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In this paper we discuss the analytical properties of the binary collision integral for a gas of
ultrarelativistic particles interacting via a constant cross section. Starting from a near-equilibrium expansion
over a complete basis of irreducible tensors in momentum space we compute the linearized collision
matrices analytically. Using these results we then numerically compute all transport coefficients of
relativistic fluid dynamics with various power-counting schemes that are second order in Knudsen and/or
inverse Reynolds numbers. Furthermore, we also exactly compute the leading-order contribution with
respect to the particle mass to the coefficient of bulk viscosity, the relaxation time, and other second-order
transport coefficients of the bulk viscous pressure.
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I. INTRODUCTION

The kinetic theory of rarefied gases contains a collision
term which describes the interaction among constituents
through collisions. The well-known collision term defined
by Boltzmann’s Stofizahlansatz, or the assumption of
molecular chaos, defines the number of binary collisions
through a product of two single-particle distribution func-
tions. The resulting integro-differential equation, the
Boltzmann transport equation, describes the spacetime
evolution of the single-particle distribution function [1-3]

ko, fx = Cf]. (1)

where C|[f] is the collision term. In the case of binary elastic
collisions, the collision term reads

1 -~
Clf) =5 [ dKAPAP Wy -sachof i
— Wik—pp S S wf p} ) (2)

where fy = fi.(¥#,k*) denotes the Lorentz-invariant
single-particle distribution function, while fi =1 — afy,
with a = £1 for fermions/bosons and a = 0 for classical
particles. The Lorentz-invariant differential element is
dK = gd’k/[(27)*k°], while g denotes the number of
internal degrees of freedom. The 1/2 factor removes the
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double counting from the integrations with respect to dP
and dP’. The four-momentum of particles k&* = (k% k) is
normalized to their rest mass squared, k/‘kﬂ = m%, where

kY = \/Kk? + mj} is the on-shell energy. In this paper we use
natural units 7 =c =kz = 1.
The binary transition rate is defined as

(vs.Q)

s do
Wkk’epp’E?(zﬂ)G dQ S(K kM —pt=p™), (3)

where the factor (27)°/¢? appears due to our convention for
the momentum-space integration measure. For simplicity,
in the remainder of this paper we set g = 1. The delta
function ensures the conservation of the energy and
momentum in binary collision. The transition rate depends
on the total center-of-momentum (CM) energy squared
s = (k* + k") = (p* + p)?, while the total cross section
integrated over the solid angle Q is defined as [4]

o) = [ e, (@)

In this paper we employ the so-called hard-sphere approxi-
mation which assumes that the transport cross section is
isotropic and independent of the total CM energy,

do(y/5.Q) 1
dQ  npAmg

(5)

or =2
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where n is the particle density and A, is the mean free
path between collisions.

The relativistic Boltzmann equation provides a frame-
work for studying various properties of matter in and out of
equilibrium, as well as for deriving the macroscopic
conservation laws, i.e., fluid dynamics, based on the
microscopic properties of the system.

A vanishing collision term, C[f] = 0, due to detailed
balance, defines the local equilibrium distribution, the
Jiittner distribution function [2,3,5],

fox = lexp (Bk*u, —a) 4+ a]™", (6)

where u* = y(1,v) is the timelike fluid-flow four-velocity
normalized to uu, =1, while y = (1—v*)~!/2. Furthermore,
p = 1/T is the inverse temperature and a = fu, with u the
chemical potential. Out of equilibrium, the distribution
function is separated as

S« =fok +6f«k- (7)

In this paper we apply a relativistic version of Grad’s
method of moments [6], as formulated by Denicol, Niemi,
Molnér, and Rischke (referred to as DNMR) [7], to obtain
the transport coefficients for a classical gas of massless
particles interacting via an isotropic constant cross section.
Therein the irreducible moments of tensor-rank # of Jfy
are defined as

lHe = / AKEL k0 - k) 5f. (8)

Here, r denotes the power of energy Ey = k*u,, while
ko te) = ALUECRY -k are the irreducible tensors
forming a complete orthogonal basis [1,7]. The four-
momentum is decomposed as k* = Eyu* + k), where
k) = ALk¥ is defined using the elementary projection
operator AM = g" — ytu¥, with ¢ = diag(+,—, —, —)
being the metric tensor. The symmetric, traceless, and
orthogonal projection tensors of rank 2¢, AJI}¢, are
constructed using the A*¥ projectors.

Expressing the comoving derivative of irreducible

moments, pﬁ” ) = AL u%0,pr Y, the equations of

motion for these moments follow from the Boltzmann
equation (1). For the sake of concision, we do not list the
complete equations of motion, since they can be found in
Egs. (35)-(46) of Ref. [7], and instead quote just the
following terms:

p,—C_1 = o+ (higher-order terms), 9)

e

r—1

= aVra + (higher-order terms),  (10)

pﬁ’lv) — Cﬁ"_”ﬁ =2aP o + (higher-order terms), (11)

where the irreducible moments of the collision term (2) are
defined similarly to Eq. (8) as

Cﬁ”lmﬂf) — /dKElr(k(ﬂl e kW>C[f], (12)

The coefficients agf) = a(f> (a, p) are thermodynamic

functions. Furthermore, V# = A*9, is the gradient oper-
ator, 0= V”u" is the expansion scalar, and " =
1(VFu? + VPut) —10A" is the shear tensor.

The conservation of the particle number as well as of
energy and momentum in binary collisions requires that the
corresponding moments of the collision term vanish equiv-
alently, i.e., Cy =0, C; =0, and Cim = 0. The resulting
equations of motion are the conservation laws of fluid
dynamics,

J,N* =0, 9,T" =0, (13)
where the particle four-current and energy-momentum
tensor are given by

N# = nout + V¥, (14)

T = equtu* — (Py + I1)A* + 7. (15)
Here, n, ¢y, and P, are the particle density, the energy
density, and the isotropic pressure, in equilibrium. The bulk

viscous pressure, the particle-diffusion four-current and the
shear-stress tensor are defined by

1 m2
= _ngwAm/ - PO = _?0,00, (16)
Vi = AN = pl., (17)
7 = AT = . (18)

In the above decompositions the fluid-flow four-velocity is
the timelike eigenvector of the energy-momentum tensor,
w = T"u,/eg, as per Landau’s definition [8], and hence

Pl = AT, = 0. (19)

The chemical potential and the temperature are determined

through the Landau matching conditions,

p1 =N'u, —ny =0, pr=T"u,u, —ey=0. (20)
The equations of motion for the primary dissipative

quantities p, = —3I1/m3, ph = V#, and pj’ = 7" follow

from Egs. (9)—(11). The five conservation equations (13)

couple to these nine transport equations which contain

various transport coefficients that explicitly depend on
the underlying approximations and the influence of all
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nondynamical moments included in this truncation. These
equations are truncated according to a power-counting
scheme in Knudsen and inverse Reynolds numbers. The
Knudsen number, Kn = 4,,4,/L, is the ratio of the particle
mean free path 4, and a characteristic macroscopic scale

L, while the inverse Reynolds number Re~! is the ratio of
an out-of-equilibrium and a local equilibrium macroscopic
field. The resulting equations of fluid dynamics are of
second order in Knudsen and/or inverse Reynolds numbers
and are closed in terms of 14 dynamical moments contained
in N* and TH.

Focusing on this second-order theory of relativistic fluid
dynamics, we compute the moments of the linearized
collision term for a gas of ultrarelativistic hard spheres
with a constant cross section. Introducing a novel aniso-
tropic decomposition of the collision integral in the center-
of-momentum frame, the calculation of the linearized
collision matrices is done analytically in the ultrarelativistic
limit. Using these exact results in the 14-dynamical
moment approximation we collect and compute all trans-
port coefficients, with five significant digits of precision,
for truncation orders No —2 = N; — 1 = N, = 1000, cor-
responding to Ny + 3N; + 5N, +9 =9014 moments
included in the basis.

We also compare the effect of three slightly different
power-counting schemes for the nondynamic moments
introduced in Refs. [7,9,10], on all transport coefficients.
Specifically, we will consider and compare

(1) the DNMR approach with additional corrections
to the O(Kn?) transport coefficients of Refs. [7,11];

(2) the inverse Reynolds dominance (IReD) approach of
Ref. [9], where all O(Kn?) terms are rewritten and
absorbed into the O(Re™'Kn) terms;

(3) the corrected DNMR (cDNMR) approach of
Ref. [10], where the O(Kn?) transport coefficients
receive contributions only from the asymptotic
matching of the moments p/ ;"

All three schemes considered here fully account for all
second-order terms with respect to Kn and Re™' and are
therefore equivalent (up to terms of third order) within this
truncation scheme. At asymptotically long times, when the
magnitudes of the Knudsen and the inverse Reynolds
numbers are of the same order, i.e., Kn ~ Re~!, also known
as the order of magnitude approximation [4,11,12], there is
freedom to rearrange the transport coefficients. The IReD
approximation of Ref. [9] expresses the thermodynamic
forces in terms of the primary dissipative quantities to replace
Kn?> — KnRe™! and hence removes terms that are of second
order in the Knudsen number from the fluid-dynamical
equations of motion. In this paper, we focus solely on the
linearized binary collision integral, which does not provide
Re? terms. However, one may include nonlinear contribu-
tions to the collision integral as described in Ref. [11].

The main results of this paper are the closed-form
computations of the collision matrices for the scalar, vector,

and tensor moments in the case of massless ultrarelativistic
particles interacting through a constant isotropic cross
section. This interaction model reduces in the nonrelativ-
istic limit to the well-studied hard-sphere interaction model,
for which the first-order transport coefficients, i.e., the
shear viscosity and heat conductivity, can be obtained in
terms of the so-called Chapman-Cowling collision integrals
[13,14] via a successive iterative refinement procedure.
This method can be extended into the relativistic regime
[2,15], where the exact expression requires a resummation
over the entire hierarchy of moments [7]. We will demon-
strate the truncation-order dependence with an analytical
result only for the leading-order contribution with respect
to the particle mass m, to the bulk viscosity coefficient
and to the relaxation time 7y for the bulk viscous pressure.
For all other transport coefficients, we rely on numerical
methods to obtain their values in the limit of infinite
truncation order.

Another collision model for which the transport coef-
ficients are obtained with similar accuracy as for the hard-
sphere model is that of the so-called Maxwell molecules
[14,16], interacting via a potential V(r) ~ r=>, with r being
the distance between two interacting particles. Two rela-
tivistic generalizations of this model correspond to the
Israel particles model [17] and the Polak model [18]. More
recently, the collision operator corresponding to the A¢*
scalar field theory was studied in Refs. [19,20]. These
results were used to compute transport coefficients in
several fluid-dynamical theories in Ref. [21]. The present
work complements these studies considering the analogous
problem for hard spheres.

This paper is structured as follows. In Sec. II, we
introduce the expansion of the distribution function and
the linearized collision integral in terms of irreducible
moments. Then we discuss the various power-counting
methods and the transport coefficients of second-order fluid
dynamics. Section III clarifies the analytical structure of the
collision integrals appearing in the moment equations up to
tensor-rank two. These expressions are the main results of
this work. In Sec. IV all first- and second-order transport
coefficients are computed in the ultrarelativistic limit. The
exact results for the coefficient of bulk viscosity and the
relaxation time of the bulk viscous pressure are computed
in Sec. V. Finally, Sec. VI concludes this work. For reasons
of brevity and clarity, various computations are relegated to
the Appendixes.

II. SECOND-ORDER FLUID DYNAMICS
WITH 14 DYNAMICAL MOMENTS

For reasons of completeness, we first summarize the
derivation of second-order relativistic fluid dynamics from
the Boltzmann equation based on Ref. [7]. The near-
equilibrium expansion is summarized in Sec. IIA. In
Sec. II B, we discuss the linearized collision integral and
the various power-counting schemes in a unitary fashion.
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Finally, Sec. IIC provides the relaxation equations of
second-order fluid dynamics with 14 dynamical moments.
The particle rest mass my is considered arbitrary (non-
vanishing) throughout this section.

A. Near-equilibrium expansion over a
complete basis of irreducible tensors

The expansion of §f) is given by

8fk = foxS ok

= forfox Z me Mk

=0 n=0

4
k, Hil o (21)

where the coefficient ’Hfi) is a polynomial in energy of

order N, — oo defined through another polynomial Pﬁl as

0 _ WO ) p0) 6) NS () pr
Hkn = 7Zamnpkm, Pkm = ZamrEk. (22)

m=n r=0

The negative-order moments p''** are not included in

the expansion (21) but they are expressed by a linear
combination of positive-order moments through

Ng
rope _ Z]:%)P/ﬁ""m’ (23)
n=0
where we defined
0__ 2 Wby 1\ p o 7
Fn =m dKE" (A% kokp)" Hy, foxSfox,  (24)

such that F (_,) n = 0,, by construction.
The coefficients a,(,frz are obtained via the Gram-Schmidt
orthogonalization procedure by imposing the following

condition:
/ dKo )P\ PY) = 5,.. (25)

where the weight w'?) is defined as

w@)

0 =W
N YR T

(Aaﬂkakﬂ)ffOk}‘Ok’ (26)

while the normalization parameter W) is fixed according

to P§<()) = a(()? = 1, leading to

wer = 5D (27)

Here the thermodynamic integrals are defined as

(=17

Lyy(a,p) = W/dKEﬁ_zq(Aaﬂkakﬂ)qfOk’ (28)
(ol (a.B)
an(a’ﬂ) = (270{)/ (29)

where (2g + 1)!! = (2q + 1)!/(24q!) is the double facto-
rial of odd integers. For classical particles, a =0 and
Jug(a, p) = I, (. p). Using these integrals, the particle
number density, the energy density, and the isotropic
pressure are ng = 1o, ey = Iy, and Py = I;.

