polarization is not yet well
understood, and is controversially discussed [17–26].
Since the models that assume the local polarization to be
determined by thermal vorticity fail to describe the
momentum dependence of the local polarization, alterna-
tive ideas have been proposed during the last years. In
particular, the suggestion of including contributions from
thermal shear to the local-equilibrium polarization appears
to be a promising development [21–24]. On the other hand,
the effects of nonequilibrium spin dynamics on the polari-
zation are still to be investigated.
In order to obtain a dynamical description of the

polarization, lots of effort have been devoted to derive a
theory of relativistic spin hydrodynamics [27–48]. The
main idea of spin hydrodynamics is to promote the spin
tensor to a dynamical variable, in addition to the charge
current and the energy-momentum tensor, and to derive
equations of motion for these quantities, e.g., starting from
kinetic theory, and assuming the system to be in local
equilibrium [27,28], or close to local equilibrium
[42,46,48]. Since the forms of the energy-momentum

tensor and of the spin tensor depend on the choice of a
pseudogauge [49], the evolution equations in such a theory
suffer from an ambiguity related to the pseudogauge
freedom [50]. Although there have been suggestions for
a reasonable choice of pseudogauge [41,43,51], no con-
sensus has been reached so far, and it appears desirable to
derive equations of motion for the polarization which are
independent of the pseudogauge choice. Furthermore, the
early time regime of relativistic heavy-ion collisions is not
determined by local equilibrium, and the imprint of the
dynamics at early time on the polarization measured at
freeze-out has not been studied up to know.
In this paper, we propose a way to calculate the polari-

zation without referring to spin hydrodynamics. Our results
are free of any pseudogauge ambiguity, and capture the
dynamics of the system during the full evolution from free
streaming to local equilibrium. We consider a boost-
invariant system with Bjorken model [52], which is com-
monly used to describe the expansion of matter produced
in heavy-ion collisions. In the context of such a model,
it has been found that the moment equations for the
energy-momentum tensor without spin degrees of freedom
feature an attractor solution, see, e.g., Refs. [53–56] for
massless particles and Refs. [57,58] for massive particles.
Furthermore, it was shown that a simple truncation, com-
bined with a suitable adjustment of coefficients in these
truncated moment equations needed in order to enforce the
correct behavior both at the free-streaming and hydrody-
namic fixed points, lead to an excellent description of the
system at any time of the evolution [56]. These studies were
extended to include chiral degrees of freedom in Ref. [59].
In this paper, we employ a similar procedure to obtain
equations of motion for various spin moments appearing
in the polarization vector. For simplicity, we restrict
ourselves to polarization in the transverse plane. Studies
of the longitudinal polarization are left for future work.
Furthermore, due to the translational invariance in
Bjorken symmetry, the vorticity vanishes, and we hence
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automatically focus only on contributions to the polarization
which do not emerge from vorticity.
Our efforts consist first, in expressing the momentum

dependent polarization vector in the particle rest frame in
terms of the relevant dynamical spin moments, and second
in deriving a closed set of equations of motion for the latter.
In order to achieve the first part, we expand the spin-
dependent distribution function in spherical harmonics, and
define corresponding spin moments as phase-space inte-
grals of spherical harmonics weighted with the distribution
function. Although the local polarization vector is a
function of the three momentum of the particles, we are
mainly interested in its dependence on the azimuthal
momentum angle ϕ. We may thus integrate over the
absolute value and the polar angle of the three momentum,
after which the polarization vector can be written as an
infinite sum of spin moments. Then we derive the
Boltzmann equation for the spin-dependent distribution
function in Bjorken symmetry employing a relaxation time
approximation. Assuming the collision term to be local, we
impose microscopic conservation of spin angular momen-
tum. This results in a matching condition which determines
the equation of motion for the spin potential appearing in
the local-equilibrium distribution function. We then derive
an infinite system of coupled equations of motion for the
spin moments from the Boltzmann equation. In the free-
streaming limit, these equations of motion feature an
unstable and a stable fixed point, where the moments
decay with power laws. On the other hand, in the collision
dominated regime, we distinguish moments which decay
with power laws from those which decay exponentially.
Given that the relaxation time is not extremely large and the
system will have reached the hydrodynamic regime before
freeze out, the exponentially decaying moments will be
zero at the time any measurement takes place, regardless
their dynamics at early time. Therefore, we drop these
moments in the expression for the polarization vector. On
the other hand, the spin moments which decay as power
laws may be expanded in powers of relaxation time over
proper time, w−1. We find that higher moments start to
contribute to the polarization vector at corresponding
higher orders of w−1. Making use of this result, we provide
an expression for the polarization as a function of ϕ, which
is a power series of w−1. The latter may be truncated at a
given order w−k, neglecting moments which decay at least
∼w−ðkþ1Þ faster than the local-equilibrium moments. In
order to close the system of equations of motion for the
dynamical spin moments, we approximate the higher
moments, which are neglected in the polarization vector,
by an interpolation between the free-streaming fixed point
and the local-equilibrium regime. In this way, we take into
account the dynamics of the system during the full time of
the evolution. As an example, we give an explicit expres-
sion for the polarization using the next-to-leading-order

truncation and provide the equations of motion for the spin
moments appearing in this expression.
This paper is organized as follows. In Sec. II we derive a

general expression for the polarization vector as a function
of ϕ in terms of spherical harmonics and spin moments.
The Boltzmann equation for the spin-dependent distribu-
tion function in Bjorken symmetry is obtained in Sec. III. In
Sec. IV we discuss the spin potential and the matching
conditions. The equations of motion for the spin moments
are derived and analyzed in Sec. V. Finally, we present in
Sec. VI the main result of this work, consisting of the final
expression for the polarization vector and the closed set of
equations of motion. Conclusions are given in Sec. VII.
Throughout this paper, we use the following notation
and conventions, a · b≡ aμbμ, gμν ¼ diagðþ;−;−;−Þ,
ϵ0123 ¼ −ϵ0123 ¼ 1. We do not distinguish between upper
and lower spatial indices of three vectors. The symbol �
indicates the complex conjugate.

II. POLARIZATION IN
HEAVY-ION COLLISIONS

We consider the polarization vector [42,60]

ΠμðpÞ≡ 1

2N

Z
dSðpÞ

Z
dΣλpλsμfðx;p; sÞ; ð1Þ

where Σλ is the freeze-out hypersurface, and fðx; p; sÞ
is the distribution function depending on the space-
time position xμ, on the on-shell three-momentum p,
and on the spin four-vector sμ. Furthermore dSðpÞ≡
ðm=

ffiffiffi
3

p
πÞd4sδðp · sÞδðs2 þ 3Þ and is the integration mea-

sure on sμ, and N is a normalization

N ≡
Z

dΣλpλ

Z
dSðpÞf: ð2Þ

Since in heavy-ion collisions the polarization is measured
in the particle rest frame [1], we aim at calculating the
following Lorentz transformed polarization three-vector,

Π⋆ðpÞ¼
1

2N

Z
dSðpÞ

Z
dΣλpλ

�
s−

ðs ·pÞp
EpðmþEpÞ

�
f ð3Þ

with Ep ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. In the following, we work up to

first order in ℏ and assume that polarization effects enter
only at first order. Then, the distribution function takes the
form [61]

fðx; p; sÞ ¼ 1

2
½F ðx; pÞ − s ·Aðx; pÞ� ð4Þ

with F ðx; pÞ of zeroth order and Aμðx; pÞ of first order in
ℏ. Since any component of Aμ parallel to pμ would vanish
in the spin integration, we may assume p ·A ¼ 0 without
loss of generality.

NORA WEICKGENANNT and JEAN-PAUL BLAIZOT PHYS. REV. D 109, 056019 (2024)

056019-2



For comparison to measurements of the local Λ polari-
zation, we need to access the dependence of Π⋆ on the
azimuthal momentum angle ϕ [17]. In order to do so, it is
convenient to expand the distribution function f in terms of
spherical harmonics as

fðx;p; sÞ ¼
X∞
n¼0

Xn
l¼−n

Nnlf̃nlðx; p; sÞYl
nðθ;ϕÞ; ð5Þ

where

Yl
nðθ;ϕÞ≡ Pl

nðcos θÞeilϕ; ð6Þ
Pl

n are associated Legendre polynomials, θ is the polar
angle of the three-momentum p,

cos θ≡ pz

p
; p≡

ffiffiffiffiffi
p2

q
; ð7Þ

and ϕ is the azimuthal angle of p. The coefficients f̃nl
depend on p only through p. We also defined the
normalization coefficients

Nnl ≡ 2nþ 1

4π

ðn − lÞ!
ðnþ lÞ! ð8Þ

such that

Nnl

Z
dϕd cos θYl

nðθ;ϕÞYk
mðθ;ϕÞ ¼ δnmδlk: ð9Þ

In the following, we consider the polarization for a
system which depends on x only through the proper time τ,
see the next section for details. We also assume that the
freeze out takes place at constant proper time τ. As we are
interested in the dependence of Π⋆ on ϕ, we can perform
the p and θ integrations in the numerator and the denom-
inator of Eq. (3), respectively. Inserting Eq. (5), we obtain

