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Polarization dynamics from moment equations
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We derive an expression for the local transverse polarization of a boost-invariant expanding system of
massive particles, which involves a set of dynamical spin moments. Starting from spin kinetic theory, we
obtain a closed set of equations of motion for these spin moments. These equations are valid during the full
evolution of the system, from free streaming to local equilibrium, and can be used to study polarization

phenomena in relativistic heavy-ion collisions.
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I. INTRODUCTION

Since the first measurement of the polarization of
Lambda hyperons in relativistic heavy-ion collisions [1],
polarization phenomena have been actively investigated
both on the experimental [2-4] and theoretical [5—11] sides.
While it is commonly believed, and confirmed, that the
global polarization along the orbital angular momentum of
the system is mainly caused by the conversion of (thermal)
vorticity into spin polarization [12—15], resembling the
nonrelativistic Barnett effect [16], the origin of the momen-
tum dependence of the local polarization is not yet well
understood, and is controversially discussed [17-26].
Since the models that assume the local polarization to be
determined by thermal vorticity fail to describe the
momentum dependence of the local polarization, alterna-
tive ideas have been proposed during the last years. In
particular, the suggestion of including contributions from
thermal shear to the local-equilibrium polarization appears
to be a promising development [21-24]. On the other hand,
the effects of nonequilibrium spin dynamics on the polari-
zation are still to be investigated.

In order to obtain a dynamical description of the
polarization, lots of effort have been devoted to derive a
theory of relativistic spin hydrodynamics [27-48]. The
main idea of spin hydrodynamics is to promote the spin
tensor to a dynamical variable, in addition to the charge
current and the energy-momentum tensor, and to derive
equations of motion for these quantities, e.g., starting from
kinetic theory, and assuming the system to be in local
equilibrium [27,28], or close to local equilibrium
[42,46,48]. Since the forms of the energy-momentum
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tensor and of the spin tensor depend on the choice of a
pseudogauge [49], the evolution equations in such a theory
suffer from an ambiguity related to the pseudogauge
freedom [50]. Although there have been suggestions for
a reasonable choice of pseudogauge [41,43,51], no con-
sensus has been reached so far, and it appears desirable to
derive equations of motion for the polarization which are
independent of the pseudogauge choice. Furthermore, the
early time regime of relativistic heavy-ion collisions is not
determined by local equilibrium, and the imprint of the
dynamics at early time on the polarization measured at
freeze-out has not been studied up to know.

In this paper, we propose a way to calculate the polari-
zation without referring to spin hydrodynamics. Our results
are free of any pseudogauge ambiguity, and capture the
dynamics of the system during the full evolution from free
streaming to local equilibrium. We consider a boost-
invariant system with Bjorken model [52], which is com-
monly used to describe the expansion of matter produced
in heavy-ion collisions. In the context of such a model,
it has been found that the moment equations for the
energy-momentum tensor without spin degrees of freedom
feature an attractor solution, see, e.g., Refs. [53-56] for
massless particles and Refs. [57,58] for massive particles.
Furthermore, it was shown that a simple truncation, com-
bined with a suitable adjustment of coefficients in these
truncated moment equations needed in order to enforce the
correct behavior both at the free-streaming and hydrody-
namic fixed points, lead to an excellent description of the
system at any time of the evolution [56]. These studies were
extended to include chiral degrees of freedom in Ref. [59].
In this paper, we employ a similar procedure to obtain
equations of motion for various spin moments appearing
in the polarization vector. For simplicity, we restrict
ourselves to polarization in the transverse plane. Studies
of the longitudinal polarization are left for future work.
Furthermore, due to the translational invariance in
Bjorken symmetry, the vorticity vanishes, and we hence
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automatically focus only on contributions to the polarization
which do not emerge from vorticity.

Our efforts consist first, in expressing the momentum
dependent polarization vector in the particle rest frame in
terms of the relevant dynamical spin moments, and second
in deriving a closed set of equations of motion for the latter.
In order to achieve the first part, we expand the spin-
dependent distribution function in spherical harmonics, and
define corresponding spin moments as phase-space inte-
grals of spherical harmonics weighted with the distribution
function. Although the local polarization vector is a
function of the three momentum of the particles, we are
mainly interested in its dependence on the azimuthal
momentum angle ¢. We may thus integrate over the
absolute value and the polar angle of the three momentum,
after which the polarization vector can be written as an
infinite sum of spin moments. Then we derive the
Boltzmann equation for the spin-dependent distribution
function in Bjorken symmetry employing a relaxation time
approximation. Assuming the collision term to be local, we
impose microscopic conservation of spin angular momen-
tum. This results in a matching condition which determines
the equation of motion for the spin potential appearing in
the local-equilibrium distribution function. We then derive
an infinite system of coupled equations of motion for the
spin moments from the Boltzmann equation. In the free-
streaming limit, these equations of motion feature an
unstable and a stable fixed point, where the moments
decay with power laws. On the other hand, in the collision
dominated regime, we distinguish moments which decay
with power laws from those which decay exponentially.
Given that the relaxation time is not extremely large and the
system will have reached the hydrodynamic regime before
freeze out, the exponentially decaying moments will be
zero at the time any measurement takes place, regardless
their dynamics at early time. Therefore, we drop these
moments in the expression for the polarization vector. On
the other hand, the spin moments which decay as power
laws may be expanded in powers of relaxation time over
proper time, w™!. We find that higher moments start to
contribute to the polarization vector at corresponding
higher orders of w™!. Making use of this result, we provide
an expression for the polarization as a function of ¢, which
is a power series of w~!. The latter may be truncated at a
given order wX, neglecting moments which decay at least
~w~ 1) faster than the local-equilibrium moments. In
order to close the system of equations of motion for the
dynamical spin moments, we approximate the higher
moments, which are neglected in the polarization vector,
by an interpolation between the free-streaming fixed point
and the local-equilibrium regime. In this way, we take into
account the dynamics of the system during the full time of
the evolution. As an example, we give an explicit expres-
sion for the polarization using the next-to-leading-order

truncation and provide the equations of motion for the spin
moments appearing in this expression.

This paper is organized as follows. In Sec. II we derive a
general expression for the polarization vector as a function
of ¢ in terms of spherical harmonics and spin moments.
The Boltzmann equation for the spin-dependent distribu-
tion function in Bjorken symmetry is obtained in Sec. I1I. In
Sec. IV we discuss the spin potential and the matching
conditions. The equations of motion for the spin moments
are derived and analyzed in Sec. V. Finally, we present in
Sec. VI the main result of this work, consisting of the final
expression for the polarization vector and the closed set of
equations of motion. Conclusions are given in Sec. VIL
Throughout this paper, we use the following notation
and conventions, a-b=a,b", g, =diag(+,— — —),
€123 = —¢1,3 = 1. We do not distinguish between upper
and lower spatial indices of three vectors. The symbol
indicates the complex conjugate.

