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We continue previous investigations of the (inhomogeneous) phase structure of the Gross-Neveu model
in a noninteger number of spatial dimensions (1 ≤ d < 3) in the limit of an infinite number of fermion
species (N → ∞) at (non)zero chemical potential μ [L. Pannullo, Inhomogeneous condensation in the
Gross-Neveu model in noninteger spatial dimensions 1 ≤ d < 3, Phys. Rev. D 108, 036022 (2023)]. In this
work, we extend the analysis from zero to nonzero temperature T. The phase diagram of the Gross-Neveu
model in 1 ≤ d < 3 spatial dimensions is well-known under the assumption of spatially homogeneous
condensation with both a symmetry broken and a symmetric phase present for all spatial dimensions. In
d ¼ 1 one additionally finds an inhomogeneous phase, where the order parameter, the condensate, is
varying in space. Similarly, phases of spatially varying condensates are also found in the Gross-Neveu
model in d ¼ 2 and d ¼ 3, as long as the theory is not fully renormalized, i.e., in the presence of a regulator.
For d ¼ 2, one observes that the inhomogeneous phase vanishes, when the regulator is properly removed
(which is not possible for d ¼ 3without introducing additional parameters). In the present work, we use the
stability analysis of the symmetric phase to study the presence (for 1 ≤ d < 2) and absence (for 2 ≤ d < 3)
of these inhomogeneous phases and the related moat regimes in the fully renormalized Gross-Neveu model
in the μ, T-plane. We also discuss the relation between “the number of spatial dimensions” and “studying
the model with a finite regulator” as well as the possible consequences for the limit d → 3.

DOI: 10.1103/PhysRevD.109.056015

I. INTRODUCTION

The Gross-Neveu (GN) model is arguably one of the
most simple theories that describe (self-)interacting fer-
mions. Despite this fact and having been formulated 50 years
ago [1], its chiral phase diagram in the μ, T-plane in various
number of spatial dimensions d is still under investigation
today. Within this work, we aim to contribute to this
research by focusing on so-called inhomogeneous phases
(IPs) of spatially oscillating condensates in noninteger
spatial dimensions. (We refer to [2] for a review on IPs.)

A. General contextualization

Within the N → ∞ limit, one finds that bosonic quantum
fluctuations are suppressed [1], which immensely simplifies
calculations and enables mostly analytic approaches. Thus,
it is not surprising that the most complete picture of the

thermodynamics of the GN model is within the special
N → ∞ limit, see, e.g., [3–19]. Still, even with these
simplifications the GN model can be seen as a prototype
quantum field theory (QFT) that shares a lot of features with
more realistic QFTs. It is asymptotically free and undergoes
dimensional transmutation, leading to a condensation of
fermion-antifermion pairs in the infrared (IR) in vacuum,
which is similar to quantum chromodynamics (QCD) and
QCD-like theories. However, there are also important
relations between the GN model and various models from
solid state physics as well as numerous extensions of the
model that are used as toy model QFTs, such that studying
the model within different setups remains an interesting task
on its own but is also of relevance as reference work. For
further reading, we refer to [20,21].

B. Recap of central results

In 1þ 1 dimensions the GNmodel exhibits three distinct
chiral phases [8,22]. At low temperatures and chemical
potential the discrete chiral Z2 symmetry is spontaneously
broken and one finds the so-called homogeneously broken
phase (HBP) that is characterized by a nonzero chiral
condensate, which is constant in space. At moderate and
high temperatures one finds the symmetric phase (SP)—a
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gaslike phase, which is characterized by a vanishing chiral
condensate. Especially relevant for our work is the IP at
low temperatures and moderate and large μ, where the
chiral condensate is nonvanishing and exhibits a spatial
dependence. Thus, in addition to chiral symmetry also
translational invariance is spontaneously broken. This
phase is associated with negative values of the bosonic
two-point function for some range of spatial bosonic
momenta [12,23–37]. Assuming a second-order phase
transition to the SP, a necessary condition for the IP is
a negative wave function renormalization even though this
is not a sufficient criterion [37–39]. Nevertheless, regions
of negative wave function renormalization in the μ,
T-plane are interesting on their own, since they feature
a nontrivial momentum structure of the two-point function
and the dispersion relation. These regions that can be larger
than the actual IP were labeled as moat regimes recently
and could play an important role in the hadronization
process in heavy-ion collisions [39–42]. As discussed in
Ref. [24] the 1þ 1 GN model has a moat regime, which
extends over large parts of the μ, T-plane and thus serves as
a toy model for this phenomenon.
It was found that the number of spatial dimensions has a

profound impact on the phase structure. In 2þ 1 dimen-
sions, one finds that the IP and the moat regime are only
present at finite regulator and vanish in the renormalized
limit [12,13,43]. Still, one observes an HBP for small μ and
T and an SP for large μ and T [16,17].
The situation is less clear in 3þ 1 dimensions, where the

model is nonrenormalizable (without introducing additional
parameters) and the value of the regulator and the choice of
the regularization scheme has a drastic impact on the phase
structure [44–48]. Most certainly one also finds an HBP and
an SP, while the existence of an IP can be regarded as
disputed as it heavily depends on the regularization.
In an effort to understand why the IP is absent in 2þ 1

dimensions and to what extent the existence of the phase is
a regulator artifact in 3þ 1 dimensions, [49] investigated
the GN model in noninteger d spatial dimensions in order
to interpolate between the known integer dimensional
results and to additional mimic the effect of dimensional
regularization.1 This study was conducted at T ¼ 0, which
sufficed to illuminate that (a) the IP is present for 1 ≤ d < 2
and vanishes exactly in 2 ¼ d, and (b) one does not find the
phase in 2 < d < 3 in a renormalized setup, which implies
that its existence in d ¼ 3 is caused by a finite regulator.

C. Research objective

In the present work, we extend this investigation of
spatially inhomogeneous condensation in (non)integer
number of spatial dimensions from zero to nonzero temper-
ature in order to map out the d-dependence of the IP and the
moat regime. This study therefore complements the pre-
viously mentioned study in Ref. [49] as well as Ref. [10].
The latter study already investigated the phase diagram
of the GN model in continuous dimensions 1 ≤ d < 3
under the assumption of spatially homogeneous condensa-
tion. Therefore, we aim at closing a gap in the literature
about the GN model.
Furthermore, we hope that this work contributes to the

general discussion about necessary conditions for the
presence/absence of IPs in arbitrary models and theories.
Here, especially our findings about the role of the spatial
dimensionality may be essential to understand the general
criteria for the formation of inhomogeneous condensates.

D. Structure

This work is structured as follows. In Sec. II we
recapitulate some basic mathematical aspects of the GN
model. We present the four-fermion action, the bosonized
version of the model in the N → ∞ limit and we discuss the
quantities that are relevant to map out the phase diagram.
Here, we also explain our regularization and renormaliza-
tion prescription as well as the stability analysis—the
method to detect inhomogeneous condensation.
Afterwards, in Sec. III, we turn to the results. We present

the evaluation of the above expressions for some points in
the μ, T-plane and different dimensions d. We show sample
plots for the two-point function and wave function renorm-
alization. Most importantly, we present the dependence of
the phase diagram and especially of the IP and moat regime
on the number of spatial dimensions d.
We conclude and comment on our results in Sec. IV and

provide a brief outlook to possible consequences of our
findings and follow-up questions.
Our work is accompanied by a large number of appen-

dixes, where we present all relevant details of this work. We
hope that the amount of technical details might help the
interested reader to easily reproduce and/or build on our
work. We also consider these appendixes as a compilation
of the most relevant formulas for the GN model in d < 3
within the N → ∞ limit. The Mathematica code that is
used to obtain our results is in parts a direct implementation
of these appendixes and available via Ref. [50].

II. THE GROSS-NEVEU MODEL IN 1 ≤ d < 3
SPATIAL DIMENSIONS IN MEDIUM

In this chapter, we introduce the GN model in dþ 1
dimensions, where d is the number of spatial dimensions.
We work at (non)zero temperature T and (non)zero
chemical potential μ and briefly recapitulate the derivation

1Note, that we will still use the same terminology HBP, SP, and
IP as well as symmetry breaking etc., for noninteger dimensions,
even though chiral symmetry and the concept of spatial oscil-
lation might not be well-defined in a noninteger number of spatial
dimensions. It might be better to talk about instabilities of
spatially constant condensates etc. However, this leads to a
needless complication of the discussion.
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of the grand canonical/effective potential, the bosonic
two-point function as well as the bosonic wave function
renormalization. All calculations and results are in the limit
N → ∞, where N is the number of fermion species. The
quantities that are presented in this chapter are required for
the computation of the phase diagram, the stability analysis,
and the detection of a possible IP and/or moat regime, see
also Refs. [12,24,43] for similar analyses and results that
arise as the limiting cases for integer d.

A. The action and the potential

The microscopic action of the GN model is given by [1]

S½ψ̄ ;ψ � ¼
Z 1

T

0

dτ
Z

ddx

�
ψ̄ð=∂þ γ0μÞψ −

λ

2N
ðψ̄ψÞ2

�
: ð1Þ

Here, ψ̄ ¼ ψ̄ðτ; x⃗Þ and ψ ¼ ψðτ; x⃗Þ are the fermion fields,
where xi ∈ ð−∞;∞Þ, i∈ f1;…; dg, are the spatial coor-
dinates of a d-dimensional Euclidean space and τ∈ ½0; 1TÞ
denotes the coordinate of the compactified temporal direc-
tion that mimics the (inverse) temperature T. The fermions
have antiperiodic boundary conditions in the compact
direction, come in N different species2 and transform as
spinors. We use a dγ-dimensional representation of the
gamma matrices of the corresponding Clifford algebra,

fγμ; γνgþ ¼ 2δμν1dγ ; μ; ν∈ f0; 1;…; dg: ð2Þ

This generalizes to noninteger d dimensions [51] and we
use the Kronecker delta as the components of the Euclidean
metric. Furthermore, we use λ for the four-fermion cou-
pling and introduce the fermion chemical potential μ in the
standard way.
For a detailed discussion of the symmetries of this model

in different integer dimensions, we refer for example to
Refs. [21,52].
In order to study four-fermion models (especially in the

N → ∞ limit) one convenient approach is to bosonize the
theory in the ultraviolet (UV) via a Hubbard-Stratonovich
transformation [53,54]. Here, the four-fermion interaction
is replaced by an auxiliary real scalar bosonic field ϕ.
On the level of the partition function the equivalent action
is [1,3,7]

S½ψ̄ ;ψ ;ϕ� ¼
Z 1

T

0

dτ
Z

ddx

�
1

2λ
ðhϕÞ2

þ ψ̄

�
=∂þ γ0μþ hffiffiffiffi

N
p ϕ

�
ψ

�
; ð3Þ

where we also introduced the Yukawa coupling h to obtain
canonical energy dimensions for ϕ. Now, in addition to the

functional integration over fermion fields, one also has to
integrate over the bosonic field ϕ. Since loop corrections
for the Yukawa coupling are suppressed for N → ∞, see,
e.g., Refs. [21,55], it is convenient to absorb the Yukawa
coupling in the field ϕ which is afterwards of dimension
energy in any number of spatial dimensions. In addition, to
correctly take the limit N → ∞ one rescales the boson field
with

ffiffiffiffi
N

p
. Hence, we introduce

σ ¼ hffiffiffiffi
N

p ϕ ð4Þ

as the new bosonic degree of freedom.
It is simple to show, see e.g., Ref. [56], that

hσi ∝ hψ̄ψi: ð5Þ

In an even number of spacetime dimensions dþ 1 the
formation of a nonzero expectation value of σ therefore
signals the breaking of the discrete Z2 chiral symmetry

ψ ↦ γchψ ; ψ̄ ↦ −ψ̄γch; σ ↦ −σ; ð6Þ

of the GN action and the formation of a condensate. In an
odd number of spacetime dimensions as well as for
noninteger dimensions the matrix γch, which fulfills

fγμ; γchgþ ¼ 0; μ∈ f0; 1;…; dg; ð7Þ

is either nonexisting or its definition is ambiguous (depend-
ing on dγ). For detailed discussions of these situations, we
refer to Refs. [51,52,57]. Still, it is possible to study the
action (3) and analyze for which μ and T one finds (non)
vanishing expectation values of the scalar field hσi. This
even holds true if one allows for spatial modulations of
this condensate in noninteger spatial dimensions. (The
conservative reader and author may think of these spatial
oscillations as being oriented along a subspace of spatial
dimensions smaller than d that has integer dimensionality,
which does not alter any of the formulas and arguments
below.) Regions in the μ, T-plane with hσi ≠ 0 are denoted
as phases of spatially (in)homogeneous condensation/sym-
metry breaking, while regions with hσi ¼ 0 are called gas
like/symmetric phases.
The standard way to proceed from Eq. (3) is to perform

the functional integration over the fermion fields and
absorb the resulting fermion determinant in an effective
action for the boson field σ. The resulting action Seff in the
probability distribution in the thermal partition function is

1

N
Seff ½σ� ¼

Z 1
T

0

dτ
Z

ddx
σ2

2λ
− lnDet½βð=∂þ γ0μþ σÞ�; ð8Þ

where we already divided by the number of species N and
Det denotes a functional determinant.