The coefficients ag) (a,p) in Egs. (9)—(11) are

o n
ag ) = —PJ 11— D_;)o (hoGay = Gs,), (30)
Iy
V=70 - ;0“ (31)
arZ) = ﬂ‘,r+3,2’ (32)

where hy = (eq + Py)/ny is the enthalpy per particle and

Gnm = JnOJmO - Jn—l,OJm—H,O? (33)

an = JnJrl,qJn—Lq - J%q (34)

Note that the thermodynamic integrals introduced in this
subsection are computed explicitly for the case of ultra-
relativistic particles in Appendix A.

B. The linearized collision integral
and power-counting methods

Substituting the near-equilibrium distribution function
from Eq. (7) into the binary collision term (2) and using the
identity fopfop' JorSox = foxforf Opf op’ While neglecting
quadratic terms in Jfy, the irreducible moments of the
linearized collision integral become

1 -~
cHrHe) = 5/deK/deP/Wkk’epp’fOkak’fOpfOp’
X Bk k4 (g + by — i — i) (35)

Now, inserting the expansion from Eq. (21) into the above
formula, the moments of the collision integral can be
expressed in terms of a linear combination of irreducible
moments from Eq. (8) as

/41 He) _

Z A 1 “He (36)

The matrix .A(,i) is defined as [7]
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/ dKAK'dPAP' Wy py

200+ 1)
X fOkak’J?Op]‘()p’Elr(_] kb o)

X (Hyg K, ==y + H K, oKL

~ Ml Pl Py = Hl(f,),p’o,l o Py)s o (37)
and it is separated in loss and gain parts as

A%) = Arn - Arn . (38)

Now, using Eq. (22) to express Hg), we obtain

ZZ amang L2, . (39)

’man

m

Ny
e =2ESTS e, @)

q=0

where the corresponding summands E%) and gﬁ? are

given by
1
L=~ / dPAP'dAKAK' Wy
2022 + 1) ki'~pp
X foxf o fopSop Exk® - - ko)
X (B = k) + Egkly, -k ) (41)
and
() — / /
= dPdP'dKdK' Wiy Zpry
g 2/+1) / kk'~pp
X foxf ok’ fOpfOp'EkEnk ekt p Puye (42)

respectively. The computation of these summands and of
the collision matrix in the ultrarelativistic limit myf — 0 is
one of the main purposes of this paper and will be discussed
in Sec. IIL

The inverse of the collision matrix, the relaxation-time
matrix, contains the microscopic timescales proportional to
the mean free time between collisions 7y, = Awgy/ ¢,

Ny
1
3 — 4 —
i = (A5 =3 Q5 Q). (43)
m=0 Xm

Here the matrix Q(“) diagonalizes A*), leading to eigen-

values that are arranged in increasing order, ;(&f) < ;((ri)l,

(QNTANQD = diag(r 7)., (44)

where without loss of generality we set Q(()? =1

The diagonalization of the collision term identifies the
slowest microscopic timescale that dominates the evolution
of the linearized Boltzmann equation [7]. However, as
discussed in Ref. [9], the diagonalization procedure is not
required for the computation of the inverse collision matrix
719), since it can be obtained by directly inverting A®“)
apparent in Eq. (43).

Using the relaxation-time matrices (43) and the aﬁf)
coefficients from Eqs. (30)—(32), the first-order transport
coefficients {,, k,, and 7,, are defined as

Ny
_ My (0) (0)

C, = rm Qn ",
3 n=0.#12
N, Ny
K, = Z rﬁi,)a,(,”, n,= Z rﬁi)a,(f), (45)
n=0,#1 n=0

where the exclusions of n # 1, 2 and n # 1 from the first
and second summations are imposed by the conservation
laws (13).

The equations of motion for the primary dissipative
quantities, I1= -mjp,/3, V¥ =pf, and z** = p})’, are
obtained by performing the matrix multiplication of
Egs. (9)—(11) with 7\, followed by setting n = 0. In these
equations, the terms of second order in Knudsen and/or
inverse Reynolds numbers also contain irreducible
moments pi'"# with r # 0, which need to be specified,
while moments with tensor rank # > 2 are omitted in what
follows.

Following the DNMR method [7], the irreducible
moments for 0 < r < N, are approximated by their asymp-
totic solutions as

3 3
Prso = ——ZQ%)H +— (¢ - Q%)CO)Q (46a)
my my
M ~ Q(l)vy _ (1> H
Prao = Q0 V4 (K, — Q,0'k0) VHa, (46b)
2)_w e 1) "
P02 QT+ 2(n, — Q5 ny) ™. (46c¢)

The remaining moments of negative order p2, "’ are
obtained by substituting only the first terms, and hence
neglecting terms of order O(Kn), from the right-hand sides
of Egs. (46a)—(46¢) into Eq. (23), leading to

3 0 0)

3 0)
p_,:—m—%yroHer—%(Fro —70)800,  (47a)
Py 2y Vi (T =7 ko Via, (47b)
P sy S+ 20 = 78 oo, (47¢)
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where we displayed explicitly both the O(Re™") and the
O(Kn) contributions. The DNMR coefficients, y%), are

Ny
0 0 0
W= S .
n=0,#1,2

N, Ny
ro= Y FuQy. g =) FRel. @)
n=0,#1 n=0

In addition, we introduced the so-called corrected DNMR
coefficients, F%), defined as [9,10]

No
F(,g) = F 592 i"
n=0#12 Co
Ny N
ST S L L IR
n=0,#1 Ko n=0 Mo

On the other hand, in the cDNMR approach, the
thermodynamic forces can be replaced by the Navier-
Stokes relations, 8 = —I1/{,, V¢a = V#/k,, and o =
7" /(2ny). Therefore, substituting the right-hand sides of
Egs. (47) eliminates the O(Kn) contributions to the

negative-order moments p.' " and yields [9,10]

3
o, _Wrﬁg)n, P ve T (50)
0

Finally, the IReD approximation of Ref. [9] defines a
power-counting scheme without the diagonalization pro-
cedure, such that the irreducible moments are of order
O(Re™!). The nondynamical positive-order moments are
given by

Prao = Ci(l)) 4 0 = C%)”’w’
(51)

where the corresponding IReD coefficients, C%), are

3 0
Pr>0 = _m_(z)c’o 11,

CO_Sr K LM s
r0 é:O r0 Ko r0 o ( )

while the negative-order moments are given by Egs. (50).
To simplify our notation we will introduce a common

variable, .f(,'“ﬂ), for the transport coefficients (45) in what
follows:

&=¢, =k, P=p. (53

To study the different power-counting schemes, we intro-
duce the following notation for the nondynamical moments

encompassing the DNMR, the cDNMR, and the IReD
approximations:

3 20, 3 0
prz—m—%X,OHer—%%oé’, (54)
o= x\ve 4 ) Vra, (55)
P = x4 2y (56)

Here, for r = 0, in all cases, by definition,
¢ ¢ ¢ ¢
Xéo) = Qéo) = C(()o) =1, y(()o) =0. (57)

For r # 0, the DNMR coefficients are

)
QY r>0,
xg={" (58)
Yoo <0,
and
(©) (©) £(2)
y(f) _ S = QrO §0 ’ r>0, (59)
0 0 _ ) )
( -r0 y—r,())é() » < 0’
as follows from Eqs. (46) and (47).
Similarly, the cDNMR coefficients are
(@)
QY. r>0,
xg={0 (60)
L, r<o,
and
(©) (©) £(2)
r =Q , r>0,
vy = {& G (61)
0, r<o0,

as it is apparent from Eqgs. (46) and (50).
Finally, the IReD coefficients can be identified from
Egs. (50) and (51):

Y9 r>o,
xg={"% (62)
I r<Q,
while, by definition,
Wo=o0. r#o. (63)

Note that the following relation holds for all of the
approaches:

&9, r0,

(64)
&’rv,. r<o.

&)+ 99 = {
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C. Second-order fluid-dynamical equations

The relaxation equations for the irreducible moments are
obtained by multiplying Egs. (9)—-(11) by an and then
summing over r. Employing the expression

zf gl = —_plre), (65)

valid for the linearized collision model (35) and (36) and
derived using the property

N,
> DAL =5, (66)
r=0

the second-order transport equations with a linearized
collision integral for I1, V¥, and #** from Ref. [7] read

Il + 11 =—-(0+ T + K, (67)
Ty VW 4 Vi = kVEa + JF 4 K-, (68)
T, 7W) 4 g = 2ot

+ JH + K. (69)

Here, 71, 7y, and 7, are the relaxation times, while { = ¢,
K = Ko, and n = 1 are the first-order transport coefficients,

m RN ) (0) N (0) 30)
(=2 e, m= > Xy, (70)

r=0,#1,2 r=0,#1,2
N, Ny
K= Z Télr)agl), Ty = Z Télr)X((l)>, (71)
r=0,#1 r=0,#1
ak 2 2 ak 2 2
n=Y ra’, =y &g (72)
r=0 r=0

Furthermore, 7, J#, and J* collect the terms of order
O(Re™'Kn),
._7 = —anVMV” - Tnvv”l;lﬂ - 61‘[1‘[1_[9
- AHVVﬂV”a + /1H,,ﬂ””0'm,, (73)

jﬂ = —TVVya)”” - 5‘/‘/‘/}49 - fVHV#H
—|— fVﬂA””V,lﬂ’ly —|— TV]'IHI/-l” - TVﬂ.ﬂ'/wI;ty

— /IVVVDGWJ + /IVHHV”G - ﬂv,[ﬂ’““vba, (74)

T =21 ﬂg"w"ﬂ — 8,10 — 1, 71"““0"/;> + Ao

—‘L'VV”u —l—fVV”V” +A VV'MVD (75)

Finally, the tensors /C, K*, and K*¥ contain all contributions
of order O(Kn?), given by

K= zlwﬂua)ﬂy + 526;41/0"w + 5362 + 541”1”
+ &sittiv, + ol iv, + & VM, + &V, (76)

Kt = &16"1, + Ro0™it, + &3 140 + Ry i"0

+ ksl + RgAYV 6" + &7 VHO, (77)

KCne — ,710)204(01/)/1 + 7,06" + 17]36’””6? n i~146§”0)”>’1
+ 77T + R i) + I %) + g V)
Ve (78)

where I# = V*a was introduced.

Note that all coefficients appearing in Eqgs. (73)—(75) and
Egs. (76)—(78) are calculated using the X(? and y
notations in Appendix B

III. EXACT COLLISION MATRICES

In this section, we provide exact expressions for the
matrix elements of the linearized collision term assuming
that the differential cross section is constant. The transition
rate from Eq. (3) now reads

Wikopy = 8(27)°078(k* + k" — p* — p™).  (79)

—pp
We focus on the case of a massless, classical (Boltzmann)
gas, such that

a—PEx

Joxk =€ fOkzl- (80)

Therefore, the loss and gain terms introduced in Egs. (41)
and (42) simplify to

(¢) __ O°r

@) _ dKdK’ Ej

£ = / forfoEis
ka...kﬂf>(Eﬁk<m...kW>+E;1,k’<MI "k;/w) (81)

and

(#) UT(Z”)S/ ! !

rn =2—" PdPdKdK ELE

g TSy dPdP'dKdK’ fox fox Ex 2
X Skt + KM — pt = pMYk - K p e py .