II. POLARIZATION IN
HEAVY-ION COLLISIONS

We consider the polarization vector [42,60]

I (p) d5(p) / 45,09 f(x.p.8). (1)

—N

where X, is the freeze-out hypersurface, and f(x, p,3)
is the distribution function depending on the space-
time position x*, on the on-shell three-momentum p,
and on the spin four-vector 8“. Furthermore dS(p)=
(m/~\/37)d*85(p - 8)6(8> + 3) and is the integration mea-
sure on 8¥, and N is a normalization

= [azp [ aswr. 2)

Since in heavy-ion collisions the polarization is measured
in the particle rest frame [1], we aim at calculating the
following Lorentz transformed polarization three-vector,

M) =5y [ asto) [t |s= 2R )

with E, = \/p* + m?*. In the following, we work up to
first order in A and assume that polarization effects enter

only at first order. Then, the distribution function takes the
form [61]

fp )= [Flep) =8 Awp)] ()

with F(x, p) of zeroth order and A¥(x, p) of first order in
f. Since any component of A* parallel to p# would vanish
in the spin integration, we may assume p - A = 0 without
loss of generality.
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For comparison to measurements of the local A polari-
zation, we need to access the dependence of II, on the
azimuthal momentum angle ¢ [17]. In order to do so, it is
convenient to expand the distribution function f in terms of
spherical harmonics as

f X, p, Q’ Z Z anfnf X, P Q)Yf(g ¢) (5)
n=0 =
where
Y5(0, ¢) = P,(cos 0)ei’?, (6)

P are associated Legendre polynomials, 6 is the polar
angle of the three-momentum p,

P — 2
cosf=—, p= , 7
D \/ (7)

and ¢ is the azimuthal angle of p. The coefficients fnf
depend on p only through p. We also defined the
normalization coefficients

2n+1(n—-2)!

N, ,=
T 4 (n+0)!

(8)

such that

an / d¢d cos 9Y5<9’ ¢)Y§1 (07 ¢) = 5nm§z,’k‘ (9)

In the following, we consider the polarization for a
system which depends on x only through the proper time z,
see the next section for details. We also assume that the
freeze out takes place at constant proper time 7. As we are
interested in the dependence of I, on ¢, we can perform
the p and @ integrations in the numerator and the denom-
inator of Eq. (3), respectively. Inserting Eq. (5), we obtain

1
I, (¢ W Z /dp/dcostZE

(AP ]N,m(e, 5. (10)

A, — e DD
X{ "“ " E,(m+E,)

where we assumed that N does not depend on ¢ and we
defined

()_de /dp/dcostZN(r p.0), (11)
with X, the freeze-out hypersurface at constant z, as well as
Ay (ep) = [ dSE)$Te(ep.2)

:/dS(p)/dcos@/dqﬁéka(H,(/))f. (12)

Note that we made use of Eq. (4) and of the relation
p-A=0 to find that [dS(p)8*f = AL, from which it
follows that [ dS(p)8*f,, is a function of 7 and p only. The
integration over d cos € will make certain terms in Eq. (10)
vanish. For Z = 0 we have

Ny, | dcosOPY(cos ) = &,. (13)

Furthermore, we know that due to the symmetry of the
associated Legendre polynomials

/dcos OP’ (cos @) = 0, n+¢odd.  (14)

This means that the sum in Eq. (10) needs to be taken only
over the values of ¢ with n + ¢ even.

Note that the full dynamics of the polarization vector is
contained in the coefficients A (7, p). We will now
express these coefficients through spin moments and
determine their equations of motion. To this end, we define

the spin moments
P\’
/ <E_) Y5(0,9)8"f,
ps \Ep

_ AN
zi=m [ (&) viewsr. 09

P

gnfr

where we introduced the short-hand notation fp§ =

(m/\/3r) [ d®pds.do,, with 0, the polar angle of the spin
three-vector in cylindrical coordinates. Note that f in
Eq. (15) should be evaluated for on-shell momentum

and spin, ie., p"=E,, 8°=p-s/E,, 5, = /8] + & =

\/85 — 82 + 3, such that f depends only on p, ., and 0.

The choice of cylindrical coordinates for the spin variable is
made for convenience. Since f is real and P;?(cos6) =
(=) [(n=2)"/(n+ )P4 (cos 0) we have

Ql,‘,(_f)r = / (£>r(_1)fMPf(cos 0)e-ichgh
ps

E, (n+2)!
— (1) Gk (16

Thus it is sufficient to calculate the moments with positive
Z in order to determine the polarization.

Performing the dp integration over the terms in the
square brackets in Eq. (10), we obtain

> / dp PPE AL, = Gt o, (17)

and, e.g., for k = x
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(Anf ) p)px

1 .
-2 [d 2E:—2/d 2/ds 8 p* + 8 pY + 8 p7) p*F o (x, p. 8
/pp PE (m+E,) pp CEvA) (p)(8*p p PP fue(x.p, 8)

=a,, (Ix

n(£+42)0 ~ gﬁ(ﬂz)o + If;
+b,, (I)(Cn—z)(mz)o -G

+ ¢ (I)(Cn+2)(f+2)0 -9g

(n=2)(£+2)0

(£42)0 — gﬁ(ﬂz)o)

+ I'(Vn—z)(fu)o - g?n—Z)(f#Z)O)

(n+2)(£4+2)0 + I{n+2)(f+2)0 - g{nn)(mz)o)

ta, (Iﬁ(f—z)o - gﬁ(f—z)o - Ii(f—z)o + gi;(t’—2)0)

(n=2)(£-2)0 ~ g(n—2)(f—2)0 + I{n—Z)(f—Z)O -

(
+ G (Thrsaye—a0 = 9

Eyn—Z)(f—Z)O)

(n+2)(£-2)0 + Ifmz)(f—z)o - g{n+2)(ﬁ—2)0)

+ a0 (Lhpo = Goo) + bgf(I)(Cn—2)f0 - g)(cn-z)fo) + 6y (I)(CnJrZ)fO - g)(cn+2)f0)

+b,, (I;Zz(erl)O - gi(fﬂ)o) + e (I?n—Z)(erl)O - g?n—Z)(fH)O)

+ e (Thiay im0 = Ginraerno) + 05eiiom1yo = G0
t ey (Ifn—z)(f—l)o - gfn—z)(f—l)o) + T (Ifn+2)(f—1)o - gfn+2)(f—1)0) ’ (18)

where we made use of the properties of the associated
Legendre polynomials to express the terms in the first line
through spherical harmonics. The coefficients are given in
Appendix A.

Thus, in order to obtain the polarization, we need to
determine all spin moments appearing in Eqs. (17) and (18).
In the remainder of this paper, we will calculate the equations
of motion for these spin moments, Eq. (15), for a boost
invariant expanding system. Making use of the properties of
these equations of motion, we will then show how to truncate
the sums in Eq. (10) in a reasonable way, and provide closed
equations of motion for the moments appearing in the final
expression for the polarization vector.

I1I. SPIN KINETIC THEORY
FOR BJORKEN EXPANSION

We consider the Boltzmann equation [61]
p-of(x, p,8) = C[f], (19)

where the collision term €[f] is treated in the relaxation
time approximation, Viz.

f(x,p,8) = feq(x, P, 8)
TR '

Clfl=-p-u (20)

Here f.q(x, p.8) is the local-equilibrium distribution func-
tion, u#* the fluid velocity, and 7y the relaxation time, which
is assumed to be constant. We assume Bjorken symmetry,
i.e., boost invariance along the z direction and translational
invariance in the x-y plane with u* = (£,0,0,7)/V 2 — 72

Consider the distribution function f(z,z,p, p.,0s.8.)
with p, = (p,. p,). Boost invariance along the z direction
tells us that

[
f(t,z,p..8,) = f(z, pL, 8.), (21)

where we suppressed the dependence on variables which
are unaffected by the boost, and defined the proper time

T=V tz - ZZ’ p/z = (pz - EPZ/Z)]/, and ?’,z = (gz - ?ooZ/l)]/
with y = /7. We have therefore

azf(t’ 2 P Qz) = azf(T» pgv §2)|z=07

E 3
—_ <7Papz + 70052>f(r, p.8.).  (22)

Using this relation, one can rewrite the Boltzmann equa-
tion (19) as follows

P p:p-s
(0= T20n = 35270 remic s

_ _f(71 Pi, pz’eﬁ’ gz) _feq(T’ P, pz’eé’ gz) ] (23)