2Occasionally, these species are referred to as different colors
or flavors.
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Considering the limit N → ∞, this implies that the only
field configurations that contribute in the partition function
and the expectation values are those that minimize the
effective action Seff . This is equivalent to studying the full
quantum effective action (the generating functional for one-
particle-irreducible vertex functions) and only taking into
account the contribution of the fermionic quantum fluctua-
tions [58–60]. In any case, for arbitrary modulations in
spatial and temporal directions, the minimization of Eq. (8)
is a highly challenging task. It might not even be a well-
posed problem for noninteger dimensions. However,
assuming that the field configuration with least (effective)
action is constant in space and time, e.g., σðτ; x⃗Þ ¼ σ̄ ¼
const the problem simplifies drastically. We define the
(homogeneous) effective potential

Ūðσ̄; μ; T; dÞ ¼ 1

N
1

βV
Seff ½σ̄�; ð9Þ

which is the effective action for homogeneous fields per
species and spacetime volume. The eigenvalues of the
Dirac operator for homogeneous fields σ̄ are those of free
fermions with mass m ¼ σ̄. Thus, the evaluation of Ū
yields,

Ūðσ̄; μ; T; dÞ ¼ σ̄2

2λ
−

1

βV
ln Det½βð=∂þ γ0μþ σ̄Þ�

¼ σ̄2

2λ
−
dγ
2
l0ðσ̄; μ; T; dÞ; ð10Þ

where l0 is the Matsubara sum and momentum integral over
the log of the eigenvalues. Its evaluation is presented in
Appendix C.
By determining the global and local minima of Eq. (10),

we obtain the homogeneous phase diagram including the
spinodal lines. We denote the homogeneous field configu-
ration that corresponds to the global minimum of the
homogeneous effective potential for a given μ and T
by Σ̄ðμ; TÞ.
The derivative of the homogeneous effective potential

with respect to the homogeneous field σ̄,

d
dσ̄

Ūðσ̄; μ; T; dÞ ¼ σ̄

�
1

λ
− dγl1ðσ̄; μ; T; dÞ

�
; ð11Þ

is used to express the gap equation, which is of central
importance in the renormalization of this model as dis-
cussed in Sec. II E. The quantity l1 is again a Matsubara
sum and spatial momentum integration. Its evaluation is
discussed in Appendix D.

B. The bosonic two-point function

The bosonic two-point function at bosonic spatial
momentum q ¼ jq⃗j for a homogeneous bosonic field σ̄
is given by

Γð2Þðσ̄; μ; T; q; dÞ ¼ 1

λ
− dγ

�
l1ðσ̄; μ; T; dÞ

−
1

2
ðq2 þ 4σ̄2Þl2ðσ̄; μ; T; q; dÞ

�
; ð12Þ

where the quantities l1 and l2 are fermionic Matsubara
sums and loop momentum integrals that are discussed in
Appendixes D and E. The derivation of this quantity in the
GNmodel is discussed in great detail in Refs. [12,21,24,49]
and shall not be repeated here. Simply speaking, one
obtains the bosonic two-point function, by (1) taking
two functional derivatives with respect to σ of Eq. (8),
and Eq. (2) evaluating the result at vanishing external
Matsubara frequencies and for σðτ; x⃗Þ ¼ σ̄ ¼ const. In our
analysis, we evaluate the two-point function at the global
minimum of the effective potential Σ̄ðμ; TÞ for the specific
μ and T. At this point, let us also remark that we are aware
that the concept of a vector q⃗ is not well-defined in
noninteger spatial dimensions. However, carrying out the
calculations by assuming that q⃗ points only in the direction
of the subspace of integer spatial dimension bdc leads to the
same result and the two-point function is still a function
of q.

C. The bosonic wave function renormalization

Another quantity of interest is the so-called bosonic
wave function renormalization given by

zðσ̄; μ; T; dÞ ¼ 1

2

d2

dq2
Γð2Þðσ̄; μ; T; q; dÞjq¼0; ð13Þ

which is the coefficient of the kinetic contribution 1
2
ð∂μσÞ2

to the quantum effective action [3]. After a short calcu-
lation, which is summarized in Appendix H one finds,

zðσ̄;μ;T;dÞ¼dγ
2

�
l2ðσ̄;μ;T;0;dÞ−

8

6
σ̄2l3ðσ̄;μ;T;dÞ

�
; ð14Þ

where we introduced l3 as another Matsubara sum and
integral that is evaluated in Appendix F. If the wave
function renormalization is evaluated at the global mini-
mum of the effective potential Σ̄, we denote it by Z,
i.e., Zðμ; T; dÞ≡ zðΣ̄ðμ; TÞ; μ; T; dÞ.

D. Regularization of vacuum contributions

Some of the previously listed quantities contain contri-
butions with UV-divergent integrals. For d < 3, these are the
vacuum parts of l0 and l1, which require a UV regularization
to render calculations tractable. We regularize the theory
with a spatial momentum cutoff that confines the integration
of spatial fermionic loop momenta to a d-dimensional sphere
of radius Λ. This scheme certainly has its drawbacks in the
investigation of inhomogeneous condensation as we explic-
itly break translational invariance. However, as is discussed
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in Sec. II E, one can renormalize the theory for d < 3. Thus,
it is possible to eventually remove the regulator completely
by sending Λ → ∞, allowing us to make the assumptions
that Λ is large.
Regularizing the vacuum part of l0 and l1 with the spatial

momentum cutoff and expanding the result for Λ=σ̄ ≫ 1
results in

lΛ0 ðσ̄; 0; 0; dÞ ¼
Sd

ð2πÞd
1

2

0
B@−

Γ
�
dþ2
2

�
Γ
�
− dþ1

2

�
d
ffiffiffi
π

p σ̄dþ1

þ 2

dþ 1
Λdþ1 þ Λd

�
σ̄2

d − 1

1

Λ

þ σ̄4

4ð3 − dÞ
�
1

Λ

�
3

þO
�

1

Λ5

��1CA ð15Þ

and

lΛ1 ðσ̄;0;0; dÞ ¼
Sd

ð2πÞd
1

2

0
B@Γ
�
dþ2
2

�
Γ
�
− dþ1

2

�
d
ffiffiffi
π

p
�
−
dþ 1

2

�
σ̄d−1

þΛd

�
1

d− 1

1

Λ
þ σ̄2

2ð3− dÞ
1

Λ3
þO

�
1

Λ5

��1CA;

ð16Þ

where the lΛx are the regularized versions (C3) and (D3) of
the respective quantities, and Sd is given by Eq. (B2). These
expansions are obtained by applying the formula Eq. (B23),
whose origin is discussed in Appendix B 4. In the last step
we also used Eq. (B4) in order to have identical prefactors
of the first terms in Eqs. (15) and (16).

E. Renormalization

The GN model naturally experiences spontaneous sym-
metry breaking in the vacuum for all d forN → ∞, which is
exploited in the renormalization procedure. We impose as
renormalization condition that the auxiliary field σ assumes
the homogeneous nonzero value σ̄0 in the vacuum. The
coupling λ is tuned such that this condition is fulfilled and
the divergences are absorbed. Within the limit of N → ∞,
one finds that this is successful for spatial dimensions
d < 3, see Refs. [10,18,61]. This can easily be understood
by looking at Eq. (15), where a divergence ∝ σ̄4 arises for
d ≥ 3. There is no coupling in the action that can
compensate this divergence and removing the cutoff is
only possible by introducing more parameters.

1. The gap equation

Our renormalization condition can be expressed by the
gap equation in vacuum as

d
dσ̄

Ūðσ̄; μ ¼ 0; T ¼ 0; dÞjσ̄¼σ̄0
¼ 0: ð17Þ

Inserting Eq. (11) and rearranging the equation for
nonzero σ̄0 fixes the value of the coupling (its cutoff
dependence) as

1

λ
¼ dγlΛ1 ðσ̄0; 0; 0; dÞ

¼ dγ
Sd

ð2πÞd
1

2

0
B@Γ
�
dþ2
2

�
Γ
�
− dþ1

2

�
d
ffiffiffi
π

p
�
−
dþ 1

2

�
jσ̄0jd−1

þ Λd

�
1

d − 1

1

Λ
þ σ̄20
2ð3 − dÞ

1

Λ3
þO

�
1

Λ5

��1CA; ð18Þ

where we again assumed that Λ is large, i.e., Λ=σ̄0 ≫ 1 and
therefore simply applied Eq. (16) for σ̄ → σ̄0.

2. Renormalization of the effective potential

Hence, for the effective potential in the presence of the
UV cutoff we find,

ŪΛðσ̄;μ;T;dÞ ¼ dγ
2
½σ̄2lΛ1 ðσ̄0;0;0;dÞ− lΛ0 ðσ̄;μ;T;dÞ�; ð19Þ

which in vacuum evaluates to

Ūðσ̄; 0; 0; dÞ ¼ dγ
2

Sd
ð2πÞd

2
64ðdþ 1ÞΓ

�
dþ2
2

�
Γ
�
− dþ1

2

�
2d

ffiffiffi
π

p

×

�
−
σ̄d−10 σ̄2

2
þ σ̄dþ1

dþ 1

�

þ Λd

�
σ̄4

8ð3 − dÞ
1

Λ3
þO

�
1

Λ5

��375: ð20Þ

The last line vanishes for d < 3 in the limit of Λ → ∞, see
also Ref. [49]. We then obtain the renormalized homo-
geneous effective potential,

INHOMOGENEOUS …. II. NONZERO TEMPERATURE … PHYS. REV. D 109, 056015 (2024)

056015-5



Ūðσ̄; μ; T; dÞ ¼ dγ
2

Sd
ð2πÞd

�Γ�d
2

�
Γ
�
− dþ1

2

�
ðdþ 1Þ

4
ffiffiffi
π

p

×

�
1

dþ 1
jσ̄jdþ1 −

1

2
σ̄d−10 σ̄2

�

− T
Z

∞

0

dppd−1 ln

�
1þ exp

�
−
Eþ μ

T

��

þ ðμ → −μÞ
�
; ð21Þ

whose derivation and special limits of the parameters σ̄, μ,
T, d are presented in Appendix G. This result is equivalent
to the result presented already in Refs. [10,62].

3. Renormalization of the two-point function

The unrenormalized two-point function Eq. (12) con-
tains the divergent contribution l1. By inserting the regu-
larized value for the coupling λ and inserting the
regularized expression for l1, one obtains

Γð2ÞΛðσ̄;μ;T;q;dÞ ¼ dγ

�
lΛ1 ðσ̄0;0;0;dÞ− lΛ1 ðσ̄;μ;T;dÞ

þ 1

2
ðq2þ 4σ̄2Þl2ðσ̄;μ;T;q;dÞ

�
: ð22Þ

In the limit Λ → ∞, one finds that the divergent parts are
absorbed by the coupling and we find for the renormalized
two-point function the expression,

Γð2Þðσ̄; μ; T; q; dÞ ¼ dγ
2

Sd
ð2πÞd

�
ðjσ̄0jd−1 − jσ̄jd−1Þ

Γ
�
1−d
2

�
Γ
�
d
2

�
2
ffiffiffi
π

p þ
Z

∞

0

dppd−1 1

E

�
nf

�
Eþ μ

T

�
þ nf

�
E − μ

T

��

þ
�
q2

4
þ σ̄2

�Z
1

0

dx
Z

∞

0

dppd−1 1

Ẽ3

�
1 − nf

�
Ẽþ μ

T

�
þ Ẽ

T

�
n2f

�
Ẽþ μ

T

�
− nf

�
Ẽþ μ

T

��

þ ðμ → −μÞ
��

: ð23Þ

The definition of Ẽ is given in Eq. (A15), and detailed steps
of the renormalization as well as special limits in the
parameters σ̄, μ, T, q, d are presented in Appendix I.

F. The stability analysis

While the investigation of the homogeneous phase
structure can be conducted via the one-dimensional mini-
mization of the homogeneous effective potential Ū with
respect to the variable σ̄, one cannot minimize the effective
action for an arbitrary inhomogeneous field configuration.
Typically, one either resorts to an ansatz for the field
modulation as, e.g., in Refs. [8,13,22,52,63,64], or conduct
a stability analysis, which is the approach that we consider.
Here, we only summarize the strategy of this technique and
the final quantities. We refer to Ref. [24] for a detailed
derivation and discussion at the example of the (1þ 1)-
dimensional GN model and to Refs. [45,49] for some further
details of the stability analysis in noninteger dimensions.
Other works that relied on this or related techniques are for
example Refs. [12,23,24,28,32,33,35,37,38,43,65–67].
The strategy of this technique is to apply inhomo-

geneous perturbations to a homogeneous field configura-
tion and expand the effective action in powers of this
perturbation. When applying this expansion at the global
homogeneous minimum, one finds that the first nonzero
correction is the second-order term quadratic in the
perturbations. A negative sign of its coefficient signals
that an inhomogeneous field configuration is energetically

favored over the homogeneous expansion point. This
coefficient is given by the bosonic two-point function
Γð2Þ with the external, spatial bosonic momentum corre-
sponding to the momentum of the inhomogeneous per-
turbation. On a strictly formal level, we are therefore
simply searching for spatial momenta q, where the two-
point function (23) takes negative values, if it is evaluated
at the global minimum of the potential (21).
In integer dimensions, one considers perturbations with a

completely arbitrary spatial dependence, i.e., it can in
principle depend on all spatial coordinates. However, in
noninteger dimensions, an inhomogeneous condensate that
is a function of a spatial variable of a noninteger dimension
appears to be pathological. Throughout this work, we
consider 1 ≤ d < 3 and thus, there is always at least one
“full” spatial dimension. Therefore, we restrict the stability
analysis to perturbations that are only functions of this
single spatial coordinate. Note, however, that the final
result for the two-point function which is found to depend
only on the magnitude of the spatial momentum q is
independent of this restriction and one would find the same
result if one formally considered perturbations in all non-
integer spatial dimensions. This restriction to one direction
is also justified by ansatz based investigations in d ¼ 2, 3.
There one finds that the energetically preferred inhomo-
geneous condensate is mostly a function of a single spatial
coordinate, except for parts of the IP, which can be clearly
identified as a regularization artifact [35,68].
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Closely related to the IP is the so-called moat
regime [40,42], which is characterized by a two-point
function featuring a minimum at a finite momentum.
This is also realized in an IP, where, however, the minimum
of the two-point function is necessarily negative. A simple
criterion for the detection of the moat regime is that
the wave function renormalization (13) evaluated at the
homogeneous minimum of the potential (21) assumes a
negative value.3

III. RESULTS

The results as discussed in the following are an extension
of the results presented in Ref. [49], which conducted the
stability analysis of the (dþ 1)-dimensional GN model at
T ¼ 0. Therefore, we concentrate our presentation on the
effects by nonzero T and on the phase diagram as a function
of d as a whole. We refer to Ref. [49] for further results,
which analyze the d-dependence of the stability analysis.
Furthermore, we refer to Ref. [24] for a detailed discussion
of the results for d ¼ 1 and to Refs. [12,43] for d ¼ 2.

