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In this article we study properties of isospin asymmetric nuclear matter in the generalized L0246-Skyrme
model. This is achieved by canonically quantizing the isospin collective degrees of freedom of the recently
found skyrmion multiwall crystal. We obtain, for the first time, an equation of state from the Skyrme model
which interpolates between infinite isospin asymmetric nuclear matter and finite isospin symmetric atomic
nuclei. This enables us to describe neutron stars with crusts within the Skyrme framework. Furthermore,
we observe that the symmetry energy tends to a constant value at zero density, which can be identified with
the asymmetry coefficient in the semiempirical mass formula for atomic nuclei. The symmetry energy also
reveals a cusp in its structure below the nuclear saturation point n0 at n� ∼ 3n0=4. This cusp density
point n� can be interpreted as the nuclear density whereby the infinite crystalline multiwall configuration
undergoes a phase transition to a finite isolated multiwall configuration. Both of these observations
are observed to be generic features of skyrmion crystals that tend asymptotically to somewhat isolated
skyrmion configurations in the zero density limit. We find that the resulting neutron stars from our study
agree quite well with recent NICER/LIGO observational data.

DOI: 10.1103/PhysRevD.109.056013

I. INTRODUCTION

The Skyrme model [1] offers a unique, unified frame-
work in which one can study baryonic matter at all scales—
from single baryons and atomic nuclei to infinite nuclear
matter which, after coupling the model to gravity, gives rise
to neutron stars [2]. All of this emerges from an elegantly
simple Lagrangian containing a limited number of terms
and, in consequence, a few free coupling constants, where
the fundamental degrees of freedom (d.o.f.) are the lightest
mesons disguised into a matrix valued field. In the minimal

version, which is used in this work, they are pions forming
an SUð2Þ-valued field. The attractiveness of this approach
originates not only in a very small number of parameters
but also in the manifestation of baryons. Namely, they
are realized as nonperturbative excitations of the mesonic
field, that is, as topological solitons, called skyrmions.
Importantly, the topological degree of skyrmions has been
identified with the baryon charge in a rigorous way [3,4].
The Skyrme model has been very extensively studied

in the context of nucleons [5,6], and light atomic nuclei
[7–16] with many spectacular results. In particular, let us
mention the description of the ground and Hoyle states in
12C [17] and excitation bands of 16O [18,19] as well as the
emergence of α-cluster structure [20] which is expected for
not too heavy atomic nuclei. This recent progress to large
extent relies on an improved quantization procedure where,
contrary to the usual rigid-rotor approach, one takes into
account both the zero modes and the softest massive
vibrations [21]. Also, the long standing problem of binding

*Corresponding author: mmpnl@leeds.ac.uk
†miguel.huidobro.garcia@usc.es
‡andrzej.wereszczynski@uj.edu.pl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 056013 (2024)

2470-0010=2024=109(5)=056013(24) 056013-1 Published by the American Physical Society

https://orcid.org/0000-0002-6012-0034
https://orcid.org/0000-0002-0353-4812
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.056013&domain=pdf&date_stamp=2024-03-11
https://doi.org/10.1103/PhysRevD.109.056013
https://doi.org/10.1103/PhysRevD.109.056013
https://doi.org/10.1103/PhysRevD.109.056013
https://doi.org/10.1103/PhysRevD.109.056013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


energies has found a resolution by inclusion of additional
terms [22–26] or additional mesonic degrees of freedom
[27–30], both physically well motivated. Finally, it is now
clear how to extract nuclear forces from the Skyrme model
[31,32], which ultimately may provided a much better
contact with more traditional nuclear models.
Obviously, a natural field of application of the Skyrme

framework is nuclear matter and neutron stars. However, a
correct description of this regime is still a serious challenge
for the solitonic Skyrme model.
The problem of infinite nuclear matter at nonzero

density can be approached if one considers the model
on a finite volume unit cell with periodic boundary
conditions [33], which results in an infinite but periodic
Skyrme crystal. Varying the volume of the unit cell (while
keeping the baryon number fixed) allows one to study
skyrmionic matter at finite densities and, inter alia, to
obtain an equation of state (EoS). Taking the advantage
of the Tolman-Oppenheimer-Volkoff construction, one
obtains neutron stars. This approach meets some difficulties
both at the mathematical and physical level.
First of all, in the traditional approach to determining the

EoS, the geometry of the unit cell was fixed to be cubic and
the unit cell volume was varied by homothety about the cell
center. This rendered the energy minimizing crystalline
solutions to inherit the symmetry group of their corre-
sponding initial configuration. In a consequence one
obtained not true energy minimizers but solutions with
imposed geometrical structure.
Nevertheless, various crystal solutions were constructed

[33–37]. This led to a conjecture that, at moderate and large
densities, the global energy minimizer should be very
well approximated by the simple cubic crystal of half-
skyrmions [35,37] (SC1=2) [38]. At even larger densities a
transition to the body centered cubic crystal of half-
skyrmions (BCC1=2) is observed [34,39].
Secondly, even if one accepts this constrained approach,

three important physical issues have been reported:
(1) High density issue: the EoS is too soft, giving rise to

neutron stars that are too light.
(2) Low density issue: the presence of a minimum at

saturation in the EoS yields negative pressure, which
represents a thermodynamically unstable phase at
low density.