TR

As shown in Appendix B, an exact analytical solution for
Eq. (23) can be obtained under the assumption that the
initial polarization at 7 = 7, is restricted to the transverse
plane, i.e., the initial distribution function depends on 6,
and 8, only through 8, =5, cosf; and 8, = s, sinf,,

f(T:TO’pJ_’pZ’eévgz) :fin(pJ_’pz’gx’gy)’ (24)

With this, we find that
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f(Tva_’pz’gZ’eé)

=D(1,79) fin <Pl,pzl,slcoseg,slsin9§>
70

wdr’ , T ,
+ _D(va)feq pJ_ﬂpz_9sJ_C056§’sj_Sln6§ (25)
7 To

o TR

with

D(7).7,) = exp (- @> (26)

TR

solves Eq. (23) given that the equilibrium distribution
function depends only on 8, and 8,. We remark that this
does not mean that it is independent of 8_, since 8, and 8,
are functions of 8, after integrating out the delta functions.
Note that, although Eq. (25) looks simple, solving it
explicitly is actually involved, in part due the necessity
to impose matching conditions to determine the parameters
of feq (see below). In the following, we will derive an
alternative, easier way to obtain the polarization through
equations of motion for the moments. We will restrict
ourselves to a situation where both the initial polarization
and equilibrium polarization are restricted to the transverse
plane in order to keep the discussion compact. The case of
general polarization will be investigated in the future. The
distribution function (4) can then be written as

1
FE.P L1 per8:.0) = 3 [F(59) + 51 08 0. A(z.p)

+ 5, sin03A%(z, p)]. (27)

IV. SPIN POTENTIAL

In spin kinetic theory, the local-equilibrium distribution
function is given by [61]

feq = ﬁexp (_ﬁ “p+ Zgﬂuzgv) ’ (28)
where 34" = —(1/m)e** p,8; is the dipole-moment ten-
sor and f, and €, are Lagrange multipliers. While
B, = Pu,, equal to the ratio of the fluid velocity to the
temperature 7 = 1/p, is related to the conservation of the
four momentum, Q,, is the so-called spin potential and is
related to the conservation of total angular momentum.
Imposing Bjorken symmetry and a dependence on 8, and
8, only, one reduces Eq. (28) to

feq(P L. P51 cOsB5, 5, sinby)

1 h . :
= (2ﬂh>3exp —ﬂEp—%Ké(pxsmHg—p) cosfs)s |

(29)

with «§ = —Q© being the only nonzero component of Q.
The Lagrange multipliers $, and Q, are determined
through matching conditions. In this work, we consider
a local collision term, i.e., no orbital angular momentum is
transferred into spin and the dipole-moment tensor is
conserved separately in collisions [61]. Since in this case
the collision term (20) has to respect the microscopic
conservation of spin angular momentum in addition to the
conservation of linear momentum,

[ @paswprsis=o
[ @p sz —o. (30)

we impose the matching conditions

/ P p dS(p)p'f = / & p dS(p)p f .
/ PpdS(p)Tf = / PpdSO)Tf. (1)

Considering u = 0, v = z in the second equation (31) and
using Eq. (15), we obtain

y y
ImGj,; —ReGyy = ImGyy; o, —ReGyy -

(32)
Inserting Eq. (29) on the right-hand side of Eq. (32), we
then find

. 1 -l
K§ = ~57 </ d3pp§feq> o, (33)

where we defined
o =Imgy{,, —ReGy ;. (34)

Thus, o is the only quantity that we need, in addition to
Gt ., and I, in order to obtain the polarization, since &
determines the spin potential, and consequently the equi-
librium values of the spin moments.

We remark that Eq. (30) are properties of the kinetic
theory and are therefore independent of the concept of spin
hydrodynamics. However, it is possible to relate Eq. (30) to
macroscopic conservation laws for the energy-momentum
tensor 7 and the total angular-momentum tensor JhHv,
respectively,

0, T" =0,

3 0,4 = 0. (35)

In the framework of spin hydrodynamics, the total angular
momentum is split into orbital and spin parts,

JH = HTH — VT 4 pshe, (36)
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S*# being the spin tensor. The choice of the splitting (36),
and therefore that of the energy-momentum tensor and of
the spin tensor, depends on the pseudogauge, the con-
servation laws (35) being independent of the latter [49,50].
In the Hilgevoord-Whouthuysen (HW) pseudogauge [62]
the spin tensor is conserved separately, as long as only local
collisions are considered [61]. The HW energy-momentum
tensor reads [50]

L[
™ =2 =p'pf (37)
4Jps E%,

and the HW spin tensor is given by [50]

Ll e, R
S =2 /,, gﬁpﬂzﬁ fogzdt % (38)
p

with the conservation equation
0,8 = (. (39)

Comparing the right-hand sides of Egs. (37) and (38) with
Eq. (31), we see that the latter are equivalent to the
matching conditions

u, T = u,Téq,

S = u,Se”, (40)

and ensure the conservation laws (35). Equations of motion
for the spin tensor may be obtained by expressing the first
term in Eq. (38) in terms of the spin moments gﬁﬁ in
Eq. (15). However, for our purpose of calculating the
polarization, the spin tensor itself is not needed. Instead, we
will focus on evaluating the spin moments appearing in
Egs. (17) and (18).

V. EQUATIONS OF MOTION
FOR THE SPIN MOMENTS

Making use of the Boltzmann equation (23), the proper-
ties of associated Legendre polynomials and the identity
(B6), we obtain the equations of motion

1
argifr - T (a"f’gfzfr + b”f’gfn—Z)fr + C”f’gf”'*‘z)"ﬂr

+ dnfrgzlf?(r+2) + enfrg)(cn—z)f(ﬁz)

1
+ fn»f’rg(n+2)f(r+2)> - g (gnfr - gnfr,eq) 4 (41)

where the coefficients and the detailed calculation are
shown in Appendix D. The equations of motion for Z7 .
are obtained analogously as

1
aTIm”r = _; (am”rl—m,”r + bnfrI(,,_z)f, + Cm”rz-(”+2)fr

T duerLypria) T enerLlnso)e(rin)

_ I
+Suerd <n+z>f<r+2>> = Ter = Thrreg). (42)

where the coefficients in the first three terms are identical to
those in Eq. (41), and the last three coefficients can be
found in Appendix D. The equations of motion for G, ,, and
Ii]zfr are trivially obtained from Egs. (41) and (42) by
substituting x — y. In contrast to the massless case, where
each equation of motion for the orthogonal moments
couples only to two other moment [59], in the massive
case the use of an orthogonal basis leads to an additional
coupling of moments with different r. Note however that
we need only moments with r =0 for the polarization
vector, see Egs. (17) and (18). In order to solve the systems
of equations of motion (41) and (42) for a finite number of
spin moments, one requires a reasonable truncation which
closes the sets of equations. In the following two sub-
sections, we will discuss the equations of motion in the
free-streaming regime and in the hydrodynamic regime,
respectively. Making use of the results obtained from this
discussion, we will then be able to close the equations of
motion.

A. Free-streaming regime

The free-streaming regime of the equations of motion for
the spin moments, i.e., the regime 7 < 7y, is discussed in
Appendix C. In particular, we show there that, as long as
collisional effects can be neglected, the system approaches
the stable free-streaming fixed point where the spin
moments are related through

her _ Pa(0)

ner __
)rgzkr 7)5;1 (O)

o (n+ K)Pi—l (0)
= s + Zodd. 43
G (miR)PL 0 OO (43)

n + £ even,

Using these relations, it is possible to calculate the
polarization at the free-streaming fixed point, see
Appendix F. When collisional effects start to play a role,
the system leaves the free-streaming fixed point and enters
the hydrodynamic regime. We expect that any measurement
of the polarization takes place when the system has reached
this regime. Hence, we need an expression for the polari-
zation valid for 7> 75, which we construct in the next
subsection.