Π⋆ðϕÞ ¼
1

2N

X∞
n¼0

Xn
l¼−n

Z
dp

Z
d cos θp2Ep

×

�
Anl −

ðAnl · pÞp
Epðmþ EpÞ

�
NnlYl

nðθ;ϕÞ; ð10Þ

where we assumed that N does not depend on ϕ and we
defined

N ðτÞ≡ 1R
dΣτ

Z
dp

Z
d cos θp2Nðτ; p; θÞ; ð11Þ

with Στ the freeze-out hypersurface at constant τ, as well as

Ak
nlðτ; pÞ≡

Z
dSðpÞskf̃nlðτ; p; sÞ

¼
Z

dSðpÞ
Z

d cos θ
Z

dϕskYl
nðθ;ϕÞf: ð12Þ

Note that we made use of Eq. (4) and of the relation
p ·A ¼ 0 to find that

R
dSðpÞskf ¼ Ak, from which it

follows that
R
dSðpÞskf̃nl is a function of τ and p only. The

integration over d cos θ will make certain terms in Eq. (10)
vanish. For l ¼ 0 we have

Nn0

Z
d cos θP0

nðcos θÞ ¼ δn0: ð13Þ

Furthermore, we know that due to the symmetry of the
associated Legendre polynomialsZ

d cos θPl
nðcos θÞ ¼ 0; nþ l odd: ð14Þ

This means that the sum in Eq. (10) needs to be taken only
over the values of l with nþ l even.
Note that the full dynamics of the polarization vector is

contained in the coefficients Ak
nlðτ; pÞ. We will now

express these coefficients through spin moments and
determine their equations of motion. To this end, we define
the spin moments

Gk
nlr ≡

Z
ps

�
p
Ep

�
r
Yl
nðθ;ϕÞskf;

Ik
nlr ≡m

Z
ps

1

Ep

�
p
Ep

�
r
Yl
nðθ;ϕÞskf; ð15Þ

where we introduced the short-hand notation
R
ps ≡

ðm=
ffiffiffi
3

p
πÞ R d3pdszdθs, with θs the polar angle of the spin

three-vector in cylindrical coordinates. Note that f in
Eq. (15) should be evaluated for on-shell momentum

and spin, i.e., p0≡Ep, s0≡p ·s=Ep, s⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s20 − s2z þ 3
p

, such that f depends only on p, sz, and θs.
The choice of cylindrical coordinates for the spin variable is
made for convenience. Since f is real and P−l

n ðcos θÞ ¼
ð−1Þl½ðn − lÞ!=ðnþ lÞ!�Pl

nðcos θÞ we have

Gk
nð−lÞr ¼

Z
ps

�
p
Ep

�
r
ð−1Þl ðn − lÞ!

ðnþ lÞ!P
l
nðcos θÞe−ilϕskf

¼ ð−1Þl ðn − lÞ!
ðnþ lÞ! ðG

k
nlrÞ�: ð16Þ

Thus it is sufficient to calculate the moments with positive
l in order to determine the polarization.
Performing the dp integration over the terms in the

square brackets in Eq. (10), we obtain

2

Z
dpp2EpAk

nl ¼ Gk
nl0; ð17Þ

and, e.g., for k ¼ x
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−2
Z

dpp2Ep
ðAnl · pÞpx

Epðmþ EpÞ
¼ −2

Z
dpp2

1

ðmþ EpÞ
Z

dSðpÞðsxpx þ sypy þ szpzÞpxf̃nlðx; p; sÞ

¼ aþnl
�
Ix
nðlþ2Þ0 − Gx

nðlþ2Þ0 þ Iy
nðlþ2Þ0 − Gy

nðlþ2Þ0
�

þ bþnl
�
Ix
ðn−2Þðlþ2Þ0 − Gx

ðn−2Þðlþ2Þ0 þ Iy
ðn−2Þðlþ2Þ0 − Gy

ðn−2Þðlþ2Þ0
�

þ cþnl
�
Ix
ðnþ2Þðlþ2Þ0 − Gx

ðnþ2Þðlþ2Þ0 þ Iy
ðnþ2Þðlþ2Þ0 − Gy

ðnþ2Þðlþ2Þ0
�

þ a−nl
�
Ix
nðl−2Þ0 − Gx

nðl−2Þ0 − Iy
nðl−2Þ0 þ Gy

nðl−2Þ0
�

þ b−nl
�
Ix
ðn−2Þðl−2Þ0 − Gx

ðn−2Þðl−2Þ0 þ Iy
ðn−2Þðl−2Þ0 − Gy

ðn−2Þðl−2Þ0
�

þ c−nl
�
Ix
ðnþ2Þðl−2Þ0 − Gx

ðnþ2Þðl−2Þ0 þ Iy
ðnþ2Þðl−2Þ0 − Gy

ðnþ2Þðl−2Þ0
�

þ a0nlðIx
nl0 − Gx

nl0Þ þ b0nl
�
Ix
ðn−2Þl0 − Gx

ðn−2Þl0
�þ c0nl

�
Ix
ðnþ2Þl0 − Gx

ðnþ2Þl0
�

þ dþnl
�
Iz
nðlþ1Þ0 − Gz

nðlþ1Þ0
�þ eþnl

�
I z
ðn−2Þðlþ1Þ0 − Gz

ðn−2Þðlþ1Þ0
�

þ fþnl
�
I z
ðnþ2Þðlþ1Þ0 − Gz

ðnþ2Þðlþ1Þ0
�þ d−nlðIz

nðl−1Þ0 − Gz
nðl−1Þ0

�
þ e−nl

�
Iz
ðn−2Þðl−1Þ0 − Gz

ðn−2Þðl−1Þ0
�þ f−nl

�
I z
ðnþ2Þðl−1Þ0 − Gz

ðnþ2Þðl−1Þ0
�
; ð18Þ

where we made use of the properties of the associated
Legendre polynomials to express the terms in the first line
through spherical harmonics. The coefficients are given in
Appendix A.
Thus, in order to obtain the polarization, we need to

determine all spin moments appearing in Eqs. (17) and (18).
In the remainder of this paper,wewill calculate the equations
of motion for these spin moments, Eq. (15), for a boost
invariant expanding system.Making use of the properties of
these equations ofmotion,wewill then showhow to truncate
the sums in Eq. (10) in a reasonableway, and provide closed
equations of motion for the moments appearing in the final
expression for the polarization vector.

III. SPIN KINETIC THEORY
FOR BJORKEN EXPANSION

We consider the Boltzmann equation [61]

p · ∂fðx; p; sÞ ¼ C½f�; ð19Þ

where the collision term C½f� is treated in the relaxation
time approximation, viz.

C½f� ¼ −p · u
fðx; p; sÞ − feqðx; p; sÞ

τR
: ð20Þ

Here feqðx; p; sÞ is the local-equilibrium distribution func-
tion, uμ the fluid velocity, and τR the relaxation time, which
is assumed to be constant. We assume Bjorken symmetry,
i.e., boost invariance along the z direction and translational
invariance in the x-y plane with uμ ≡ ðt; 0; 0; zÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
.

Consider the distribution function fðt; z;p⊥; pz; θs; szÞ
with p⊥ ≡ ðpx; pyÞ. Boost invariance along the z direction
tells us that

fðt; z; pz; szÞ ¼ fðτ; p0
z; s0zÞ; ð21Þ

where we suppressed the dependence on variables which
are unaffected by the boost, and defined the proper time
τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

, p0
z ≡ ðpz − Epz=tÞγ, and s0z ≡ ðsz − s0z=tÞγ

with γ ≡ t=τ. We have therefore

∂zfðt; z; pz; szÞ ¼ ∂zfðτ; p0
z; s0zÞjz¼0;

¼ −
�
Ep

τ
∂pz

þ s0
τ
∂sz

�
fðτ; pz; szÞ: ð22Þ

Using this relation, one can rewrite the Boltzmann equa-
tion (19) as follows

�
∂τ −

pz

τ
∂pz

−
pz

E2
p

p · s
τ

∂sz

�
fðτ;p⊥; pz; θs; szÞ

¼ −
fðτ;p⊥; pz; θs; szÞ − feqðτ;p⊥; pz; θs; szÞ

τR
: ð23Þ

As shown in Appendix B, an exact analytical solution for
Eq. (23) can be obtained under the assumption that the
initial polarization at τ ¼ τ0 is restricted to the transverse
plane, i.e., the initial distribution function depends on θs
and sz only through sx ≡ s⊥ cos θs and sy ≡ s⊥ sin θs,

fðτ ¼ τ0;p⊥; pz; θs; szÞ ¼ finðp⊥; pz; sx; syÞ: ð24Þ

With this, we find that
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fðτ;p⊥;pz;sz;θsÞ