(82)

We refer the reader to Appendixes C—H for the details of the
calculations. Specifically, Appendixes C and D cover
general techniques for solving the relevant collision inte-
grals, while the results of Sec. III A are derived in
Appendixes E and G. Appendixes F and H finally cover
the results of Sec. III B.
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A. The loss terms

The auxiliary loss terms defined in Eq. (81) can be
obtained in closed form and read in the cases £ = 0, 1, and
¢ = 2 as follows:

Ly = POUT O g2rn 20 (r 4 1 + 3)
+ F(r +3)'(n + 3)], (83a)
ch) = POGT ———p7" -6 (r+n+5)
+ F(r +4)I(n +4)], (83b)
and
P2
£ = i’;’T B2 (r 4+ n 4 7). (83¢)

Now, inserting these expressions into Eq. (39) and perform-
ing the summations, we obtain the loss part of the collision
matrices,

1)!
Ag(r)l)l = ﬂPOGT |:5nr + ¥5nlﬂl_r:| ’ (843)
2)!
Ag‘ll)’l = ﬁPOGT |:5nr - (r ki ) 5n0ﬂ_r:| ’ (84b)
A2 = BPyo16,,. (84c)

B. The gain terms

Similarly, the auxiliary gain terms defined in Eq. (82) are
given in closed form by

g(()) _ GTP%ﬁZ—r—n
T+ D(r+1)
x[[4+n+r)=T3+ L3 +n), (85a)
S e
" 314+r)2+r)(1+n)(2+n)
x[(r+n+rm=36+n+r)
+ @Br+3n+rm+ 114+ r)'(4+n)], (85b)
and
g(2> ZGTP(Z)ﬁ—Z—r—n

T30 +n)2+n)@B+n)1+12+nB+r)
x {[64 = 6(r +n) +2(r* + n*) = 3rn
x 3(n*r + r’n) + rPn®]0(8 + r + n)

—2244(r+n)+rml(6+ r)I'(6+n)}. (85c)

Plugging these expressions into Eq. (40), the resulting gain
contributions to the collision matrices read

e 2(=1)o Py .
At = o= SP )L
0). 26+P, ﬁ1+n—r r+ 1!
Atosr ==t 1()1 E-5,) (86)
(g _ 16(=1)"orPof"™" [3 (n
AOn - (I’l—|—3>‘ 4 nO n ( ) s
(1).g ZGTP()ﬁH_n_r(r + 2)' l’l(l‘ + 4) —r
B 86b
Ar>0,n§r (n T 3)' r(r n 1) ( )
and
2).g 432( 1) GTP ﬂl-‘rn @
= 5 —sDvl.
AO" Amfp(n +5)! 18 (N2)

@ 200PoBY T (r 4+ 4)(n+ 1)(9n + nr —4r)

Ar>0,n§r - (l’l + 5)!7'(" + 1)(}" + 2) ’
(86c¢)
while
A ie = 0. (860

Here we defined the auxiliary sums

Oy ) — X[ 1
Sf(Nf)zZ(n)(m+f)(m+f+1)‘ (87)

m=n

C. The collision matrices

Collecting the results from the previous subsections, we
can write down closed-form expressions for the elements
.Agf,) of the collision matrices. In the case when £ = 0, we
obtain

A(O) _ LNO - 1
0 Ay No+ 17
0) 2(=p)" 0) Ol
7 |Sn (No) =1,
"4() n>0 — /lmf ( 1)' |: ( 0) 2
(0) P (r + 1)! 2 2
= T s, 46,0+ 8, == ).
Ar>0,n<r )'mtp( 1), nr + - n0 + nl B
0
‘A(r>)0,n>r 0. (88)

Note that Aﬁ?} = Ag‘f,) = 0, since the particle number and

energy are conserved, while ASOQO.O =0.
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Similarly, when £ = 1 we have

(1) 16(_16)" (1) 5}10
=—— |5 (Ny) ——=1|,
Ao Amip(n +3)! (V1) 2
(1) ﬂ"_r(r + 2)!
=~ ‘(4 —
Ar>0.n5r j’mfp(n —|—3)!V( n+nr I")
2
0 0o —— |,
X ( nr + n0 r+ 1)
A£1>>0,n>r = 0’ (89)

where .A(lln> = 0 reflects the momentum conservation in
binary collisions.
Summarizing the results for £ = 2, we have

432(—p)"

(2) 2
= T SP(V,),
Ao Amp(n +5)! (N2)
@) pr(r+4)(n+1)

— —4

Aonsr Amp (1 +5)!r(r 4 1) (9n + nr — 4r)
2
X <5nr - m) s

‘A<r2>)0,n>r =0. (90)

All these collision matrices share a similar structure, in
the sense that they are almost lower triangular matrices. In
all cases, all entries appearing on the zeroth row are
nonvanishing, most of them diverging when N, — oo with
different degrees of severity. Furthermore, the matrices for
tensor-rank ¢ <2 have 2 — ¢ vanishing rows due to the
conservation of the particle number and of four-momentum
in binary collisions. Note that the nonvanishing entries on
the zeroth row imply that the moments corresponding to
hydrodynamic variables, i.e., py, pf, and pj’, couple to all
moments of the same tensor rank, which was also a
conclusion found in Ref. [20] in the case of the Agp* theory.

IV. SECOND-ORDER TRANSPORT
COEFFICIENTS

In this section, we compute all second-order transport
coefficients from Eqgs. (73)—(78) in the ultrarelativistic
limit. The general expressions of these coefficients for
arbitrary particle mass and various power-counting
schemes are listed in Appendix B. All second-order trans-
port coefficients are related to the inverse of the collision
matrices T(r?, for which we obtained analytical expression
only in the scalar case when £ = 0. For # =1 and 2, we
employed numerical computations to find the inverse of the
collision matrices given in Eqgs. (89) and (90).

The numerical values were obtained through an
extrapolation with respect to 1/N, by computing the
best fit parameters a, b, and t, of the power law

t(N,) = to, +aN5’, where t denotes a generic transport
coefficient with convergence value t,. The fits are done on
data points up to N, = 1000 through GNUPLOT scripts that
are included in the Supplemental Material [22] to this
paper. All transport coefficients are listed to five signi-
ficant digits, which is justified by the asymptotic standard
deviation of the fit being of order O(107%) or lower.
We remark that the coefficients do not converge at
the same speed. Specifically, we can estimate the values
of N, for fixed relative differences between all transport
coefficients and their respective convergence values
as N,[O(107)] ~ 16491, N,[O(107%)] ~ 168329, and
N,[O(107%)] ~ 1718186, respectively. These large num-
bers can be attributed mainly to the slow convergence of
the coefficient {, in the cDNMR approach. For contrast,
IReD leads to N,[O(1074)] ~ 171, N,[0(1075)] ~ 554, and
N,[0(107%)] ~ 1803.

For the validation of our numerical computations
against analytically solvable models, we verified that
our computations reproduce the results of Ref. [10],
where all transport coefficients were computed in the
well-known relaxation-time approximation of Anderson
and Witting [23].

In the following, all transport coefficients are computed
involving the general power-counting scheme, in terms of

X %) and yﬁ?. Henceforth, as in Sec. II B, we will report
results for three power-counting schemes: DNMR, the
corrected DNMR, and IReD. Differences between the
DNMR and cDNMR methods appear only for the transport

coefficients involving the functions &’ %) with r < 0, or the

functions yﬁ?. Conversely, the cDNMR and the IReD
methods show discrepancies only for the coefficients
involving X %) and y%) with r > 0.

Furthermore, in order to assess the magnitude of the
higher-order corrections originating from the irreducible
moments p,'# with # <2 and r # 0, we also list the
values for the transport coefficients appearing in the
JH#e-terms for the lowest-possible truncation order of
14 dynamical moments (14M) contained in N* and T*,
i.e., NU = 2, Nl = 1, and N2 =0.

The computation of the transport coefficients is done via
a Mathematica notebook, which can be found in the
Supplemental Material [22] to this article.

Since the bulk viscous pressure II vanishes in the
ultrarelativistic limit, only the coefficients which are
unrelated to it are computed in Sec. IV B. The remaining
second-order coefficients involving the bulk viscosity are
expanded up to leading order with respect to the particle
mass m in Sec. [V C.

Finally, Sec. IVD ends with a discussion about the
possible combinations of transport coefficients that remain
invariant under the reshuffling between the Kn? and
Re~'Kn terms, as also considered in Ref. [9].
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A. Thermodynamic functions in the massless limit

In this section we present the various thermodynamic
functions necessary for the computation of the transport
coefficients. Since ny ~ 73 and P, ~ 4, it follows that

ol mpr, QY ~pr, XY~ (O1)

while the mean free path Ayg = 1/07n) ~ /A, and thus,
‘ n—r 3+n—r
T~ D"~ (92)

The thermodynamic functions H and H are given to
leading order with respect to mg by

H(a. ) =~ (hodoy — J ):m2'6—2
s = D20 0v20 30 0 3 ’
_ n
Fla ) = o (hod 1o — o) =5 93)
20
Furthermore,
G Py 11 (94a)
D20 6 ’
G3r /jl_r |
="y @=L (94b)
PJ 21 _ﬁl_r |
p = (94c)

(0)

These relations can be used to show that ¢, ’ vanishes in the

massless limit. To leading order with respect to m,, the agf)

coefficients evaluate to

(0) 4—r

ay p'P

m_%: % r!(r—l)(r—Z), (95&)
l—rP

=P o, (95b)
24

o _F'P ,

ar 30 (r+4). (95¢)

Note that aio) = ag()) = ail) = 0 for arbitrary mass. We can
thus derive the following relations:

PN
mop Oy
ok, _ _ on, _ _
%— rKr’ ﬁ aﬂ - (r+ 1)’7" (96)

This gives an identical behavior for y%):

my op mg’
AN A 2
ﬁﬁ__ryr()’ ﬁW__(r—i_l)yrU‘ (97)

B. Transport coefficients for the
ultrarelativistic fluid

In this subsection, we summarize the second-order
transport coefficients in the case of vanishing particle
mass, by taking the appropriate limits in the formulas
displayed in Appendix B. Since in this limit, the scalar
sector involving the bulk viscous pressure does not play a
role, we postpone the discussion of the transport coeffi-
cients governing the coupling to II to the next subsection.

We begin with the transport coefficients appearing in the
equation for V¥, Eq. (68). The -coefficients for the
O(Re~'Kn) terms appearing in J*, Eq. (74), are

N,
1 1
dyy = Z T(()r)X£0> =Tv,

(98a)
r=0,#1
[+
Lyp = Z or 4 A =TIk (98b)
r=0,#1
Tyg = fVﬂ’ (98C)
N,
Ayy = 5 Z T<()1r)(2r+ 3)X(0>a (98d)
r=0.41
1
Ay = 7l Tg)lr)(l - F)Xiz—)l 0 (98e)

These coefficients, together with the coefficient of diffu-
sion x and relaxation time of diffusion 7y introduced in
Egs. (70), are computed in Table I.

The O(Kn?) coefficients from K* in Eq. (77) are given by

. A=)y e
Ky = Z Tor T‘)}ro +§yr—1,o . (99a)
r=0,#1
P
Ry=-—3 > WV, (99b)
r=0,#1
N,
Rs=2 Y 1)V = -3k, (99¢)
r=0,%#1
al 1 2
Re=-2 > /W, (99d)
r=0,#1
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TABLE I. The coefficient of diffusion and second-order transport coefficients in J* for the particle-diffusion
current V¥, evaluated in different approaches.

Method K 7y [Amp) Syvley] Cyzlty] = Ty.lev] Ayvlev] AyzlTv]
14M 1/12¢0 9/4 1 $/20 3/5 $/20
IReD 0.15892/c 2.0838 1 0.028371p 0.89862 0.069273p
DNMR 0.15892/¢c 2.5721 1 0.11921p 0.92095 0.051709p
cDNMR 0.15892/¢c 2.5721 1 0.098534p 0.92095 0.056878p
TABLE II. Same as Table I, but for # and the second-order transport coefficients in J** for the shear-stress
tensor z*.

Method n Tx Mmfp} 57[/: [Tn} fﬂV [Tﬂ] Ty [Tﬂ} Tan [Tﬂ] /17[‘/ [Tﬂ]
14M 4/(30p) 5/3 4/3 0 0 10/7 0
IReD 1.2676/(cff)  1.6557 4/3 —0.56960/p  —2.2784/p  1.6945  0.20503/p
DNMR & ¢cDNMR  1.2676/(cf3) 2 4/3 -0.68317/p —=2.7327/p 1.6888 0.24188/p

The numerical values of these coefficients are given in
Table III for the DNMR and cDNMR power-counting
schemes. Note again that in the IReD power-counting
scheme, k; = 0 by construction. As expected, DNMR and
cDNMR disagree only for &g, which involves the coef-
ficient yﬁ),o. Note that here we excluded &,, &4, and &7,
since they vanish in the ultrarelativistic limit as m3 — 0.
The leading-order contributions to the &, and &, are
computed in the limit of small mass in Sec. IV C.

The O(Re~'Kn) coefficients in the relaxation equation
for the shear-stress tensor (69), listed in Eq. (75), are

4 & 4
S == )X =g, (100a)
34 3
2
Cav = T(()zr)Xgl,o’ (100b)
r=0
Ty =400y, (100c)
Ny
T =2 7o (25 +5)XL (100d)

1 & o 1
Ay = _E;Tgmw natl . (100e)

TABLE II. Second-order transport coefficients in K* for the
particle-diffusion current V# evaluated using the DNMR and
corrected DNMR methods. The IReD and strict 14M approaches
lead to k"] :k3 :ks :k6:0

Method Ri[zv] K3[zy] Ks[zy] Re[zy]
DNMR 0.050292 0.020115 —0.060345 —0.24395
cDNMR 0.050292 0.020115 —0.060345 —0.19152

These are computed in Table II. The O(Kn?) coefficients
appearing in JC*, introduced in Eq. (78), are

Ny
=2 1,V

(101a)
r=0
. 1.
’72 - _5111’ (101b)
iy = — o (ar +3)Y), (101c)
r=0
iy = 2y, (1014d)
1 | 1
s = =152 70 r DV (101)
r=0
ile = 51, (101f)
B (2)1,(1)
i = _ngor y5+1.0v (101g)
r=0
- I
g = —11777 (101h)
g = —1j (101i)

Since none of the above coefficients involve yﬁ? with
negative r, both DNMR and cDNMR agree. The explicit
values of these coefficients are summarized in Table IV.
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TABLE IV. Same as Table III, but for the second-order transport coefficients in /C# for the shear-stress tensor z#*.

Method ﬁﬁl [Tﬂ] /ﬁh [Tn} ﬁﬁ% [Tﬂ]

/}ﬁ4 [Tn'}

ﬂﬁS [Tn] ﬂﬁ6 [Tﬂ] /7)777 [Tﬂ] ﬁﬁf& [Tﬂ] ﬂf]9 [Tﬂ]

DNMR & ¢cDNMR  —0.43647 0.14549  0.28867

—0.87294

—0.011466 —2.1824 —0.13454 0.033634 0.43647

C. Leading-order contributions to the transport
coefficients coupling to the bulk viscous pressure

Here we compute the leading-order contributions of the
remaining coefficients which couple to the bulk viscous
pressure from Egs. (73)—(78). Note that we excluded &,
since the evaluation of the leading-order correction to this

of these coefficients, together with the bulk viscosity { and
bulk relaxation time 7y, are listed in Table V.