B. Hydrodynamic regime

In the hydrodynamic regime, v > 7p, the collision term,
given respectively by the last lines of Eqgs. (41) and (42),
determines the dynamics of the system. Inserting Eq. (29)
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into Eq. (15), we find that the local-equilibrium spin
moments appearing in the collision term are given by

2h P\ . .
zfreq m /d3 Yf(e $E <E) Ko p sin@sinpF,

14
Zth P\ .
S KA (E—> i

p
< (3710.0)- 7

Ho.0)7

- 5n15flg11req +51116f g (44)

1)req

Note that (g;c(_meq) =
1y ,,.- We also obtain

—(1/2)Gf,, ¢q- The same holds for

Zfl r
ereq = d*pY;(0.9)E <E£) K5 p sin 0 cos p.F,
14
2fl )2 r
dpYi (o, =) &
m / 0. 9)F <Ep) oP

< (31100 4y 0.0)F

= 5n15f1g)l}1r,eq + 5"16f(_1)g>1)(—1> (45)

req’
and analogously for 77, . Inserting these results on the
right-hand sides of Egs. (41) and (42), we find that only the
moments with |£| =1 and n odd couple to equilibrium
quantities in the equations of motion. All other equations of
motion do not contain equilibrium contributions, and
therefore become for 7 > 7y, e.g.,

1
0 gm,”r TR ﬁfr' (46)

Thus, these moments decay exponentially in the hydro-

dynamic regime

X, ~e T |£|# 1 orneven, (47)

and do not feature a power expansion around local
equilibrium.

On the other hand, the moments G' (+1

couple to Q)l‘(il)r,

) With - odd
which is nonzero in local equilibrium.

These moments decay therefore with power laws, and it is
possible to expand them around local equilibrium

nlr = lr .eq Z g”" (48)

k=q,
with w = 7/7; and dimensionless parameters gf,(,k). From
the equations of motion (41) we find that there are no
contributions to the sum smaller than k= (n—1)/2,

therefore we can set g, = (n—1)/2 without loss of
generality. This can be proven as follows. For n = 1 the
statement is trivial. Furthermore, we know that ¢, > O for
n > 1, which validates the statement for n = 3. Assuming
g, = (n—1)/2 for n — 2, we obtain for n >3

- Z 2 kw1
k=g,
= (am”r Z Zi(zkr)w_k_l + anr z ZEE)_z)rw_k_l

k=q, k=(n=3)/2

a3 Yy

k=qn+2
- = k _k— — = k —k—
Fluer D 2 e D 2™
k=g, k=(n—3)/2
+ Foer Z 2 1) Zznr : (49)
k= qn+2 k= dn

For n > 3, there is no contribution ~w~! from the terms in
the brackets. Thus ¢, > 1 for n > 3. Inserting this result
back into Eq. (49), we find with the same reasoning that
qn > 2 for n > 5. This can be continued to any n, thus
q,=(n— 1) /2. The same reasoning applies also for G’
7*,.,and Z°, . hence, e.g.,

ntr?

ntr’ ner?

va 1r = Ijlclr,eq Z iz("k)w_k' (50)

k=q,

VI. POLARIZATION VECTOR
FROM CLOSED MOMENT EQUATIONS

The exact determination of the polarization (10) requires,
in principle, an infinite number of spin moments, see
Egs. (17) and (18). However, taking into account the
results of the previous section, we may simplify Eq. (10)
by neglecting all spin moments which decay exponentially
in the hydrodynamic regime. In heavy-ion collisions, the
polarization is measured at freeze out, where the system is
generally supposed to be already close to local equilibrium.
Therefore, all exponentially decaying spin moments will
have disappeared at the time of the measurement, regard-
less their initial conditions or dynamics in the free-stream-
ing regime. Assuming that the system is close enough to
local equilibrium that the power expansion (48) converges
and the exponentially decaying moments have disappeared,
we obtain by inserting Egs. (17) and (18) with Egs. (48)
and (50) into Eq. (10) for k = x
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I (¢) :%Re{i Z [(h G, qunl

k=0n=13,....2k+1

k i T X X x(k
+hnz-1106q n(l))e¢_h ( IIOqun(1> z-IIOeq n(l)

+g’;'10.qun(l Z;IO eq nl —l¢:| W_k}

z Z (gl 10 qunl I)ICIO .eq i<1k)

=1n=35,..., 2k+1

Y y(k)\ .~k ,3i
+g}1o,qun(1 lloeq’nl) ke3l¢1- (51)

Re

In order to derive Eq. (51), we used Eq. (16),
Nypy=[(n+7)/(n—¢)!]*N,,, which follows from
Eq. (8), and various relations between the coefficients
(A4) for positive and negative £, which can be derived from
Eq. (Al). The calculation and the factors are given in
Appendix A.

Although Eq. (51) still looks a bit complicated, the
dependence on ¢ is actually simple. We also remark that all
terms are zero if integrated over ¢, i.e., the global
polarization in that case vanishes. The convergence of
the power series in Eq. (51) is controlled by the terms w™.
In practice, we want to obtain the polarization at a given,
sufficiently large value of w, the freeze-out time, and one
can truncate the series at some small k, neglecting moments
which decay at least ~w~(*1) faster than the equilibrium
quantities. The approximation is systematically improvable
by using higher maximal values for k. At any truncation, we
may reexpress the k-dependent quantities through Eqs. (48)
or (50) in terms of the full spin moments. Then, we will deal
with a limited number of dynamical moments, which can
be calculated from the equations of motion (41) and the
analogs for the other moments. We remark that the
expansion in Eq. (51) is not equivalent to a gradient
expansion of the Boltzmann equation itself around local
equilibrium such as the Chapman-Enskog expansion. For
the latter, only the equilibrium potentials (which in our case
would be only # and «j) are dynamical, and all other
quantities are expressed as their gradients. On the other
hand, in our approach the expansion in w™! only separates
faster decaying moments from slower ones, taking into
account the dynamics of the latter during the full evolution
of the system. For our purpose, it is therefore not sufficient
to consider only the hydrodynamic regime of the equations
of motion, since the dynamics at early time may leave an
imprint on the moments which are not negligible at freeze
out. Instead, following Ref. [56], we assume that the system
evolves from the free-streaming fixed point to the hydro-
dynamic regime, i.e., the system reaches the stable free-
streaming fixed point before the collisions become relevant
for the dynamics. Then, in order to close equations of

motion (41) and (42), which determine the dynamical
spin moments, at n = Ny, = 2kpa + 1 with &y, > 0,
we may replace

o Phia®)
(nn1ax+2)10 - ’7)1 (O) Nmax 10?