A. The two-point function

We start the discussion by providing two example plots
of the bosonic two-point function as a function of the
bosonic momentum q. We chose μ=σ̄0 ¼ 1.2 and various
temperatures for d ¼ 1.8 in Fig. 1 and for d ¼ 2.5 in Fig. 2,
because most of the relevant effects are visible for these
choices of μ and T and the two values of d are represen-
tative for the behavior for 1 ≤ d < 2 and 2 < d
respectively.
We find that the nonanalytic points at q ¼ 2μ, which are

present at T ¼ 0, see Ref. [49], are completely smoothed
out already at rather low temperatures. For d < 2, the
former nonanalytic point turns into a nontrivial global
minimum for some temperature range, while at d > 2 no
structure reminiscent of the cusp at T ¼ 0 remains. In this
way for d < 2 the instability towards an IP signaled by a
negative Γð2Þ at T ¼ 0 (blue curve in Fig. 1) vanishes at
some T > 0. A moat regime remains signaled by the
negative curvature of Γð2Þ at q ¼ 0 (red curve in Fig. 1),
which results in a nontrivial global positive minimum. For
large temperatures we universally find a convex shape with
no remains of the IP or a moat regime. Before we close the
discussion, let us remark that the T-order of the curves in

Fig. 2 is correct; the offset of the two-point function is the
bosonic curvature mass, which vanishes at the second-order
phase transition. At μ=σ̄0 ¼ 1.4 one starts in the HBP at
T=σ̄0 ¼ 0 and crosses the phase transition to the SP at
approximately T=σ̄0 ¼ 0.6 by increasing T, see also Fig. 7.
Of course, we could have plotted the two-point function for
d ¼ 2.5 in a region, where the global minimum of the
potential is trivial, hence for some μ=σ̄0 ≳ 1.5 similar to
d ¼ 1.8. This, however, would have been even less
interesting and we therefore opted for a comparison of d ¼
1.8 and d ¼ 2.5 at the same μ=σ̄0.

B. The wave function renormalization

The second quantity of interest is the wave function
renormalization Z, which serves as the indicator for the

FIG. 1. The two-point function Γð2Þ evaluated at the global
homogeneous minimum Σ̄ðμ; TÞ at μ=σ̄0 ¼ 1.2 and d ¼ 1.8 for
various temperatures T=σ̄0 as a function of the bosonic momen-
tum q=σ̄0.

FIG. 2. The two-point function Γð2Þ evaluated at the global
homogeneous minimum Σ̄ðμ; TÞ at μ=σ̄0 ¼ 1.2 and d ¼ 2.5
for various temperatures T=σ̄0 as a function of the bosonic
momentum q=σ̄0.

3This criterion assumes that there are no minima in the two-
point function at finite momentum that are separated from the
origin by a local maximum. This situation would also correspond
to a moat regime, but blind to our criterion. Such a situation can
indeed occur in nonrenormalizable (pseudo)scalar four-fermion
models like the 3þ 1-dimensional Nambu-Jona-Lasinio model,
when considering chemical potentials which are larger than the
regulator [45]. However, we are not aware that these models also
exhibit such properties in the fully renormalized limit and, thus,
the wave function renormalization appears as an appropriate
criterion.
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moat regime. It is shown as a function of the chemical
potential evaluated at the global homogeneous minimum
Σ̄ðμ; TÞ at various temperatures for d ¼ 1.8 in Fig. 3 and for
d ¼ 2.5 in Fig. 4. The two values of d are again repre-
sentative for the behavior for 1 ≤ d < 2 and 2 < d,
respectively. The dots on the curves indicate the chemical
potential that corresponds to the homogeneous phase
transition at the given temperature.
For d < 2, one finds at T ¼ 0 that Z is constant for small

μ=σ̄0 and jumps to a negative value at the homogeneous
phase transition. The constant behavior is a consequence of
the Silver blaze property as [69–72], which is no longer
fulfilled for nonzero T. The jump vanishes exactly at

temperatures, where one does no longer find a first-order
phase transition in μ-direction under the assumption of
homogeneous condensation, i.e., at the temperature of the
critical endpoint, see also Fig. 7. Above this temperature,
one finds that the chemical potential beyond which the
wave function renormalization is negative moves to higher
values. This is the behavior that we would expect based on
the results for d ¼ 1 as presented in Ref. [24]. However,
one finds a moat regime for all temperatures for sufficiently
large μ=σ̄0.
For d > 2, one finds at T ¼ 0 that Z is constant for small

μ and diverges at μ ¼ σ̄0, which is again a manifestation of
Silver Blaze. This nonanalytic behavior is smoothened
already for small temperatures and one finds that Z
smoothly changes with μ. However, most importantly for
the present investigation is, that the wave function renorm-
alization is always positive for arbitrary values of T and μ.
This implies the total absence of an IP and also the total
absence of a moat regime for d > 2.
For the sake of clearness, we also provide two density

plots of the wave function renormalization in the μ, T-plane
for d ¼ 1.8 and d ¼ 2.5 in Figs. 5 and 6. (Figures 3 and 4
are just sections of these density plots at constant T.) Here,
it is again clearly visible that there is no moat regime and IP
for d > 2, where Z is always positive. For d ¼ 1.8,
however, we find a similar structure as for d ¼ 1 (see
Ref. [24]). The moat regime is present in the region of the
IP and SP below the straight line that originates from μ ¼
T ¼ 0 and passes through the critical point. This straight
line is associated with a vanishing quartic coefficient of the
effective potential. Hence, the coefficient in front of σ̄4

changes its sign along this line as a function of μ and T, if
one expands Eq. (21) in σ̄, see Refs. [11,73,74]. It can be

FIG. 3. The wave-function renormalization Z evaluated at the
minimum of the potential for d ¼ 1.8 for various temperatures T
as a function of the chemical potential μ. The dots mark the
chemical potential, where the spatially homogeneous global
minimum of the potential turns (non)trivial, see Fig. 7.

FIG. 4. The wave function renormalization Z evaluated at the
minimum of the potential for d ¼ 2.5 for various temperatures T
as a function of the chemical potential μ. The (T ¼ 0) curve only
stays finite due to finite computational μ-resolution. The dots
mark the chemical potential, where the spatially homogeneous
global minimum of the potential turns (non)trivial, see Fig. 7.

FIG. 5. The wave function renormalization Z at d ¼ 1.8 in the
ðμ; TÞ-plane. The yellow curve corresponds to the second-order
HBP-SP phase transition, the red curve to the first-order HBP-SP
phase transition, the green curve to the second-order IP-SP phase
transition, and the orange curve separates regions of positive and
negative wave function renormalization.
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shown [73] that this coefficient is proportional to the
bosonic wave function renormalization (14), if the wave
function renormalization z is evaluated at the trivial point
σ̄=σ̄0 ¼ 0. This is the correct evaluation point only in the
SP, which is however the important region for the moat
regime. Hence, the straight line separates the regime of
negative and positive Z in the SP.

C. The phase diagram

Next, we turn to the full phase diagram of the GN model
as a function of the spatial dimension d. Indeed, already in
Figs. 5 and 6 we basically plotted the phase structure for

d ¼ 1.8 and d ¼ 2.5, which served as examples for 1 ≤
d < 2 and d > 2. For 1 ≤ d < 2 one always finds a first-
order phase transition between HBP and SP at low temper-
atures and a second-order phase transition for large temper-
atures, if one assumes spatially homogeneous condensation
in the entire μ, T-plane. On the other hand, for d ≥ 2 the
phase transition between the HBP and SP is always of
second order (except for d ¼ 2 and T ¼ 0 [16,17]). This
result was already found in Ref. [10], where it was also
observed that the critical point moves down to T ¼ 0 and
that the HBP enlarges, while going continuously from
d ¼ 1 to d ¼ 2. However, when allowing for the formation
of spatially inhomogeneous condensates and searching for
these via the stability analysis, this picture is modified
for 1 ≤ d < 2, while nothing happens at d ≥ 2. Already at
T ¼ 0 it was found in Ref. [49] that the stability analysis
reveals an IP for 1 ≤ d < 2. This phase extends to μ=σ̄0 ¼
∞ for d ¼ 1 at T ¼ 0 but shrinks and has a second-order
phase transition to the SP at some finite critical μ when
1 < d < 2. The phase transition between the HBP and the
IP cannot be resolved correctly with this method as is
discussed in detail in Refs. [24,37]. Still, for d ¼ 1 the
analytic solution is well-known [8,75] and served as a test
field for the stability analysis in Ref. [24]. For a direct
comparison, of the situation in 1 ≤ d < 2 and d > 2, we
again used d ¼ 1.8 and d ¼ 2.5 and plotted both phase
diagrams together in Fig. 7. For reference, we also included
the spinodal lines (the lines that engulf the region in the
phase diagram, where the effective potential has a global
and local minimum/minima), plotted in blue.
However, to really observe the effect of dimensionality

on the IP and the moat regime, we prepared Figs. 8 and 9,
which clearly show that the phase diagram for 1 < d < 2 is
similar to the phase diagram at d ¼ 1 (except for the finite
extent of the IP at T ¼ 0) and that d ¼ 2 is the strict upper
bound for the existence of an IP. Still, it is remarkable that

FIG. 6. The wave function renormalization Z at d ¼ 2.5 in the
ðμ; TÞ-plane. The yellow curve marks the second-order HBP-SP
phase transition.

FIG. 7. The phase diagram at d ¼ 1.8 (colored lines) and d ¼
2.5 (black line) in the ðμ; TÞ-plane. The plot is shown for d ¼ 1.8;
the second-order phase transition (HBP ↔ SP) in yellow, first-
order phase transition (HBP ↔ SP) red, the second-order phase
transition (IP ↔ SP) in green, the spinodal lines in blue, the line
of vanishing quartic coefficient of the potential (¼ vanishing
zðσ̄ ¼ 0Þ) in orange. The black line is the second-order phase
transition (HBP ↔ SP) for d ¼ 2.5. Black dots mark the end-
points of the lines.

FIG. 8. The boundaries of the HBP (assuming homogeneous
condensation), the boundary IP to the SP, and the moat regime,
and the spinodal lines for spatial dimensions d∈ f1.0; 1.25;
1.5; 1.75; 2.0g in the ðμ; TÞ-plane.
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the IP and the moat regime vanish rather slowly as a
function of d and an IP is still clearly visible for our last
plotted curve at d ¼ 1.95. Nonetheless, this behavior was
actually expected, because the same slow convergence was
already observed for the critical point in Ref. [10], which
turns into the Lifshitz point, if one allows for spatially
inhomogeneous condensation. Let us remark at this point
that we did not prepare extra plots for the situation at
2 < d < 3, since we do not find any signal of spatially
inhomogeneous condensation and/or a moat regime for any
T and μ (this was already observed at T ¼ 0 in Ref. [49]).
Therefore, the situation of exclusively spatially homo-
geneous condensation is already fully covered by
Ref. [10] with which our results agree. We believe that
the example of d ¼ 2.5 is absolutely sufficient within this
work to understand the situation for 2 < d < 3.
We close this section by summarizing that we find moat

regimes and phases, where the condensate varies in space,
in the GN model for N → ∞ for 1 ≤ d < 2, while they are
absent for d ≥ 2.

IV. CONCLUSIONS AND OUTLOOK

Finally, we want to summarize our results, draw several
conclusions, and provide an outlook to possible follow-up
projects.

A. Summary

In the present work, we investigated the phase diagram of
the GNmodel at (non)zero fermion chemical potential μ and
(non)zero temperature T in the limit of an infinite number of
fermion species, N → ∞, as a function of the spatial
dimension d. We focused on 1 ≤ d < 3, where the model

is renormalizable and solely depends on the fixation of a
single dimensionful parameter. We used the vacuum fer-
mion mass to fix the scales and worked in the renormalized
limit. The focus of this work is the detection and the
dependence on the number of spatial dimensions of the IPs
and a possible moat regime. We found that the well-known
result for d ¼ 1 [8,9,75,76] generalizes to 1 < d < 2 and
one detects an instability of the SP that signals the presence
of an IP. Furthermore, one always finds an even larger moat
regime at large chemical potential. Both, the IP and the moat
regime vanish, when d approaches d ¼ 2. For d ≥ 2 we do
not find any indication of an IP in terms of an instability.
The same applies to the moat regime. While, we cannot
exclude any kind of inhomogeneous condensation, which is
not detectable via a stability analysis, such a situation is,
however, highly unlikely to be present in this model. The
reason is that the phase transition between the SP and an IP
is generally expected to be of second order, which enables
the use of this method (see Ref. [24] for a detailed
discussion about the range of validity of this method).
Apart from these novel results, we implicitly and

explicitly confirmed various existing literature results for
the GN model for integer d ¼ 1 [3,7,8,22] and d ¼ 2
[12,13,16,17,52] as well as some of the results from
Ref. [10] for continuous d.
We also provide several appendixes with detailed

material that may be of general use for follow-up or related
projects.