¼Dðτ;τ0Þfin
�
p⊥;pz

τ

τ0
;s⊥cosθs;s⊥ sinθs

�

þ
Z

τ

τ0

dτ0

τR
Dðτ;τ0Þfeq

�
p⊥;pz

τ

τ0
;s⊥cosθs;s⊥ sinθs

�
ð25Þ

with

Dðτ1; τ2Þ≡ exp

�
−
τ1 − τ2
τR

�
ð26Þ

solves Eq. (23) given that the equilibrium distribution
function depends only on sx and sy. We remark that this
does not mean that it is independent of sz, since sx and sy
are functions of sz after integrating out the delta functions.
Note that, although Eq. (25) looks simple, solving it
explicitly is actually involved, in part due the necessity
to impose matching conditions to determine the parameters
of feq (see below). In the following, we will derive an
alternative, easier way to obtain the polarization through
equations of motion for the moments. We will restrict
ourselves to a situation where both the initial polarization
and equilibrium polarization are restricted to the transverse
plane in order to keep the discussion compact. The case of
general polarization will be investigated in the future. The
distribution function (4) can then be written as

fðτ;p⊥; pz; sz; θsÞ ¼
1

2
½F ðτ;pÞ þ s⊥ cos θsAxðτ;pÞ

þ s⊥ sin θsAyðτ;pÞ�: ð27Þ

IV. SPIN POTENTIAL

In spin kinetic theory, the local-equilibrium distribution
function is given by [61]

feq ¼
1

ð2πℏÞ3 exp
�
−β · pþ ℏ

4
ΩμνΣ

μν
s

�
; ð28Þ

where Σμν
s ≡ −ð1=mÞϵμναβpαsβ is the dipole-moment ten-

sor and βμ and Ωμν are Lagrange multipliers. While
βμ ≡ βuμ, equal to the ratio of the fluid velocity to the
temperature T ¼ 1=β, is related to the conservation of the
four momentum, Ωμν is the so-called spin potential and is
related to the conservation of total angular momentum.
Imposing Bjorken symmetry and a dependence on sx and
sy only, one reduces Eq. (28) to

feqðp⊥;pz; s⊥ cosθs; s⊥ sinθsÞ

¼ 1

ð2πℏÞ3 exp
�
−βEp−

ℏ
2m

κz0ðpx sinθs −py cosθsÞs⊥
�
ð29Þ

with κz0 ≡ −Ωz0 being the only nonzero component of Ωμν.
The Lagrange multipliers βμ and Ωμν are determined
through matching conditions. In this work, we consider
a local collision term, i.e., no orbital angular momentum is
transferred into spin and the dipole-moment tensor is
conserved separately in collisions [61]. Since in this case
the collision term (20) has to respect the microscopic
conservation of spin angular momentum in addition to the
conservation of linear momentum,Z

d3pdSðpÞpμC½f� ¼ 0;Z
d3pdSðpÞΣμν

s C½f� ¼ 0; ð30Þ

we impose the matching conditionsZ
d3pdSðpÞpμf ¼

Z
d3pdSðpÞpμfeq;Z

d3pdSðpÞΣμν
s f ¼

Z
d3pdSðpÞΣμν

s feq: ð31Þ

Considering μ ¼ 0, ν ¼ z in the second equation (31) and
using Eq. (15), we obtain

ImGx
111 − ReGy

111 ¼ ImGx
111;eq − ReGy

111;eq: ð32Þ

Inserting Eq. (29) on the right-hand side of Eq. (32), we
then find

κz0 ¼ −
1

2ℏ

�Z
d3pp2

xF eq

�
−1
σ; ð33Þ

where we defined

σ ≡ ImGx
111 − ReGy

111: ð34Þ

Thus, σ is the only quantity that we need, in addition to
Gk
nl0 and Ik

nl0, in order to obtain the polarization, since σ
determines the spin potential, and consequently the equi-
librium values of the spin moments.
We remark that Eq. (30) are properties of the kinetic

theory and are therefore independent of the concept of spin
hydrodynamics. However, it is possible to relate Eq. (30) to
macroscopic conservation laws for the energy-momentum
tensor Tμν and the total angular-momentum tensor Jλ;μν,
respectively,

∂μTμν ¼ 0; ∂λJλ;μν ¼ 0: ð35Þ

In the framework of spin hydrodynamics, the total angular
momentum is split into orbital and spin parts,

Jλ;μν ¼ xμTλν − xνTλμ þ ℏSλ;μν; ð36Þ
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Sλ;μν being the spin tensor. The choice of the splitting (36),
and therefore that of the energy-momentum tensor and of
the spin tensor, depends on the pseudogauge, the con-
servation laws (35) being independent of the latter [49,50].
In the Hilgevoord-Whouthuysen (HW) pseudogauge [62]
the spin tensor is conserved separately, as long as only local
collisions are considered [61]. The HW energy-momentum
tensor reads [50]

Tμν ¼ 1

4

Z
ps

1

E2
p
pμpνf ð37Þ

and the HW spin tensor is given by [50]

Sλ;μν ¼ 1

8

Z
ps

1

E2
p
pλΣμν

s f −
ℏ

4m2
∂
½νTμ�λ ð38Þ

with the conservation equation

∂λSλ;μν ¼ 0: ð39Þ

Comparing the right-hand sides of Eqs. (37) and (38) with
Eq. (31), we see that the latter are equivalent to the
matching conditions

uμTμν ¼ uμT
μν
eq ;

uλSλ;μν ¼ uλS
λ;μν
eq ; ð40Þ

and ensure the conservation laws (35). Equations of motion
for the spin tensor may be obtained by expressing the first
term in Eq. (38) in terms of the spin moments Gk

nlr in
Eq. (15). However, for our purpose of calculating the
polarization, the spin tensor itself is not needed. Instead, we
will focus on evaluating the spin moments appearing in
Eqs. (17) and (18).

V. EQUATIONS OF MOTION
FOR THE SPIN MOMENTS

Making use of the Boltzmann equation (23), the proper-
ties of associated Legendre polynomials and the identity
(B6), we obtain the equations of motion

∂τGx
nlr ¼ −

1

τ

	
anlrGx

nlr þ bnlrGx
ðn−2Þlr þ cnlrGx

ðnþ2Þlr

þ dnlrGx
nlðrþ2Þ þ enlrGx

ðn−2Þlðrþ2Þ

þ fnlrGx
ðnþ2Þlðrþ2Þ



−

1

τR

�
Gx
nlr − Gx

nlr;eq

�
; ð41Þ

where the coefficients and the detailed calculation are
shown in Appendix D. The equations of motion for Ix

nlr
are obtained analogously as

∂τIx
nlr ¼ −

1

τ

	
anlrIx

nlr þ bnlrIx
ðn−2Þlr þ cnlrIx

ðnþ2Þlr

þ d̃nlrIx
nlðrþ2Þ þ ẽnlrIx

ðn−2Þlðrþ2Þ

þ f̃nlrIx
ðnþ2Þlðrþ2Þ



−

1

τR

�
Ix
nlr − Ix

nlr;eq

�
; ð42Þ

where the coefficients in the first three terms are identical to
those in Eq. (41), and the last three coefficients can be
found in Appendix D. The equations of motion for Gy

nlr and
Iy
nlr are trivially obtained from Eqs. (41) and (42) by

substituting x ↦ y. In contrast to the massless case, where
each equation of motion for the orthogonal moments
couples only to two other moment [59], in the massive
case the use of an orthogonal basis leads to an additional
coupling of moments with different r. Note however that
we need only moments with r ¼ 0 for the polarization
vector, see Eqs. (17) and (18). In order to solve the systems
of equations of motion (41) and (42) for a finite number of
spin moments, one requires a reasonable truncation which
closes the sets of equations. In the following two sub-
sections, we will discuss the equations of motion in the
free-streaming regime and in the hydrodynamic regime,
respectively. Making use of the results obtained from this
discussion, we will then be able to close the equations of
motion.

A. Free-streaming regime

The free-streaming regime of the equations of motion for
the spin moments, i.e., the regime τ ≪ τR, is discussed in
Appendix C. In particular, we show there that, as long as
collisional effects can be neglected, the system approaches
the stable free-streaming fixed point where the spin
moments are related through

Gx
nlr

Gx
mkr

¼ Pl
nð0Þ

Pk
mð0Þ

; nþ l even;

Gx
nlr

Gx
mkr

¼ ðnþ lÞPl
n−1ð0Þ

ðmþ kÞPk
m−1ð0Þ

; nþ l odd: ð43Þ

Using these relations, it is possible to calculate the
polarization at the free-streaming fixed point, see
Appendix F. When collisional effects start to play a role,
the system leaves the free-streaming fixed point and enters
the hydrodynamic regime. We expect that any measurement
of the polarization takes place when the system has reached
this regime. Hence, we need an expression for the polari-
zation valid for τ ≫ τR, which we construct in the next
subsection.

B. Hydrodynamic regime

In the hydrodynamic regime, τ ≫ τR, the collision term,
given respectively by the last lines of Eqs. (41) and (42),
determines the dynamics of the system. Inserting Eq. (29)

NORA WEICKGENANNT and JEAN-PAUL BLAIZOT PHYS. REV. D 109, 056019 (2024)

056019-6



into Eq. (15), we find that the local-equilibrium spin
moments appearing in the collision term are given by

Gx
nlr;eq ¼

2ℏ
m

Z
d3pYl

nðθ;ϕÞEp

�
p
Ep

�
r
κz0 p sin θ sinϕF ;

¼ −
2iℏ
m

Z
d3pYl

nðθ;ϕÞEp

�
p
Ep

�
r
κz0p

×

�
1

2
Y1
1ðθ;ϕÞ − Y−1

1 ðθ;ϕÞ
�
F ;

¼ δn1δl1Gx
11r;eq þ δn1δlð−1ÞGx

1ð−1Þr;eq: ð44Þ

Note that ðGx
1ð−1Þr;eqÞ� ¼ −ð1=2ÞGx

11r;eq. The same holds for

Ix
nlr. We also obtain

Gy
nlr;eq ¼

2ℏ
m

Z
d3pYl

nðθ;ϕÞEp

�
p
Ep

�
r
κz0p sin θ cosϕF ;

¼ 2ℏ
m

Z
d3pYl

nðθ;ϕÞEp

�
p
Ep

�
r
κz0p

×

�
1

2
Y1
1ðθ;ϕÞ þ Y−1

1 ðθ;ϕÞ
�
F ;

¼ δn1δl1G
y
11r;eq þ δn1δlð−1ÞG

y
1ð−1Þr;eq; ð45Þ

and analogously for Iy
nlr. Inserting these results on the

right-hand sides of Eqs. (41) and (42), we find that only the
moments with jlj ¼ 1 and n odd couple to equilibrium
quantities in the equations of motion. All other equations of
motion do not contain equilibrium contributions, and
therefore become for τ ≫ τR, e.g.,

∂τGx
nlr ¼ −

1

τR
Gx
nlr: ð46Þ

Thus, these moments decay exponentially in the hydro-
dynamic regime

Gx
nlr∼e−τ=τR ; jlj≠ 1 or n even; ð47Þ

and do not feature a power expansion around local
equilibrium.
On the other hand, the moments Gx

nð�1Þr with n odd

couple to Gx
1ð�1Þr, which is nonzero in local equilibrium.