Mmax

(52)

which is valid both at the free-streaming fixed point due to
Eq. (43) and in local equilibrium, since both moments
vanish at the latter. Analogously, remembering the second
identity in Eq. (C2), we may ignore the terms which couple
moments of different r as long as we are close to the stable
free-streaming fixed point. For the moments which vanish
in local equilibrium, we can drop the terms proportional to
d,srs €npr, and f ., during the full evolution. On the other
hand, if these terms contain moments which are nonzero in
local equilibrium, we need an interpolation to connect the
two regimes, cf. Ref. [58]. Since the sum of the last three
terms vanishes at the free-streaming fixed point, only the
contributions from the hydrodynamic regime need to be
taken into account. We use the following interpolation
between the two regimes

Gin = —e " PPL(0)GY, + (1 — e72) G

nl2.eq- (5 3)
Here the first term corresponds to the free-streaming fixed
point and gives the major contribution for w < 1, while the
second term ensures the spin moment to approach their
local-equilibrium values for w > 1. Note that we used
P1(0) = —1 in the first term. We chose to express all spin
moments G, as a function of Gf,, for convenience,
choosing any other value for n with the corresponding ratio
of associated Legendre polynomials in the first term would
lead to the same result. Applying the replacements (52)
and (53) in Eq. (41), we obtain the following closed set of
equations of motion

1
0G0 = W (“nlogﬁlo + bnlogfn_z)m + Cnlog)(cn-&-Z)lO)

1
- (1—e™/2)(8,1d,10 + 813€n10)F112.0q

- (g)r(zlo - 5r11g)1€10,eq) (54)
for n < n,, and
X 1 Pn 2( ) X X
awgnl():_; |:< An10 + Culo ,PT( ) n10+bn10g(n—2)10

1
+;(1—e_w/2)5n3€nf0g)flz.eq—gﬁlo (55)

forn = ny,,. The closed equations of motion for Z ,, can be
obtained analogously from Eq. (42) using the respective
coefficients d,, 4y, €,,0, and f, . Furthermore, the equations
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of motion for the y components are identical to those for the
x components with x - y.

In order to solve Egs. (54) and (55), we need to
determine Gy, ., and Gy, ., Which depend on f and g
given by Eq. (33). The equation of motion for f is
determined from the first condition in Eq. (31) and the
equation of motion for

2
00 _ 3 -pE,
T € (27rh)3/d pE, e, (56)

shown in Appendix E. Once f is known, Gj, ., and Gy, o
are easiest obtained from ¢ in Eq. (34) through

g)lclo.eq —5

)
S
Q

W
<
!
<
<
Y
<
&
=
~
2
W
(5]
S
S
[N
o
<
&
=
~
I
Q

where we used
ImGj,; = —ReGy,;. (58)

The equation of motion for ¢ can be obtained from its
definition (34) and Eq. (41) for n = # = r = 1. Noting that
ayp =1 and ¢y =dy; = fin =0, see Eq. (D2), and
using Eq. (32), we obtain the simple equation of motion

0,6 = ——o0. 59
om0 (59)

As an example, we show the expression for IT; (¢) from
Eq. (51) including moments which decay at most ~w™!
faster than the equilibrium moments,

1 - )

L (¢) = NRe{ Z [(7aG1o + 1aTyy0) €™
n=1,3

— h(Go = oo + Goio = Lio)e ™

- 6]3(g§10 - I)3610 + gglO - I§10)63i¢ } . (60)

The relevant equations of motion are

1 1
0,91 10 = W (011og)flo + c110%310) _;U - e_w/2)d110gjlc]2.eq - (g)flo - g)lclo.eq)’

X 11 ,P;(O) X X 1 —w/2 X X
0G0 =~ | @10 + “10511g) ) S0 + 03100010 | + o (1= e™%)e31001 1269 — Gito:
1 1 -
%wli == (a110Z71 + €110T310) = " (1= e™2)d 10T 1504 = (ZT10 = Tii0eq)
X 1 [ Pl (0) X X 1 —-W > X X
0,150 = W _<a31o+6310% 30 + b310L7 10 +;(1 —e /2)e3101112’eq—1310. (61)

To solve these equations, one also needs to determine the
appearing equilibrium spin moments. Using Eq. (57), the
latter can be expressed as a function of ¢ and f. While o is
easily obtained from its equation of motion (59), the
determination of f requires solving the equations of motion
for the energy-momentum tensor (E5) and using Eq. (56) to
obtain f from e. Thus, we provided a closed set of
equations to determine the polarization vector. The explicit
numerical calculation is left for future work.

VII. CONCLUSIONS

In this paper, we derived equations of motion for the
transverse polarization of a boost-invariant system from
kinetic theory. Using spherical harmonics to expand the
distribution function, we found that the polarization vector

[
can be written as an infinite sum over spin moments gﬁf,
and Z¥, with r = 0. In order to derive equations of motion
for the spin moments, we considered the Boltzmann
equation for the spin-dependent distribution function with
the local collision term modeled by a relaxation time
approximation. After imposing boost invariance in the z
direction, the left-hand side of the Boltzmann equation
contains a term proportional to the 8, derivative of the
distribution function in addition to the p, derivative. The
local-equilibrium distribution function depends on the spin
potential, which has only one nonzero component if we
restrict the polarization to the transverse plane. We used a
matching condition in order to ensure the microscopic
conservation of spin angular momentum, which determines
the nonzero component of the spin potential. Then, we
derived equations of motion for the spin moments gﬁh and
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Z*,,. In contrast to the massless case, the free-streaming
parts of these equations of motion contain six terms which
couple spin moments with different n» and with different r.
We showed that for free streaming, the equations of motion
feature an unstable fixed point, where the spin moments
become independent of r, and a stable fixed point, where
the terms which couple spin moments with different r
vanish and moments with different n and £ are proportional
to each other. At both free-streaming fixed points, all spin
moments decay with power laws. On the other hand, we
found that in the hydrodynamic regime only spin moments
with |£| =1 and n odd decay with power laws and
therefore feature a power expansion around local equilib-
rium, while all other spin moments decay exponentially.
Using these properties of the equations of motion, we were
able to truncate the sum over spin moments in the
polarization vector and close the system of equations of
motion in terms of the dynamical spin moments. First, since
the polarization is measured at freeze out, where exponen-
tially decaying moments have disappeared, we dropped
the corresponding terms in the polarization vector. For the
remaining terms, we inserted the power expansion of the
spin moments around local equilibrium, resulting in an
expression for the polarization which is a power series in
wk. For any fixed value k, the sum over the index n of the
spin moments is finite. This allowed us to order the
appearing spin moments by the time scales on which they
decay in the hydrodynamic regime. Choosing a truncation
at a given value of k then also implies a maximal value for n
and corresponds to neglecting spin moments which decay
at least ~w~(**1) faster than the equilibrium spin moments.
We then showed how to close the system of moment
equations after choosing a truncation by replacing the spin
moments with » = 0 and n larger than the maximal value
by its value at the free-streaming point, with this replace-
ment being valid also in local equilibrium. On the other
hand, for the spin moments with » = 2 appearing in the
equations of motion for the spin moments with r = 0 we

used an interpolation between the free-streaming fixed
point, where the corresponding terms vanish, and the
local-equilibrium regime. Finally, we obtained the equation
of motion for the equilibrium spin moment ¢ and expressed
the other relevant equilibrium spin moments in terms of o.
As an example, we gave the expression for the polarization
using a truncation at k = 1 and showed the corresponding
closed equations of motion for the dynamical spin
moments.