(3) Saturation density issue: nuclear binding energies
are too large, which in turn means the compression
modulus is too large.

The too softness of the standard Skyrme model EoS was
found an elegant resolution by extension to the generalized
L0246-Skyrme model where the so-called sextic term has
been included. Indeed, this component of the L0246-Skyrme
Lagrangian was essential not only to significantly increases
the value of the maximal mass of neutron star (from 1.7M⊙
[40] to above 2M⊙ [41]), but also to render nuclear matter
more like a perfect fluid, especially at higher densities,

which corresponds very well to the standard picture of a
(super-)fluid core of neutron star. These results are deeply
anchored in the mathematical properties of the sextic term.
Namely, if treated together with the (pion mass) potential
term, the corresponding energy-momentum tensor has a
perfect fluid form [42]. In addition it enjoys a volume
preserving diffeomorphism symmetry which means that the
energy of a solution is degenerate up all deformations which
do not change its volume [22]. On the contrary, deformations
that change the volume are strongly penalized as the
corresponding EoS has a maximally stiff form [43,44].
This agrees with a physical interpretation of the sextic term
as a part of the action which effectively arises after
integration of ω-mesons. Indeed, EoS’ obtained in the
Walecka model at large densities tend to maximally stiff
EoS’ due to the ω-meson repulsion.
At low density the situation is much less clear due to the

appearance of thermodynamically unstable regions. This is
directly related to the use of the fixed geometry approach
mentioned above. For each fixed classical crystal solution
(which, in a natural way, is identified with symmetric
nuclear matter), the energy E per unit cell possesses a
minimum for a certain volume V�, which may be con-
sistently identified with the saturation point. Obviously, for
V > V�, the solution is thermodynamically unstable as it
formally corresponds to negative pressure. However, taking
into account the isospin quantum corrections and some
further contributions, the classical minimum should dis-
appear, thereby providing a thermodynamically stable
description even in the low density regime. This periodic
crystal was then expected to be replaced by nonhomo-
geneous solutions in this regime [45–48]. Here [49] for
example, a crystal of α-particles and B ¼ 32 skyrmions
have been considered. Although these configurations low-
ered the classical energy per cell, they did not cure the
instability issue [50]. In conclusion, the Skyrme model
provided an EoS, but only above the saturation point,
leaving the low density regime rather completely unex-
plored. This is obviously a serious problem of the Skyrme
framework as the lower density regime is typically iden-
tified with the crust of neutron star. In fact in these densities
many geometrically involved phases are expected, see, e.g.,
lasagna or pasta phases.
Of course, at low densities the isospin and, especially,

Coulomb effects should be taken into account. Although it
is conceptually clear how it should be done (e.g., taking
into account semiclassical quantization of the isospin
d.o.f. [51]), and some interesting outcomes have been
recently reported [50], the results where obtained for the
fixed SC1=2 crystal of half-skyrmions, which is not the
global minimizer at any density [52].
In any case, a thermodynamically stable phase(s) at low

density is the first necessary step in approaching of the
problem of the crust and nuclear pasta phases within the
solitonic Skyrme model.
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Finally, there is a very famous problem of the compu-
tation of the compression modulus. It is the quadratic term
in expansion of EoS of infinite symmetric nuclear matter at
the saturation density n0. The widely accept value, based on
the vibrating frequency extracted from the Isoscalar Giant
Monopole Resonance, is K0 ¼ 240� 20 MeV. Depending
on a version of the Skyrme model with massive pions, as
well as on a particular choice of the coupling constants, one
gets value a few times bigger than expected. Namely,
K0 ∼ 1350–2300 MeV. More importantly, this result was
derived for fixed geometry crystals. It has been therefore
advocated that the actual value should be lower if a
nonhomogeneous solution would be the true minimizer.
This again brings us back to necessity of solving the
generalized L0246-Skyrme model at finite density without
any geometric constraints.
It is the aim of the current paper to simultaneously face

all these problems by constructing generalized skyrmion
crystals at finite density without any symmetry assump-
tions on the skyrmion nor its fundamental period lattice.
This is possible due to the recently developed method of
obtaining crystalline solutions by not only considering
the variation of the Skyrme field φ∶ R3=Λ → SUð2Þ but
also by allowing noncubic variations of the unit cell
period lattice Λ [52].
The main idea is the identification between all 3-tori

ðR3=Λ; dÞ, with d the Euclidean metric, and the unit 3-torus
T3 ¼ R3=Z3, where T3 is equipped with the flat pullback
metric g ¼ F�d via a diffeomorphism F∶ T 3 → R3=Λ.
Varying the metric g on T3 is equivalent to considering
variations of the period lattice Λ. It is convenient to think of
the metric g as a constant symmetric-positive-definite
matrix ðgijÞ. Then one can address this variational problem
by identifying the gradient of the energy with respect to
the metric ðgijÞ with the stress-energy tensor ðSijÞ of the
field φ. Auckly and Kapitanski [53] showed that, for fixed
metric g, the energy functional Eðφ; gÞ attains a minimum.
In [52] they proved that, for fixed field configuration φ, any
critical metric g of the energy functional Eðφ; gÞ is in fact a
unique local minimum. Hence the period lattice Λ, for
which the Skyrme field φ has minimum energy, is unique
(up to automorphism). This means that the resulting
periodic crystalline configuration is indeed a true energy
minimizer with respect to both variations of the period
lattice Λ and the Skyrme field φ. This slightly improves on
the known crystalline solutions at medium and large
densities, i.e., above the nuclear saturation point, but it
has a tremendous impact on the low density regime where
nonhomogeneous solutions are expected to exist.
Here, we apply this method to the generalized L0246-