These moments decay therefore with power laws, and it is
possible to expand them around local equilibrium

Gx
n1r ¼ Gx

11r;eq

X∞
k¼qn

gxðkÞnr w−k ð48Þ

with w≡ τ=τR and dimensionless parameters gxðkÞnr . From
the equations of motion (41) we find that there are no
contributions to the sum smaller than k ¼ ðn − 1Þ=2,

therefore we can set qn ¼ ðn − 1Þ=2 without loss of
generality. This can be proven as follows. For n ¼ 1 the
statement is trivial. Furthermore, we know that qn > 0 for
n > 1, which validates the statement for n ¼ 3. Assuming
qn ¼ ðn − 1Þ=2 for n − 2, we obtain for n ≥ 3

−
X∞
k¼qn

zðkÞnr kw−k−1

¼ −
�
ānlr

X∞
k¼qn

zðkÞnr w−k−1 þ b̄nlr
X∞

k¼ðn−3Þ=2
zðkÞðn−2Þrw

−k−1

þ c̄nlr
X∞

k¼qnþ2

zðkÞðnþ2Þrw
−k−1

þ d̄nlr
X∞
k¼qn

zðkÞnðrþ2Þw
−k−1 þ ēnlr

X∞
k¼ðn−3Þ=2

zðkÞðn−2Þðrþ2Þw
−k−1

þ f̄nlr
X∞

k¼qnþ2

zðkÞðnþ2Þðrþ2Þw
−k−1

�
−
X∞
k¼qn

zðkÞnr w−k: ð49Þ

For n > 3, there is no contribution ∼w−1 from the terms in
the brackets. Thus qn > 1 for n > 3. Inserting this result
back into Eq. (49), we find with the same reasoning that
qn > 2 for n > 5. This can be continued to any n, thus
qn ¼ ðn − 1Þ=2. The same reasoning applies also for Gy

nlr,
Ix
nlr, and Iy

nlr, hence, e.g.,

Ix
n1r ¼ Ix

11r;eq

X∞
k¼qn

ixðkÞnr w−k: ð50Þ

VI. POLARIZATION VECTOR
FROM CLOSED MOMENT EQUATIONS

The exact determination of the polarization (10) requires,
in principle, an infinite number of spin moments, see
Eqs. (17) and (18). However, taking into account the
results of the previous section, we may simplify Eq. (10)
by neglecting all spin moments which decay exponentially
in the hydrodynamic regime. In heavy-ion collisions, the
polarization is measured at freeze out, where the system is
generally supposed to be already close to local equilibrium.
Therefore, all exponentially decaying spin moments will
have disappeared at the time of the measurement, regard-
less their initial conditions or dynamics in the free-stream-
ing regime. Assuming that the system is close enough to
local equilibrium that the power expansion (48) converges
and the exponentially decaying moments have disappeared,
we obtain by inserting Eqs. (17) and (18) with Eqs. (48)
and (50) into Eq. (10) for k ¼ x
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Πx
⋆ðϕÞ¼

1

N
Re

(X∞
k¼0

X
n¼1;3;…;2kþ1

h	
hnGx

110;eqg
xðkÞ
n1

þ h̃nIx
110;eqi

xðkÞ
n1



eiϕ− h̄n

	
Gx
110;eqg

xðkÞ
n1 −Ix

110;eqi
xðkÞ
n1

þGy
110;eqg

yðkÞ
n1 −Iy

110;eqi
yðkÞ
n1



e−iϕ

i
w−k

)

−
1

N
Re

"X∞
k¼1

X
n¼3;5;…;2kþ1

q̂n
	
Gx
110;eqg

xðkÞ
n1 −Ix

110;eqi
xðkÞ
n1

þGy
110;eqg

yðkÞ
n1 −Iy

110;eqi
yðkÞ
n1



w−ke3iϕ

#
: ð51Þ

In order to derive Eq. (51), we used Eq. (16),
Nnð−lÞ ¼ ½ðnþ lÞ!=ðn − lÞ!�2Nnl, which follows from
Eq. (8), and various relations between the coefficients
(A4) for positive and negative l, which can be derived from
Eq. (A1). The calculation and the factors are given in
Appendix A.
Although Eq. (51) still looks a bit complicated, the

dependence on ϕ is actually simple. We also remark that all
terms are zero if integrated over ϕ, i.e., the global
polarization in that case vanishes. The convergence of
the power series in Eq. (51) is controlled by the terms w−k.
In practice, we want to obtain the polarization at a given,
sufficiently large value of w, the freeze-out time, and one
can truncate the series at some small k, neglecting moments
which decay at least ∼w−ðkþ1Þ faster than the equilibrium
quantities. The approximation is systematically improvable
by using higher maximal values for k. At any truncation, we
may reexpress the k-dependent quantities through Eqs. (48)
or (50) in terms of the full spin moments. Then, wewill deal
with a limited number of dynamical moments, which can
be calculated from the equations of motion (41) and the
analogs for the other moments. We remark that the
expansion in Eq. (51) is not equivalent to a gradient
expansion of the Boltzmann equation itself around local
equilibrium such as the Chapman-Enskog expansion. For
the latter, only the equilibrium potentials (which in our case
would be only β and κz0) are dynamical, and all other
quantities are expressed as their gradients. On the other
hand, in our approach the expansion in w−1 only separates
faster decaying moments from slower ones, taking into
account the dynamics of the latter during the full evolution
of the system. For our purpose, it is therefore not sufficient
to consider only the hydrodynamic regime of the equations
of motion, since the dynamics at early time may leave an
imprint on the moments which are not negligible at freeze
out. Instead, following Ref. [56], we assume that the system
evolves from the free-streaming fixed point to the hydro-
dynamic regime, i.e., the system reaches the stable free-
streaming fixed point before the collisions become relevant
for the dynamics. Then, in order to close equations of

motion (41) and (42), which determine the dynamical
spin moments, at n ¼ nmax ≡ 2kmax þ 1 with kmax > 0,
we may replace

Gx
ðnmaxþ2Þ10 →

P1
nmaxþ2ð0Þ
P1

nmax
ð0Þ Gx

nmax10
; ð52Þ

which is valid both at the free-streaming fixed point due to
Eq. (43) and in local equilibrium, since both moments
vanish at the latter. Analogously, remembering the second
identity in Eq. (C2), we may ignore the terms which couple
moments of different r as long as we are close to the stable
free-streaming fixed point. For the moments which vanish
in local equilibrium, we can drop the terms proportional to
dnlr, enlr, and fnlr during the full evolution. On the other
hand, if these terms contain moments which are nonzero in
local equilibrium, we need an interpolation to connect the
two regimes, cf. Ref. [58]. Since the sum of the last three
terms vanishes at the free-streaming fixed point, only the
contributions from the hydrodynamic regime need to be
taken into account. We use the following interpolation
between the two regimes

Gx
n12 → −e−w=2P1

nð0ÞGx
112 þ ð1 − e−w=2ÞGx

n12;eq: ð53Þ

Here the first term corresponds to the free-streaming fixed
point and gives the major contribution for w ≪ 1, while the
second term ensures the spin moment to approach their
local-equilibrium values for w ≫ 1. Note that we used
P1

1ð0Þ ¼ −1 in the first term. We chose to express all spin
moments Gx

n12 as a function of Gx
112 for convenience,

choosing any other value for n with the corresponding ratio
of associated Legendre polynomials in the first term would
lead to the same result. Applying the replacements (52)
and (53) in Eq. (41), we obtain the following closed set of
equations of motion

∂wGx
n10 ¼ −

1

w

�
an10Gx

n10 þ bn10Gx
ðn−2Þ10 þ cn10Gx

ðnþ2Þ10
�

−
1

w
ð1 − e−w=2Þðδn1dn10 þ δn3en10ÞGx

112;eq

−
�
Gx
n10 − δn1Gx

110;eq

� ð54Þ

for n < nmax and

∂wGx
n10 ¼−

1

w

��
an10þcn10

P1
nþ2ð0Þ
P1

nð0Þ
�
Gx
n10þbn10Gx

ðn−2Þ10

�

þ 1

w
ð1−e−w=2Þδn3enl0Gx

112;eq−Gx
n10 ð55Þ

forn ¼ nmax. The closed equations ofmotion forIx
nl0 can be

obtained analogously from Eq. (42) using the respective
coefficients d̃nl0, ẽnl0, and f̃nl0. Furthermore, the equations
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of motion for the y components are identical to those for the
x components with x ↦ y.
In order to solve Eqs. (54) and (55), we need to

determine Gx
110;eq and Gx

112;eq, which depend on β and κz0
given by Eq. (33). The equation of motion for β is
determined from the first condition in Eq. (31) and the
equation of motion for

T00 ≡ ε ¼ 2

ð2πℏÞ3
Z

d3pEpe−βEp; ð56Þ

shown in Appendix E. Once β is known, Gx
110;eq and G

x
112;eq

are easiest obtained from σ in Eq. (34) through

Gx
110;eq ¼

1

2

�Z
d3pEppe−βEp

��Z
d3pp2e−βEp

�
−1
σ;