Our results show that, while the global polarization for
Bjorken symmetry vanishes, the local polarization in the
transverse plane can be nonzero. This polarization is not
induced by thermal vorticity, which is zero due to the
assumption of translational invariance, but emerges from
the initial conditions and evolves from the free-streaming
regime to the hydrodynamic regime, where it decays with
power laws, since, for a local collision term, the dipole
moment tensor is a collisional invariant and its components
survive on hydrodynamic timescales. Possible sources of
an initial polarization of the quark-gluon plasma in heavy-
ion collisions are interactions with color fields in the
glasma stage, see, e.g., Refs. [63,64]. In the future, it will
be interesting to solve the equations of motion derived in
this work, and to study in particular the dependence of the
result on the initial conditions. One may then compare the
results to measurements [65] and local-equilibrium calcu-
lations [24] of the momentum dependence of the transverse
polarization. Furthermore, it will be an interesting exten-
sion of this work to consider longitudinal polarization, as
well as a nonlocal collision term. One may also relax the
assumption of translational invariance in the x-y plane in
order to allow for nonzero thermal vorticity.
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APPENDIX A: DETAILS FOR THE POLARIZATION VECTOR

The coefficients in Eq. (18) are given by

a+_1 1 1 N 1
" Adn+1\2n+3 2n—1)"

pr—_1 1 1

nt 42n+12n—-1"

TSN S S

nt 42n+12n+3’
1 1 n—-¢+2 n-=-¢

- = £ £—1)n—-¢+1

G =gt O - +>< 2n+3 +2n—1)’
11 1

——m+-1)n+)(n+7¢-3)(n+7¢-2),

"= 12n—1

056019-10



POLARIZATION DYNAMICS FROM MOMENT EQUATIONS PHYS. REV. D 109, 056019 (2024)

11 1

—=__ " (h—t+1Dn-C+2)n- — /44
€ 42n+12n—|—3(n +1H)(n=¢+2)(n-¢+3)(n-¢+4),
o _ 1 1 (n+2—|—f)(n+1+f)+(n—f—1)(n—f)
ne 22n+1 2n+3 2n—1 ’
11
0 —_ -1
b = O =1 47),
11 1
0 =_ - 1)(n— 2
=iz Tt D= 42),

0041\ 243 2n-—1
ot :l 1 n+/?

" 2dn+12n-1"

1 1 n-¢+1

L1 <n+f+2 n—f—v

+ = __
" 22n4+1 2n+3
11 n+¢ n—¢+1
v, =— 2+ Dn=~F+2 - £—1 £)———|,
nt 22n+1%” FD =42z =D+ )=
~ 11 n+¢-2
enfz 22 +1(n+f—1)(n+f)2;14_1,
1 1 n—¢+3
- - - 4+2)— = Al
for = 22_+ﬁn £+ 1)(n ”*’)2n+3 (A1)

The calculation in order to obtain Eq. (51) reads

Hi (¢) Z Z [ansnfgﬁfo + (an,’snfa?;f + N(n+2)z,’s(n+2)fh(()n+2)f + N(n—Z)KS(n—Z)fc(()n_z)f)
2Nn 1,3,5,... \F==%l1

X Ty = Groo) €70 + (a5 1y Nau-1ySni-1) + 500y N2 ) S0 + Gy ety N2 ) Sn-2) (1)
X (T30 = oo+ Toio — Grio)e™™?

+ ( nanl‘Sn] + B(n+2) (11+2)15(n+2)l + c(_n_z)lN(n—Z)]S(n—Q)l)( - gx 1)0 + Iy( 10— gﬁ(_l)o)eid)}

I
o7 2o @) NS + 87,003 N3 S + ayaN -2 S-2)-)
n=3,5,...

X (Iﬁ(—wo N S ) -
+ ( 3N 3383 + by, (n+2)3 Nn1233 (23 + c(_n—2>3N(n—2)35(r1—2)3)( w0~ o+ Loto — g;yno) e3i¢],
I 5 x(K)

- WZ Z [ gllOqunl + 1T g gl
k=0 n=13..2k+1

x x(k) x (k) v (k) —k ig
_Z"( 1(-1)0.eq n( 1) I( )Oeq n( +g) Oquy( 1) I)’( I)O,qu:’l(—l))]w kel

1 & o ) o
+WZ Z [_h ( lloqu”(l leOeq nl + glloqu,yl(] ) _Iyllo.eqlfz(l ))

k=0 n=13,....2k+1

s (OX x(k) X x(k) —k ,—i¢p
**ﬂ<mm<>+@1<m¢wJW€
RN (o aR)

(k)Y
TN Z qn ( 110.eqIn1 Z)lclOeq nl +g110qu:zl Z710eq i )W k¥

k=1 n=13,....2k+1
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1

- X0 7
N D b (Gi-osadaic) = Lo
k=1 n=3),5,...,2k+1

X (k)
Oeqn

0 MR
b T Glnoedni-n = Lic 1>o,eql;<—1>>w fem 7,

1 - 0y
_NRC{Z Z (R gllOqunl +h I110eq n(l))e¢
k=0 n=13.....2k+1

— hy( 110,099 n(1> I)lcl()eq nl +g110qu)y11) I)]]l()eq n<l ))3_i¢]w_k}

1 c ~ X X -y(k — i
_NRG {z Z u( 1lOqun(1 ) IllOeq nl = gllOqunl IilOeq n(l ))W KA (A2)
k=1 n=35..2k+1
with af, = 0 for |£| > n, similar for all other coefficients. We also defined
S, = /dcos 0P (cos B). (A3)
The coefficients are obtained as
hn = ansnl (1 - 021) - N(n+2)ls(n+2)lb(()n+2)1 - N(n—Z)IS(n—Z)lc(()n_z)l,
i;ln = Nn18n1021 + N(n+2)ls(n+2)lb(()n+2)1 + N(n—2)ls(n—2)1c(()n_2>17
2 = 0 NS 05, 50 N2 1St + €y N n2)1 S (-2t
T = @ N Snn) + B0, )N i) (-0 S 2)-1) + gy Nin-2) 1) Sa-2)-1):
— 0 0 0
Zn = N Su-n) (1= a3 1) = Ny S2) -0 B2 1) = N2 (1) S (0-2) (=) €2y 1)
s 0 0 0
Zn = N1 Su0) 81y + N2 =) (042) (<) i) 21) T Nn-2) (<)) Sn-2)(-1) €21y
Gn = a3N,3353 £ 00,503 N (10238 (n42)3 + €m0)3N (i-2)35 (=23
By = a3 Nu-3)S, +f’+ (3N +2)3) B2 -3) + )N 1-2)(-3) Sn-2)(-3)- (A4)

APPENDIX B: EXACT SOLUTION
OF THE BOLTZMANN EQUATION
FOR FREE STREAMING

Consider Eq. (23) for free streaming, i.e.,

_P: p:p-s
Using the initial condition at 7 = 7

f(T:TO) :fin(pi’ pz’gx’gy) (BZ)

we find the following solution
T .
f(z.pL.p:.05.8;) = fin <PL»PZ%,S¢COS‘%,SL Slngé)?

(B3)

i.e., the free streaming formally does not affect the
polarization. However, since s, depends on p,, the

change in the momentum distribution has an implicit
effect on the polarization. In order to prove that Eq. (B3)
is a solution of Eq. (B1), we note that the derivative
of f;, with respect to its second argument will be

multiplied by
(a,——a ) oo (B4)
19

Furthermore, using

51 E, \E, P
ls

+——2p(pxc059§—|—pysm9§)0 Sy,
S E

1 (s-p

0s.51 :S— (sz_§z>

ls

—i———p(p,(cosﬁ‘a,—l—py s1n0§)0§ S, (B5)
NIR Ep
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we find that the derivative of f;, with respect to its third or fourth argument, respectively, is multiplied by

. 1 -1
<_&a _&g%)u _ [1 _LE R sty 4 p SM@)}
—0,,

D 2 2
T Ep NN E

3 21 2 21 .p)2 .p3
«(-PeBe=p pil (s f> pil(s f) P2 PR (g
s Ej T E, T E, T E; 1

We can use the exact free-streaming solution in order to analyze the free-streaming fixed points of the spin moments.
Consider