B. Conclusion

Already in Ref. [49] we speculated about the relevance of
the number of spatial dimensions d on the formation of
spatially inhomogeneous ground states in the GN and other
models. Furthermore, Refs. [12,13,44] showed that the
effects of the presence of a finite regulator or an effective
UV/IR cutoff in terms of a spatial lattice or a finite spatial
box play an important role for the presence/absence of
spatially inhomogeneous condensation. Here, we want to
continue this discussion and believe that the present inves-
tigation sheds light on the previous findings. Let us there-
fore briefly summarize the findings for the GN model at
N → ∞ up to this point: In d ¼ 1 there is an exact solution
for the phase diagram and one finds spatially inhomo-
geneous condensation [8,75]. This feature seems to be
robust atN → ∞ even in the presence of a spatial lattice etc.
[27,77]. For d ¼ 2 and for N → ∞ there is also an exact
solution for the phase diagram, but there are no IPs in the
renormalized limit [12,13]. However, in the presence of
some UV or IR regulator/cutoff one recovers an IP and a
phase diagram that has some similarities with the situation
in d ¼ 1 [12,13]. The size of the IP and the shape of the
HBP thereby strongly depends on the value of the regulator/
cutoff and one finds results that are closer to d ¼ 1 or d ¼ 2
depending on the strength of the regularization. In d ¼ 3
there are several models that are similar to the GN model at

FIG. 9. The first and second-order phase boundary of the HBP-
SP phase transition for a translational invariant bosonic field and
the phase boundary between the IP and SP in the ðμ; T; dÞ-space.
Different colored lines correspond to different values of d. (The
HBP-IP phase transition is not plotted and not detectable within
our approach.)
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N → ∞ which support the presence of spatially inhomo-
geneous condensation, while the extent of the IP usually
depends on the cutoff/model parameters (renormalization
like in this work is not possible and the phase diagram
usually depends on at least two parameters). If we compare
these results to our findings, we come to the conclusion that
spatially inhomogeneous condensation seems to be a
dimensional effect. For the studies discussed previously
and for the present study the situation is always the same; as
soon as the (effective) dimensionality of the model is
reduced to 1þ Δd dimensions, where Δd∈ ½0; 1Þ, we find
an IP. However, as soon as there are two or more full-
featured spatial dimensions available, the IP vanishes. In
fact, it does not play a role if the number of spatial
dimensions is directly reduced via dimensional regulariza-
tion or as worked out in the present study using d as a
continuous parameter or even via an UV/IR cutoff as, e.g.,
in Refs. [12,13,23,44,45,64,78]. In particular, the latter case
can be viewed as a reduction of a full dimension to a
fractional/part of a dimension by restricting the system to a
finite spatial box (IR cutoff) or coarse lattice (UV cutoff). A
similar effect is observed in a recent work Ref. [79], which
analyzed the homogeneous phase structure of the 2þ 1-
dimensional GNmodel in a finite volume. The finite volume
causes the critical endpoint to be located at a finite
temperature, which is a feature that is limited to d < 2 in
the infinite volume.
Another consequence of the fact that the actual way of

reducing the dimensionality does not matter is as follows:
For our study this implies that another way of mathemati-
cally continuously interpolating between integer d should
yield qualitatively the same results. However, this also
means that care should be taken and an overintepretation of
the results for specific d, like d ¼ 1.8 and d ¼ 2.5 (see
above), does not make sense from a physics point of view.
Here, one should better turn to a compactification of a
spatial dimension as a method to reduce the dimensionality,
because putting the system into a (periodic) box is much
closer to real world scenarios.
These results also seem to be in line with the observation

that one-dimensional ansatz functions for inhomogeneous
condensates usually appear to be the most promising and
energetically favored solutions, if an IP is present at all
[35,52,64,68].
Of course, at this point the immediate question that

arises is: What is the underlying nature and physical
principle behind this strong relation to a single spatial
dimension? So far, we were not able to come up with a
conclusive answer, but we hope that this work might be an
important step to start the search in the right direction. The
Peirls instability, which is the origin of the IP in d ¼ 1
[8,20] and a one-dimensional effect that cannot be directly
generalized to higher dimensional systems, might be a
good starting point in terms of a physics understanding and
correct interpretation.

C. Outlook

Now, that we have mostly settled the situation for the GN
model at N → ∞ there are basically four main directions to
proceed.

1. One-dimensional ansatz functions

It was found in d ¼ 1, that the stability analysis is not
able to detect the portion of the IP, where it is energetically
favored, but the homogeneous expansion point Σ̄ is finite
[24]. As mentioned in Sec. III C, we expect the same
situation to occur for 1 < d < 2 in our calculations with
some part of the IP in the vicinity of the first-order phase
transition between HBP and SP to be missing. A way to
improve on this would be to consider a one-dimensional
ansatz function embedded in the d-dimensional space. Such
a procedure was considered in (3þ 1)-dimensional models
in Ref. [64], which treats the perpendicular space in such a
general way that it can be generalized from d⊥ ¼ 2 to
noninteger d⊥ ¼ d − 1 dimensions. It is expected that the
additional portion of the IP is not particularly large, because
it quite limited in size in d ¼ 1 and likely shrinks even
further with increasing d. Nevertheless, this step would
yield the complete phase diagram of this model.4

2. Finite regulator or finite volume

To solidify the concept of effective dimensionality, it
would be fascinating to carry out the present investigation
not in the renormalized limit, but at a finite UV regulator. In
this way, one could (a) connect smoothly to the 3þ 1
model results by extending our analysis to d ¼ 3 and
(b) one could investigate the interplay between the explicit
number of spatial dimension d and the effective dimen-
sional reduction introduced by the UV regulator. The latter
could also be investigated by considering a finite volume,
which introduces an IR regularization that should also lead
to an effective dimensional reduction.

3. Finite N

While the N → ∞ limit was essential to investigate
the analytic structure of the GNmodel for noninteger d, this
semi-classical limit is fairly different from the behavior
that we would expect of a QFT. The general observation is
that bosonic quantum fluctuations as they would occur for
finite N weaken ordered phases in such models (see, e.g.
Refs. [28,74,80–82]) and therefore likely do not enable the
emergence of an IP for d ≥ 2.
For d < 2, it is highly likely that the IP vanishes

altogether at nonzero T. The most pathological aspect
of the N → ∞ limit is the fact that it circumvents the

4This is based on the assumption that also in noninteger
dimensions one-dimensional kink-antikink modulations moti-
vated from the solution of the GN model in d ¼ 1 are the
preferred shape of the inhomogeneous condensate.
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Coleman-Mermin-Wagner-Hohenberg-Berezinskii theo-
rem [27,83–86] (or related arguments for discrete sym-
metries [3,21,87–89]) in d ¼ 1, which would normally
forbid any type of condensation at a nonzero temperature.
Accordingly, it was found in Refs. [21,74], that there is no
symmetry breaking at nonzero T and finite N in d ¼ 1.
(For T ¼ 0 and finite N this is no longer true, see, e.g.,
Refs. [74,90].) These effects likely suppress any IP for
d < 2, which all in all suggests that these models do not
exhibit an IP in any dimensions for finite N at nonzero T.
Nevertheless, it might be interesting to consider this

model for finite N. While there is no condensation in d ¼ 1
at finite T, one finds an HBP in d ¼ 2 [81]. Thus,
considering the GN model for noninteger d might be
instructive to observe how the theory evolves from a system
without any symmetry breaking to the system with a broken
symmetry. A functional method that admits the formulation
of the theory for an arbitrary d such as the functional
renormalization group [91–93] might be the optimal frame-
work for extending our analysis to finite N.

4. Consequences for higher-dimensional
models and QCD

Our analysis shows that four-fermion models with scalar
interaction channels in the limit of N → ∞ only exhibit an
IP for d < 2 or via an effective reduction of the dimension-
ality of the system. This suggests that an IP might exist in
QCD only when the low-energy behavior of QCD is not
only described by scalar-pseudoscalar four-fermion inter-
actions, but by interactions that would admit an IP for higher
dimensions in other than the scalar and pseudoscalar
channel. This is most likely the case at finite chemical
potential, where it was found that the relevant interaction
channels are diquark interactions [94,95], which have not
been systematically studied with respect to the IP.
Moreover, in this regime vector interactions become rel-
evant, which were found to mix with scalar modes at finite
densities and to play an important role in the homogeneous
phase transition near the critical endpoint in QCD [96].
Such a mixing might even induce an instability that results
in a spatial modulation of the condensates [97,98]. Another
mechanism that could cause the existence of an IP in QCD
is that it has in fact a lower effective dimension, e.g., caused
by additional strong magnetic fields. While these are aspects
that are yet to be understood, they certainly imply important
questions that should be answered in an effort to investigate
IPs and the moat regime in QCD. However, there are also
indications that a possible IP would be completely desta-
bilized by the Goldstone bosons from chiral symmetry
breaking [99].

The Mathematica code used to obtain our results, along
with the plotted data and the produced raw data, are
available via Ref. [50].

ACKNOWLEDGMENTS

A. K. and L. P. thank J. Braun, H. Gies, G. Markó, R. D.
Pisarski, D. H. Rischke, M. J. Steil, J. Stoll, M. Wagner, M.
Winstel, A. Wipf, N. Zorbach for fruitful discussions
about this work. A. K. and L. P. thank R. Pisarski, A.
Wipf, M. Winstel and N. Zorbach for useful comments on
the manuscript. A. K. and L. P. especially thank S.
Floerchinger and G. Endrődi for valuable discussions
and for their general support at the TPI in Jena and the
faculty of physics at the University of Bielefeld, respec-
tively. A. K. and L. P. also like to thank M. J. Steil, because
the adaptive mesh-refinement algorithm that was used to
generate the data of the phase diagrams is based on his
work and code. A. K. and L. P. acknowledge support from
the Helmholtz Graduate School for Hadron and Ion
Research, the Giersch Foundation and the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) through the Collaborative Research Center
TransRegio CRC-TR 211 “Strong-interaction matter under
extreme conditions”—Project No. 315477589—TRR 211.
All numeric results as well as the figures in this work were
obtained and designed using Mathematica [100].

APPENDIX A: CONVENTIONS

1. Fourier transformations

In this work, we use the following conventions for
Fourier transformations. For the bosonic field we have

φðτ; x⃗Þ ¼ T
X∞
n¼−∞

Z
∞

−∞

ddp
ð2πÞd φ̃ðωn; p⃗Þeþiðωnτþp⃗·x⃗Þ; ðA1Þ

φ̃ðωn; p⃗Þ ¼
Z

1
T

0

dτ
Z

∞

−∞

ddx
ð2πÞd φðτ; x⃗Þe

−iðωnτþp⃗·x⃗Þ; ðA2Þ

while the fermion fields are Fourier-transformed
according to

ψðτ; x⃗Þ ¼ T
X∞
n¼−∞

Z
∞

−∞

ddp
ð2πÞd ψ̃ðνn; p⃗Þe

þiðνnτþp⃗·x⃗Þ; ðA3Þ

ψ̃ðνn; p⃗Þ ¼
Z

1
T

0

dτ
Z

∞

−∞

ddx
ð2πÞd ψðτ; x⃗Þe

−iðνnτþp⃗·x⃗Þ; ðA4Þ

ψ̄ðτ; x⃗Þ ¼ T
X∞
n¼−∞

Z
∞

−∞

ddp
ð2πÞd

˜̄ψðνn; p⃗Þe−iðνnτþp⃗·x⃗Þ; ðA5Þ

˜̄ψðνn; p⃗Þ ¼
Z

1
T

0

dτ
Z

∞

−∞

ddx
ð2πÞd ψ̄ðτ; x⃗Þe

þiðνnτþp⃗·x⃗Þ: ðA6Þ

Hereby, the corresponding Matsubara frequencies for the
discretized energies are

ADRIAN KOENIGSTEIN and LAURIN PANNULLO PHYS. REV. D 109, 056015 (2024)

056015-12



ωn ¼ 2πTn; νn ¼ 2πT

�
nþ 1

2

�
; ðA7Þ

which stem from the (anti)periodic boundary conditions in
τ-direction at τ ¼ 1

T for (fermions) bosons.

2. Fermi-Dirac distribution function

We define the Fermi-Dirac distribution function as
follows [101,102]:

nfðxÞ ¼
1

ex þ 1
¼ 1

2

�
1 − tanh

�
x
2

��
: ðA8Þ

Especially for the numeric implementation we exclusively
use the representation in terms of tanh. In addition, we
present two useful identities, which are also part of the
derivation of the explicit analytic expressions in this work
as well as the numeric implementation,

n0fðxÞ ¼ n2f ðxÞ − nfðxÞ ¼ −
1

4 cosh2
�
x
2

� ; ðA9Þ

n00f ðxÞ ¼ 2n3f ðxÞ − 3n2f ðxÞ þ nfðxÞ ¼
sinh

�
x
2

�
4 cosh3

�
x
2

� : ðA10Þ

“Primes” denote derivatives with respect to x.
For the derivation of the zero-temperature limits of some

formulas of this work, we repeatedly need the following
limits:

lim
T→0

nf

�
E� jμj

T

�
¼
(
0;

Θ
�
jμj
E − 1

�
:

ðA11Þ

Here, E is the energy, μ the chemical potential, and Θ is the
Heaviside function. In addition,

lim
T→0

E
T

�
n2f

�
E� μ

T

�
− nf

�
E� μ

T

��
¼ðA9Þ

¼ lim
T→0

−
E

4Tcosh2
�
E�μ
2T

�
¼ −

E
jμj δ

�
E
jμj � sgnðμÞ

�
; ðA12Þ

where δ is the Dirac-delta distribution.