Gx
112;eq ¼

1

2

�Z
d3p

p3

Ep
e−βEp

��Z
d3pp2e−βEp

�
−1
σ;

Ix
110;eq ¼

m
2

�Z
d3ppe−βEp

��Z
d3pp2e−βEp

�
−1
σ;

Ix
112;eq ¼

m
2

�Z
d3p

p3

E2
p
e−βEp

��Z
d3pp2e−βEp

�
−1
σ;

ð57Þ

where we used

ImGx
111 ¼ −ReGy

111: ð58Þ

The equation of motion for σ can be obtained from its
definition (34) and Eq. (41) for n ¼ l ¼ r ¼ 1. Noting that
a111 ¼ 1 and c111 ¼ d111 ¼ f111 ¼ 0, see Eq. (D2), and
using Eq. (32), we obtain the simple equation of motion

∂wσ ¼ −
1

w
σ: ð59Þ

As an example, we show the expression for Πx
⋆ðϕÞ from

Eq. (51) including moments which decay at most ∼w−1

faster than the equilibrium moments,

Πx
⋆ðϕÞ ¼

1

N
Re

(X
n¼1;3

��
hnGx

n10 þ h̃nIx
n10

�
eiϕ

− h̄nðGx
n10 − Ix

n10 þ Gy
n10 − Iy

n10Þe−iϕ
�

− q̂3ðGx
310 − Ix

310 þ Gy
310 − Iy

310Þe3iϕ
)
: ð60Þ

The relevant equations of motion are

∂wGx
110 ¼ −

1

w
ða110Gx

110 þ c110Gx
310Þ −

1

w
ð1 − e−w=2Þd110Gx

112;eq −
�
Gx
110 − Gx

110;eq

�
;

∂wGx
310 ¼ −

1

w

��
a310 þ c310

P1
5ð0Þ

P1
3ð0Þ

�
Gx
310 þ b310Gx

110

�
þ 1

w
ð1 − e−w=2Þe310Gx

112;eq − Gx
310;

∂wIx
110 ¼ −

1

w
ða110Ix

110 þ c110Ix
310Þ −

1

w
ð1 − e−w=2Þd̃110Ix

112;eq −
�
Ix
110 − Ix

110;eq

�
;

∂wIx
310 ¼ −

1

w

��
a310 þ c310

P1
5ð0Þ

P1
3ð0Þ

�
Ix
310 þ b310Ix

110

�
þ 1

w
ð1 − e−w=2Þẽ310Ix

112;eq − Ix
310: ð61Þ

To solve these equations, one also needs to determine the
appearing equilibrium spin moments. Using Eq. (57), the
latter can be expressed as a function of σ and β. While σ is
easily obtained from its equation of motion (59), the
determination of β requires solving the equations of motion
for the energy-momentum tensor (E5) and using Eq. (56) to
obtain β from ε. Thus, we provided a closed set of
equations to determine the polarization vector. The explicit
numerical calculation is left for future work.

VII. CONCLUSIONS

In this paper, we derived equations of motion for the
transverse polarization of a boost-invariant system from
kinetic theory. Using spherical harmonics to expand the
distribution function, we found that the polarization vector

can be written as an infinite sum over spin moments Gk
nlr

and Ik
nlr with r ¼ 0. In order to derive equations of motion

for the spin moments, we considered the Boltzmann
equation for the spin-dependent distribution function with
the local collision term modeled by a relaxation time
approximation. After imposing boost invariance in the z
direction, the left-hand side of the Boltzmann equation
contains a term proportional to the sz derivative of the
distribution function in addition to the pz derivative. The
local-equilibrium distribution function depends on the spin
potential, which has only one nonzero component if we
restrict the polarization to the transverse plane. We used a
matching condition in order to ensure the microscopic
conservation of spin angular momentum, which determines
the nonzero component of the spin potential. Then, we
derived equations of motion for the spin moments Gk

nlr and
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Ik
nlr. In contrast to the massless case, the free-streaming

parts of these equations of motion contain six terms which
couple spin moments with different n and with different r.
We showed that for free streaming, the equations of motion
feature an unstable fixed point, where the spin moments
become independent of r, and a stable fixed point, where
the terms which couple spin moments with different r
vanish and moments with different n and l are proportional
to each other. At both free-streaming fixed points, all spin
moments decay with power laws. On the other hand, we
found that in the hydrodynamic regime only spin moments
with jlj ¼ 1 and n odd decay with power laws and
therefore feature a power expansion around local equilib-
rium, while all other spin moments decay exponentially.
Using these properties of the equations of motion, we were
able to truncate the sum over spin moments in the
polarization vector and close the system of equations of
motion in terms of the dynamical spin moments. First, since
the polarization is measured at freeze out, where exponen-
tially decaying moments have disappeared, we dropped
the corresponding terms in the polarization vector. For the
remaining terms, we inserted the power expansion of the
spin moments around local equilibrium, resulting in an
expression for the polarization which is a power series in
w−k. For any fixed value k, the sum over the index n of the
spin moments is finite. This allowed us to order the
appearing spin moments by the time scales on which they
decay in the hydrodynamic regime. Choosing a truncation
at a given value of k then also implies a maximal value for n
and corresponds to neglecting spin moments which decay
at least ∼w−ðkþ1Þ faster than the equilibrium spin moments.
We then showed how to close the system of moment
equations after choosing a truncation by replacing the spin
moments with r ¼ 0 and n larger than the maximal value
by its value at the free-streaming point, with this replace-
ment being valid also in local equilibrium. On the other
hand, for the spin moments with r ¼ 2 appearing in the
equations of motion for the spin moments with r ¼ 0 we

used an interpolation between the free-streaming fixed
point, where the corresponding terms vanish, and the
local-equilibrium regime. Finally, we obtained the equation
of motion for the equilibrium spin moment σ and expressed
the other relevant equilibrium spin moments in terms of σ.
As an example, we gave the expression for the polarization
using a truncation at k ¼ 1 and showed the corresponding
closed equations of motion for the dynamical spin
moments.
Our results show that, while the global polarization for

Bjorken symmetry vanishes, the local polarization in the
transverse plane can be nonzero. This polarization is not
induced by thermal vorticity, which is zero due to the
assumption of translational invariance, but emerges from
the initial conditions and evolves from the free-streaming
regime to the hydrodynamic regime, where it decays with
power laws, since, for a local collision term, the dipole
moment tensor is a collisional invariant and its components
survive on hydrodynamic timescales. Possible sources of
an initial polarization of the quark-gluon plasma in heavy-
ion collisions are interactions with color fields in the
glasma stage, see, e.g., Refs. [63,64]. In the future, it will
be interesting to solve the equations of motion derived in
this work, and to study in particular the dependence of the
result on the initial conditions. One may then compare the
results to measurements [65] and local-equilibrium calcu-
lations [24] of the momentum dependence of the transverse
polarization. Furthermore, it will be an interesting exten-
sion of this work to consider longitudinal polarization, as
well as a nonlocal collision term. One may also relax the
assumption of translational invariance in the x-y plane in
order to allow for nonzero thermal vorticity.
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APPENDIX A: DETAILS FOR THE POLARIZATION VECTOR

The coefficients in Eq. (18) are given by

aþnl ≡ 1

4

1

2nþ 1

�
1

2nþ 3
þ 1

2n − 1

�
;

bþnl ≡ −
1

4

1

2nþ 1

1

2n − 1
;

cþnl ≡ −
1

4

1

2nþ 1

1

2nþ 3
;

a−nl ≡ −
1

4

1

2nþ 1
ðnþ lÞðnþ l − 1Þðn − lþ 1Þ

�
n − lþ 2

2nþ 3
þ n − l
2n − 1

�
;

b−nl ≡ 1

4

1

2nþ 1

1

2n − 1
ðnþ l − 1Þðnþ lÞðnþ l − 3Þðnþ l − 2Þ;
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c−nl ≡ 1

4

1

2nþ 1

1

2nþ 3
ðn − lþ 1Þðn − lþ 2Þðn − lþ 3Þðn − lþ 4Þ;

a0nl ≡ −
1

2

1

2nþ 1

�ðnþ 2þ lÞðnþ 1þ lÞ
2nþ 3

þ ðn − l − 1Þðn − lÞ
2n − 1

�
;

b0nl ≡ 1

2

1

2nþ 1

1

2n − 1
ðnþ lÞðn − 1þ lÞ;

c0nl ≡ 1

2

1

2nþ 1

1

2nþ 3
ðn − lþ 1Þðn − lþ 2Þ;

dþnl ≡ −
1

2

1

2nþ 1

�
nþ lþ 2

2nþ 3
−
n − l − 1

2n − 1

�
;

eþnl ≡ 1

2

1

2nþ 1

nþ l
2n − 1

;

fþnl ≡ −
1

2

1

2nþ 1

n − lþ 1

2nþ 3
;

d−nl ≡ 1

2

1

2nþ 1

�
ðn − lþ 1Þðn − lþ 2Þ nþ l

2nþ 3
− ðnþ l − 1Þðnþ lÞ n − lþ 1

2n − 1

�
;

e−nl ≡ −
1

2

1

2nþ 1
ðnþ l − 1Þðnþ lÞ nþ l − 2

2n − 1
;

f−nl ≡ 1

2

1

2nþ 1
ðn − lþ 1Þðn − lþ 2Þ n − lþ 3

2nþ 3
: ðA1Þ

The calculation in order to obtain Eq. (51) reads

Πx
⋆ðϕÞ ¼

1

2N

X
n¼1;3;5;…

(X
l¼�1

�
NnlInlGx

nl0 þ
�
NnlInla0nl þ Nðnþ2ÞlIðnþ2Þlb0ðnþ2Þl þ Nðn−2ÞlIðn−2Þlc0ðn−2Þl

�
× ðIx

nl0 − Gx
nl0Þ

�
eilϕ þ �

aþnð−1ÞNnð−1ÞInð−1Þ þ bþðnþ2Þð−1ÞNðnþ2Þð−1ÞIðnþ2Þð−1Þ þ cþðn−2Þð−1ÞNðn−2Þð−1ÞIðn−2Þð−1Þ
�

× ðIx
n10 − Gx

n10 þ Iy
n10 − Gy

n10Þe−iϕ

þ ða−n1Nn1In1 þ b−ðnþ2Þ1Nðnþ2Þ1Iðnþ2Þ1 þ c−ðn−2Þ1Nðn−2Þ1Iðn−2Þ1ÞðIx
nð−1Þ0 − Gx

nð−1Þ0 þ Iy
nð−1Þ0 − Gy

nð−1Þ0Þeiϕ
)

þ 1

2N

X
n¼3;5;…

��
aþnð−3ÞNnð−3ÞInð−3Þ þ bþðnþ2Þð−3ÞNðnþ2Þð−3ÞIðnþ2Þð−3Þ þ cþðn−2Þð−3ÞNðn−2Þð−3ÞIðn−2Þð−3Þ

�
×
�
Ix
nð−1Þ0 − Gx

nð−1Þ0 þ Iy
nð−1Þ0 − Gy

nð−1Þ0
�
e−3iϕ

þ �
a−n3Nn3In3 þ b−ðnþ2Þ3Nðnþ2Þ3Iðnþ2Þ3 þ c−ðn−2Þ3Nðn−2Þ3Iðn−2Þ3

��
Ix
n10 − Gx

n10 þ Iy
n10 − Gy

n10

�
e3iϕ

�
;

¼ 1

2N

X∞
k¼0

X
n¼1;3;…;2kþ1

�
hnGx

110;eqg
xðkÞ
n1 þ h̃nIx

110;eqi
xðkÞ
n1

− znðGx
1ð−1Þ0;eqg

xðkÞ
nð−1Þ − Ix

1ð−1Þ0;eqi
xðkÞ
nð−1Þ þ Gy

1ð−1Þ0;eqg
yðkÞ
nð−1Þ − Iy

1ð−1Þ0;eqi
yðkÞ
nð−1ÞÞ

�
w−keiϕ

þ 1

2N

X∞
k¼0

X
n¼1;3;…;2kþ1

h
−h̄n

�
Gx
110;eqg

xðkÞ
n1 − Ix

110;eqi
xðkÞ
n1 þ Gy

110;eqg
yðkÞ
n1 − Iy

110;eqi
yðkÞ
n1

�
þ z̄nGx

1ð−1Þ0;eqg
xðkÞ
nð−1Þ þ ẑnIx

1ð−1Þ0;eqi
xðkÞ
nð−1Þ

i
w−ke−iϕ

−
1

2N

X∞
k¼1

X
n¼1;3;…;2kþ1

q̂n
�
Gx
110;eqg

xðkÞ
n1 − Ix

110;eqi
xðkÞ
n1 þ Gy

110;eqg
yðkÞ
n1 − Iy

110;eqi
yðkÞ
n1

�
w−ke3iϕ
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−
1

2N

X∞
k¼1

X
n¼3;5;…;2kþ1

v̂n
	
Gx
1ð−1Þ0;eqg

xðkÞ
nð−1Þ − Ix

1ð−1Þ0;eqi
xðkÞ
nð−1Þ þ Gy

1ð−1Þ0;eqg
yðkÞ
nð−1Þ − Iy

1ð−1Þ0;eqi
yðkÞ
nð−1Þ



w−ke−3iϕ;

¼ 1

N
Re

X∞
k¼0

X
n¼1;3;…;2kþ1

½ðhnGx
110;eqg

xðkÞ
n1 þ h̃nIx

110;eqi
xðkÞ
n1 Þeiϕ

− h̄nðGx
110;eqg

xðkÞ
n1 − Ix

110;eqi
xðkÞ
n1 þ Gy

110;eqg
yðkÞ
n1 − Iy

110;eqi
yðkÞ
n1 Þe−iϕ�w−k

�

−
1

N
Re

�X∞
k¼1

X
n¼3;5;…;2kþ1

q̂nðGx
110;eqg

xðkÞ
n1 − Ix

110;eqi
xðkÞ
n1 þ Gy

110;eqg
yðkÞ
n1 − Iy

110;eqi
yðkÞ
n1 Þw−ke3iϕ

�
; ðA2Þ

with a�nl ≡ 0 for jlj > n, similar for all other coefficients. We also defined

Inl ≡
Z

d cos θPl
nðcos θÞ: ðA3Þ

The coefficients are obtained as

hn ≡ Nn1In1ð1 − a0n1Þ − Nðnþ2Þ1Iðnþ2Þ1b0ðnþ2Þ1 − Nðn−2Þ1Iðn−2Þ1c0ðn−2Þ1;

h̃n ≡ Nn1In1a0n1 þ Nðnþ2Þ1Iðnþ2Þ1b0ðnþ2Þ1 þ Nðn−2Þ1Iðn−2Þ1c0ðn−2Þ1;

zn ≡ a−n1Nn1In1 þ b−ðnþ2Þ1Nðnþ2Þ1Iðnþ2Þ1 þ c−ðn−2Þ1Nðn−2Þ1Iðn−2Þ1

h̄n ≡ aþnð−1ÞNnð−1ÞInð−1Þ þ bþðnþ2Þð−1ÞNðnþ2Þð−1ÞIðnþ2Þð−1Þ þ cþðn−2Þð−1ÞNðn−2Þð−1ÞIðn−2Þð−1Þ;

z̄n ≡ Nnð−1ÞInð−1Þð1 − a0nð−1ÞÞ − Nðnþ2Þð−1ÞIðnþ2Þð−1Þb0ðnþ2Þð−1Þ − Nðn−2Þð−1ÞIðn−2Þð−1Þc0ðn−2Þð−1Þ;

ẑn ≡ Nnð−1ÞInð−1Þa0nð−1Þ þ Nðnþ2Þð−1ÞIðnþ2Þð−1Þb0ðnþ2Þð−1Þ þ Nðn−2Þð−1ÞIðn−2Þð−1Þc0ðn−2Þð−1Þ;

q̂n ≡ a−n3Nn3In3 þ b−ðnþ2Þ3Nðnþ2Þ3Iðnþ2Þ3 þ c−ðn−2Þ3Nðn−2Þ3Iðn−2Þ3;

v̂n ≡ aþnð−3ÞNnð−3ÞInð−3Þ þ bþðnþ2Þð−3ÞNðnþ2Þð−3ÞIðnþ2Þð−3Þ þ cþðn−2Þð−3ÞNðn−2Þð−3ÞIðn−2Þð−3Þ: ðA4Þ

APPENDIX B: EXACT SOLUTION
OF THE BOLTZMANN EQUATION

FOR FREE STREAMING

Consider Eq. (23) for free streaming, i.e.,�
∂τ −

pz

τ
∂pz

−
pz

E2
p

p · s
τ

∂sz

�
fðτ;p⊥; pz; θs; szÞ ¼ 0: ðB1Þ

Using the initial condition at τ ¼ τ0

fðτ ¼ τ0Þ ¼ finðp⊥; pz; sx; syÞ; ðB2Þ
we find the following solution

fðτ;p⊥;pz;θs;szÞ¼ fin

�
p⊥;pz

τ

τ0
;s⊥ cosθs;s⊥ sinθs

�
;

ðB3Þ
i.e., the free streaming formally does not affect the
polarization. However, since s⊥ depends on pz, the

change in the momentum distribution has an implicit
effect on the polarization. In order to prove that Eq. (B3)
is a solution of Eq. (B1), we note that the derivative
of fin with respect to its second argument will be
multiplied by

�
∂τ −

pz

τ
∂pz

�
pz

τ

τ0
¼ 0: ðB4Þ

Furthermore, using

∂pz
s⊥ ¼ 1

s⊥
s · p
Ep

�
sz
Ep

−
s · p
E3
p

pz

�

þ 1

s⊥
s · p
E2
p

ðpx cos θs þ py sin θsÞ∂pz
s⊥;

∂szs⊥ ¼ 1

s⊥

�
s · p
E2
p

pz − sz

�

þ 1

s⊥
s · p
E2
p

ðpx cos θs þ py sin θsÞ∂szs⊥; ðB5Þ
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we find that the derivative of fin with respect to its third or fourth argument, respectively, is multiplied by

�
−
pz

τ
∂pz

−
pz

E2
p

p · s
τ

∂sz

�
s⊥ ¼

�
1 −

1

s⊥
s · p
E2
p

ðpx cos θs þ py sin θsÞ
�
−1

×

�
−
pz

τ

sz
s⊥

s · p
E2
p

þ p2
z

τ

1

s⊥
ðs · pÞ2
E4
p

−
p2
z

τ

1

s⊥
ðs · pÞ2
E4
p

þ pz

τ

s · p
E2
p

sz
τ

�
;¼ 0: ðB6Þ

We can use the exact free-streaming solution in order to analyze the free-streaming fixed points of the spin moments.
Consider

Gx
nlr ¼

Z
ps

s⊥ sin θs

�
p
Ep

�
r
Pl

nðpz=pÞeilϕfin
�
p⊥; pz

τ

τ0
; s⊥ cos θs; s⊥ sin θs

�
;