The leading-order contributions of the terms of second
order in the Knudsen number (76) appearing in the
equation of motion for the bulk viscous pressure are

coefficient requires the computation of m§ corrections to é : 20 ﬁ (103a)
the collision integral, which is beyond the scope of the mé 0712 or 8
present paper. o
We begin with the transport coefficients appearing in the ~ .
equation for the bulk viscous pressure II, Eq. (67). The C_Zz _ 2 T(()(i)(r - 1)3}52_)20, (103b)
O(Re~'Kn) coefficients appearing in Eq. (73) are obtained my r=0.212 '
by taking the massless limit of the expressions listed in
Egs. (B1), and read a 47
b _d4 (103¢)
5 my  3my
o = 37 (102a)
. ¢ 1 & 1
= 2w r= DY, (103d)
fry Ny Tg:) m (r-2) .. ny 12 r=0.£1.2 ’
a2 Z T|:‘Xr ot ( +1)'Tﬁ s
My r=0.£1.2 z z
5 1
20— 521 103
(102b) p ; (103e)
v _”ﬂizv, (102c) G 1S5 oy
g, my W =73 Tor yr—l.O’ (103f)
0 r=0#1,2
A ) (1) 7 7
v
2 T 19 Tor (r_l)Xr 1,00 (lozd) ﬁ—_ﬁ
m} 12r:02.;;l.2 = ml (103g)
An 1 S 0) [ 2) (r+1)! & &
L o N P Y RN Gl L= | 8 _ 51 (103h)
i =73, 2, i
(102¢)  These coefficients are collected in Table VI.

Note that here, the last four coefficients are divided by m%
to extract their leading-order values. The numerical values

Next, we move on to Eq. (68) for the diffusion current.
The coefficients appearing in Eq. (74) which are related to
the bulk viscous pressure read

TABLE V. Same as Table I, but for { and the second-order transport coefficients in J for the bulk viscous pressure IT.

Method &/mj 711 [Amp Sum[n] Crv[en)/m Tny[en)/mj Any [zn) /m§ Aig(Tm) /m§
14M $*/(180) 3 2/3 B/9 —-5/9 —-5/18 ~752/180
IReD 115*/(3240) (11 +672)/33 2/3 0.067077p —0.0670778 -0.116384 —0.0513674>
DNMR 114*/(3240) 3 2/3 0.15415p —0.154154 —0.0845708  —0.0679014>
¢cDNMR 114*/(3240) 3 2/3 0.12282p —0.12282p -0.0923983  —0.0625834>
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TABLE VI. Same as Table III, but for the second-order transport coefficients in K for the bulk viscous pressure IT.
Method ¢ [rn}/mé Zz[Tan(z) 53 [rn]/mé 54[711}/'”(2) 55 [rn]/mé Z@ [Tn]/mg 57 [THV’”% Zs [Tn]/mé
DNMR  —0.00987058* 0.0797778 —0.0131615* —0.000321598 0.0493523* —0.0169375 0.0169378 —0.00987054*
cDNMR —0.00987058* 0.066291p —0.0131615* —0.00156638  0.049352p* —0.0119584 0.0119584 —0.00987055*
Ny (1) 1(0) stay invariant regardless of the power-counting scheme. To
mtyn = Z Tor X100 (104a)  keep the discussion in this section as general as possible,
r=0.#1 we consider the functions X %) to be arbitrary and enforce
Eq. (64) to determine
miryn = 2m3fyn, (104b)
@) () () @)
) 1 N, (n) ) yr() = 50 (CrO - XrO )’ (107)
mylyn = 7 Z 7o, (L4 1) X1 o (104c)
4 r=0,#1

The leading-order contributions to the coefficients con-
tained in the terms ¥ which vanish in the ultrarelativistic
limit are given by

Ry P N (1)4,0)
m_(%:?fcs—S ; Tor Vri100 (105a)
r=0,#1
= N, 2
K 1)~(0 b
=y Ve ks. (105b)

r=0,#1

Finally, in the case of the equation for the shear-stress
tensor, the coefficient in Eq. (75) related to IT is

2
M = =< ST r+ X, (106)
r=0

There are no O(Kn?) coefficients to report in this case.
Note that, in the 14M approximation, where N, = 0, the
coefficient A,;; does not diverge when m, — 0. However,
for all orders N, > 0, it diverges as 1/ m%, which is why we
list its value multiplied by the square of the mass. The
explicit values of the coefficients in Egs. (104)—(106) are
listed in Table VIL

D. Invariant combinations of transport coefficients

It was already noticed in Ref. [9] that there are various
combinations of second-order transport coefficients that

where Cii)o,o = 55”’) / é(()f) was introduced in Eq. (52) and

since F (_'“?,,, = 6,,, therefore C(ri)O,O = FE?O.

The combinations of transport coefficients that are
invariant with respect to the power-counting method are
those which have no explicit dependence on the essentially
arbitrary functions X %). In the more general case of
massive particles, these combinations are listed in Table
IT of Ref. [9]. We now identify similar combinations in the
case of massless particles. In order to do so, we compare
the expressions for the leading-order contributions of the
second-order transport coefficients belonging to terms of
order O(Kn?), i.e., Egs. (99), (101), (103), and (105), to the
ones belonging to terms of order O(Re~!'Kn), i.e.,
Egs. (98), (100), (102), (104), and (106), and make use

of Eq. (107) to eliminate Y% in favor of X7,
For the relaxation times, the invariant combinations are

TH+§_¢1’

Ks m
o4

—, 108
TV+21< (108)

while for the second-order coefficients appearing in the
equation of motion for I1, they read

- - - . -
&7 6 _Q’ l;—i— sz . (109)
K K K mgy  2mgn

The invariant combinations for the coefficients in the
equation for V# are given by

TABLE VII. Coefficients in Eqs. (74) and (75) related to the bulk viscous pressure and leading-order contributions
to the coefficients in (77) which diverge or vanish in the strict ultrarelativistic limit.

Method mstynlry]  mgeynley] mgAvnlzy] MG A1) Rylzy]/mG &7 [zy]/mG
14M 0 0 0 0 0 0
IReD -0.32062/8 —0.64124/p —0.16367/p —1.3938/4* 0 0
DNMR & cDNMR -0.53325/f —1.0665/8 —0.27211/8 —2.5303/8*> —0.0766004 0.01934343
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yn |, Ry PRs P Ke
T T T 0 Vr A~
m(z) m%C 6L 25
5 Ky + 3K K
m(z)fvn mo % s Tyr + ﬁ s
2 4, — 2Kks + K&,
/1vv+—n/1wz ﬁ’ (110)

4k

while those contained in the equation for 7z** read

i =13 i
-

Ui
5 VT T fﬂV—i__g’
25 K K

s
A —. 111
nV+K_ ( )

The above relations are in full agreement with the massless
limit of the relations in Table II of Ref. [9], which are valid
for arbitrary mass and statistics. Note that, compared to that
table, we do not list any relations for Ayg and A,p.
Establishing such relations within the present framework
requires the next-to leading-order contributions in m}
for the coefficients &3, K5, 7;, and 73, which were not
considered in this work.

V. EXACT RESULTS FOR THE SCALAR SECTOR

In this section we discuss several analytical results
derived from the collision matrix .Am for the irreducible

scalar moments. We derive exact results for the inverse
matrix 1&2) in Sec. VA, while the first-order bulk viscosity
coefficients ¢, are computed in Sec. V B. The relaxation
times of bulk viscosity 7y, are computed in Sec. V C.
Finally, the scalar contribution to the deviation §f} from
local equilibrium is discussed in Sec. V D. Note that, since
the bulk viscous pressure vanishes in the ultrarelativistic
limit, one has to take appropriate care to derive the leading-
order terms in an expansion in mgfB. The respective
calculations are detailed in Appendix I.

A. The inverse collision matrix

The inverse collision matrix is given by

T(()(())> = : = Amf Nyl
Ay No =1
(m+1)!(m—1)(m-2)

(0) — n—m )!
Tm>22<n<m — lmfpﬁ (l’l + 1)! n— 1)( 2)

6 )
< (m+2:25)

(0) o 2j'mfp ﬂ)n
T =
010 =" (n = 1)(n = 2)(n + 1)!
8 1L+ No\ (1 +Ny—n)[No(n—2)+n|
n (No=1)No(No+1) ~
T;(r?)>0.o = TEr(LJ)>2.n>m =0, (112)

which then allows for the computation of the coefficient of
bulk viscosity ¢, and the relaxation times 7y,

B. Bulk viscosity coefficients

Considering Egs. (45), we can write the coefficients of
bulk viscosity as

3 1 &
=== > e,

5 (113)
myg mg

where we divided by m{ to obtain the leading-order

contribution in the massless limit. Inserting the results

. . 0 .
for the inverse matrices TE,), we obtain

AmipPof*" 18
Cr>3 _ fapPof (r=1)(r+1)!(2H, ————=,
m 108 1+r 3

(114)

while %é’l = migé’z =0. In the above, H,=>"_ n7'is

the rth harmonic number. A calculation detailed in
Appendix 12 yields the bulk viscosity as an exact expres-
sion in terms of N, namely

6 -+ 7Ny + 11N}

ST o, 115
™ 324No(N2 - 1) (115)

1 4
m—gC:Poﬂfl

interpolating between the 14-moment approximation cor-
responding to Ny =2 and its convergence value when
Ny — oo:

4 4
% :PO:B lmfp’ lim %:111)0,8 )’mfp. (116)
M|y, - 18 No—co ) 324

The second equation above gives the exact value of the
leading-order contribution to the bulk viscosity. Their ratio,
{(Ng = )/{(Ny =2) =11/18, shows that including
higher-order moments can lead to a decrease of the bulk
viscosity of almost 40%.

C. The relaxation time of the bulk
viscous pressure

Depending on which power-counting method is consid-
ered, the relaxation times of the bulk viscous pressure take
on different values

DNMR & cDNMR : 7y = 700 = [y\"]7", (117)
Ny C

IReD: 7y, = Z 2n (118)
n=0#12 "
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where the eigenvalues ;(ﬁo) are defined in Eq. (44). Note that
the IReD relaxation time of the bulk viscous pressure is
denoted as 7 = 7yy.

Due to the fact that -Aro = 0 for r > 0, the eigenvalues
of the matrix A(®) are given by its diagonal entries. The
eigenvalues are solutions of the equation

Ny

|| Trr - 7

0 = det [ — 1) = (119)

where the diagonal entries r£9>

matrix are given by

of the inverse collision

Nog+1 0 r
0 Tgr) = ﬂmfp r

(0)
_l ,
-2

= - 120
Too mfp No—1 (120)

where we considered r > 3. In the case when N = 2, there
is a single eigenvalue equal to )(E)O)(NO = 2) = 3. For
Ny > 2, the largest eigenvalue corresponds to 1'&9) with
r = 3, being equal to 34, while r&? > Amgp becomes the
lowest eigenvalue. Rearranging the above expressions in

decreasing order gives the set of eigenvalues M“)]—l as

r—+1

0)7-1 0) -1
b{(() )] = ?Mmfp» D{EZ)S] = lmfp I"T (121)

Thus, the relaxation time of the bulk viscous pressure in the
DNMR and cDNMR approaches becomes independent of
Ny > 2 and is given by

o 3Amfp‘ (122)
Note that the inverse eigenvalues are bounded
oty < 07171 < 3t (123)

while from b(éo)}_l = 3ty and b(go)]_l
that there is a clear separation of scales.

A calculation provided in Appendix I3 yields the exact
result for the relaxation time of the bulk viscous pressure in
the IReD approach as a function of N,

11+67> 12
M= Ampy 22 717

= 2, WE s€€

2

M(N)+——
wt( O)+N0—1

31
2 6n?
T (Ng=2)(345Ng) + (143N,
TS Ny 1 1IN [( 0= 2B+ 5No) + 77 (1+3No)

32

— 1 (L3N ( o)]} (124)

When Ny — oo, we arrive at

1 2
o = Amfp( + l) 2213 (125)

311

The moments of higher orders on the other hand relax with

B Amfp [28r2 +33r+11

T aH, =59
2(r+2)(5r-3)
- = " H, +2H?>+2H 126
37’(7‘—1) r+ r+ r2|s ( )

where H,, =>'"_ n™" is the generalized harmonic
number, with H, = H, ;. At large r, the harmonic numbers
H, and H,, are given asymptotically as

2

H, =2 400, (127)

=Inr+y+0(), G

with y ~ 0.577 being the Euler-Mascheroni constant, such
that the highest-order moments relax without bounds for
r — o0 as

At (18L% = 30L + 28)

— —1
TH;r - 6(3L _4) + O(r )’

(128)

where we introduced L =y +Inr. It can be seen that
lim, o 71, = Agp In 7, such  that higher-order moments
relax slower.

D. Scalar correction to the equilibrium
distribution function

The results obtained in the present section allow us to
estimate the scalar correction, £ = 0, defined in Eq. (21), to
local equilibrium,

Ny
S = fox > puH. (129)
n=0

Using the massless limit of Hfg() from Eq. (A9), the strict
14-moment approximation 14M, corresponding to Ny = 2
leads to

311

m(6_ﬂEk)(2_ﬂEk)f0k' (130)
0.

0
5 s = —

On the other hand, using Eq. (51) to express the non-
dynamical moments according to the IReD approximation,
we have

(131)

such that now ¢ ff(o) becomes
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(0) m2B2p
e™T1

k

BES f

BEx

FIG. 1. The scalar correction to local equilibrium, 5f\”, as a
function of SEy in the lowest-order truncation Ny =2 [see
Eq. (130)] and in the Ny — oo limit [see Eq. (133)], with red
and blue lines, respectively.