T .
= / susind, (E ) Php./p)e fin (m,pz 51 C08 055, smeg),
14 P

| AW Pp
2/E,, (Eﬂ> Pi(pz/p)e’“{(l +p_2>Ai <pbpz > AL (mvl’zlﬂ’
p P mn o

=22 [ e (22) Phteopefrpe® [ (14 22) Ao ) + 25 o1 (87
p pr

T

where we inserted Eq. (27), used [dS(p) =2, [dS(p)8' =0, and [dS(p)8'8/ =2(5" + p'p//m?), and defined
[,=/&p, ey = V (zop./7)* +p2 +m? and p, = +/(zyp./7)* + p> . For early time 7 < 7, we find

2-¢ ' Dy 1\ 2-¢
. 2(T—°> / |pz|[sgn<pz>1"+f(“) B eitd [(l ; )A;;I(pl,pz) PxDy Aiyn(pl,pz)} - (—) (B8)
T 4 ‘pz| m T

with

4
B, = lim_ 2ot

x—»lq/l_xzf'

The dependence on r vanishes in this limit. For late time 7 > 7, we obtain

X 7o ,,ﬂ it p)zc X pxpy y 1
Y, —2— [ ey 73 (0)e 1+ |AS (P p.) +—> A (PL.p.) | ~—. n+ZCeven
T Jp SL m T

2 r—1 ) . ! 1\2
-2(2) p(”—) Py (14 )Awpm) 2L ppd|~(3) wton (B10
P

Here we defined ¢, = \/W and used the recurrence relations

Po0)=-""1E0Pt ,0). > 1e#n

PL0)=—(n+¢-1)(n—¢+2)P;72(0), £>1, (B11)
and

Py0)=1, PY0)=0, P}(0)=-1, P§0)=0 (B12)
to find that P%(0) = 0 for n + ¢ odd. We also have

(PR)(0) = (n+ £)P;_,(0). (B13)
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The behavior of 7*

ntr

70\ P\ pr i ps PP
23~ 2m(2) ™ [t (24) st | (14 ) Ao ) + 252 A o)

p p.|

- G) - (B14)

T r A 2 x 1
T, - 2m-2 (—§L> PL(0)e? [(1 +—22>A{‘n(pbpz) PxPy A:n(pl,pz):| ~oom + £even
4 1

T

- PP\ ey it p_’zf x PxPy 4y ~ 12
Tae 2m(1> /&1 (é‘J_) (Pn)(Q)e 1+m2 An(P1.p:) + m? An(PLp:) )’ nttodd.  (BIS)

for 7> 1.

is obtained analogously as

for r < 7y and

APPENDIX C: FREE-STREAMING FIXED POINTS OF THE EQUATIONS OF MOTION

For 7 <« 7, the equations of motion (41) and (42) are dominated by the terms in the first lines, respectively,
corresponding to free streaming. The equations of motion feature two free-streaming fixed points. The unstable fixed point
is obtained from the relation

an(anfr + dnfr) + B(n—Z)f(bnfr + enfr) + B(nJrZ)f(Cnfr + fm”r) =2-7, (Cl)

where B,, is defined in Eq. (B9). At this fixed point, the spin moments become independent of r and related via
% o] G = Buz/ B for m > k. They decay ~7=>*7. Furthermore, the identities

anfrpi(o) + bnfr’Pi 2(0) + Cmf’r n+2 0

( P4(0), n + £ even,
ey Ph(0) 4 €0, P4 _5(0) + frer Pl (0

(

(

0 n+ £ even,
2(n+£)P%_1(0), n+ ¢ odd,
0, n + £ odd. (C2)

a fr(n + f)’Pi—l (0) + bnfr(” -2+ K)Pi—?a (0> + Cnfr(” +2+ f) +1 0
dnfr(n + ?’ﬂ)Pi—l(O) + enfr(n -2+ f)’[)i_3(0) + fnfr(n +2+ f) n+1 0

)
)
)
)

are related to a stable fixed point, where the equations of motion for moments with different r decouple. The moments are
related through

gnz,’r/gmkr - ’PIL:(O)/,P]r(n (0)’ n-—+ feven,
ver/ G = (0 + O)P_1(0)/(m + k)P, (0)].  n+ £ odd. (C3)
The behavior at the free-streaming fixed points can also be analyzed by considering the exact free-streaming solution. This

is shown in Appendix B.
For the 7 moments, the identity for the unstable fixed point reads

an(anfr + anfr) + B(n—Z)f(bm’r + énfr) + B(n+2)f(cnfr + }nfr) =1-7, (C4)

therefore, these moments decay at the unstable free-streaming fixed point ~z~'* with Z,/,/Z yxs = Bpnz/ B for m > k.
Furthermore, we also have

ey PL(0) + ey P, (0) + fnf,P,’fH(O) =0, n + £even,
dupr(n+ )P4 (0) + &pr(n =2 + E)PL_5(0) + Frr(n+2 4 €)P%,,(0) =0, n+ £ odd. (C5)

Thus, the Z moments behave identically to the G moments at the stable free-streaming fixed point.
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APPENDIX D: EQUATIONS OF MOTION FOR THE SPIN MOMENTS

In order to derive Eq. (41) from Eq. (23) we use the following calculation for the free-streaming part,

x P\ axpr iegp [ Pz p:p-s
0.6, = | (=) 8P’(coso Peg + L2225, )7
‘rgm”r /pﬁ <Ep> (COS )6 (T 243 + E?, T 3, f

<p) 8P (cos )ei’? (pz 0

E]7 T

(ésxpzapﬁx + éypzapry),
. 2 Op:

T

-
o + g;pTag) (F + 85 A" 4 8 4),
4
<p 3P (cos )e’?
E,

(
2
p ; P\ Pz y e, PaPyP ,
E,,(—) P (cosO)e f¢[<1+W>7zap;A + mz‘f"px‘”],

2 2 )
21/ p( )[ r_l)&“—}w(cow) "’¢K1+p—§)A"+—px€yA~V]
TJp [7 p 14 m m
2
(gt B
P

L) st (cos ) el f - / P = (r = 1) 2] src0s20 (cos 0)ei0f
s \E 7.Jps \E E} ’

p

<—) 3% cos On cos OP% (cos 0) — (n + K)P{n_l) (cos0)]ei“d £,
3

p

1
7 (AnerGrgy + bnt’rg(n—z)fr + Crnf’rg(n+2)fr + dnt’rgnf(r+2) + enfrg(n—z)f(r+2) +f rlfrg(n+2)f(r+2))’ (D1)

where we inserted Eq. (27) and used [dS(p) =2, [dS(p)8' =0, and [ dS(p)8'8/ = 2(6" + p'p//m?). The coefficients
in read

_1_(n_r)<(”+1_f)(”+1+f)+ (n+b”)(n—f)> (n+2)(n-2¢)

ner = n+D)2n+3)  @n+1)(2n-1) -1
B (n+8)(n—14+¢) (n+&)(n—-1+7%)

buer = =1 = 1) S NG — ) T 2n—1 ’
_ (n+1-2)(n+2-7)

Cnfr:_(n_r)

2n+1)2n+3) °
n+1-¢)n+1+7¢ n+?¢)(n-¢
d"f’E_(’_l)C (2n—|—1))§2n+3) : (§n+1;E2n—i))
(n+&)(n—-1+4+7)
2n+1)(2n-1) °
(n+1=-¢)n+2-7)
2n+ 1)(2n +3)

Cner = _(r - 1)

fnfrE_(r_ 1) (D2)

Furthermore, the free-streaming part of Eq. (42) is obtained as

1 : |
0.1, = m/gE <£> gxpﬁ(cose)elfd’( 9, + g; p:ag >f
P

p \Fp
/ 1
m —_—
E,
1

1

2

1 V4 X i )p X x )
:Em/ E) <E_> 3P’ (cosO)e ﬂ/f(@ 0, A"+ 89, A),

<Eﬁ> gwﬁ(cosa)eiﬂﬁ( 0, + prTs :>(T-+§’CAX+§>'A>'),
P
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= Zm/ <£>r73if(cos¢9)e"f¢& Kl +
» \Ep T