Skyrme model and obtain the lattice ground state of the
generalized model at all densities, that is, above and below
the nuclear saturation point n0. In our model, infinite
nuclear matter is not necessarily treated as being homo-
geneous. At saturation n0, it appears as an almost

homogeneous multiwall configuration with near cubic
symmetry. At low densities (n < n0) then it is considered
inhomogeneous, with distinct somewhat isolated multiwall
configurations present. Whereas, at high densities (n > n0),
e.g. in the core, it appears even more homogeneous and as a
simple cubic crystal of fractional half-skyrmions, i.e., it
merges with the SC1=2 crystal. This allows us, for the first
time, to obtain an EoS of the skyrmionic matter which inter-
polates between low and high density regimes. We use this
EoS, with an addition of the isospin quantum contribution
and with the assumption of β-equilibrium, and investigate
its usefulness and consequences for nuclear physics.

II. SKYRME CRYSTALS AND PHASES
OF SKYRMION MATTER

A. The generalized L0246-Skyrme model

The generalized L0246-Skyrme model consists of a single
scalar field φ∶Σ → SUð2Þ where spacetime is given by the
(3þ 1)-dimensional Lorentzian manifold Σ ¼ R ×M with
the product metric g ¼ −dt2 þ h, and ðM; hÞ is an oriented
3-dimensional Riemannian manifold with Riemannian
metric h. Let us introduce oriented local coordinates
ðx0; x1; x2; x3Þ on the domain Σ and let f∂0; ∂1; ∂2; ∂3g
be a local basis for the tangent space TxΣ at x∈Σ,
where we have denoted ∂=∂xμ ≡ ∂μ. We equip suð2Þ
with the AdðSUð2ÞÞ invariant inner product ðX;YÞsuð2Þ ¼
1
2
TrðX†YÞ. Let Ω∈Ω2ðSUð2ÞÞ ⊗ suð2Þ be an suð2Þ-
valued two-form on SUð2Þ and ω∈Ω1ðSUð2ÞÞ ⊗ suð2Þ
be the left Maurer-Cartan form. Then, for any left invariant
vector fields X; Y ∈TφðxÞSUð2Þ, where x∈Σ, we define

ΩðX; YÞ ¼ ½ωðXÞ;ωðYÞ�; ð1Þ
where ½·; ·�∶suð2Þ × suð2Þ → suð2Þ is the usual Lie
bracket. The left Maurer-Cartan form ω defines the
suð2Þ-valued left current

Lμ ≔ ωφð∂μφÞ ¼ φ†
∂μφ: ð2Þ

Let us write the pullback as Ωμν ¼ φ�Ωð∂μ; ∂νÞ. Then the
curvature can be expressed in terms of the suð2Þ-valued
left current as

Ωμν ¼ ½Lμ; Lν�: ð3Þ
Consider the trivial foliation of spacetime Σ ¼ R ×M

into spacelike hypersurfaces M and let M be compact
and without boundary. This is the case if, for example,
M is a 3-torus or the usual vacuum boundary condition
φðx → ∞Þ ¼ I2 is imposed on M ¼ R3. Then Hopf’s
degree theorem ensures that such mappings φ∶M →
SUð2Þ ≅ S3, for M ¼ R3 ∪ f∞g ≅ S3 and T3, are charac-
terized by a homotopy invariant: the topological degree
B∈Z, since π3ðS3Þ ¼ H3ðT3Þ ¼ Z. This topological
degree is identified with the physical baryon number upon
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quantization, so we often to refer to B as the baryon
number, which may be computed using

B ¼
Z
M
d3x

ffiffiffiffiffiffi
−g

p
B0; ð4Þ

where the topological current is given by

Bμ ¼ 1

24π2
ffiffiffiffiffiffi−gp ϵμνρσTrðLνLρLσÞ: ð5Þ

We consider the generalization of the massive Skyrme
Lagrangian which yields an ω-meson-like repulsion on short
distances, while also allowing the quartic Skyrme term to
describe scalar meson effects. This generalized Skyrme
Lagrangian is composed of four terms and is given by

L0246 ¼ L0 þ L2 þ L4 þ L6; ð6Þ
where the index i denotes the degree of each term as a
polynomial in spatial derivatives. The four terms appearing
in the energy functional are the potential, Dirichlet, Skyrme
and sextic terms, respectively. It is conventional to label the
models by terms used in the energy functional, e.g. the
generalized model is labeled L0246, the standard massive
model is denoted L024, the massless Skyrme model L24 and
the BPS model L06. The first term is the potential which
provides a mass for the pionic fields,