3. Abbreviations and definitions

For the sake of a compact notation and better readability,
we define several quantities. First, we introduce the fermion
energy/dispersion relation,

E≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ σ̄2

q
; ðA13Þ

where σ̄ is the background field and fermion mass. For
calculations at nonzero chemical potential, in particular at
T ¼ 0, it is useful to define the reduced chemical potential,

μ̄≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − σ̄2

q
; ðA14Þ

which reduces the chemical potential by the fermion mass.
In the presence of an external momentum with absolute
value q the shifted fermion energy/dispersion relation is
defined by

Ẽ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ̃2

q
: ðA15Þ

Here,

Δ̃≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄2 þ q2xð1 − xÞ

q
ðA16Þ

is the shifted squared fermion mass and x∈ ½0; 1� the
Feynman parameter. For σ̄ ¼ 0, this reduces to a shifted
momentum

p̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2xð1 − xÞ

q
: ðA17Þ

Finally, we also need the reduced and shifted chemical
potential,

μ̃≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − Δ̃2

q
: ðA18Þ

APPENDIX B: FORMULARY

In this appendix we present a collection of useful
formulas, integral evaluations, and expansions that are
repeatedly used in our calculations.

1. Spherical symmetric integration

Most of the momentum integrals in this work are of the
hyperspherical type. The integrand is usually only a
function of the absolute value of the momentum such that
the angular integration can be performed,

Z
ddp
ð2πÞd fðjp⃗jÞ ¼

Sd
ð2πÞd

Z
∞

0

dppd−1fðpÞ: ðB1Þ

Here, we introduced

Sd ¼
2π

d
2

Γ
�
d
2

� ; ðB2Þ

which is the surface of the d-dimensional sphere.
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2. Transcendental functions

A lot of the explicit formulas for the effective potential,
bosonic wave function renormalization, and the bosonic
two-point function can be expressed in terms of known
functions. For the sake of a self-contained presentation, we
provide these functions with links to references for further
reading in this appendix. We hope that this reduces
unnecessary look ups and literature searches to a minimum
for the reader.

a. Gamma functions

The gamma function is given in terms of its integral
representation by the following expression [see Eq. (6.1.1)
in Ref. [103] ],

ΓðzÞ ¼
Z

∞

0

dt tz−1e−t: ðB3Þ

It fulfills the defining relation,

Γðzþ 1Þ ¼ zΓðzÞ: ðB4Þ

For this work, we make use of the Laurent series repre-
sentation [see Eq. (5.7.1) in Ref. [104] ]

ΓðzÞ ¼ 1

z
− γ þOðzÞ; ðB5Þ

which we use for an expansion about z ¼ 0.
The polygamma function with integer index is defined in

terms of derivatives of the conventional gamma function.
However, there is also an integral representation [see
Eq. (6.4.1) of Ref. [103] ],

ψ ðnÞðsÞ ¼ dn

dsn
ψðsÞ ¼ dnþ1

dsnþ1
lnΓðsÞ

¼ ð−1Þnþ1

Z
∞

0

dt
tne−st

1 − e−t
: ðB6Þ

b. Riemann zeta function

Some formulas of this work can be expressed in terms of
the Riemann zeta function [see Eq. (23.2.7) in Ref. [103] ],

ζðsÞ ¼ 1

ΓðsÞ
Z

∞

0

dt
ts−1

et − 1
; ReðsÞ > 1: ðB7Þ

c. Dirichlet eta function

We also define the Dirichlet eta function via the Riemann
zeta function [see Eq. (23.2.19) in Ref. [103] ] and in terms
of an integral,

ηðsÞ ¼ ð1 − 21−sÞζðsÞ ¼ 1

ΓðsÞ
Z

∞

0

dt
ts−1

et þ 1
: ðB8Þ

d. Polylogarithm

It is well-known that some integrals over Bose-Einstein
or Fermi-Dirac distribution functions can be expressed in
terms of (incomplete) polylogarithms. The polylogarithm is
defined via the following integral [see Eq. (25.12.10) in
Ref. [104] ]:

LisðzÞ ¼
1

ΓðsÞ
Z

∞

0

dt
ts−1

et=z − 1
; ðB9Þ

which reduces to the Dirichlet eta function (B8) for z ¼ −1,

Lisð−1Þ ¼ −ηðsÞ: ðB10Þ

A special definition, which is used in this work is the
symmetrized derivative of the polylogarithm with respect to
its index s,

DLi2nðyÞ ¼
�
∂

∂s
Lisð−eyÞ þ

∂

∂s
Lisð−e−yÞ

�
s¼2n

¼ −δ0;nðlogð2πÞ þ γÞ

þ ð−1Þ1−nð2πÞ2nRe
�
ψ ð−2nÞ

�
1

2
þ i
2π

y

��
:

ðB11Þ

Here, γ is the Euler-Mascheroni constant, ψ ðnÞðsÞ is the
polygamma function (B6), and the last equality holds
for 2n ≤ 0. It turned out that using the last relation is
more stable and accurate when it comes to numeric
evaluation [24,74].

e. Hypergeometric function

The hypergeometric function is defined by [see
Eq. (15.1.1) in Ref. [103] ]

2F1ðα;β;γ;zÞ¼
ΓðγÞ

ΓðαÞΓðβÞ
X∞
n¼0

ΓðαþnÞΓðβþnÞ
ΓðγþnÞ

zn

n!
; ðB12Þ

where jzj < 1. The integral representation [and analytic
continuation of Eq. (B12)] reads [see Eq. (15.3.1) in
Ref. [103] ],

2F1ðα;β;γ;zÞ ¼
ΓðγÞ

ΓðβÞΓðγ− βÞ
×
Z

1

0

dt tβ−1ð1− tÞγ−β−1ð1− tzÞ−α: ðB13Þ

This formula is valid as long as ReðγÞ > ReðβÞ > 0.
A particular useful (linear) transformation formula is [see

Eq. (15.3.7) in Ref. [103] ]
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2F1ðα; β; γ; zÞ ¼
ΓðγÞΓðβ − αÞ
ΓðβÞΓðγ − αÞ ð−zÞ

−α
2F1

�
α; 1 − γ þ α; 1 − β þ α;

1

z

�

þ ΓðγÞΓðα − βÞ
ΓðαÞΓðγ − βÞ ð−zÞ

−β
2F1

�
β; 1 − γ þ β; 1 − αþ β;

1

z

�
; ðB14Þ

and is valid for j argð−zÞj < π. It can be used to expand the hypergeometric function for large jzj.

3. Integrals and an expansion

Next, we present two important integrals for this work as well as an expansion that is used several times.

a. First special integral

Repeatedly, we are confronted with integrals that are of the typeZ
Λ

0

dppd−1 1

En ¼
Z

Λ

0

dppd−1ðp2 þ Δ2Þ−n
2 ¼ðB16Þ

¼ Λd

jΔjn
1

2

Z
1

0

dt t
d−2
2

�
1þ t

Λ2

Δ2

�
−n
2

¼ Λd

jΔjn
1

2

Z
1

0

dt t
d
2
−1ð1 − tÞdþ2

2
−d
2
−1
�
1þ t

Λ2

Δ2

�
−n
2 ¼ðB13Þ

¼ Λd

jΔjn
1

2

Γ
�
d
2

�
Γ
�
dþ2
2

− d
2

�
Γ
�
dþ2
2

�
2F1

�
n
2
;
d
2
;
dþ 2

2
;−

Λ2

Δ2

�
¼ðB4Þ

¼ Λd

jΔjn
1

d 2F1

�
n
2
;
d
2
;
dþ 2

2
;−

Λ2

Δ2

�
: ðB15Þ

We used the substitution

tΛ2 ¼ p2; dtΛ2 ¼ 2pdp; ðB16Þ

as well as Eqs. (B4) and (B13).

b. Second special integral

Another integral that appears several times during our
calculations is

Z
Λ

0

dppa 1

En δ

�
E
jμj − 1

�

¼
Z

Λ

0

dppa 1

En

1

jf0ðp0Þj
δðp − p0Þ

¼ μa−1jμj2−n: ðB17Þ

We used that E2 ¼ p2 þ Δ2 and defined

μ2 ¼ μ2 − Δ2: ðB18Þ

The integral was evaluated using

δðfðxÞÞ ¼
X
i

1

jf0ðxiÞj
δðx − xiÞ; ðB19Þ

where xi are the roots of fðxÞ. For μ2 > Δ2, thus μ > 0,

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − Δ2

q
¼ μ ðB20Þ

is the zero of

f ¼ E
jμj − 1; ðB21Þ

while

f0 ¼ p
jμjE : ðB22Þ

Evaluating pa, 1
En, and f0 at p0 one obtains the above

results.

4. Expansion

At several points in this work, e.g., for sending the UV
cutoff Λ to infinity or to evaluate certain expressions at the
symmetric point σ̄ → 0, we need an asymptotic expansion
formula for the hypergeometric function 2F1ðα; β; γ; zÞ
for large jzj. This formula is found by inserting the
series representation (B12) in the linear transformation
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formula (B14). In particular, we find,

lim
Λ2

Δ2
→∞

2F1

�
n
2
;
d
2
;
dþ 2

2
;−

Λ2

Δ2

�

¼ d

�				ΔΛ
				d Γ
�
dþ2
2

�
Γ
�
n−d
2

�
dΓ
�
n
2

� þ
				ΔΛ
				n
�

1

d− n
þ 1

2− dþ n
n
2

Δ2

Λ2

þ−
1

8− 2dþ 2n
n
2

�
n
2
þ 1

�
Δ4

Λ4
þO

�
Δ6

Λ6

���
: ðB23Þ

APPENDIX C: EVALUATION OF l0ðσ̄; μ;T; dÞ
In this appendix we provide details on the l0ðσ̄; μ; T; dÞ-

Matsubara sum and integral which occurs in the expression
for the effective potential (10). It is defined as follows:

l0ðσ̄;μ;T;dÞ≡
Z

ddp
ð2πÞd

1

β

X∞
n¼−∞

lnðβ2½ðνn − iμÞ2þE2�Þ

¼
Z

ddp
ð2πÞd

�
EþT ln

�
1þ exp

�
−
Eþμ

T

��

þT ln

�
1þ exp

�
−
E−μ

T

���
þ const: ðC1Þ

Here, νn denotes the fermionic Matsubara frequencies (A7)
and E is the fermion energy (A13). We used contour
integration to evaluate the Matsubara sum. The infinite
constant term can be ignored in what follows. It corre-
sponds to an arbitrary normalization of the effective
potential.

1. For T = 0

The zero temperature limit of Eq. (C1) is

l0ðσ̄; μ; 0; dÞ ¼
Sd

ð2πÞd
Z

∞

0

dppd−1

×

�
E − ðE − jμjÞΘ

�jμj
E

− 1

��
; ðC2Þ

where we used Eq. (B1) to simplify the momentum
integration with hyperspherical coordinates. Regularizing
the UV divergence with a sharp UV cutoff and splitting
the integral in μ-(in)dependent parts one obtains with
Eq. (B15),

lΛ0 ðσ̄; μ; 0; dÞ ¼
Sd

ð2πÞd
�Z

Λ

0

dppd−1Eþ −Θ
�
μ̄2

σ̄2

�Z
μ̄

0

dppd−1ðE − jμjÞ
�

¼ Sd
ð2πÞd

�jσ̄jdþ1

d

�				Λσ̄
				d2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄2

�

þ −Θ
�
μ̄2

σ̄2

�				 μ̄σ̄
				d
�

2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

�
−
				 μσ̄
				
���

: ðC3Þ

Here, we used the Eq. (A14) to facilitate a compact notation.

2. For T ≠ 0

In general, for nonzero T we can still evaluate the vacuum contribution in Eq. (C1) and find with the (μ ¼ 0) part of
Eq. (C3),

lΛ0 ðσ̄; μ; T; dÞ ¼
Sd

ð2πÞd
Z

Λ

0

dppd−1
�
Eþ T ln

�
1þ exp

�
−
Eþ μ

T

��
þ T ln

�
1þ exp

�
−
E − μ

T

���

¼ Sd
ð2πÞd

�jσ̄jdþ1

d

				Λσ̄
				d2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄2

�
þ
Z

Λ

0

dppd−1
�
T ln

�
1þ exp

�
−
Eþ μ

T

��

þ T ln

�
1þ exp

�
−
E − μ

T

����
: ðC4Þ

Further evaluation of Eqs. (C3) and (C4) is performed after renormalization of the effective potential in Appendix G.
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APPENDIX D: EVALUATION OF l1ðσ̄; μ;T; dÞ
In this appendix, we present explicit expressions for the

l1ðσ̄; μ; T; dÞ-Matsubara sum and integral which is part of
the gap equation (11), the regularized effective potential
(19), and the (regularized) bosonic two-point function
Eqs. (12) and (22). It is defined and evaluated as follows:

l1ðσ̄;μ;T;dÞ≡
Z

ddp
ð2πÞd

1

β

X∞
n¼−∞

1

ðνn− iμÞ2þE2

¼
Z

ddp
ð2πÞd

1

2E

�
1−nf

�
Eþμ

T

�
−nf

�
E−μ

T

��

¼
Z

ddp
ð2πÞd

1

2E

�
1

2
tanh

�
Eþμ

2T

�

þ 1

2
tanh

�
E−μ

2T

��
: ðD1Þ

Again, νn are the fermionic Matsubara frequencies (A7)
and E is the fermion energy (A13). Additionally, we
introduced the Fermi-Dirac distribution (A8), while it
turned out that the tanh-representation seems to be more
stable and accurate for numeric computations.