0 B[ 0 =& 0
w@———4ﬁ8+§:lHka (132)
my gO

n=3

After some algebra discussed in Appendix 14, we find the
correction to be

o _ 611 18 E _
2BEy

(Br—4) + - (1-29)| fox.

* 11

- (133)

Figure 1 shows a comparison between 6f E(O) computed in
the 14-moment approximation, Eq. (130), and the above
expression. Contrary to the 14-moment approximation
(indeed, to any finite-N,, representation), the resummed
result obtained in the Ny — oo limit exhibits terms that go
as E! and In Ey in the infrared limit. One can conclude that

the shape of 6f 5(0) is very different in the resummed case
compared to the 14-moment truncation.

VI. CONCLUSION

In this work, we have analytically computed the linear-
ized collision matrices for an ultrarelativistic gas of hard
spheres, and determined the correlation structure of the
moment equations. It was found that the collision matrices
feature a nearly lower-triangular structure, coupling the
moments of a given order r > 0 to all lower-order ones. On
the contrary, the irreducible moments of energy-rank zero,
the primary dissipative quantities py = —3I1/m}, pfy = V¥,
and pj’ = 7, couple to all higher-order ones included in
the basis.

Expressions for all first- and second-order transport
coefficients that appear in different formulations of sec-
ond-order fluid dynamics, i.e., DNMR, cDNMR, and IReD,
have been obtained. The coefficients appearing in the terms
of second order in the Knudsen number are nonvanishing in
both the DNMR and the cDNMR approaches, and we have
computed them here for the first time to the best of our
knowledge. Even though they vanish in the strict 14-moment
approximation, their convergence values are non-negligible.
This is also evidenced by the fact that some of the second-
order transport coefficients appearing in the terms of order
O(KnRe™!) differ between the various power-counting
methods in second-order fluid dynamics.

Furthermore, we obtained closed-form expressions for
the bulk viscosity and the relaxation time for the bulk
viscous pressure. Compared to their values in the strict 14-
moment approximation, there is a decrease of 39% and
29%, respectively, as shown in Table V. Also, our results in
Table I show that the diffusion coefficient «x increases its
value from 1/12 ~0.083 in the 14-moment approximation
to 0.16, by almost 100%. Even though the shear viscosity 7
exhibits only a 5% decrease from 4/3 to 1.27 in Table II,
our results show that the inclusion of higher-order moments
leads to sizable changes for the second-order transport
coefficients. The results reported in our study may serve as
a reference for modeling high-energy ultrarelatvistic fluids
with binary hard-sphere interactions [24-32]. Furthermore,
the computation of the collision integrals and correspond-
ing transport coefficients presented here could easily be
extended to the relativistic third-order theory of dissipative
fluid dynamics introduced recently in Ref. [33].
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APPENDIX A: ORTHOGONAL POLYNOMIALS
FOR THE ULTRARELATIVISTIC IDEAL GAS

In this appendix we follow Ref. [10] and express the
orthogonal polynomials Pk{;i and Hfii as well as ' in the
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case of ultrarelativistic particles obeying classical
Boltzmann statistics, i.e., a = 0. The local-equilibrium
distribution from Eq. (6) becomes

fox = e PEe = g7la2 PoptePE,

where Ey = u,k* = /-A%k,k; =k° is the particle

energy in the comoving frame and

(A1)

Py = ge®T*/n* (A2)
is the equilibrium pressure.

In the ultrarelativistic limit of a Boltzmann gas the
thermodynamic integrals from Eqgs. (28) and (29) reduce to

I LY .
"M (2g + 1)1 272

(A3)

nq

Taking into account the orthogonality relation obeyed by
the generalized Laguerre polynomials,

/oo dxe=*x2+1 L2 (x)LSLMH) (x)
0

(4204 1)!

L (A4

the polynomial Pg(Ek) from Eq. (22) is expressed in
terms of the generalized Laguerre polynomials as

@) m!(22 +1)! i)
P, (Ex) =/ ————Ln Ey). (A5
Now using the explicit representation
L2 - (m + 2041 (=)
, (A6
Z n+2¢0+1)! nl (A6)

n=|

(@)

the expansion coefficients of PE(LZ =D oamkEy are
identified as

V/m!(2¢ + 1)1(m +2¢ + 1)}
n!(m—n)!(n+2¢+1)!

ag = (=1)"p" (A7)

Furthermore, setting P%) = a(()? =1, the momentum-in-

dependent function W) from Eq. (27) evaluates to

L2227 + 1)1

@) — (=
W =(=1) Py(2¢ +1)!

(A8)

Using these results the H](fn) polynomial introduced in
Eq. (22) is expressed as

2BH=2(2¢ 4+ 1)1

&) _ ‘+n
= (-1
Hin = (=1) Po(n +2¢ + 1))

= (n4+m)! s
X . W') LYV (BE); (A9)
hence, F %) from Eq. (24) evaluates to [10]
Fo_ 0" 1N, £ 1)! (AL0)

(r+n)n!(r—=1)!2¢+1+n)!(N,—n)!"

APPENDIX B: TRANSPORT COEFFICIENTS

The coefficients appearing in Eq. (73) are obtained

by multiplying Eq. (9) by —(m3/3) Zr 041, 21(()r) Then,
replacing the irreducible moments using Egs. (54)—(56) and
collecting the corresponding terms, we obtain

No (0) (0)
( y|r+ 2 GXrO GX
omm = or [ rO + H— 0 H 1
r=0§,;;1,2 3 ap
2 N,
m 0 0 Gy,
-3 Z T(()r) [(’ I)XE"—)ZO +D—2] (Bla)
r=0,#1,2 20
m s G;,
by === o [0 = p | (BIb)
3 r=0,#1,2 Do
2 0 (1)
_mg O | M X0 Gs, Bl
vy 3 5= 2TOr |:r r—1,0 +ﬁ ﬂ D20:| ’ ( C)
2 N ax( ) 1 aX(l)
m ( r—1,0 r—1,0
iy = =" Tor [ +o- } (B1d)
0712 Ja hy Op
2 Ny
m 0) (2) Gy,
== >0 - 0a 2] (i)
3 r:;#:l,Z ' D2O

The proper-time derivative and the gradient of X'(«, ) are
expressed through

. oxX - oX
X= [H(a,ﬂ)ngH(a,ﬂ) ﬁ] 0, (B2)
oxX 10X 0X |
e A L

where H(a, ) and H(a, ) are given in Eq. (93).

Similar to the scalar equation of motion, the coefficients
appearing in Eq. (74) are found by multiplying Eq. (10) by
Z]rv L1 r(()r), then using Eqgs. (54)—(56), and finally collect-
ing the corresponding terms
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i {r+3 Hax“ ﬂax< )]
e op
_m N )
3 Z Tor (r_ I)Xr—Q,O’ (B4a)
r=041
[ (0) (Y0
r+2,1
zo: Tor |:60 + P, _Xr—l,O +m—(2)Xr+1.0:|’ (B4b)
N,
V[ B i 2) }
Oy = ; -X.2 0l B4c
= D (Bac)
N, (0)
ﬁjr+2 1 (0) a‘/“f‘r—l 0:|
= —rX —f—
Ty r;f:l or [60+P 10— P op
1 Ny (0)
T Z T(()r) [(’+3> L, 0+ﬂ oo, 0}7 (B4d)
mOr 0.#1 op
al (1) | B 42,1 @) aX(2>10
Ty = Ty, ;_rxr_ _ﬁ#]’ Bde
=3 et - p ) (e

1 .
Avvzggoj [(2r 4+ 3)XY) —m2(2r—2)x, 1,

(B4f)
N, (0) (0)
/1VH _ Z T(()l) |:6Xr—l.0 iaXr—1,0:|
e oJa hy dp
I <~ )FXng)lo 10X, 0]
) Tor + o ’ (B4g)
m3 ;ﬂ 1 da hy 0p
N (2) (2)
L 0x” 10X ]
(1) r—1,0 r—1,0
Avp = o +—= (B4h)
v ;0_;1 0 [ doa  hy Op

The coefficients of the shear-stress equation (75) follow
after multiplying Eq. (11) by T(()zr) and summing from r = 0
to N,. Then, after some algebra we obtain the following
results:

B r + 40 axﬁ?} +H ox')
N da ap
% Té)zr)(” - 1)2\.’&2_)2’0, (B5a)
3,42,
2
far =32 - i) (BSb)
=0

()

2 j
Tav = E 75 {(r+ 5)X£+1 0 +ﬂ ;] O]
r=0

PR

ZmOZ 0r|: r—10+ﬁ rﬁ—10:|’

(B5c¢)

ero, [(2r +5)&%) - m3(2r—2)X2, |, (BSd)
r=0

2<A o 0 0
=52 w0 [(2r £ 3) = mi(r = DA

N,
2 0)

2> W r+4)xY, (BSe)

1

4 :%if() 3X§+)10+L5X5+)1,o
U5 0w hy o
1

3 [09«5_%,0

2m, 2
-5

r=0

1ox'Y

_— B5f

oa + hy Op ] (B3)

Note that using Egs. (58) in these transport coefficients

leads to the results of Ref. [7],1 while using Egs. (62)
corresponds to the results of Ref. [9].

The transport coefficients from Eq. (76) are proportional

to V) and evaluate to
¢ = Z T(()O,>y5?)), (B6a)
r=0#1.2
» » 2m2 0
L=-L-2% @) =10, (B6b)
r=0,#1,2
Ny (0) (0)
- +1 0 )
5:3_ T(()(i)|:(r3 )y58)+7_( :;)ro +H :;)r0:|
r=0.2£1,2 a p
m N ) (0)
3 to (r = 1), 20 (B6c)
r=0,#12
1) 1)
Z - m <N ) [63’5—1 0o, 1Y 5—1’0] (B6d)
- Or ’
r=0.2£1.2 da hy  op
O (01,0 pJ
¢s = 70, Yy {2+ X } (B6e)
> r:;;éll 0 0 (60 + PO)

'Please note that there is a sign error in Ref. [7] related to the
term on the second line in Eq. (BSe).
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Ny
- ‘HD
ls=— GV s

r=0.%12 (eo + Po)?
2 Ny ay(l)
-2y fé?)[ o+ B0, (B6f)
3,572 9p
7 _mj
O Z Or r— 10’ (B6g)
r=0.#1,2
&s=24r (B6h)
The coefficients from Eq. (77) are given by
V2, 1YY ]
Yy r=1.0 r=1.0
—2 r r + + -
;04;1 0 [ 0 da  hy Op
2
mo Z Or r)20’ (B7a)
r=0.#1
N, Y2
=2 Y W[, pete) (B7b)

r=0,#1

A
=

(98]
|
|

N i dis

S [(f +2)

(1)
0 )
Tor 3 er +H yro]

ap

~

= &
5

oH 1 oH
am[ ]

oo o OB

~

|
Il
07
Y

.q

=z
P
5]
<
T2
o

1
oa | hy Op

, 0 0
< (1)[5y5+>1.o 163}531.0]
Tor
21

i

S
W
t

+
BN

oa  hy OB

\
Il
=3

+
w3,
M- I

—_

7 r)(” - 1):)751_)2,0, (B7c)

~
o
—

N
- ' o(pH
fim Do) |+ vy 2L

r=0,#1

4 Ym0
p op
L (0>10
—m—%Z é)[(r+3)y5+1o+ﬂ ; } (B7d)
0,41

(B7e)

(B7f)

N,
K7 =— Z T(()lr> D’@l,o + Hy%]

r=0,#1
L9 14,0
3 Z %or Vri10- (B7g)
mo 2521
Finally, the coefficients from Eq. (78) are
N,
=2,V (B8a)
r=0
2
= _ZTOr ) - mg(r - 1)325_)2,0]
Sk Wy e
2 r 1A
Z Tor { oa +H p
2 Xa 2) 0
=520 (@r 3V = mi(r = 1Y%
2 &, 0
TS5z Z ) (r+ 4)y5+)2.0’ (B8b)
L ey

—m3(4r —4)Y?, ], (BSc)

2
s==5D w0 [(4r +3)V¢
r=0

(B8d)

1 1
@) 5y£+)1,o iayiﬁl,o
o da hy op
_2mg & oo ry <rl—>l,0 1 0Y 591,0]
or ’

r=0

B30 ] (BSf)

(eg + Py)]’

N,
e =2 75 Vo [2 +
r=0

=S P -
01770 (g + Po)?

o, p oyl
OZ Or{ r—10+ﬁ ﬂlo m% a;o},

Z(r + 5) 1
5 yi‘k)],():|

(B8g)
2,
iy = gz 1~'E)r) [y<r+l 0~ 2yr 10] (B8h)
r=0
Mo = —if (B8i)
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Note that using Egs. (59) in these transport coefficients
leads to the results listed in Appendix I of Ref. [11].
However, in the formulation used in that reference, the

contributions that stem from the coefficients yi? with
r < 0 were not considered; cf. the discussion after Eq. (24)
in Ref. [9].