L0 ¼ −
c0
8ℏ3

F2
πm2

πTrðI2 − φÞ: ð7Þ

The Dirichlet, or kinetic, term is given by

L2 ¼ c2
F2
π

16ℏ
gμνTrðLμLνÞ ð8Þ

and the Skyrme term, corresponding to the four pion
interaction, is

L4 ¼
c4ℏ
8e2

gμαgνβTrð½Lμ; Lν�½Lα; Lβ�Þ: ð9Þ

Finally, we include the sextic term, defined by [54]

L6 ¼ −π4λ2gμνBμBν; ð10Þ

whereBμ is the topological Chern–Simons current defined in
(5). The ci are coupling constants and, for the usual L0246-
Skyrme model, take the values c0 ¼ c2 ¼ 1 and c4 ¼ 1=4.
The pion mass is fixed to take its physical value of
mπ ¼ 140 MeV. So, the free parameters of the model
are the pion decay constant Fπ , the dimensionless
Skyrme parameter e, and λ which is related to the mass
mω and coupling constant gω of the ω meson via λ2 ¼
g2ωℏ3=ð2π4m2

ωÞ [55]. The reduced Planck constant is
ℏ ¼ 197.33 MeV fm. Throughout we will use the values

Fπ ¼122MeV; e¼4.54; λ2¼1MeVfm3: ð11Þ

Qualitatively, the parameters (11) do not have much
affect on the ground state configuration. However, quanti-
tatively this is not true. We fit the parameters of the model to
give us approximately the binding energy at saturation and
the nuclear density, while also allowing the symmetry energy
and the pion decay constant not to deviate too much from
their experimental values. Other studies have done similar
fittings to, e.g., the symmetry energy, but there is always a
trade-off where if you fix one parameter accurately then
another physical quantities will suffer in consequence. In
other studies [50], the symmetry energy and saturation
energy can be fitted correctly, but the saturation density
cannot also be simultaneously fitted correctly. That is the
caveat of using the Skyrme model alone to model nuclear
matter. For example, in our model, the symmetry energy at
saturation is lower than expected but accurately predicts the
asymmetry coefficient in the SEMF. If the model is tuned to
give the correct symmetry energy value at saturation then the
asymmetry coefficient would be off. For a more general
review of the quantitative effects of the free parameters on a
ground state configuration, see [49,50].
We are interested in static solutions and adopt the

usual Skyrme units of length and energy. The classical
energy scale is Ẽ ¼ Fπ=4e (MeV) and the length scale is
L̃ ¼ 2ℏ=eFπ (fm). Thus the quantum energy scale is
defined by ℏ̃ ¼ 2e2. In these dimensionless Skyrme units,
the rescaled pion mass for our studies is

m ¼ 2mπ

Fπe
ð12Þ

and the dimensionless sextic coupling constant is

c6 ¼
π4λ2e4F2

π

2ℏ3
: ð13Þ

It will prove useful throughout to introduce the Hilbert
energy-momentum tensor (in dimensionless Skyrme units):

Tμν ¼ −c2TrðLμLνÞ − c4gαβTrð½Lμ; Lα�½Lν; Lβ�Þ
þ 2c6BμBν þ gμνL0246: ð14Þ

The static energy functional can be obtained from the timelike
part of the energy-momentum tensor, T00 ¼ Estat þ Ekin, and
is given by

MBðφ; gÞ ¼
Z
M
d3x

ffiffiffiffiffiffi
−g

p
Estat; ð15Þ

where

Estat ¼ c0m2TrðI2 − φÞ − c2
2
gijTrðLiLjÞ

−
c4
4
giagjbTrð½Li; Lj�½La; Lb�Þ

þ c6
ϵijkϵabc

ð24π2 ffiffiffiffiffiffi−gp Þ2 TrðLiLjLkÞTrðLaLbLcÞ: ð16Þ
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A field configuration φ which minimizes the static
energy functional (15), for some choice of domain metric
g, is referred to as a skyrmion and the static energy MB is
often interpreted as the classical mass of the skyrmion. The
associated Euler–Lagrange field equations can be approx-
imately solved by discretizing the static energy (15) and
employing a 4th order central finite-difference method.
This is carried out using the quaternionic formulation
detailed below. We can then regard the static energy as a
function MB∶ C → R, where the discretized configuration
space is the manifold C ¼ ðS3ÞN1N2N3 ⊂ R4N1N2N3 . To solve
the Euler–Lagrange field equations we use arrested Newton
flow: an accelerated gradient descent method with flow
arresting, with some appropriate initial configuration. That
is, we are solving the system of 2nd order ODEs

φ̈ ¼ −
δEstat

δφ
; φð0Þ ¼ φ0; ð17Þ

with initial velocity φ̇ð0Þ ¼ 0. Setting ψ ≔ φ̇ as the
velocity with ψð0Þ ¼ φ̇ð0Þ ¼ 0 reduces the problem to a
coupled system of 1st order ODEs. We implement a 4th
order Runge–Kutta method to solve this coupled system. In
general, the initial configuration φ0 is not a minimizer and
so it swaps its potential energy for kinetic energy as it
evolves. During the evolution we check to see if the energy
is increasing. If the energy is indeed increasing, we take out
all the kinetic energy in the system by setting ψðtÞ ¼
φ̇ðtÞ ¼ 0 and restart the flow (this is the arresting criteria).
Naturally the field will relax to a local, or global, minimum
in some potential well. The evolution then terminates when
every component of the energy gradient δMB

δφ is zero within

some specified tolerance, e.g., tol ¼ 10−5.