1. For T = 0

In the zero-temperature limit Eq. (D1) reduces to

l1ðσ̄; μ; 0; dÞ ¼
Sd

ð2πÞd
Z

∞

0

dppd−1 1

2E

�
1 − Θ

�jμj
E

− 1

��
;

ðD2Þ

where we made use of hyperspherical coordinates in
momentum space, see Eq. (B1). Splitting μ-(in)dependent
terms, using the abbreviation (A14), and introducing the
UV cutoff Λ one can make use of Eq. (B15) to arrive at

lΛ1 ðσ̄; μ; 0; dÞ ¼
Sd

ð2πÞd
1

2

�Z
Λ

0

dppd−1 1

E
− Θ

�
μ̄2

σ̄2

�Z jμ̄j

0

dppd−1 1

E

�

¼ Sd
ð2πÞd

1

2

�jσ̄jd−1
d

�				Λσ̄
				d2F1

�
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄2

�
þ −Θ

�
μ̄2

σ̄2

�				 μ̄σ̄
				d2F1

�
1

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

���
: ðD3Þ

2. For T ≠ 0

Again, for T ≠ 0 we solely evaluate the vacuum contribution of Eq. (D1) and again use the previous result Eq. (D3) for
μ ¼ 0. For the regularized expression one finds,

lΛ1 ðσ̄; μ; T; dÞ ¼
Sd

ð2πÞd
Z

Λ

0

dppd−1 1

2E

�
1 − nf

�
Eþ μ

T

�
− nf

�
E − μ

T

��

¼ Sd
ð2πÞd

1

2

�
1

djσ̄jΛ
d
2F1

�
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄2

�
þ −

Z
Λ

0

dppd−1 1

E

�
nf

�
Eþ μ

T

�
þ nf

�
E − μ

T

���
: ðD4Þ

Further evaluation of Eqs. (D3) and (D4) is postponed to Appendixes G–I.

APPENDIX E: EVALUATION OF l2ðσ̄; μ;T;q; dÞ
In the expression for the bosonic two-point function (12)

contains a q⃗-dependent part. Here, we show some sim-
plifications for this contribution that reads,

l2ðσ̄; μ; T; q; dÞ ¼
Z

ddp
ð2πÞd

1

β

X∞
n¼−∞

1

ðνn − iμÞ2 þ p⃗2 þ σ̄2

×
1

ðνn − iμÞ2 þ ðp⃗þ q⃗Þ2 þ σ̄2
: ðE1Þ

We already used q ¼ jq⃗j as an argument of l2 instead of q⃗.
This becomes clear in the following lines. In order to get rid
of the nasty vectorial q⃗-shift in the second propagator we
use the following Feynman parameter integral:

1

a1a2
¼
Z

1

0

dx
1

½a1xþ a2ð1 − xÞ�2 : ðE2Þ

Applying this to Eq. (E1) one obtains,
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l2ðσ̄; μ; T; q; dÞ ¼
Z

ddp
ð2πÞd

1

β

X∞
n¼−∞

Z
1

0

dx
1

½ðνn − iμÞ2 þ ðp⃗þ q⃗Þ2xþ p⃗2ð1 − xÞ þ σ̄2�2

¼
Z

1

0

dx
Z

ddp
ð2πÞd

1

β

X∞
n¼−∞

1

½ðνn − iμÞ2 þ ðp⃗þ q⃗xÞ2 þ q⃗2xð1 − xÞ þ σ̄2�2

¼
Z

1

0

dx
Z

ddp
ð2πÞd

1

β

X∞
n¼−∞

1

½ðνn − iμÞ2 þ p⃗2 þ q⃗2xð1 − xÞ þ σ̄2�2 : ðE3Þ

We exchanged the order of integration, substituted p⃗0 ¼ p⃗þ q⃗x, and immediately returned to the “unprimed” notation for
p⃗. Using the Eqs. (A8), (A9), (A15), (A16), and (A18),

l2ðσ̄;μ;T;q;dÞ ¼
Z

1

0

dx
Z

ddp
ð2πÞd

1

4Ẽ3

�
1−nf

�
Ẽþ μ

T

�
þ Ẽ
T

�
n2f

�
Ẽþ μ

T

�
−nf

�
Ẽþμ

T

��
þðμ↔−μÞ

�

¼
Z

1

0

dx
Z

ddp
ð2πÞd

1

4Ẽ3

�
1

2
tanh

�
Ẽþμ

2T

�
þ−

Ẽ
T

1

4cosh2
�
Ẽþμ
2T

�þðμ↔−μÞ
�
: ðE4Þ

Thus, the dependence on q⃗ is actually a dependence on its absolute value q.

1. For T = 0

For T ¼ 0 Eq. (E1) further reduces to

l2ðσ̄; μ; 0; q; dÞ ¼
Sd

ð2πÞd
1

4

Z
1

0

dx
Z

∞

0

dppd−1 1

Ẽ3

�
1 − Θ

�jμj
Ẽ

− 1

�
þ −

Ẽ
jμj
�
δ

�
Ẽ
jμj þ 1

�
þ δ

�
Ẽ
jμj − 1

���
; ðE5Þ

where we already used Eq. (B1), the hyperspherical coordinates for the momentum integration. UV regularization of this
expression is not needed for d < 3. However, it can be useful to (1) introduce an UV cutoff Λ, (2) use Eq. (B15), and
(3) study Λ → ∞ with Eq. (B23). Splitting the integration into μ-(in)-dependent parts leads to

l2ðσ̄; μ; 0; q; dÞ ¼
Sd

ð2πÞd
1

4

Z
1

0

dx

�Z
∞

0

dppd−1 1

Ẽ3
− Θ

�
μ̃2

Δ̃2

�Z
μ̃

0

dppd−1 1

Ẽ3
−

1

jμj
Z

∞

0

dppd−1 1

Ẽ2
δ

�
Ẽ
jμj − 1

��

¼ Sd
ð2πÞd

1

4

Z
1

0

dx

�
Δ̃d−3

Γ
�
3−d
2

�
Γ
�
d
2

�
ffiffiffi
π

p − Θ
�
μ̃2

Δ̃2

��
μ̃d

Δ̃3

1

d 2F1

�
3

2
;
d
2
;
dþ 2

2
;−

μ̃2

Δ̃2

�
þ μ̃d−2

jμj
��

: ðE6Þ

For the μ-dependent medium part we used Eqs. (B15) and (B17).

2. For T ≠ 0

Of course, we also provide a simplification of Eq. (E1) for T ≠ 0 by using the vacuum contribution of the previous
result (E6),

l2ðσ̄; μ; T; q; dÞ ¼
Sd

ð2πÞd
1

4

Z
1

0

dx

 
Δ̃d−3

Γ
�
3−d
2

�
Γ
�
d
2

�
ffiffiffi
π

p −
Z

∞

0

dppd−1 1

Ẽ3

�
nf

�
Ẽþ μ

T

�

þ Ẽ
T

�
n2f

�
Ẽþ μ

T

�
− nf

�
Ẽþ μ

T

��
þ ðμ ↔ −μÞ

�!
: ðE7Þ

APPENDIX F: EVALUATION OF l3ðσ̄; μ;T; dÞ
In complete analogy to the previous appendixes, we present an appendix for the partial evaluation of l3ðσ̄; μ; T; dÞ that is

part of Eq. (14) for the bosonic wave function renormalization. In terms of the (un)evaluated Matsubara sum and
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momentum integral it reads

l3ðσ̄; μ; T; dÞ ¼
Z

ddp
ð2πÞd

1

β

X∞
n¼−∞

1

½ðνn − iμÞ2 þ E2�3

¼
Z

ddp
ð2πÞd

3

16E5

�
1 − nf

�
Eþ μ

T

�
þ E
T

�
n2f

�
Eþ μ

T

�
− nf

�
Eþ μ

T

��

−
�
E
T

�
2
�
2

3
n3f

�
Eþ μ

T

�
− n2f

�
Eþ μ

T

�
þ 1

3
nf

�
Eþ μ

T

��
þ ðμ ↔ −μÞ

�

¼
Z

ddp
ð2πÞd

3

16E5

�
1

2
tanh

�
Eþ μ

2T

�
−
E
T

1

4cosh2
�
Eþμ
2T

� − �E
T

�
2 sinh

�
Eþμ
2T

�
12cosh3

�
Eþμ
2T

�þ ðμ ↔ −μÞ
�
: ðF1Þ

In this expression we used Eqs. (A7)–(A10) and (A13).

1. For T = 0

In the zero-temperature limit Eq. (F1) turns into

l3ðσ̄; μ; 0; dÞ ¼
Sd

ð2πÞd
Z

∞

0

dppd−1 3

16E5

�
1 − Θ

�jμj
E

− 1

�
−

E
jμj
�
δ

�
E
jμj þ 1

�
þ δ

�
E
jμj − 1

��

þ 1

3

�
E
μ

�
2
�
δ0
�
E
jμj þ 1

�
þ δ0

�
E
jμj − 1

���
; ðF2Þ

where we already made use of hyperspherical coordinates via Eq. (B1). Again, it is not necessary though still useful to
introduce a UV cutoff regulator Λ to use Eq. (B15) also for the vacuum contribution. Afterwards, the cutoff can be removed
with the help of Eq. (B23). Splitting and evaluating the integrals in μ-(in)dependent contributions, one finds, using
integration by parts and Eqs. (B15) and (B17),

l3ðσ̄; μ; 0; dÞ ¼
Sd

ð2πÞd
3

16

�Z
∞

0

dppd−1 1

E5
− Θ

�
μ̄2

σ̄2

�Z
μ̄

0

dppd−1 1

E5
−
d − 2

3jμj
Z

∞

0

dppd−3 1

E2
δ

�
E
jμj − 1

�

−
1

3jμj
Z

∞

0

dppd−1 1

E4
δ

�
E
jμj − 1

��

¼ Sd
ð2πÞd

3

16

�
2

3
jσ̄jd−5

Γ
�
5−d
2

�
Γ
�
d
2

�
ffiffiffi
π

p − Θ
�
μ̄2

σ̄2

��
μ̄d

jσ̄j5
1

d 2F1

�
5

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

�

þ d − 2

3jμj μ̄
d−4 þ 1

3jμj μ̄
d−2μ−2

��
: ðF3Þ

Again, we used the compact notation Eq. (A14).

2. For T ≠ 0

At nonzero temperature we can use the vacuum part of Eq. (F3) to simplify Eq. (F1),

l3ðσ̄; μ; T; dÞ ¼
Sd

ð2πÞd
3

16

�
2

3
jσ̄jd−5

Γ
�
5−d
2

�
Γ
�
d
2

�
ffiffiffi
π

p þ
Z

∞

0

dppd−1 1

E5

�
nf

�
Eþ μ

T

�

þ E
T

�
n2f

�
Eþ μ

T

�
− nf

�
Eþ μ

T

��
þ
�
E
T

�
2
�
2

3
n3f

�
Eþ μ

T

�
− n2f

�
Eþ μ

T

�
þ 1

3
nf

�
Eþ μ

T

��

þ ðμ ↔ −μÞ
��

: ðF4Þ
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APPENDIX G: THE EFFECTIVE POTENTIAL

In this appendix we turn to the detailed evaluation of the
effective potential Eq. (10). To this end, we calculate the

renormalized limits of Eq. (19), where we remove the UV
cutoff by sending Λ → ∞. Explicit expressions for σ̄, μ, T
being zero or nonzero as well as the limiting cases of d ¼ 1
and d ¼ 2 are provided. For the sake of the conciseness, we
collected links to every special case in Table I subdivide
this appendix according to the table.

1. T ≠ 0

We start with the T ≠ 0 cases.

a. T ≠ 0, σ̄ ≠ 0

Considering σ̄ ≠ 0 there are two cases to be
distinguished:
a. T ≠ 0; σ̄ ≠ 0; μ ≠ 0; Inserting Eqs. (C4) and (D4) in

Eq. (19) one finds for the regularized potential,

UΛðσ̄; μ; T; dÞ ¼ dγ
2
½σ̄2lΛ1 ðσ̄0; 0; 0; dÞ − lΛ0 ðσ̄; μ; T; dÞ�

¼ dγ
2

Sd
ð2πÞd

�
σ̄2

1

2

jσ̄0jd−1
d

				 Λσ̄0
				d2F1

�
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄20

�
−
jσ̄jdþ1

d

				Λσ̄
				d2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄2

�

−
Z

Λ

0

dppd−1
�
T ln

�
1þ exp

�
−
Eþ μ

T

��
þ ðμ → −μÞ

�
þ const

�

¼ dγ
2

Sd
ð2πÞd

�jσ̄j
d
Λd

�
1

2

jσ̄j
σ̄0

2F1

�
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄20

�
− 2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄2

��

−
Z

Λ

0

dppd−1
�
T ln

�
1þ exp

�
−
Eþ μ

T

��
þ ðμ → −μÞ

��
: ðG1Þ

Using the expansion of the hypergeometric function (B23)
we obtain the renormalized result by sending Λ → ∞,

Ūðσ̄; μ; T; dÞ ¼ dγ
2

Sd
ð2πÞd

�Γ�d
2

�
Γ
�
− dþ1

2

�
ðdþ 1Þ

4
ffiffiffi
π

p

×

�
1

dþ 1
jσ̄jdþ1 −

1

2
σ̄d−10 σ̄2

�

− T
Z

∞

0

dppd−1 ln

�
1þ exp

�
−
Eþ μ

T

��

þ ðμ → −μÞ
�
: ðG2Þ

We remark that sending Λ → ∞ is only possible for d < 3,
while for d ≥ 3 there are divergent σ̄-dependent terms.
Carefully taking the limit d → 1, we recover the

result [74]

Ūðσ̄; μ; T; 1Þ ¼ dγ
2π

�
σ̄2

4

�
ln

�
σ̄2

σ̄20

�
− 1

�

− T
Z

∞

0

dp ln

�
1þ exp

�
−
Eþ μ

T

��

þ ðμ → −μÞ
�
: ðG3Þ

Also for d → 2 one recovers a well-known literature
results [105],

Ūðσ̄; μ; T; 2Þ ¼ dγ
4π

�
σ̄2
�jσ̄j

3
−
jσ̄0j
2

�

þ T2jσ̄jLi2
�
− exp

�
−
jσ̄j þ μ

T

��

þ T3Li3

�
− exp

�
−
jσ̄j þ μ

T

��

þ ðμ → −μÞ
�
. ðG4Þ

TABLE I. Quick links to the equations for explicit evaluation of
the effective potential Uðσ̄; μ; T; dÞ. The formulas are simplified
in terms of known functions as far as possible.