¼ 2

Z
p
Ep

�
p
Ep

�
r
Pl

nðpz=pÞeilϕ
��

1þ p2
x

m2

�
Ax

in

�
p⊥; pz

τ

τ0

�
þ pxpy

m2
Ay

in

�
p⊥; pz

τ

τ0

��
;

¼ 2
τ0
τ

Z
p
ϵpτ

�
pτ

ϵpτ

�
r
Pl

nðτ0pz=τpτÞeilϕ
��

1þ p2
x

m2

�
Ax

inðp⊥; pzÞ þ
pxpy

m2
Ay

inðp⊥; pzÞ
�
; ðB7Þ

where we inserted Eq. (27), used
R
dSðpÞ ¼ 2,

R
dSðpÞsi ¼ 0, and

R
dSðpÞsisj ¼ 2ðδij þ pipj=m2Þ, and definedR

p ≡
R
d3p, ϵpτ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ0pz=τÞ2 þ p2⊥ þm2

p
and pτ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ0pz=τÞ2 þ p2⊥

p
. For early time τ ≪ τ0 we find

Gx
nlr → 2

�
τ0
τ

�
2−l Z

p
jpzj½sgnðpzÞ�nþl

�
p⊥
jpzj

�
l
Bl
neilϕ

��
1þ p2

x

m2

�
Ax

inðp⊥; pzÞ þ
pxpy

m2
Ay

inðp⊥; pzÞ
�
∼
�
1

τ

�
2−l

ðB8Þ

with

Bnl ≡ lim
x→1

Pl
nðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

l : ðB9Þ

The dependence on r vanishes in this limit. For late time τ ≫ τ0 we obtain

Gx
nlr→ 2

τ0
τ

Z
p
ε⊥

�
p⊥
ε⊥

�
r
Pl

nð0Þeilϕ
��

1þ p2
x

m2

�
Ax

inðp⊥;pzÞþ
pxpy

m2
Ay

inðp⊥;pzÞ
�
∼
1

τ
; nþleven

Gx
nlr→ 2

�
τ0
τ

�
2
Z
p
pz

�
p⊥
ε⊥

�
r−1

ðPl
nÞ0ð0Þeilϕ

��
1þ p2

x

m2

�
Ax

inðp⊥;pzÞþ
pxpy

m2
Ay

inðp⊥;pzÞ
�
∼
�
1

τ

�
2

; nþlodd: ðB10Þ

Here we defined ε⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

p
and used the recurrence relations

Pl
nð0Þ¼−

n−1þl
n−l

Pl
n−2ð0Þ; n> 1;l≠ n;

Pl
nð0Þ¼−ðnþl−1Þðn−lþ2ÞPl−2

n ð0Þ; l> 1; ðB11Þ

and

P0
0ð0Þ¼ 1; P0

1ð0Þ¼ 0; P1
1ð0Þ¼−1; P1

0ð0Þ¼ 0 ðB12Þ

to find that Pl
nð0Þ ¼ 0 for nþ l odd. We also have

ðPl
nÞ0ð0Þ ¼ ðnþ lÞPl

n−1ð0Þ: ðB13Þ
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The behavior of Ix
nlr is obtained analogously as

Ix
nlr → 2m

�
τ0
τ

�
1−l Z

p
½sgnðpzÞ�nþl

�
p⊥
jpzj

�
l
Bl
neilϕ

��
1þ p2

x

m2

�
Ax

inðp⊥; pzÞ þ
pxpy

m2
Ay

inðp⊥; pzÞ
�

∼
�
1

τ

�
1−l

ðB14Þ

for τ ≪ τ0 and

Ix
nlr → 2m

τ0
τ

Z
p

�
p⊥
ε⊥

�
r
Pl

nð0Þeilϕ
��

1þ p2
x

m2

�
Ax

inðp⊥;pzÞþ
pxpy

m2
Ay

inðp⊥;pzÞ
�
∼
1

τ
; nþleven

Ix
nlr → 2m

�
τ0
τ

�
2
Z
p

pz

ε⊥

�
p⊥
ε⊥

�
r−1

ðPl
nÞ0ð0Þeilϕ

��
1þ p2

x

m2

�
Ax

inðp⊥;pzÞþ
pxpy

m2
Ay

inðp⊥;pzÞ
�
∼
�
1

τ

�
2

; nþlodd: ðB15Þ

for τ ≫ τ0.

APPENDIX C: FREE-STREAMING FIXED POINTS OF THE EQUATIONS OF MOTION

For τ ≪ τR, the equations of motion (41) and (42) are dominated by the terms in the first lines, respectively,
corresponding to free streaming. The equations of motion feature two free-streaming fixed points. The unstable fixed point
is obtained from the relation

Bnlðanlr þ dnlrÞ þ Bðn−2Þlðbnlr þ enlrÞ þ Bðnþ2Þlðcnlr þ fnlrÞ ¼ 2 − l; ðC1Þ

where Bnl is defined in Eq. (B9). At this fixed point, the spin moments become independent of r and related via
Gx
nlr=G

x
mks ¼ Bnl=Bmk for m ≥ k. They decay ∼τ−2þl. Furthermore, the identities

anlrPl
nð0Þ þ bnlrPl

n−2ð0Þ þ cnlrPl
nþ2ð0Þ ¼ Pl

nð0Þ; nþ l even;

dnlrPl
nð0Þ þ enlrPl

n−2ð0Þ þ fnlrPl
nþ2ð0Þ ¼ 0 nþ l even;

anlrðnþ lÞPl
n−1ð0Þ þ bnlrðn − 2þ lÞPl

n−3ð0Þ þ cnlrðnþ 2þ lÞPl
nþ1ð0Þ ¼ 2ðnþ lÞPl

n−1ð0Þ; nþ l odd;

dnlrðnþ lÞPl
n−1ð0Þ þ enlrðn − 2þ lÞPl

n−3ð0Þ þ fnlrðnþ 2þ lÞPl
nþ1ð0Þ ¼ 0; nþ l odd: ðC2Þ

are related to a stable fixed point, where the equations of motion for moments with different r decouple. The moments are
related through

Gx
nlr=G

x
mkr ¼ Pl

nð0Þ=Pk
mð0Þ; nþ l even;

Gx
nlr=G

x
mkr ¼ ½ðnþ lÞPl

n−1ð0Þ=ðmþ kÞPk
m−1ð0Þ�; nþ l odd: ðC3Þ

The behavior at the free-streaming fixed points can also be analyzed by considering the exact free-streaming solution. This
is shown in Appendix B.
For the I moments, the identity for the unstable fixed point reads

Bnlðanlr þ d̃nlrÞ þ Bðn−2Þlðbnlr þ ẽnlrÞ þ Bðnþ2Þlðcnlr þ f̃nlrÞ ¼ 1 − l; ðC4Þ

therefore, these moments decay at the unstable free-streaming fixed point ∼τ−1þl with Inlr=Imks ¼ Bnl=Bmk for m ≥ k.
Furthermore, we also have

d̃nlrPl
nð0Þ þ ẽnlrPl

n−2ð0Þ þ f̃nlrPl
nþ2ð0Þ ¼ 0; nþ l even;

d̃nlrðnþ lÞPl
n−1ð0Þ þ ẽnlrðn − 2þ lÞPl

n−3ð0Þ þ f̃nlrðnþ 2þ lÞPl
nþ1ð0Þ ¼ 0; nþ l odd: ðC5Þ

Thus, the I moments behave identically to the G moments at the stable free-streaming fixed point.
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APPENDIX D: EQUATIONS OF MOTION FOR THE SPIN MOMENTS

In order to derive Eq. (41) from Eq. (23) we use the following calculation for the free-streaming part,

∂τGx
nlr ¼

Z
ps

�
p
Ep

�
r
sxPl

nðcos θÞeilϕ
�
pz

τ
∂pz

þ pz

E2
p

p · s
τ

∂sz

�
f;

¼ 1

2

Z
ps

�
p
Ep

�
r
sxPl

nðcos θÞeilϕ
�
pz

τ
∂pz

þ pz

E2
p

p · s
τ

∂sz

�
ðF þ sxAx þ syAyÞ;

¼ 1

2

Z
ps

�
p
Ep

�
r
sxPl

nðcos θÞeilϕ
�
sx

pz

τ
∂pz

Ax þ sy
pz

τ
∂pz

Ay

�
;

¼ 2

Z
p
Ep

�
p
Ep

�
r
Pl

nðcos θÞeilϕ
��

1þ p2
x

m2

�
pz

τ
∂pz

Ax þ pxpy

m2

pz

τ
∂pz

Ay

�
;

¼ −2
1

τ

Z
p
Ep

�
p
Ep

�
r
�
1 − ðr − 1Þ p

2
z

E2
p
þ r

p2
z

p2

�
Pl

nðcos θÞeilϕ
��

1þ p2
x

m2

�
Ax þ pxpy

m2
Ay

�

− 2
1

τ

Z
p
Ep

�
p
Ep

�
r
cos θð1 − cos2θÞðPl

nÞ0ðcos θÞeilϕ
��

1þ p2
x

m2

�
Ax þ pxpy

m2
Ay

�
;

¼ −
1

τ

Z
ps

�
p
Ep

�
r
sxPl

nðcos θÞeilϕf −
1

τ

Z
ps

�
p
Ep

�
r
�
r − ðr − 1Þ p

2

E2
p

�
sxcos2θPl

nðcos θÞeilϕf

þ 1

τ

Z
ps

�
p
Ep

�
r
sx cos θ½n cos θPl

nðcos θÞ − ðnþ lÞPl
ðn−1Þðcos θÞ�eilϕf;