B. Metric independent integral formulation

For numerical purposes, it is convenient to utilize the
quaternionic representation of the target group SUð2Þ,
which is topologically isomorphic to S3. Let us parametrize
the unit quaternion φ∈H by the mesonic fields
ðφ0;φ1;φ2;φ3Þ:

SUð2Þ ∋
�
φ0 þ iφ3 iφ1 þ φ2

iφ1 − φ2 φ0 − iφ3

�
↔ ðφ0;φ1;φ2;φ3Þ∈ S3;

ð18Þ

with the unitary condition σ2 þ π⃗ · π⃗ ¼ 1, where π⃗ ¼
ðφ1;φ2;φ3Þ is normally identified with the triplet of pion
fields and σ ¼ φ0 with the σ-field. Then the Maurer-Cartan
left current can be expressed as the vector quaternion:

Li ¼ −iLa
i τ

a;

La
i ¼ ϵabc∂iφ

bφc þ ∂iφ
0φa − ∂iφ

aφ0; ð19Þ

where τa are the isospin Pauli matrices and, similarly, the
curvature in the quaternionic representation is given by

Ωij ¼ −2iΩa
ijτ

a;

Ωa
ij ¼ ϵabc∂iφ

b
∂jφ

c þ ∂iφ
0
∂jφ

a − ∂iφ
a
∂jφ

0: ð20Þ
From this we get the following contractions,

La
i L

a
j ¼ ∂iφ

μ
∂jφ

μ; ð21aÞ

Ωa
ijΩa

kl ¼ ∂iφ
μ
∂kφ

μ
∂jφ

ν
∂lφ

ν − ∂iφ
μ
∂lφ

μ
∂jφ

ν
∂kφ

ν; ð21bÞ

La
iΩa

jk ¼ −ϵμναβφμ
∂iφ

ν
∂jφ

α
∂kφ

β: ð21cÞ

The baryon number density in contraction form is

B0 ¼ 1

12π2
ffiffiffiffiffiffi−gp ϵijkLa

iΩa
jk: ð22Þ

For numerical simulations involving the minimization of
the energy functional with respect to variations of the
metric, it will be convenient to define the metric indepen-
dent integrals:

WðφÞ ¼ 2c0m2

Z
T3

d3xð1 − φ0Þ; ð23aÞ

LijðφÞ ¼ c2

Z
T3

d3xLa
i L

a
j ; ð23bÞ

ΩijklðφÞ ¼ 2c4

Z
M
d3xΩa

ijΩa
kl; ð23cÞ

CðφÞ ¼ c6
ϵijkϵlmn

ð12π2Þ2
Z
M
d3xLa

iΩa
jkL

b
lΩb

mn: ð23dÞ

In terms of these metric independent integrals, the static
energy can be compactly written as

MBðφ; gÞ ¼
ffiffiffiffiffiffi
−g

p
WðφÞ þ ffiffiffiffiffiffi

−g
p

gijLijðφÞ

þ ffiffiffiffiffiffi
−g

p
gikgjlΩijklðφÞ þ

CðφÞffiffiffiffiffiffi−gp : ð24Þ

C. Skyrme crystals

Our aim is to study Skyrme fields φ∶ R3 → SUð2Þ that
are periodic with respect to some 3-dimensional period
lattice Λ, i.e. we impose the condition φðxþ XÞ ¼ φðxÞ for
all x∈R3 and X∈Λ. We can equivalently interpret the field
as a map φ∶ R3=Λ → SUð2Þ, where ðR3=Λ; dÞ is a 3-torus
equipped with the standard Euclidean metric d. In particular,
we define a Skyrme crystal to be an energy minimizing map

φ∶R3=Λ⋄→SUð2Þ; Λ⋄¼
�X3

i¼1

niX⃗i∶ni∈Z

�
; ð25Þ
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where R3=Λ⋄ is some fixed 3-torus such that the field φ is
also critical and stable with respect to variations of the
lattice Λ about Λ⋄. The problem of determining Skyrme
crystals was addressed by Harland et al. [52]. They prove
that, for a fixed field configuration φ, there is a unique
period lattice Λ⋄ (up to automorphism) that minimizes the
static energy MB. Therefore, the problem of determining
skyrmion crystals is one of finding critical points of the
static energy functional (15) with respect to variations of
both the field φ and the period lattice Λ⋄.
For massless L24-skyrmions, the period lattice can be

determined explicitly. However, only a numerical approach
seems possible for generalized L0246-skyrmions. For some
initial period lattice Λ0, the static energy can minimized
with respect to variations of the period lattice using the
method detailed in Sec. II E. In tandem, with some
appropriate initial field configuration φ0, the static energy
functional can also be minimized with respect to variations
of the field by using arrested Newton flow (ANF), which is
detailed in Sec. II A.
Skyrme crystals have been studied extensively in the