APPENDIX C: REFERENCE FRAMES
AND PROJECTION OPERATORS

In order to calculate the collision matrix, it is beneficial
to define the total momentum involved in binary collisions

P =k + k" = pt + pl*. (C1)

Its squared norm corresponds to the Mandelstam variable
s = P Pr,. The projection operator orthogonal to the total
momentum, i.e., A% Py, =0, is

PrPy

A = v —
=g -

(C2)

Using these definitions the particle momentum can be
decomposed with respect to the total momentum and the
corresponding projection operator as

Pl/ v v
pr =Py, (©3)

Furthermore, it is useful to define the CM frame where the

total momentum is P M (\/5.0), such that
PR SR 4+ 10 = p0 + p = 5, (C4)
P, YKk +Kk =p+p =0. (C5)

However, in the CM frame the fluid four-flow vector is

M .
u Y (u°,u); hence, it follows that

P’}uﬂ(y Vs ul, (C6)
while the normalization condition u*u, = 1 yields
(Phu,)* —s = /su, (€7)

where we denoted u = |ul. R
In the local rest (LR) frame, where u# = (1,0), we have
the following representation of the invariant scalars:

LR

Pru, = K + K0 = p° 4 p” (C8)

and

LR
\ (Pru,)? —s = [k + K| = [p +p/|.

In the ultrarelativistic limit, k"kﬂ = mg — 0, and hence,
k° = |k| = k, while

(C9)

5 = 2k, 2= 2KkK' (1 = cos Oy, (C10)
where 6, is the center-of-mass angle between the colliding
particles with momenta k and k' in the LR frame.

Similar to the projection operator in Eq. (C2), we
introduce another four-vector, z’;, in the CM frame that
is orthogonal to P4, i.e., 24Py, =0,

Pl/
Z;EMM-P;@C:M(O,II), (C11)
. u" _ ] 2 CcM 2
normalized as z7zr, =1- (Pu,)’/s = —u”. Hence,
using Eq. (C11) we also obtain that
(Prpy)
E, =u'p, = Zrp, + Pru, TS : (C12)

The underlying spacelike unit vector, /5 & (0,u/u) con-
structed from 27, is also orthogonal to the total momentum,
Pilr, =0, and it is defined in a covariant fashion as

(C13)

With the help of this new spacelike four-vector a new
symmetric and traceless projection operator, similarly as
in anisotropic fluid dynamics (see, for example, Ref. [34]),
can be constructed. Here besides the usual spacelike pro-
jection operator a new projection onto the two-dimensional
subspace that is orthogonal to both P and . is defined as

PﬂPu
- LT B =AY+ L, (Cl4)
N

where Zf'Pr, =21y, =0, while E7g,, =2. Using

these projectors, the particle momentum can be decomposed

with respect to P, I, and B as

(Prp.)

pt =Py - ly(lyp,) + B¢ p,.  (C15)

APPENDIX D: THE P AND P’ INTEGRALS

In order to evaluate the collision matrix, i.e., Eqs. (41)
and (42), we have to compute the following type of
momentum integrals:

1 ;
’Pli” Hn — E/deP/Wkk’—mp’ i)pﬂl o phn, (Dl)
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It is beneficial to first introduce the following auxiliary

integral from Refs. [7,11]:

1
(O 5/deP/Wkk’—mp’pﬂ1 e ph

[n/2]

- E n nq

X Agglllz . A/;}q—l”ZqP/;}zﬁrl . _Pi;n)’ (DZ)

where we used Eq. (C3) repeatedly to replace p#1 - - - ptn.
Here, n and ¢ are natural numbers while the sum runs up to

[n/2] denoting the largest integer which is less than or equal

to n/2. The symmetrized tensors A(T e

by = W’ while the B,

P)T are counted by
coefficients are

(=1)¢ 1/
B, =——%.— dPAP' Wi/ ooy
"M (2g+ 1112 Kie—pp

PH p n—2q
()

In evaluating B,,,, we changed p* and p* to the CM frame
defined by Py = k* + k", such that P7p, =s/2 and
A‘;ﬁpapﬂ = —s/4. The integrals in Eq. (D1) are then
obtained via

(D3)

Wi He Uy Uipy e
Pi — uyl P ul/,-® 1 iH1 ﬂf‘

(D4)
Even though the integral P, could in principle be
evaluated via Eq. (D4), doing so is rather complicated.

Instead, it is more sensible to use the decomposition from
Eq. (C12) to write

1
P = E/deP’Wkk’—mp’p”] s ph
Pﬂ i
X <P”Tuy( Tsp”) +Z’;p,,> ,

from where it is clear that the tensor structure of P4 can
only consist of the tensors /4., P4, and B}

Now, in the CM frame we express sz,, =u(lyp,) =
(v/su/2)cos@,,, where 0, is the angle between p and u.
Furthermore, we have Pju, = E,+ Ey = \/su’, and
using the binomial formula we obtain

£, = Z() W2 () . 06)

j=0 \J

(Ds)

Subsequently, we expand the integral P¢'"*" in terms of the

r—ULU
tensors I, P4, and B,

[/2] —Zq
i) § §
7) " nmq nmq
q=0 m=
'—(ﬂlﬂZ —=H2g-1H2q H2g+1 Hog+m pH2g+m+1 M)
x B 5 [y p‘; N 2
(D7)

where b,,,, = n!/[29g'm!(n — 2q — m)!] counts the num-
ber of tensor symmetrizations and the coefficients DS,I}),lq are
defined as

@ _ (=17 —ap
Dnmq = (zq)” E dePkak’epp’ ('—‘T papﬂ)q
% l <l> (MO)i.—j <P/;pﬂ> nH_m_j_zq(lﬂp”)mﬂ
Z\i) w s
(D8)
where the double factorial for even numbers is

(2g)!' =24q!. To evaluate these coefficients, we note
that I7.p, = (E, — Ey)/(2u); hence, in the CM frame,
s =2p'p, = 4p? and lTpﬂ p-u/u=pcosd,,
EY papp = —s/4+ (Il1p,)? = —p*sin®d,,. In the ultrare-
lativistic limit for a constant cross section we then have

while

o _ D" o1 i
Dnmq —4(2 )H2n+1+is 1
3+ (= m ey
j=0
(% % %,q+1> (D9)

where B(i, j) = I'(i)I'( ')/F(i + j) denotes the Euler Beta
function. Note that Dan B,,, as expected. We now
evaluate Eq. (D7) for the cases n =0, n =1, and n = 2,
corresponding to the scalar, vector, and tensor cases,
respectively.

In the scalar case,
and thus

n=20, such that ¢ =m =0,

1
Pi=5 / dPAP' Wi Eb =Dl

or (V)"

NS L G |

(D10)

In particular, for i = 0 we obtain the following identity:

1
(2m)>

/ dPAP'S(kH + K% — ph — p) — (DI1)
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Note that the latter scalar integrals can be evaluated in
other ways as in Refs. [35,36]:

_ (2n) 51/ o d3p / d3 !
Pi= 27r 62
x s8(v/s = (p° +p/°)) (p+p’)
© ) 1 .
:ZGT/ dpp’+25(\/§—2p)/ dx(u® —ux)’, (D12)
0 —1
where s = (2p°)? = (2p)? and x = cos 6,
In the vector case, n =1 and, hence, ¢ =0 and
m=20,1,
P _! dPdP’ EL pt
i =3 Wik —pp EpP
= Dggopl; + Dg?oﬂ;’ (D13)

where the corresponding coefficients are

or . (\/E)Hz
(i+1)2"%3  u

X [(u® + u)*! = (u® -

Digo =

u)™ (D14)

(D15)

For the tensor case, n =2, and we have ¢ =0, 1 and
m = 0, 1, leading to the following decomposition:

1 .
’Pll-w = E/deP/Wkk’—»pp’Ei)pﬂpu

= Dl Pj Py + 25} PY L) + DYt — DY
(D16)
where the coefficients are
Dl = EDE&), Dl = 5@&30, (D17)

as well as

(i) or (\/E)ZIJr4 ( 0)2
203 {<1+u2(i+1)(i+2))

X KMO + u)i+l _ (MO _ u)iH]

u® . )
_u(i2—|— %) [(u® + u)™*! + (uo—u)l“]} (D18)
and
0 4 (Vs)™*
D201 - (i I 1)(1':- 3)2i+4 u2
ud . .
u(i n 2) [(MO + u>l+2 _ (MO _ u)H—Z]

_ [(u() 4 u)i+2 + (MO _ M)i+2]}. (D19)

APPENDIX E: COMPUTATION OF THE
LOSS TERMS

In this section we compute the loss terms /J(r';:) defined in
Eq. (41) for Z = 0, 1, 2. These integrals are Lorentz scalars
and thus can be evaluated in any frame. Here we choose the
LR frame of the fluid, where Ey =k'u, = o= /i +mj.
In the following, we will omit the notatlon “LR” for brevity.

In spherical coordinates, dK = =& >3 o 31n9dkd9d¢, where
ke[0,00), 6€]0,7], and @ €[0,2x). Furthermore, by
choosing the orientation of k’ parallel to the z axis, the
angle between the colliding particles 6, is equivalent to
the elevation angle @ = arccos(k?/k). Substituting now
K =k, K =K, and 5/2 = kk'(1 — x), with x = cos O,
the loss term for Z = 0 yields

LY =4 / dKAK for for' = Ek (B + EL)

2 ,2a
ge ,
=013 A dkk"+2 /_ldx(l - X)

% /w dk/k/Ze—/}(k+k’)(k11 4 k/n)
0

B GTPgﬁZ—r—n
=
x20(r+n+3)+T(r+3)I'(n+3)], (El)

where we used Egs. (A1) and (A2), as well as the definition
of the Gamma function to compute the integrals

/ dy/ dy' ey eyt =T(r+a+1)(b+1). (E2)

For computing the result for # = 1 that can be found in
the same way, we note that in the LR frame we have

KWk, = kWkyy = -k, (E3)
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= —kk'x. (E4)

Using these results, Eq. (41) for £ =1 yields

N
) = % / dKAK for forr EE{(kW (Epk, + ELK,)

2 ,2a 1
_orge / dkk’”/ dx(1 - x)
3 877,' 0 -1

o« /oo dk/kIZe—ﬂ(kJ,»k/) (krr‘rl + k/n+1x)
0

orPip~ "
36
x [60(r+n+5)=T(r+4)C(n+4)]. (ES)

In the case when ¢ = 2, we make use of the following
identities:

2
k(ﬂk’ﬁkﬂkv = k</‘k”>k<ﬂkb> = §k47 (E6)

1
ke ke ke, = kRO = k2 <x2 - §>, (E7)
where kWkY) = A’;;k“kﬂ
AZZ = (AﬁA; + AZA;)
loss term now reads

= k) — gl ko AP /3 and
—%A’“’Aaﬂ. The corresponding

£y ="r / dKAK for fou Ekk</‘k”>

5
x (Epkky + Epk| K.,

2 ,2a
=rge / dkk’*“/ldx(l—x)
5 247" J L

% /oo dk/klze—/;’(k+k’) [an+2 + k/n+2(3x2 _ 1)]
0

_ 6Tp(2)ﬁ—2—r—n

15 C(r+n+7). (E8)

These results for £ = 0, 1, 2, corresponding to Egs. (83),
can be put in a unitary form using the following expression:

Ly =

P2 2—20—r—n -1 t’f!
orbob {( O nt2e43)

2 (27 + 1!

+B<f>r(r+f+3)r(n+f+3)} (E9)

= {1/2,1/18,0}

where we introduced the coefficient B()
for £ = {0, 1,2}, respectively.

APPENDIX F: COMPUTATION
OF THE GAIN TERMS

In this section we compute the gain terms gﬁi? defined in
Eq. 42) for £ =0, =1, and ¢ = 2.

1. Gain terms for £=0
Considering Eq. (42) in the case when £ = 0 we obtain

G =26, (21) / dPAP'dKAK fou fow EL E ;
X S(ki + K — pt — pi)

=2 / dKAK' fou fox Ef Py, (F1)

where the P and P’ integrals in the center-of-momentum
frame are given in Eq. (D10), and hence,

g0 ___ or (V)"
" (n 4 1)2 ! u

X [(u® 4+ u)" ' — (u°

/ dKAK' fou fow EL

—u)r ], (F2)

The next step consists in evaluating the remaining K and
K’ integrals in the LR frame of the fluid. Here, we recall
Egs. (A1), (C8), and (C9) and note that in the LR frame
Ey =k =k and s = 2kk'(1 — x) are the massless limits.
Using these relations we get

ar = UTP TESI / dk / dK/e K

2kr+2k/2
/dx " LU P

— (k+ K — |k + K'|)"+1], (F3)

where |k + K| = VA* + k> + 2kK'x.
integration variables to

Next we change the

y=pk, ¥y =pK, (F4)

and we introduce a new angular integration variable,

k+k| P+ yx
_KAK VY 20w (FS)

T k4K y+y u®’

Noting the following useful relation, s3> = 2yy'(1 — x) =
(y +y)*(1 = z%), it follows that

1 z
u® = , u=

and hence,
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dx=z
vy

W+ o

(I-x)
T _Zz)dz

(F7)

We remind the reader that Eq. (F6) is a consequence of the fact that the four-velocity, since it is evaluated in the CM frame,
is dependent on the momentum. With these substitutions, the integral becomes

g(o) _ GTPZﬂZ r—n

GTP ﬂz r— n/ / B (y y)n+4
= d dy'e
Y ye Y n+3)(n+4)

The first term of the integral is computed by changing the
integration variable y’ to x = y + y/, such that the range for
y becomes [0, x|:

/ dy / dy'e™ ™ (y + /)y
0 0

o x I'n+r+6)
= dxe=*x"t4 / dyy = —=. F9
/0 |y — (F9)

The remaining terms under the integrals are computed
straightforwardly with respect to y and y’ in terms of the
Gamma function, and the final result is Eq. (85a),

GTP%ﬁZ—r—n

©0) _
Grn' = (1+n)(1+7)

T@4+n+r)—TB+ T3 +n).