¼ −
1

τ
ðanlrGx

nlr þ bnlrGx
ðn−2Þlr þ cnlrGx

ðnþ2Þlr þ dnlrGx
nlðrþ2Þ þ enlrGx

ðn−2Þlðrþ2Þ þ fnlrGx
ðnþ2Þlðrþ2ÞÞ; ðD1Þ

where we inserted Eq. (27) and used
R
dSðpÞ ¼ 2,

R
dSðpÞsi ¼ 0, and

R
dSðpÞsisj ¼ 2ðδij þ pipj=m2Þ. The coefficients

in read

anlr ≡ 1 − ðn − rÞ
�ðnþ 1 − lÞðnþ 1þ lÞ

ð2nþ 1Þð2nþ 3Þ þ ðnþ lÞðn − lÞ
ð2nþ 1Þð2n − 1Þ

�
þ ðnþ lÞðn − lÞ

2n − 1
;

bnlr ≡ −ðn − rÞ ðnþ lÞðn − 1þ lÞ
ð2nþ 1Þð2n − 1Þ þ ðnþ lÞðn − 1þ lÞ

2n − 1
;

cnlr ≡ −ðn − rÞ ðnþ 1 − lÞðnþ 2 − lÞ
ð2nþ 1Þð2nþ 3Þ ;

dnlr ≡ −ðr − 1Þ
�ðnþ 1 − lÞðnþ 1þ lÞ

ð2nþ 1Þð2nþ 3Þ þ ðnþ lÞðn − lÞ
ð2nþ 1Þð2n − 1Þ

�
;

enlr ≡ −ðr − 1Þ ðnþ lÞðn − 1þ lÞ
ð2nþ 1Þð2n − 1Þ ;

fnlr ≡ −ðr − 1Þ ðnþ 1 − lÞðnþ 2 − lÞ
ð2nþ 1Þð2nþ 3Þ : ðD2Þ

Furthermore, the free-streaming part of Eq. (42) is obtained as

∂τIx
nlr ¼ m

Z
ps

1

Ep

�
p
Ep

�
r
sxPl

nðcos θÞeilϕ
�
pz

τ
∂pz

þ pz

E2
p

p · s
τ

∂sz

�
f;

¼ 1

2
m
Z
ps

1

Ep

�
p
Ep

�
r
sxPl

nðcos θÞeilϕ
�
pz

τ
∂pz

þ pz

E2
p

p · s
τ

∂sz

�
ðF þ sxAx þ syAyÞ;

¼ 1

2
m
Z
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1

Ep

�
p
Ep

�
r
sxPl

nðcos θÞeilϕ
pz

τ
ðsx∂pz

Ax þ sy∂pz
AyÞ;
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¼ 2m
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�
p
Ep

�
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Pl

nðcos θÞeilϕ
pz
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��
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x
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�
∂pz

Ax þ pxpy
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∂pz
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�
;

¼ −2m
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1 − r
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���
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x
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�
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�

− 2m
1

τ

Z
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�
p
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�
r
ðPl

nÞ0ðcos θÞeilϕ cos θð1 − cos2θÞ
��

1þ p2
x

m2

�
Ax þ pxpy

m2
Ay

�
;

¼ −
1

τ
m
Z
ps

1

Ep
sx
�
p
Ep

�
r
Pl

nðcos θÞeilϕf −
1

τ
m
Z
ps

1

Ep
sx
�
p
Ep

�
r
Pl

nðcos θÞeilϕcos2θ
�
r − r

p2

E2
p

�
f

þ 1

τ
m
Z
ps

1

Ep
sx
�
p
Ep

�
r
eilϕ cos θ½n cos θPl

nðcos θÞ − ðnþ lÞPl
ðn−1Þðcos θÞ�f;

¼ −
1

τ
ðanlrIx

nlr þ bnlrIx
ðn−2Þlr þ cnlrIx

ðnþ2Þlr þ d̃nlrIx
nlðrþ2Þ þ ẽnlrIx

ðn−2Þlðrþ2Þ þ f̃nlrIx
ðnþ2Þlðrþ2ÞÞ: ðD3Þ

We see that the only difference compared to Gx
nlr appears in

the last three terms. The coefficients are given by

d̃nlr ≡−r
�ðnþ 1− lÞðnþ 1þ lÞ

ð2nþ 1Þð2nþ 3Þ þ ðnþ lÞðn− lÞ
ð2nþ 1Þð2n− 1Þ

�
;

ẽnlr ≡−r
ðnþ lÞðn− 1þ lÞ
ð2nþ 1Þð2n− 1Þ ;

f̃nlr ≡−r
ðnþ 1− lÞðnþ 2− lÞ

ð2nþ 1Þð2nþ 3Þ : ðD4Þ

APPENDIX E: EQUATIONS OF MOTION FOR
THE ENERGY-MOMENTUM TENSOR

In order to determine the temperature, we need to consider
the equation of motion for the component T00 of the energy-
momentum tensor, cf. Ref. [58]. We define the moments

Lnr ≡ 1

4

Z
ps

�
p
Ep

�
r
Pnðcos θÞfðτ;p; sÞ

¼
Z

d3p

�
p
Ep

�
r
EpPnðcos θÞF ðτ;pÞ: ðE1Þ

We assume that F is invariant under parity and depends on

px and py only through p⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
, thus we do not

need to take into account any dependence on ϕ and can
consider moments defined only in terms of Legendre
polynomialsPnðcos θÞ≡ P0

nðcos θÞ. The independent com-
ponents of the energy-momentum tensor are

ε≡
Z

d3pEpF ¼ L00;

PL ≡
Z

d3p
p2
z

Ep
F ¼ 1

3
ð2L22 þ L02Þ;

PT ≡
Z

d2p
p2⊥
Ep

F ¼ 2

3
ðL02 − L22Þ; ðE2Þ

where ε is the energy density,PL is the longitudinal pressure
and PT is the transverse pressure. The equations of motion
for the moments Lnr read

∂τLnr ¼ −
1

τ

�
an0rLnr þ bn0rLðn−2Þr þ cn0rLðnþ2Þr

þ dn0rLnðrþ2Þ þ en0rLðn−2Þðrþ2Þ þ fn0rLðnþ2Þðrþ2Þ
�

−
1

τR
ðLnr −Lnr;eqÞ; ðE3Þ

where the coefficients are equal to those in Eq. (41) for
l ¼ 0. Due to the matching condition (31), we have
L00 ¼ L00;eq. Furthermore L22;eq ¼ 0. We are then left with
the equations of motion

∂τL00 ¼ −
1

τ
ða000L00 þ d000L02 þ f000L22Þ;

∂τL02 ¼ −
1

τ
ða002L02 þ c002L22 þ d002L04 þ f002L24Þ

−
1

τR
ðL02 − L02;eqÞ;

∂τL22 ¼ −
1

τ
ða202L22 þ b202L02 þ d202L24 þ e202L04

þ f202L44Þ −
1

τR
L22: ðE4Þ

Note that c000¼ c202¼ 0. Furthermorea000¼ 1,d000 ¼ 1=3,
and f000 ¼ 2=3. In order to close the system of equations,we
need approximations for L04, L24, and L44. We note that
thesemoments appear only in termswhich vanish at the free-
streaming fixed point. Therefore, we need to take into
account only the equilibrium contribution, which is nonzero
only for L04. Again using an interpolation analogous to
Ref. [58], we obtain
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∂wL00 ¼ −
1

w

�
L00 þ

1

3
L02 þ

2

3
L22

�
;

∂wL02 ¼ −
1

w

�
5

3
L02 þ

4

3
L22 −

1

3
ð1 − e−w=2ÞL04;eq

�
− ðL02 − L02;eqÞ;

∂wL22 ¼ −
1

w

�
7

3
L22 −

2

15
ð1 − e−w=2ÞL04;eq

�
− L22: ðE5Þ

APPENDIX F: POLARIZATION AT THE FREE-STREAMING FIXED POINT

At the stable free-streaming fixed point, we can use the relations (C2) to express all moments Gk
nl0 terms of Gk

ll0. Then
Eq. (17) simplifies to

2

Z
dpp2EpAk

nl ¼ Pl
nð0Þ

Z
ps

skeilϕf ¼ Pl
nð0Þ

Pl
lð0Þ

Z
ps

skPl
lðcos θÞeilϕ ¼ Pl

nð0Þ
Pl

lð0Þ
Gk
ll0; ðF1Þ

and Eq. (18) becomes

−2
Z

dpp2Ep
ðAnl · pÞpx

Epðmþ EpÞ
¼ −

Z
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Ep −m
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ll0Þ: ðF2Þ

Inserting these equations into Eq. (10), we obtain the following expression for the polarization at the free-streaming
fixed point,

Πx
⋆ ¼ 1
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4π
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where Inl is defined in Eq. (A3) and we introduced

Kl ≡
X∞
n¼jlj

NnlInlPl
nð0Þ; kl ≡ 1

Pl
lð0Þ

: ðF4Þ
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However, the polarization in heavy-ion collisions is mea-
sured at freeze-out, therefore the knowledge of the polari-
zation at the free-streaming fixed point is of limited use for
practical applications in this context. In principle, one could
try to derive an expression for the polarization which is
valid during the full evolution from free streaming to the

hydrodynamic regime. However, due to the lengths of
equations and the large number of unknown moments, such
calculation is hardly practicable and most likely not
necessary. Therefore, in the main text we choose an
expansion around local equilibrium, which is justified
when considering the polarization at freeze out.
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