literature, with it being previously accepted that the SC1=2

crystal found independently by Kugler and Shtrikmann [35]
and Castillejo et al. [37] is the minimum energy Skyrme
crystal. However, in the massless L24-Skyrme model, this
SC1=2 crystal is just one point on an SOð4Þ orbit of
solutions, i.e. it is not an isolated critical point and all of
these solutions are all energy degenerate. When the pion
mass is turned on, there is no reason to expect these
degenerate L24 critical points to extend to L0246 critical
points upon perturbation. However, there are four critical
points which survive perturbation as argued by [52].
These are the SC1=2, α, chain and multiwall crystals. Each
crystal has baryon number Bcell ¼ 4 per unit cell, with
three of the crystals having lower energy classically than
the SC1=2 crystal for nonzero pion mass and noncubic
(trigonal) lattice geometry.
The SC1=2 crystal can be obtained from the

Fourier series-like expansion of the fields as an initial
configuration [37],

φ0 ¼ −c1c2c3; φ1 ¼ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

s22
2
−
s23
2
þ s22s

2
3

3

r
; ð26Þ

and cyclic, where si ¼ sinð2πxi=LÞ and ci ¼ cosð2πxi=LÞ.
From the SC1=2 crystal, the other three crystals can be
constructed by applying a chiral SOð4Þ transformation
Q∈ SOð4Þ, such that φ ¼ QφSC1=2

, and minimizing the
energy with respect to variations of the field and the lattice.
These chiral transformations Q∈ SOð4Þ can be determined
by considering a deformed energy functional on the moduli
space of critical points of the Skyrme energy functional,
and are found to be [52]

Q∈

8>><
>>:
� ð1; 0; 0; 0Þ

�

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

QSC1=2

;

� ð0;−1; 1; 1Þ= ffiffiffi
3

p

�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qα

;

� ð0; 0; 0; 1Þ
�

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Qmultiwall

;

� ð0; 0; 1; 1Þ= ffiffiffi
2

p

�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qchain

9>>=
>>;: ð27Þ

The other three rows of the chiral transformations Qα,
Qmultiwall andQchain, labeled by the asterisk, can be obtained
by using the Gram-Schmidt process.
Out of the four crystal configurations, the most of

interest to astrophysicists are the α-crystal, chain-crystal
and the multiwall crystal; these resemble nonuniform
phases of nuclear matter, known as nuclear “pasta.”
The iron rich crust of a neutron star could be modeled
by B ¼ 56 chunks of α-particle crystals, such as those
modeled by Feist et al. [56], describing the “gnocchi”
phase. As we descend deeper toward the outer core, the
pressure due to gravity increases and nuclei are squeezed
together into long thin tubes of “spaghetti.” This spaghetti
phase can be modeled using the chain-crystal. Deeper still
and the spaghetti flattens into parallel multiwalls, resem-
bling “lasagna,” of which the multiwall crystal is reminis-
cent of. Of course, for realistic applications the Coulomb
interaction must be added. This is because of the fact that
different crust phases arise due to a balance between the
strong and electrostatic forces. Nevertheless, the Skyrme
model has a built-in ability to model such phases.
The multiwall-crystal is the lowest energy solution at all

baryon densities and also yields a lower compression
modulus than the other three crystals. This makes it an
ideal candidate for nuclear matter and an equation of state
(EoS) at high and low densities. With φ0 ¼ QmultiwallφSC1=2

as an initial configuration and by considering fixed baryon
density variations, as laid out in Sec. II F, the energy-
volume curve can be computed and an EoS obtained.

D. The stress-energy tensor

To determine Skyrme crystal solutions, we identify
every 3-torus ðR3=Λ; dÞ, equipped with the standard
Euclidean metric d, with the unit 3-torus ðT3; gÞ where g
is a Riemannian metric and T 3 ¼ R3=Z3. This metric g
on T 3 is the pullback g ¼ F�d, with gij ¼ X⃗i · X⃗j, via the
diffeomorphism

F∶ ðT3; gÞ → ðR3=Λ; dÞ;
ðx1; x2; x3Þ ↦ x1X⃗1 þ x2X⃗2 þ x3X⃗3: ð28Þ

Let the Skyrme field be the map φ∘F∶ T 3 → SUð2Þ. We
vary the metric gs on T 3 with g0 ¼ F�d which is equivalent
to varying the latticeΛs withΛ0 ¼ Λ. The energy minimized
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over variations gs of the domain metric is equivalent to
determining the energy minimizing period lattice Λ⋄.
Now let the static Skyrme field be the smooth map

φ∶ T 3 → SUð2Þ. Let ðx1; x2; x3Þ be oriented local coor-
dinates on T3 and f∂1; ∂2; ∂3g be a local frame for the
tangent space TxT 3 at x∈ T3. Let gs be a smooth one-
parameter family of metrics on T3 with g0 ¼ F�d. Set
δg ¼ ∂sgsjs¼0 ∈Γð⊙2 T�T3Þ, a symmetric 2-covariant ten-
sor field on T3. Denote the inner product on the space of
2-covariant tensor fields of the tangent space TxT 3 to T3 at
x∈ T 3 by h·; ·i. Then for any pair of symmetric bilinear
forms A, B we have

hA; Bih ¼ AijgjkBklgli: ð29Þ

In particular, we have the following result:

TrgðAÞ ¼ hA; gig ¼ gijAij: ð30Þ

Let us consider the rate of change of the energy of the
Skyrme field φwith respect to varying the domain metric g.
The first variation of the energy with respect to the variation
gðsÞ of the metric on T3 is given by

dMBðφ; gsÞ
ds

����
s¼0

¼
Z
T3

d3x
ffiffiffi
g

p hSðφ; gÞ; δgig; ð31Þ

where Sðφ; gÞ∈Γð⊙2 T�T 3Þ is a symmetric 2-covariant
tensor field on T3, known as the stress-energy tensor,
defined by

Sij ¼
1

2

h
c0m2TrðId − φÞ − c2

2
gklTrðLkLlÞ

−
c4
4
gkmglnTrð½Lk; Ll�½Lm; Ln�Þ − c6ðB0Þ2

i
gij

þ c2
2
TrðLiLjÞ þ

c4
2
gklTrð½Li; Lk�½Lj; Ll�Þ: ð32Þ

This stress-energy tensor is related to the spatial part of the
(static) energy-momentum tensor,

Sij ¼
1ffiffiffi
g

p δð ffiffiffi
g

p
L0246Þ

δgij
¼ −

1

2
Tij: ð33Þ

E. Numerical optimization of the lattice geometry

Let us fix the field φ∶ T 3 → SUð2Þ and think of the
energy MB as a function of the metric g on T 3. That is, we
define a map Eφ∶SPD3→R such that Eφ ≔ MBðφjfixed; gÞ,
where SPD3 is the space of symmetric positive-definite
3 × 3-matrices. To minimize the energy functional Eφ with
respect to variations of the metric gs, we use arrested
Newton flow on SPD3. The essence of the algorithm is as
follows: we solve Newton’s equations of motion for a
particle on SPD3 with potential energy Eφ. Now let gs be a

smooth one-parameter curve in SPD3 with g0 ¼ F�d.
Explicitly, we are solving the system of 2nd order ODEs

d2

ds2

����
s¼0

ðgijÞs ¼ −
∂Eφ

∂gij
¼ −

Z
T3

d3x
ffiffiffi
g

p
Sijφ ; ð34Þ

with initial condition ðgijÞ0¼ X⃗i · X⃗j, and where Sφ ¼ SðgÞ
is the stress-energy tensor for fixed field configuration φ.
Setting δgs ¼ ∂sgs as the velocity with initial velocity
δg0 ¼ ∂sgsjs¼0 ¼ 0 reduces the problem to a coupled
system of 1st order ODEs. We implement a 4th order
Runge–Kutta method to solve this coupled system. The
components of the stress-energy tensor for fixed field φ,
given in the metric independent integral formulation, readsZ
T3

Sijφvolg ¼
1

2
gij

ffiffiffi
g

p
W þ ffiffiffi

g
p �

1

2
gmngij − gimgjn

�
Lmn

þ ffiffiffi
g

p �
1

2
gijgln − 2gilgjn

�
gkmΩklmn

−
1

2
gij

Cffiffiffi
g

p : ð35Þ

In general, the dimension of SPDn is dimðSPDnÞ ¼
nðnþ 1Þ=2. In our case, we are working with SPD3 and
consider the energy as a function Eφ∶ SPD3 → R. So we
are implementing arrested Newton flow on a 6 dimensional
manifold. After each time step t ↦ tþ δt, we check to
see if the energy is increasing. If Eφðtþ δtÞ > EφðtÞ, we
take out all the kinetic energy in the system by setting
δgðtþ δtÞ ¼ 0 and restart the flow. The flow then termi-
nates when every component of the stress-energy tensor Sφ
is zero to within a given tolerance (we have used 10−6).
Additionally, we verify that the extended virial constraints
are satisfied, as laid out in Appendix A.

F. Phases of skyrmion matter

Determining phases of nuclear matter and phase tran-
sitions in the Skyrme model is a difficult task, and is
important if one wants to understand symmetric and
asymmetric nuclear matter in high/low density regimes.
To study phases of matter at various densities, we consider
fixed density variations of the energy functional, i.e. we
allow the lattice to vary but keep its volume fixed. Then the
volume form volg is required to be invariant under
variations gs of the metric, viz.

d
ds

����
s¼0

Z
T3

d3x
ffiffiffiffi
gs

p ¼ 1

2

Z
T3

d3x
ffiffiffi
g

p
gijδgij ¼ 0: ð36Þ

That is, δg has to be an element of the space of traceless
parallel symmetric bilinear forms E0.
In terms of the energy, we are dealing with a constrained

minimization problem: minimize the energy functional for
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fixed field configuration φ ¼ φjfixed subject to the con-
straint that detðgÞ ¼ constant. We can approach this using
the method of Lagrange multipliers. This leads to modi-
fying the stress-energy tensor in (34) via the mapping

Sφ ↦ S̃φ ¼ Sφ −
1

3
TrgðSφÞg ð37Þ

and our convergence criterion becomes maxðS̃φÞ < tol.
Likewise, to ensure numerically that δg is traceless, we
need to project out the component of variation vector δg
parallel to the metric g via the mapping

δg ↦ δg −
1

3
ðgijδgijÞg: ð38Þ

By employing this process at various volumes, where the
energy minimizing lattice is reconstructed from the metric as
detailed in Appendix B, it enables us to determine an energy-
volume curve or, equivalently, an energy-density curve. This
is key to obtaining an EoS within our framework, as the EoS
is directly related to the E − V curve.