(F10)

Note that this expression has a finite limit when r — —1,
|

3

2
Gh = /deK/fOkak’EkPﬂ ki [Dio% Dy

or

=3 / dKdK’ for fox Ex Prk )

3(n+1)

u()
% {(n ~ Z)M [(uo + u)"+2 _ (uo _ u)n+2] _

In order to perform the KK’ integration, we apply Egs. (C8), (C9), and (C10) and express k<">PT,, =

1
o [Ty [Taver vy [ ae = opt - (-]

\+x

. yn+3 y/n+3 yn+4 _|_y/n+4
BN T R Y (F8)
|
2 23—n
6}, = T+ 33+ )~ (1)

where y(9)(z) = w(z) = dInT'(z)/dz denotes the digamma
function.

2. Gain terms for £=1
The gain term, Eq. (42), for £ = 1 reads

2
G = % (27)° / dPAP'dKAK' fo fow ELELpky,
X %5(#‘ + k¥ — pt— p'M)
2 .
= g/deK/fOkak'Elr(P;nkOO (FIZ)

Recalling the result for the P and P’ integrals from
Eq. (D13) together with Eq. (C13), we obtain

(n) (PI’;‘”L/)
Su

e

(U + u)" 2 + (u°

- u)nu]}

—k(k + K'x) by using

(F13)

Eqgs. (E3) and (E4), where x = cos ) denotes the cosine of the angle between k and k’. Thus, after these replacements, we get

(1) — _ UTP / dk/ di’e —Bk+k) / dx 2k 2|2 kz—i—kk’x)(l —)C)
G 2n+5 |k - k/|2
K+ K
X {m[(lﬂ— K+ |k + k/|)n+2 —(k+ kK — |k + k/|)n+2]

—[(k+ K+ Kk + K"+ (k+ k- |k + k/|)"+2]}.

(F14)
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Changing the variables to y, y', and z as before and expressing y* + yy'x = (y +y')[y — ¥ + 22(y + y')]/2, we obtain

G = P [0 [Ty [ =)+ 04
x {Tl:z) [(1 4+ 2)™2 = (1= 272 = [(1 + 22 + (1 = )"+2]} (F15)

Employing similar steps as in the # = 0 case, we arrive at Eq. (85b),

O.TP ﬁ—r n

Gond = -
314n)2+n)(1+r)(2+7)

C(6+n+r)(r+n+rm—=3)+T(4+r)(4+n)3r+3n+rn+11)]. (F16)

As in the £ = 0 case, this expression has a finite limit for r — —1,

GTP(Z)ﬁl_n

ny _ _
Gt = 3(14+n)(2+n)

{(n+5)=2n+3)!—4(n+M)wn+5) —w(2)}. (F17)

3. Gain terms for #=2

The gain term related to the tensor moments £ = 2 from Eq. (42) reads

gl =L (2n)° / dPAdP'dKdK’ for fox Ex Epp" p*k ik, gaw + kW — pi — p'M)

2 v
_g/deK/fOkaklE{(Pﬁ k(ﬂku) (Flg)

Using the result for the P and P’ integrals from Eq. (D16) we obtain

n 2 . , (Pyu,) o (Pruy,)? o (1 (Phu,)?
G Eg/deK,fOkak’EkPl;"PTk( ky) {Dgo%) 2D§1)1 STM +D22z> S€u2 +D§0)1 — -

T 5(n+1)(n+3) (Vsu)>

X { (n +4 4+ (n3$t;>)2u2> [(u® + u)™3 — (U — u)"+3] - 322 j: ;))ZO [(t® + u)™3 + (u® — u)"+3] } (F19)

T3 / dKAK' for fow Ef PPk k),

Now, recalling Egs. (E6) and (E7) together with k<”k”>kﬂk,’, = 2k3k'x/3, we replace

kZ
PPy kK, = 3 [2k% + 4kk'x + k2 (3x% = 1)]. (F20)

Hence, we can write the gain term as

5 GPﬂ—Zrn ~ .
gg’n):ls(n_i n+32n+8/ dy/ dyeyyy y+y)+6

- /l ,dz(1=22)B(y = )% +2(5° = 3y2)2% + 3(y + )2

_3(n+3)

1 m} (F21)

Solving the y, ' integrals in a similar fashion as in the £ = 0 and # = 1 cases, we find Eq. (85¢),
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B 2P3op 2"
1I5(1+n)2+n)B+n)(1+r)(2+r)3+7r)
x {[(8 + r+ n)[64 — 6(r + n) + 2(r* + n?) = 3rn + 3(n*r + r*n) + r*n?]
—T(6+4 r)['(6+n)[22+4(r +n) + rn|}. (F22)

G

Similar to the previous computations, this expression can be evaluated for r — —1, yielding

O'TP%ﬂ_l_n

G —
L5 (n+ 1)(n+2)(n + 3)

{(n+8)1 = 24(n + 7)1 + 120(n + 5)! + 72(n + 6)Ww(n + 6) —w(2)]}.  (F23)

APPENDIX G: COMPUTATION OF THE LOSS MATRICES

Having computed the terms E%) in Appendix E, we now have to perform the sums to obtain the loss part of the collision

matrix A(,i)’l defined in Eq. (39). We start by substituting the explicit expression (E9) into Eq. (39) together with the
expressions from Eqs. (A7) and (A8). After some straightforward algebra we obtain

A = gpyproren LU

Ol(n+2¢+1)!
X%(m+2f+1)!z’”:(_l)q m\ [ (=1)7¢! (r+q+204+ D! o £+ 1) (g +2+2)! @)
nl(m—n)! e+ DN (¢g+20+1)! (q+2¢+1)!
The sum over ¢ can be evaluated with the help of the identity
- b b)!
Z < ) gtatb) (a+ )2F1(a+b+1,—m;a+1;1)
= (g +a)! a!
bl(a+Db)!
= (=1)" 2
(=1 (b—m)!(m+a)!’ (G2)
where we used Eq. (15.8.7) of Ref. [37] to evaluate the Gauss hypergeometric function:
-b
SJFila+b+1,-mya+1;z) = %zﬂ( ma+b+1;b—m+1;1-z), (G3)

with the Pochhammer symbols evaluating to (a+1),=(a+1)---(a+ ) (a+m)!/a! and (-D),, =
(=b)(=b+1)---(=b+m—1) = (=1)"b!/(b—m)!. Noting that ,F(a, b;c;0) = 1, we arrive at

—1)"alb!

(-1
F b+ 1,—m; 1;1) = ) G4
a+b+1,—-mya+1;1) (@t )1 (b —m)] (G4)
in agreement with Eq. (G2). Using Eq. (G2), we arrive at
() _ 1rin (CD 20+ 1N
m’ =orP 204 1)!
A = orPol ey D
(=) (r (1= +2)N(r+ ¢+ 1)!
1)m — 7 (¢)
XZ( < >{2f+1)” B = —m)l(r+ 27+ 1)! (G5)

The binomial coefficient (/) vanishes when m > r, such that the first term in the sum over m gives a nonvanishing
contribution only when n < r. In this case, the sum over m runs between n and r, yielding a Kronecker delta:
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(Go)

! m r
Sevr(M)(1) = e

m=n h m
The term involving B) vanishes for # =2, since by
definition B = 0. For # =0 and # = 1, the sum over

m terminates at m = 1 — . Performing this sum separately
for # =0 and Z = 1, we find

oo i(n)%_—%’ (G7a)
mi:( >m‘ _’:),—5,10‘ (G7b)

With all these results, the contributions of the loss terms to
the collision matrix are

(r+1)!
2

AV = 6,PyB [5,” + 5n1ﬂ1_’} . (G8a)
(r+2)!

Aglz)’l = GTPOﬁ |:5nr - 6

anoﬂ-r], (G8b)

Agz)l = GTPOﬂanrv (GSC)

in agreement with Eqgs. (84).

2pPoorp" " (-
r(n+1)!

A® =

m=n q=

APPENDIX H: COMPUTATION OF THE
GAIN MATRICES

In this section we compute the gain part of the collision
matrix defined in Eq. (40). As discussed in the main text,
the matrices .A%)’g will contain terms that diverge in the
limit N, — oo. These divergences will appear in the form

of certain sums S\’ (N,) defined in Eq. (87) that we list
here again:

@) Ne /'m 1
K va)zZ(n)(m—l—f)(m—l—f—!—l)' (HI)

m=n

These sums can be evaluated recursively using auxiliary
sums

39N, = i(:) %M. (H2)

m=n

The explicit recursions will be listed at the end of the
following subsections.

1. Gain matrix for Z=0

Setting £ = 0 and inserting the results for g&?} from
Eq. (85) into Eq. (40), we find

(q+r+2)!

(e

(gDt 1)!]. (13)

(m q)! [ (g +1)!

The above expression is indeterminate when r = 0. Let us first consider the case » > 0. The sum over ¢ can be performed
by shifting the summation index g to ¢ + 1 and applying Eq. (G2),

zm: (g+k+2)!

(k+1)! (Ha)

= ( —q)! (¢g+1)!

~ (m+1)! [1+(m+1)!(r—m !

(=1)"(r + 1)! ]
|

Applying the above formula with &k = r and k = 0, corresponding to the first and second terms in square brackets in

Eq. (H3), respectively, we find

2(=1)"(r + 1)lorPoff " &

m (r+1)!
.A(O)‘g — —1)™ ) . H5
r>0n r(n+1)! n;( ) n ) (r=ml(m+1) " (H5)
|
In order to perform the sum over n in Eq. (H5), we  Denoting the integral of order g of S,,(x) by
introduce the function §,,(x) via
=N /e _n / dxl/ dx2 / dx S
Srn(x):Z( m >(_1) X' (
m=0 r—n r— m

— 1)y m+q H7
= (=1)""x"(1 —x)"™". (H6) n;( m ) (r—m+q)'( f"x (H7)

056018-27



WAGNER, AMBRUS, and MOLNAR

PHYS. REV. D 109, 056018 (2024)

the sum in the first term in square brackets in Eq. (H5) can
be written as

(r+1)! B
—m)!(m+1)! n!

Then, we can reexpress Eq. (H5) as

(0).g
Aron= rnl(n+1)!

(=B)"Sa" (1) = 8,0
(H9)

_2(r+1)logPyp'" {(r+ 1)!
(r—n)!

Now, using the definition of the incomplete Euler Beta
function [37],

B.(a,b) = /Zdtt““(l e (H10)
0
it can be seen that
SV = (=1)"B.(n+ L.r—n+1),  (HI)

while Sﬁ;])(l) = (=1)""B(n+1,r —n+ 1) can be writ-
ten in terms of the complete Euler Beta function [37],
defined by

n!(r—n)!
B 1,r— 1) =——+-. HI2
(n+1,r—n+1) ! (H12)
Using these results, Eq. (H9) reduces to
g _ 20+ DlopPep' "
= 1-206,0), H13
Ar>0,n r(n + ]), ( nO) ( )

recovering the first part of Eq. (86a).
When r = 0, we find with the help of Eq. (F11)

A(()o),g:2(—1)n‘7ﬂ"0ﬁ”+1 al (m

(n—l—l)! 2 n)(m+1)!
<Y "*” WG+a)

2. q+1 PESICEL -y (2)].

(H14)

The summation over g gives

Emi i+ 0) (2]

1
:{_W’ m >0
la

e (H15)

The m = 0 term contributes only when n = 0, in which
case we have

207Pyp

. (HI6
Not 1 (HIO)

Ny
1
st
m=1

approaching Aé(g))’g — 0 in the limit when Ny — oo.
When n > 0, we have

2( 1)n+10 PoﬂnJrl

(0)
(n+1)! Sn”(No),

0),
"4(().”50 =

(H17)

where we used the definition from Eq. (H1). The sum

SS,O)(NO) diverges as log Ny for n = 1. For small n > 1, it
diverges as Ni~!, while for large n < N, the divergence

goes as Nf)vo_”_z, suggesting a maximum degree of diver-
gence around n ~ N(/2. In the case n = 1, we have

5(10)<N0) =w(No+2)—w(2),

while for n = 2 it holds that

(H18)

S (No) = ~p(No +2) +y(2) + 52 (HI9)

Using the auxiliary sum 30 (NO) defined in Eq. (H2), we
can formulate a coupled recursion equation

1

St (No) =~ - S0 (No) = SV (Vo). (H200)
(0) 1 N() +1 n %0
- n s H2
Sn+1(N0) l’l+1<l’l+1 I’l+1S ( Ob)
37 (Ng) = N. (H20c)
1 0) — Y0

while the recursion for S‘EO) (Ng) can be solved exactly:

S0 (Ng) = . <N°> (H21)

n

2. Gain matrix for Z=1

We now compute the collision matrix Ag,)‘g defined in
Eq. (40):

(=1 Timl(m + 3)!
_n!(n—|—3)!P0 — (m—n)!
u )qg,_

2% ! q+3)

Substituting Eq. (85b) into the above leads to

A

(H22)
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(e _ 2(=1)"orPof " Shm!(m 4 3)! (" (=1
A’"g*n!(n+3)!r(r+1); (m—n)! qz:;(m—q)!(q+2)!(q+3)!