P E

—2m

p

We see that the only difference compared to G}, appears in
the last three terms. The coefficients are given by

_ (n+1-)n+1+¢) (n+7)(n-72)
’“”__< (2n+1)(2n+3) (2n—|—1)(2n—1))
. (n+On-1+7¢)
=T o 2n—1)
(n+1-2)(n+2-2)

(2n+1)(2n+3)

At

}ilff =-r (D4)

APPENDIX E: EQUATIONS OF MOTION FOR
THE ENERGY-MOMENTUM TENSOR

In order to determine the temperature, we need to consider
the equation of motion for the component 7% of the energy-
momentum tensor, cf. Ref. [58]. We define the moments

_1 AN
szzz;G;>PAwwﬁhmﬁ)

-/ d3p<EL;)rEp7’n(0059)f(T7p)- (E1)

We assume that F is invariant under parity and depends on

p. and p, only through p, = \/p% + p2, thus we do not
need to take into account any dependence on ¢ and can
consider moments defined only in terms of Legendre
polynomials P, (cos #) = P9 (cos ). The independent com-
ponents of the energy-momentum tensor are

85/d3pEpF:£00,

P2 1
P; = /d3p—z.7'-=—(2£22 + Loo),
E, 3
2 2
pTE/de%f:§(E02—sz), (E2)
P

2
Px ¥
_z> ap:A

1 r )
=—2m / p) P’ (cos 0)e'? [1 - p; +r
P

AL

/,, Eﬁ> (PLY(cos )¢ cos O(1 — cos?6) Kl

1
=—-m [ —& PZ(cos ) e'? ——m/ —
/péEp <Ep> ( ) f T ps

1
z

+ 1m/ Lﬁx <£> et cos Oln cos 0P, (cos0) — (n + £)P? _ (cosO)|f
T P8 E n (n—1) >
1
i

( nf’rInfr + bue L (n=2)¢r + C”f"I)(Cn+2)fr + dm”rIZf(rH) + é”f’I?n—Z)f(r+2) +f nfrzfn+2)f(r+2))'

PxPy
0, A,
+ m2 P :|
i PxP
+»QAx+ngﬂ
m m
2
# 2 D).
m m
1

r 2
3" <E£> P’ (cos §)ei’Pcos?0 {r - rp—] f
P

2
E, E

(D3)

|
where ¢ is the energy density, P, is the longitudinal pressure
and Py is the transverse pressure. The equations of motion
for the moments L, read

1
a7:£nr = _; (anOrﬁnr + bnOrE(n—Z)r + CnOr‘C(nJrZ)r
+ dn()r£n(r+2) + enOr£’(n—2)(r+2) + anr[’(n+2)(r+2)>

1

__(‘Cnr -L (E3)
TR

nr,eq>’

where the coefficients are equal to those in Eq. (41) for
¢ =0. Due to the matching condition (31), we have
Loy = Lo eq- Furthermore Ly, oo = 0. We are then left with
the equations of motion

0 Log = — % (ao00Loo + doooLoz2 + foooLaz),

0. Loy = — % (ao02Loz + cooalar + dooaLos + foo2Los)
%(502 = Lon.eq)s

0Ly =— % (a202L22 + baoaLon + daoaLos + €202Lo4

1
+ fo02Las) = a L. (E4)

Note that Cooo = Cr02 = 0. Furthermore apoo = 1, d()()o = 1/3,
and foo = 2/3. In order to close the system of equations, we
need approximations for Ly, L4, and L4,. We note that
these moments appear only in terms which vanish at the free-
streaming fixed point. Therefore, we need to take into
account only the equilibrium contribution, which is nonzero
only for Ly,. Again using an interpolation analogous to
Ref. [58], we obtain
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0y Loo = <£oo +5 Loy + 35 ﬁzz)
1 4 1 )2
0Ly = w13 —Coz +3 3 Ly - 3 (1=e™7%)Loseq| = (Loz = Loeq)s
1 2
0Ly = - { L — E(l — /2 )£04,eq:| — L. (Es)

APPENDIX F: POLARIZATION AT THE FREE-STREAMING FIXED POINT

At the stable free-streaming fixed point, we can use the relations (C2) to express all moments G¥,; terms of G¥ .. Then
Eq. (17) simplifies to

: P40 Y A ()
z/dpszpAlrif 735(0)/ shel™f = f( )/ ﬁookP?(COS‘g’)f/’”ﬂ{/) 1 )gmv (F1)
r$ PK(O) s (O)
and Eq. (18) becomes
A, -p)p* E,—-m[ 1, . . ‘ 1, . ,
-2 d 2E ( nt __/ )4 X (,i(f+2)p 2 i‘p i(£-2)¢ vy (,i(l+2)p _ Li(£-2)¢p ¢ 0
/ pp P—Ep(m+Ep) L, §4(e +2e%? t e )+§4(e e )| PL(0)f
1 P%(0) . . ,
P20 ( (£+2)(£+2)0 — g(£+2)(f+2)0 + I{f+2)(f+2)0 - g%£+2)(£+2)0)
4P713(0)
1 P4(0) .
47;§—2(0) (Z¢ (£-2)(£-2)0 g(f—Z)(f—Z)O - I{f—z)(f-&-Z)O + g{f—2)(f’—2)0>
17P4(0) . .
+ Epf—@ (L300 = Giro)- (F2)

Inserting these equations into Eq. (10), we obtain the following expression for the polarization at the free-streaming
fixed point,

11 1 1 1 :
Hﬁzmél [gooo 2I000+47)2( )( 320 = G320 + Taao — g%zo)}

Z N ,Pg(()) X +1 Pf( ) (Ix _gx +I) _gy )
ne~S nf 27)?(0) [Z4\ 47)f+2( ) (£+2)(£42)0 (£+2)(£+2)0 (£+2)(¢42)0 (£+2)(£+2)0

n=1 £=-n,l#0 42
1 Pf( ) , 1P4(0) :
—_tn\¥Y) (7x _Cx _ I)’ 4 Y 4 _”_Ix enfzﬁ
473?—%( ) ( (£-2)(¢-2)0 g(f—Z)(f—Z)O (£-2)(£4+2)0 g(i—Z)(f—Z)O) 27)?(0) [240)

1 ‘
16 N |:g000 + ZOOO +5 k2( 220 g)2620 + I;ZO - g%ZO):|

1 -l 1 ,
+ Zf § f: . K, {kf(gffo +I30) + 3 ke (T (12420 ~ Giesayes20 T Liesayesno ~ g{ﬂz)(fu)o)
—— 00,/

+5 kf 2( (£=2)(¢=2)0 g)(cf—z)(f—z)o - I{f—z)(ﬂz)o + g{f—z)(f—z)o)] e'’?, (F3)
where 5, is defined in Eq. (A3) and we introduced
- 1
Kf = ansnfpi(o)’ kf = . (F4)
= w0
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However, the polarization in heavy-ion collisions is mea-
sured at freeze-out, therefore the knowledge of the polari-
zation at the free-streaming fixed point is of limited use for
practical applications in this context. In principle, one could
try to derive an expression for the polarization which is
valid during the full evolution from free streaming to the

hydrodynamic regime. However, due to the lengths of
equations and the large number of unknown moments, such
calculation is hardly practicable and most likely not
necessary. Therefore, in the main text we choose an
expansion around local equilibrium, which is justified
when considering the polarization at freeze out.
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