T σ̄ μ 1 ≤ d < 3 d ¼ 1 d ¼ 2

≠ 0 ≠ 0 ≠ 0 Eq. (G2) Eq. (G3) Eq. (G4)
¼ 0 Eq. (G5) Eq. (G6) Eq. (G7)

¼ 0 ≠ 0 Eq. (G8) Eq. (G9) Eq. (G10)
¼ 0 Eq. (G11) Eq. (G12) Eq. (G13)

¼ 0 ≠ 0 ≠ 0 Eq. (G15) Eq. (G16) Eq. (G17)
¼ 0 Eq. (G18) Eq. (G19) Eq. (G20)

¼ 0 ≠ 0 Eq. (G21) Eq. (G22) Eq. (G23)
¼ 0 Eq. (G24) Eq. (G24) Eq. (G24)
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b. T ≠ 0; σ̄ ≠ 0; μ ¼ 0; Yet, it is straightforward to
evaluate the previous expressions for μ ¼ 0. From
Eq. (G2) we find

Ūðσ̄; 0; T; dÞ ¼ dγ
2

Sd
ð2πÞd

�Γ�d
2

�
Γ
�
− dþ1

2

�
ðdþ 1Þ

4
ffiffiffi
π

p

×

�
1

dþ 1
jσ̄jdþ1 −

1

2
σ̄d−10 σ̄2

�

− 2T
Z

∞

0

dppd−1 ln

�
1þ exp

�
−
E
T

���
;

ðG5Þ

while for d → 1 we can simply set μ ¼ 0 in Eq. (G3),

Ūðσ̄;0; T;1Þ ¼ dγ
2π

�
σ̄2

4

�
ln

�
σ̄2

σ̄20

�
− 1

�

− 2

Z
∞

0

dpT ln

�
1þ exp

�
−
E
T

���
: ðG6Þ

Similarly, for d → 2 and μ ¼ 0 we can use Eq. (G4) and
find

Ūðσ̄; μ; T; 2Þ ¼ dγ
4π

�
σ̄2
�jσ̄j

3
−
jσ̄0j
2

�

þ 2T2jσ̄jLi2
�
− exp

�
−
jσ̄j
T

��

þ 2T3Li3

�
− exp

�
−
jσ̄j
T

���
: ðG7Þ

b. T ≠ 0, σ̄ = 0

Next, we turn to the cases where σ̄ ¼ 0, hence, the
potential at the origin of field space.
a. T ≠ 0; σ̄ ¼ 0; μ ≠ 0; From Eq. (G2) for σ̄ → 0 we can

directly infer

Ūð0; μ; T; dÞ ¼ −
dγ
2

Sd
ð2πÞd T

Z
∞

0

dppd−1

× ln

�
1þ exp

�
−
pþ μ

T

��
þ ðμ → −μÞ: ðG8Þ

Similarly, the limit σ̄ → 0 of Eq. (G3) for d ¼ 1 is well-
defined and the remaining integral can be evaluated
analytically [21],

Ūð0; μ; T; 1Þ ¼ −
dγ
2π

Z
∞

0

dp

�
T ln

�
1þ exp

�
−
pþ μ

T

��

þ ðμ → −μÞ
�

¼ −
dγ
2π

�
π2

6
T2 þ 1

2
μ2
�
: ðG9Þ

For d ¼ 2 one arrives at

Ūð0; μ; T; 2Þ ¼ dγ
4π

T3

�
Li3

�
− exp

�
−
μ

T

��
þ ðμ → −μÞ

�
ðG10Þ

by taking the σ̄ → 0 limit of Eq. (G4).
b. T ≠ 0; σ̄ ¼ 0; μ ¼ 0; It is straight forward to also

set μ ¼ 0 in the previous formulas. For general 1 ≤ d < 3
we find

Ūð0; 0; T; dÞ ¼ −
dγ
2

Sd
ð2πÞd 2

Z
∞

0

dppd−1T

× ln

�
1þ exp

�
−
p
T

��
; ðG11Þ

while the special case d ¼ 1 evaluates to

Ūð0; 0; T; 1Þ ¼ −
dγ
2π

π2

6
T2: ðG12Þ

For d ¼ 2 we have

Ūð0; 0; T; 2Þ ¼ −
dγ
4π

3

2
ζð3ÞT3: ðG13Þ

2. T = 0

Next, we turn to the special cases, where T ¼ 0.

a. T = 0, σ̄ ≠ 0

We start off with nonzero background field σ̄:
a. T ¼ 0; σ̄ ≠ 0; μ ≠ 0; Using the explicit regularized

expressions Eqs. (C3) and (D3) and inserting these in
Eq. (19) we find,
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ŪΛðσ̄; μ; 0; dÞ ¼ dγ
2
½σ̄2lΛ1 ðσ̄0; 0; 0; dÞ − lΛ0 ðσ̄; μ; 0; dÞ�

¼ dγ
2

Sd
ð2πÞd

�
σ̄2

1

2

jσ̄0jd−1
d

				 Λσ̄0
				d2F1

�
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄20

�
−
jσ̄jdþ1

d

�				Λσ̄
				d2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄2

�

− Θ
�
μ̄2

σ̄2

�				 μ̄σ̄
				d
�

2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

�
−
				 μσ̄
				
���

¼ dγ
2

Sd
ð2πÞd

�jσ̄j
d
Λd

�
1

2

jσ̄j
σ̄0

2F1

�
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄20

�
− 2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

Λ2

σ̄2

��

þ Θ
�
μ̄2

σ̄2

� jσ̄j
d
jμ̄jd
�

2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

�
−
				 μσ̄
				
��

: ðG14Þ

Here, by sending Λ → ∞ we remove the cutoff and find

Ūðσ̄; μ; 0; dÞ ¼ dγ
2

Sd
ð2πÞd

2
64Γ
�
d
2

�
Γ
�
− dþ1

2

�
ðdþ 1Þ

4
ffiffiffi
π

p
�

1

dþ 1
jσ̄jdþ1 −

1

2
σ̄d−10 σ̄2

�

þ Θ
�
μ̄2

σ̄2

� jσ̄j
d
jμ̄jd
�

2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

�
−
				 μσ̄
				
�375: ðG15Þ

The equivalent expressions can be found by taking the
limit T → 0 of Eq. (G2). For the special case d ¼ 1 we
recover [74],

Ūðσ̄;μ;0;1Þ¼ dγ
2π

�
σ̄2

4

�
ln

�
σ̄2

σ̄20

�
−1

�

þΘ
�
μ̄2

σ̄2

��
σ̄2

2
arsinh

�
μ̄

σ̄

�
−
1

2
μ̄jμj

��
; ðG16Þ

and for d ¼ 2 [see Eq. (4.38) in Ref. [105] ]

Ūðσ̄; μ; 0; 2Þ ¼ dγ
4π

�
σ̄2
�jσ̄j

3
−
σ̄0
2

�

þ Θ
�
μ̄2

σ̄2

��
−
σ̄3

3
−
jμj3
6

þ σ̄2jμj
2

��
: ðG17Þ

b. T ¼ 0; σ̄ ≠ 0; μ ¼ 0; The results for μ ¼ 0 are a direct
consequence of the previous results. In general, we find

Ūðσ̄; 0; 0; dÞ ¼ dγ
2

Sd
ð2πÞd

Γðd
2
ÞΓ
�
− dþ1

2

�
ðdþ 1Þ

4
ffiffiffi
π

p

×

�
1

dþ 1
jσ̄jdþ1 −

1

2
σ̄d−10 σ̄2

�
; ðG18Þ

which reduces for d ¼ 1 to

Ūðσ̄; 0; 0; 1Þ ¼ dγ
2π

σ̄2

4

�
ln

�
σ̄2

σ̄20

�
− 1

�
ðG19Þ

and for d ¼ 2 to

Ūðσ̄; 0; 0; 2Þ ¼ dγ
4π

σ̄2
�jσ̄j

3
−
jσ̄0j
2

�
: ðG20Þ

b. T = 0, σ̄ = 0

Last, we turn to the case, where we study the potential
again for σ̄ ¼ 0:
a. T ¼ 0; σ̄ ¼ 0; μ ≠ 0; Here, one finds from Eq. (G15)

with Eq. (B23)

Ūð0; μ; 0; dÞ ¼ dγ
2

Sd
ð2πÞd

�
−

jμjdþ1

dðdþ 1Þ
�
: ðG21Þ

For d ¼ 1 this is

Ūð0; μ; 0; 1Þ ¼ −
dγ
2π

μ2

2
; ðG22Þ

while for d ¼ 2 we have

Ūð0; μ; 0; 2Þ ¼ −
dγ
4π

jμj3
6

: ðG23Þ
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The latter special cases can also be derived from the T ≠ 0
formulas Eqs. (G9) and (G10) by sending T → 0.
b. T ¼ 0; σ̄ ¼ 0; μ ¼ 0; The trivial and last case is

Ūð0; 0; 0; dÞ ¼ 0: ðG24Þ

(Certainly, one could always add an arbitrary constant to
the potential without changing the physical observables.)

APPENDIX H: THE BOSONIC WAVE FUNCTION
RENORMALIZATION

This appendix is dedicated to calculations as well as the
presentation of detailed expressions and limiting cases for
the bosonic wave function renormalization (14). We cal-
culate the renormalized limits, such that the final results do
not contain any UV cutoff. Step by step, we provide

expressions for the cases where σ̄, μ, and T are zero or
nonzero. Additionally, we evaluate the wave-function
renormalization for the special cases d ¼ 1 and d ¼ 2
and demonstrate that we reproduce known literature results.
All cases are collected in Table II, which links to the
explicit formulas.
However, we start by providing some useful intermediate

steps for the derivation of the general formula for the
bosonic wave-function renormalization Eq. (14). The
starting point is

zðσ̄; μ; T; dÞ ¼ 1

2

d2

dq2
Γð2Þðσ̄; μ; T; q; dÞ

				
q¼0

; ðH1Þ

We note that the bosonic two-point function solely depends
on the absolute/square of the spatial external momentum,
we can use

u ¼ q2; ⇒
1

2

d2

dq2
¼ d

du
þ 2u

d2

du2
ðH2Þ

to evaluate the derivative,

zðσ̄;μ;T;dÞ ¼
�
d
du

þ 2u
d2

du2

�
Γð2Þðσ̄;μ;T;u;dÞ

				
u¼0

: ðH3Þ

Inserting the general expression Eq. (12) for the bosonic
two-point function, we obtain,

zðσ̄; μ; T; dÞ ¼
�
d
du

þ 2u
d2

du2

��
dγ
2
ðuþ 4σ̄2Þl2ðσ̄; μ; T; u; dÞ

�				
u¼0

¼ dγ
2

�
l2ðσ̄; μ; T; u; dÞ þ 4σ̄2

d
du

l2ðσ̄; μ; T; u; dÞ
�				

u¼0

¼ dγ
2

�
l2ðσ̄; μ; T; 0; dÞ −

8

6
σ̄2l3ðσ̄; μ; T; dÞ

�
; ðH4Þ

where we defined the Matsubara sum and integral formula (F1).

1. T ≠ 0

We start with the wave function renormalization in the heat bath with T ≠ 0.

a. T ≠ 0, σ̄ ≠ 0

First, we study the wave function renormalization for nontrivial background field configurations σ̄ ≠ 0, e.g., in the phase
of symmetry breaking.
a. T ≠ 0; σ̄ ≠ 0; μ ≠ 0; For general μ ≠ 0 we simply insert Eq. (E7) for q ¼ 0 and Eq. (F1) in Eq. (14). For continuous d

we find

TABLE II. Direct links to the formulas for the bosonic wave
function renormalization zðσ̄; μ; T; dÞ. The formulas are simpli-
fied in terms of known functions as far as possible.