x{r(g+5+r)!—=(r+22(g+4+r)+T+2)2+r)(g+4)!—r(qg+3)!]} (H23)
Similar to the £ = 0 case, special care must be taken when evaluating the expression above for r = 0; hence, we start by
assuming that » > 0. The sum over ¢ is performed by first shifting ¢ upwards by two units, then extending the summation

range from (2, N; + 2) to (0, N; + 2), and subtracting the ¢ = —1 and g = —2 terms. Noting that these latter ¢ = —1 and
g = —2 contributions vanish identically, the sum can be evaluated using Eq. (G2) as follows:

m+2 (—l)q

;(m +2-4q)lq!(q +1)!
(=D)"[(r +2)!][r + m(r +2)]

{rlg+3+r=(r+2(qg+4+nN'++2)[2+r)(g+2)!=r(g+1)]}

= . H24
(m +2)1(m £ 3)(r — m)! (H24)
Finally, AW evaluates to
(e _ 2[(r +2)PPorPo(=p)' " (-2) (-1)
oo = 4)8:,7(1) — 2)S (1), H25
A nl(n+3)(r=n)lr(r+1) [(r+4) (1) =(r+2) (1) (H25)
|
where the notation $';¢ w(a_s2 )introduced in Eq. (H7). Using zm: 1)7m! . (H292)
Eq. (H11), the function S, (1) can be evaluated as 7=0 (m — ‘]) q'
1
SS;Z)(I) = (—1)""/ dzB.(n+ 1,r—n+1) n (—1)4m! 1
0 = . (H29b)
—(m—-q)!(g+1)! m+1
—( 1)r_nn!(r—n—ﬁ—l)! (H26) 4=0
N (r+2)!
“ qm' 1
Furthermore, using Egs. (HI1) and (H12) to replace Z (g +2)! Ty (H29c)

_ =0
S(ml)(l), Eq. (H25) reduces to 1

The sum over ¢ involving y(q + 5) can be performed by

A(l)(.)g = 2(r +2)lop P " n(r +4) - i (H27)  noting that w(g+5) =w(l)+ 30 I, where y(1) = —y
it (n+3)! r(r+1) and y~0.577 is the Euler-Mascheroni constant, such
that
while .Ar>0 .~ = 0, agreeing with Eq. (86b).
Considering now the case when r =0, and using - qm'
4 5
Eq. (F17), Eq. (H23) becomes qz:; (g +2)! (a+4(g+5)
o . et 3m + 4
A _ 2(=1)"orPof' " (m+3)'z (=1)7m! “\6 ") mr(m+2)
" n!(n+3)! m:”(m—n)!qzo(m—q)!(q+2)! 23+ (m+ 1)(m +2)(m + 3)] 130)
x{(q+4)(g+5)-2-4(q+4)w(q+5 -w(2)]}. 3(m+1)*(m +2)*(m +3)

(H28) This leads to

The sum over g can be performed for the terms not
involving the digamma function y/(q + 5) using the bino- Aéln)’g —
mial expansion, as follows: (n+3)!

16(—1)"0, Py [3
(=1)"orPyp {Z%O—S&U(M)], (H31)
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where we employed Eq. (H1). Similar to the £ = 0 case,
with the help of an auxiliary sum defined in Eq. (H2) we
can write down a recursion relation

1 n—+2
SPhN) =g S0 - sl (HB2a)
1 I (N + ()
N)) = o8 H32b
sthov = (M) -3 (H32b)
(1) Ny +1
= H32
Sy’ (Ny) N T2 (H32c)
SN = w(N, +2) +7. (H32d)

Note that now Eq. (H31) can be evaluated explicitly in the
case n = 0:

(1), 2 2N|—>oo 2
Ay =—%07 oﬂN1+2 gﬁrpoﬂ-

(H33)
3. Gain matrix for =2

Considering the case when £ =2, we are inserting
Eq. (85¢) into Eq. (40), which yields

rm _Pon!(n+5) (m n) ! = q! q_|_5)
_ 2<_1>HUTP0ﬁ1+"_r Y m(m+5)!
Sl (n+5)r(r+1)(r+2) 4= (m—n)!
U _ (2)
XZ ( )qfrq (H34)

(q+3)(g+5)!(m—q)"

Il
=}

q

where we defined

FD=r(1+0)(g+r+8)=2rB+r)4+r)(g+r+7)!
+Q2+r@+r)?@+r)(qg+r+6)!

—(r+M(r+3)(g+6)!=2r(qg+95)". (H35)

As in the previous cases, Eq. (H34) is also indeterminate
when r = 0. For the time being, we focus on the case when
r > 0. The sum over ¢ can be performed by shifting ¢
upwards by three units; hence, the summation range can be
extended downwards from (3,m+3) to (0,m+3),
such that

m+3 (

2
—>ﬁ23

(H36)

With the above shift, the terms appearing inside the square

brackets in the expression for f (,f]) in Eq. (H35) lead to
vanishing contributions:

L A o ) Rt NS

qzoq.(m +3—-9)! por q!(m+3-q)!

The other terms can be summed using the binomial
theorem, as indicated in Eq. (G2), by setting a =2 (for
all terms) and b=r+3, r+2, and r+ 1. The final
result is

A(z)’g _ 2( )"(F + 3)'(7’ + 4)'GTP0ﬁl+"_r
=00 =+ )+ 1)(r+2)

( ™M@+ r)(m+2)!—6(m+1)!]
ot (m=n)!(r—m)!(m+3)!

(H38)

The term (r —m)! appearing in the denominator on the
second line is indicative that Ar>0 , vanishes when n > r
due to the fact that I'(n) diverges for integer n < 0.

Performing the sum over m yields the first part of Eq. (86c),

AP 207Pf " (r+4)(n 4 1)(9n + nr — 4r)
r>0n<r — (l’l +5)'r(r+ 1)(r+ 2) s
(H39)

while Ar>0 oy = 0.
We now focus on the » = 0 case, which can be evaluated
using Eq. (F23). Performing the summation gives

4@ 432(=1)"o7Pypt"
o s =

n e S| (o)

5
|:1_8 5n0 -
where we used Eq. (H1).

With the help of the auxiliary sum defined in Eq. (H2),
we arrive at the following recursions:

) (e n+3
— ( H41
Spi1(N2) n+1S (Ny) — n+IS (N2), (H41a)
=(2) 1 Ny +1 n+2 @)
§¥ N, = —— SN H41b
w1 (V2) n+1<n+1 T+l (N2). - ( )
@) N, + 1
S (N,)) = ————, H41
o (N2) 2(N, +3) (Halc)
S (Ny) = w(N, +3) —y(2). (H41d)
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APPENDIX I: CALCULATIONS FOR THE
BULK VISCOUS PRESSURE

In this appendix, we provide some intermediate calcula-
tions needed to arrive at the exact results for the inverse
collision matrix 7(9), the bulk viscosity ¢, and the relaxation
time of the bulk viscous pressure zy;. Furthermore, we show
how to compute the correction to the local-equilibrium
distribution function proportional to the bulk viscous pressure.

1. Inverse matrix

The matrix in the scalar case has the following structure:

.A(O) A(O)
0 00 0.n>2
r>2,n>2

where Ar>2 4sr = 0; ie., the matrix appearing in the
bottom-right corner of the above expression is lower-

triangular. The inverse matrix rﬁ?) inherits the same form,

W T2
T = ( (0>,n> ) . (I2)
0 Tr>2,n>2
where 15(;)2]»2 is also lower-triangular. It is easy to see that
©0) _ 1 _ No+1 3
T00 A(()(())) m N 1 (13)

. . 0
For future convenience, we parametrize ’Z'(m) for3<n<
r <Ny as

Tg(zl) - /lmtp(r—l— 1)
ﬂr n(n + 1)

Imposing Zm 0412 oA

(80 +700). (14)

=9,, gives for r, n > 2

) 2
=Y SE = (15)
r

n=m

The above relation can be arranged into a simple recursion,

m — A

~(0 m (o
o) = _215’,),1“. (16)

Noting that T£9> =1/ Aﬁ‘?, we have %ﬁ?’ =2/(r—=2), such
that

~(0) 2(r—1) (
mo= N AN 17)
(m —1)(m =2)
leading to
) /Imfp(r—l— 1)! 2(r—1)

Tr>2,2<n§r:m n m (18)

The elements on the zeroth line can be found by

imposing Z <(}),>T£9,) =0 forn > 2:

Ny
0) (0 0)_(0
AR Then == AR T (19)
Using Egs. (88), (I3), and (I8), we get

0
om0 2"
O T T (n=1)(n=2)(n+1)!

XZ "(r=1)8

SN2+ (r=2)8,].  (110)

Using the explicit expression (87) for SS,O) , the summation

over r can be performed, leading to

7’-(<)(.)r)z>0 _ 2(_ﬂ)n
A0 T =) (n=2)(n+1)!

XZ( >2n+m mgg}g:zzni—l)nwrnﬂ)

_ 2(=p)"
(n—=1)(n=2)(n+1)!
o (1 +N0> (14+No—n)[No(n—2)+n]
n No(No+1)2

(111)
Collecting the above results, we find Egs. (112).
2. Bulk viscosity

We compute {/m* = ¢,/m* by substituting Egs. (I3) and
(I11) in Eq. (113):

1 Poﬂ Amep(No + 1) L (=1)"
my” 54(1\;0—1) [1_2

XZ( >n+m n—z()gnml;m+l)} (112)

Swapping the summation with respect to n with that with
respect to m and using the properties

m(m—1)(m—2)

:Zl3<’:> ;_i): T 6(m—+1) ’ (I13a)
i(f)“””———( - 1)(m=2),  (I13b)
g(i)“”"" =-mm=2). (1)
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Eq. (I12) can be reduced to

LI Poﬂ Ao (No + 1)
mg 54(Nog — 1)

{HZ

The sum over m appearing above represents a correction to
the 14-moment approximation, represented by the prefactor
of the square brackets. After performing this sum, we arrive
at Eq. (115).

)(11m? + 4m - 3)
(m+1)?

}. (114)

3. IReD relaxation time
We begin with 7y = 7q1) and use Egs. (114) and (115),

TIT—Too +Z Tor C

No
(0) 6N ( N2—1
= 1—
TOO{ 6—|—7N0+11N3Z

x,z:<f:><-w<wr-r;-z>

2r 2r 2)] }

X |lr—1
{r o ST =) (r =

In order to evaluate the sums not containing harmonic
numbers, we need the identities (I13), as well as

50 2 b

r=3

(115)

1)(3-2H,,). (116)

In order to perform the summation over r for the terms
involving H,, we employ its integral representation,

1-t

1
H,:/ d (117)
0
together with the relations
& t
Z( )— Vo= =1+ (1= )"+ (2 4 1 — mi),
r=3 2
Z(’") V= mt[l = (1= )™ = t(m - 1)],
r=3
m m mt3
=——(m 2)(m—=1)
X Fy(1,1,3 —m;2,4;1). (118)

Interchanging the summation with respect to r with the
integration with respect to ¢, we arrive at

" (m 3m3 —Tm? 4 4
< )Hr __om o imm e (119a)
S \r 4m
“(m m 1
-1)rH, =—(5-3 o 119b
() == Ly o
S (MY -3k, —am,,,), (119¢)
2 \r) r-2 4 memak
where H,,, = > ", r™" is the generalized harmonic num-

ber, with H,, = Hmﬁl Adding everything up, we find

0) 4No(Ng
=701
= 00{ +6+7N0+11N3Zm(m+1
11 2m 64+4m 6
— - - 6H,,,| b. (120
X[6 mr=1 m? (m—1)2+ m,2:|} (120)

The summation over m can be performed, yielding
Eq. (124). For the relaxation times of the higher-order
moments we have

Xk L0h
ILr —
n:O.;’:l2 g’
m4/1mprﬂ4_’ 1
At P oy )+ 1) |2H, — ——
e (r= 2= 1+ 1) 2H, =
8 1 1 8
-— 2E —(2H, ———-= . 121
3+ n:3n—2< " on+1 3)} (121)

Performing the summation then gives Eq. (126).

4. Correction to the distribution function
We start from Eq. (132) and use Egs. (114) and (115) for
£, and {, as well as Eq. (A9) for HE(O,B, arriving at

(0) Ny 2
Sf 611 1 3NG(N2 = 1)
S o N LW BB+
fo m PP | 2= 6+ 7Ny + 1IN}

« %(-1)% _1) (2H,, -n%l —§>
x va —

<ﬁEk>] (122)

In the second term, the sums over n and m can be swapped,
while the sum over n can be evaluated as follows:
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S - 1
(123)

Plugging the above into Eq. (I22) leads to

5fY e f:L‘”(ﬁ ) 3Ny (N3—1)
foo  mpPP =" TR T 6L TING + 1IN,

Ny
0 2 2 2 11
XZ;L’" (ﬂEk)<m—1+Z+m+1_? - (24)

We now consider the limit Ny — co, when 3Ny (N3 — 1)/
(6 4+ 7Ny + 11N}) — 3/11. This leads to the expression

5y el
fOk_ mgﬂ2P|:1+L (ﬂEk)+L (ﬂEk)

12Lm ﬂEk< — nlﬁmilﬂ (125)

The summation over m can be performed by introducing a
fictitious parameter 0 < ¢ < 1 and employing the generat-
ing function

N my (@) _ 1 —tx/(1-1)
L () = —— e .

In our case, we must evaluate

e 111
> Ln'() (m—1+ﬁ+m+1>

m=3

[ufort) -], o

It can be checked that the integrand behaves as O(#) around
t = 0, and thus the integral converges. The result is

= (1) 1 1 1

Ly —t—+—

; (x)(m—1+m+m+1
11x?

19
-(3- x)lnx—7+y(x 3)+6x—?

(126)

(128)

Plugging the above into Eq. (I25) then gives Eq. (133).
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