T σ̄ μ 1 ≤ d < 3 d ¼ 1 d ¼ 2

≠ 0 ≠ 0 ≠ 0 Eq. (H5) Eq. (H6) Eq. (H7)
¼ 0 Eq. (H8) Eq. (H9) Eq. (H10)

¼ 0 ≠ 0 Eq. (H11) Eq. (H12) Eq. (H13)
¼ 0 Eq. (H14) Eq. (H15) Eq. (H16)

¼ 0 ≠ 0 ≠ 0 Eq. (H17) Eq. (H18) Eq. (H19)
¼ 0 Eq. (H20) Eq. (H21) Eq. (H22)

¼ 0 ≠ 0 Eq. (H23) Eq. (H24) Eq. (H25)
¼ 0 Eq. (H26) Eq. (H26) Eq. (H26)
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zðσ̄; μ; T; dÞ ¼ dγ
2

�
l2ðσ̄; μ; T; 0; dÞ −

8

6
σ̄2l3ðσ̄; μ; T; dÞ

�

¼ dγ
8

Sd
ð2πÞd

�
jσ̄jd−3

Γ
�
3−d
2

�
Γ
�
d
2

�
ffiffiffi
π

p
�
1 −

2

3

�
3 − d
2

��
−
Z

∞

0

dppd−1
�

1

E3

�
nf

�
Eþ μ

T

�

−
E
T

�
n2f

�
Eþ μ

T

�
− nf

�
Eþ μ

T

���
− σ̄2

1

E5

�
nf

�
Eþ μ

T

�
−
E
T

�
n2f

�
Eþ μ

T

�
− nf

�
Eþ μ

T

��

þ
�
E
T

�
2
�
2

3
n3f

�
Eþ μ

T

�
− n2f

�
Eþ μ

T

�
þ 1

3
nf

�
Eþ μ

T

��
þ ðμ → −μÞ

�
: ðH5Þ

Setting d ¼ 1 leads to the known result [24],

zðσ̄; μ; T; 1Þ ¼ dγ
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On the other hand, for d ¼ 2, all integrals can be evaluated analytically,

zðσ̄; μ; T; 2Þ ¼ dγ
24π
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b. T ≠ 0; σ̄ ≠ 0; μ ¼ 0; The cases for μ ¼ 0 can be inferred from the previous results. Hence,

zðσ̄; 0; T; dÞ ¼ dγ
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Furthermore, in the limit d ¼ 1 we have

zðσ̄; 0; T; 1Þ ¼ dγ
8π
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and

zðσ̄; 0; T; 2Þ ¼ dγ
24π

1
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1 − 2nf
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�jσ̄j
T

�
− nf
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���
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for d ¼ 2.

b. T ≠ 0, σ̄ = 0

Next, we turn to the wave function renormalization in the symmetric phase for σ̄ ¼ 0.
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a. T ≠ 0; σ̄ ¼ 0; μ ≠ 0; We start at nonzero chemical
potential. Both the vacuum and the medium contribution
separately exhibit an IR divergence, which cancel each
other. To account for this, we consider the vacuum part in
its integral form together with the medium part and write

zð0; μ; T; dÞ ¼ dγ
8

Sd
ð2πÞd

Z
∞

0

dppd−4
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T

��

þ ðμ → −μÞ
�
: ðH11Þ

The tricky evaluation of this expression for d ¼ 1 is
presented in Eq. (F.65) of Ref. [21] ] and one finds

zð0; μ; T; 1Þ ¼ −
dγ
2π

1

8T2
DLi−2

�
μ

T

�
; ðH12Þ

where we used the definition (B11). While for d ¼ 2
integration by parts leads to

zð0; μ; T; 2Þ ¼ dγ
8π

1

4Tcosh2
�

μ
2T

� : ðH13Þ

b. T ≠ 0; σ̄ ¼ 0; μ ¼ 0; At vanishing chemical potential
Eq. (H11) simplifies to

zð0; 0; T; dÞ ¼ dγ
8

Sd
ð2πÞd

Z
∞

0

dppd−4
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1 − 2nf

�
p
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þ 2
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�
p
T

���
: ðH14Þ

It is possible to show that the integral approaches a zeta
function for d → 1,

zð0; 0; T; 1Þ ¼ dγ
2π

7

16π2
ζð3Þ 1

T2
: ðH15Þ

For d ¼ 2 we can simply use Eq. (H13) and set μ ¼ 0,

zð0; 0; T; 2Þ ¼ dγ
16π

1

2T
: ðH16Þ

2. T = 0

Having discussed all cases with a heat bath, we can next
turn to T ¼ 0.

a. T = 0, σ̄ ≠ 0

Again, we start in the phase with a nontrivial expectation
value of the bosonic field and therefore evaluate the wave-
function renormalization at σ̄ ≠ 0.

a. T ¼ 0; σ̄ ≠ 0; μ ≠ 0; Keeping μ ≠ 0 the general
expression for continuous d reads

zðσ̄;μ;0;dÞ¼dγ
2
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8

6
σ̄2l3ðσ̄;μ;0;dÞ
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��

; ðH17Þ

where we used Eq. (E6) for q ¼ 0 and Eq. (F3). For d ¼ 1
this simplifies drastically, see also Eq. (F.68) in Ref. [22],

zðσ̄; μ; 0; 1Þ ¼ dγ
2π

1

12

1

σ̄2

�
1 − Θ

�
μ̄2

σ̄2

�				 μμ̄
				3
�

ðH18Þ

and for d ¼ 2

zðσ̄; μ; 0; 2Þ ¼ dγ
4π

1

6

1

jσ̄j
�
1 − Θ

�
μ̄2

σ̄2

��
: ðH19Þ

b. T ¼ 0; σ̄ ≠ 0; μ ¼ 0; Having zero chemical potential,
the previous expressions are even simpler. For continuous d
only the vacuum contribution remains,

zðσ̄; 0; 0; dÞ ¼ dγ
2
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ð2πÞd

1

4
jσ̄jd−3 Γð

3−d
2
ÞΓðd
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Þffiffiffi
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2

3

�
3 − d
2

��
; ðH20Þ

which again simplifies for d ¼ 1,

zðσ̄; 0; 0; 1Þ ¼ dγ
2π

1

12

1

σ̄2
; ðH21Þ

and for d ¼ 2,

zðσ̄; 0; 0; 2Þ ¼ dγ
4π

1

6

1

jσ̄j : ðH22Þ

b. T = 0, σ̄ = 0

Next, we turn to the symmetric phase at T ¼ 0,
hence σ̄ ¼ 0.
a. T ¼ 0; σ̄ ¼ 0; μ ≠ 0; Using the expansion Eq. (B23)

for Eq. (H17) one finds
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zð0; μ; 0; dÞ ¼ −
dγ
2

Sd
ð2πÞd

1

4

d − 2

d − 3
jμjd−3: ðH23Þ

This is easily evaluated for d ¼ 1,

zð0; μ; 0; 1Þ ¼ −
dγ
2π

1

8

1

μ2
; ðH24Þ

and d ¼ 2,

zð0; μ; 0; 2Þ ¼ 0: ðH25Þ

b. T ¼ 0; σ̄ ¼ 0; μ ¼ 0; Lastly, if one evaluates the wave
function renormalization in vacuum at the trivial evaluation
point it is ill-conditioned,

zð0; 0; 0; dÞ∈ f�∞; 0g; ðH26Þ

when taking the respective limits from the previous results.

APPENDIX I: THE BOSONIC TWO-POINT
FUNCTION

In this appendix we calculate the bosonic two-point
function (12). We use the regularized integrals (D4) and
(E7) as well as (F1) and calculate the renormalized limits.
Here, we present results for q ≠ 0 and the limit q ¼ 0. For
the sake of clearness, we prepared Table III which links
to the different cases with (non)vanishing σ̄, μ, T, as well as
the special cases with d ¼ 1 and d ¼ 2. The limiting cases

for d ¼ 1 are discussed in detail in [21,24], whereas the
d ¼ 2 formulas are briefly discussed in Refs. [12,43].

1. T ≠ 0

We start at nonzero temperature.

a. T ≠ 0, σ̄ ≠ 0

Furthermore, we first consider points in the regime, where σ̄ ≠ 0.
a. T ≠ 0; σ̄ ≠ 0; μ ≠ 0; For μ ≠ 0 and general d, we simply insert Eqs. (D4), (E7), and (F1) in the regularized expression

(22) and send Λ → ∞. We use Eq. (B23) and obtain,
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TABLE III. Quick links to the equations for explicit evaluation
of the bosonic two-point function Γð2Þðσ̄; μ; T; q; dÞ. The for-
mulas are simplified in terms of known functions as far as
possible.

T σ μ q 1 ≤ d < 3 d ¼ 1 d ¼ 2

≠ 0 ≠ 0 ≠ 0 ≠ 0 Eq. (I1) Eq. (I3) Eq. (I5)
¼ 0 Eq. (I2) Eq. (I4) Eq. (I6)

¼ 0 ≠ 0 Eq. (I7) Eq. (I9) Eq. (I11)
¼ 0 Eq. (I8) Eq. (I10) Eq. (I12)

¼ 0 ≠ 0 ≠ 0 Eq. (I13) Eq. (I15) Eq. (I17)
¼ 0 Eq. (I14) Eq. (I16) Eq. (I18)

¼ 0 ≠ 0 Eq. (I19) Eq. (I21) Eq. (I23)
¼ 0 Eq. (I20) Eq. (I22) Eq. (I24)

¼ 0 ≠ 0 ≠ 0 ≠ 0 Eq. (I25) Eq. (I27) Eq. (I29)
¼ 0 Eq. (I26) Eq. (I28) Eq. (I30)

¼ 0 ≠ 0 Eq. (I31) Eq. (I33) Eq. (I35)
¼ 0 Eq. (I32) Eq. (I34) Eq. (I36)

¼ 0 ≠ 0 ≠ 0 Eq. (I37) Eq. (I39) Eq. (I41)
¼ 0 Eq. (I38) Eq. (I40) Eq. (I42)

¼ 0 ≠ 0 Eq. (I43) Eq. (I46) Eq. (I47)
¼ 0 Eq. (I44) Eq. (I45) Eq. (I48)
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For q → 0 the x-integral is trivial and we find by evaluating another vacuum contribution,
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For d ¼ 1 we obtain

Γð2Þðσ̄;μ; T; q;1Þ ¼ dγ
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Ẽþ μ

T

��
þ ðμ→ −μÞ

��
: ðI3Þ

Here, in the limit q → 0,
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For the special case d ¼ 2 the momentum integrals can be evaluated analytically,
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In the limit q → 0, we find
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b. T ≠ 0; σ̄ ≠ 0; μ ¼ 0; For studying the cases with vanishing chemical potential, we simply have to insert μ ¼ 0 in the
previous expressions,
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In the limit of vanishing external momentum, this reduces to
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For d ¼ 1 we find
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Γð2Þðσ̄; 0; T; q; 1Þ ¼ dγ
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which has the q → 0 limit
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For d ¼ 2 the explicit expression reads,
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which is
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in the q → 0 limit.

b. T ≠ 0, σ̄ = 0

Next, we turn to the symmetric regime, σ̄ ¼ 0, at nonzero temperature.
a. T ≠ 0; σ̄ ¼ 0; μ ≠ 0; Here, we start with the cases with μ ≠ 0. For general d we find,
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At q ¼ 0 the remaining integral (the last term) vanishes and we find

Γð2Þð0; μ; T; 0; dÞ ¼ dγ
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The limit d ¼ 1 is special, because of a tricky cancellation of IR divergences. We obtain
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Γð2Þð0;μ; T;q;1Þ ¼ dγ
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while the q → 0 limit is easily obtained by discarding the
integral,
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On the other hand, for d ¼ 2,
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Also here, we can simply drop the remaining integral to
study q ¼ 0,
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b. T ≠ 0; σ̄ ¼ 0; μ ¼ 0; Setting also μ ¼ 0 in the pre-
vious formulas, we find for general d,
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Here, ηðsÞ is the Dirichlet eta function (B8). In the q → 0
limit, the expression reduces to
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Taking the limit of d ¼ 1 carefully, we find

Γð2Þð0; 0; T; q; 1Þ ¼ dγ
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and

Γð2Þð0; 0; T; 0; 1Þ ¼ dγ
2π
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while for d ¼ 2 we have

Γð2Þð0;0; T;q;2Þ ¼ dγ
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For q ¼ 0, this reduces to

Γð2Þð0; 0; T; 0; 2Þ ¼ dγ
4π

½−jσ̄0j þ T lnð4Þ�: ðI24Þ

2. T = 0

Having completed the T ≠ 0 cases, we turn to the zero-
temperature limit.

a. T = 0, σ̄ ≠ 0

We start at nonzero background field σ̄ ≠ 0.
a. T ¼ 0; σ̄ ≠ 0; μ ≠ 0; For μ ≠ 0 we can insert the zero-

temperature integrals (D3) and (E6) in Eq. (22) and take the
limit Λ → ∞ by using Eq. (B23). This results in
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In the limit of vanishing external momentum q the result reduces to
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For d ¼ 1 the two-point function at vanishing temperature reads

Γð2Þðσ̄; μ; 0; q; 1Þ ¼ dγ
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and for q ¼ 0,
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For d ¼ 2,
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which simplifies to
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for q ¼ 0.
b. T ¼ 0; σ̄ ≠ 0; μ ¼ 0; Next, we use the previous expressions and set μ ¼ 0. First, we obtain
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and
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For spatial dimension d ¼ 1 the μ ¼ 0 case reads,

Γð2Þðσ̄; 0; 0; q; 1Þ ¼ dγ
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and the corresponding q → 0 limit is
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The other special case, d ¼ 2, simplifies to
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and has the q ¼ 0 limit

Γð2Þðσ̄; 0; 0; 0; 2Þ ¼ dγ
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b. T = 0, σ̄ = 0

Finally, we turn to the expressions in the symmetric phase, where the evaluation point is σ̄ ¼ 0.
a. T ¼ 0; σ̄ ¼ 0; μ ≠ 0; In a first step, we again study the cases with μ ≠ 0 and start with general d,
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The limit q → 0 of this expression is

Γð2Þð0; μ; 0; 0; dÞ ¼ dγ
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However, if we study d ¼ 1 we can use
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and
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For the d ¼ 2 limiting case,
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with
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b. T ¼ 0; σ̄ ¼ 0; μ ¼ 0; Lastly, we consider μ ¼ T ¼
σ̄ ¼ 0. For continuous d, we find
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In the limit of q ¼ 0, this reduces to

Γð2Þð0; 0; 0; 0; dÞ ¼ dγ
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For d ¼ 1 we find
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while the q → 0 limit is manifestly IR divergent in one
spatial dimension,

Γð2Þð0; 0; 0; q; 1Þ ¼ −∞: ðI46Þ

On the other hand, for d ¼ 2, we find
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which simplifies to

Γð2Þð0; 0; 0; 0; 2Þ ¼ −
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