G. The results

The first main result of this section is the observation
that, as it is for the massive L024-Skyrme model, the
multiwall crystal is also the ground state crystalline
solution for the generalized L0246-Skyrme model at all
densities. In the low density regime the solution clearly
exhibits a two-layer structure, extending parallel to the
xy-plane with the vacuum (σ ¼ 1) occupying the regions
above and below the multiwall. This can be seen in Fig. 1.
Inside the multiwall center the σ-field is approximately the
antivacuum ðσ ≈ −1Þ. Therefore, the multiwall crystal is
similar to that of a domain wall crystal, hence the name
convention. As the density increases, the regions occupied
by the vacuum reduces and the noncubic period lattice
becomes more cubic, tending asymptotically to the SC1=2

crystal in the zero volume limit. These are the true energy
minimizers of the generalized L0246-Skyrme model at finite
density under assumption that the baryon charge of the unit
cell is four, Bcell ¼ 4.
In Fig. 2 we plot the classical static energy per baryon

E ¼ MB=B of the multiwall crystal as a function of the
baryon density nB. This is interpreted as EoS of the
symmetric nuclear matter since the classical Skyrme model
does not distinguish between protons and neutrons.
Expansion of the energy function EðnBÞ around the

minimum n0 gives

EðnBÞ ¼ E0 þ
1

2
K0

ðnB − n0Þ2
9n0

þOððnB − n0Þ3Þ: ð39Þ

As always the local minimum which is identified with
the nuclear saturation point with saturation energy E0. The
curvature of the energy curve is controlled by the

compression modulus K0 and determines the increase in
energy due to compression. For our choice of the coupling
constants (11) the saturation energy per baryon and
saturation density are respectively E0 ¼ 912 MeV and
n0 ¼ 0.160 fm−3, which almost perfectly corresponds to
the physical values of the saturation energy and density.

FIG. 1. L0246-Skyrme multiwall crystal at a fixed baryon
density nB < n0. The isobaryon density is depicted in (a) and
isosurface plots of the σ field, where the vacuum ðσ ¼ þ0.9Þ is
colored red and the antivacuum ðσ ¼ −0.9Þ blue, are shown
in (b).
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An important observation is that the difference between the
energy at nuclear saturation and the classical energy at zero
density is much smaller than in previous works. Indeed, the
difference is now roughly ΔE ≈ 7 MeV, which is a 0.8%
difference with respect to the total energy. Whereas, for a
B ¼ 32 or B ¼ 108 α-crystal the difference is found to be
approximately 3% and 1.7%, respectively. This small
difference in energy between the nuclear saturation and
low-density asymptotic solutions is crucial for the existence
of a purely skyrmion generated EoS at all densities.
Unfortunately, the compression modulus still exceeds

the experimental value by a factor of 6–7. Although, in
comparison with studies involving the SC1=2 crystal, where
K0 ∼ 1700 MeV, we do observe a significant improvement
in the (in)compressibility by approximately 500 MeV
(K0 ¼ 1169), the nonhomogeneous solution alone cannot
solve the compression modulus problem in the Skyrme
model. Nevertheless, this negative result is very important
as it shows that the purely pionic Skyrme model cannot
lead to a physically acceptable compression modulus.
Consequently, it seems to be necessary to include other
mesonic d.o.f. which may soften the skyrmionic matter at
the saturation point.

III. QUANTUM SKYRMION CRYSTALS
AND THE SYMMETRY ENERGY

In general, the full symmetry group of the generalized
L0246-Lagrangian (6) is the direct product of the Poincaré
group and chiral group: G̃ ¼ Oð3Þ ⋉ R3 × SOð4Þchiral.
However, static energy minimizers break the Poincaré
symmetry group Oð3Þ ⋉ R3 to the Euclidean subgroup
E3 ¼ SOð3Þ × R3, corresponding to spatial translations

and rotations. The resulting symmetry group of the static
energy functional (15) is thus G ¼ E3 × SOð4Þchiral ≅
E3 × SUð2ÞL × SUð2ÞR. The action of this group on the
Skyrme field is given by

φðxÞ ↦ ALφðRxþ XÞA†
R; ð40Þ

where AL=R ∈ SUð2ÞL=R, R∈ SOð3Þ and X∈R3.
For skyrmions on M ¼ R3, one must impose finite

boundary conditions φðx → ∞Þ ¼ I2. This allows for the
compactification of the domain R3 ∪ f∞g ≅ S3 and
further reduces the symmetry group G to the subgroup
H ¼ E3 × diag½SUð2ÞL × SUð2ÞR� ≅ E3 × SUð2ÞI, where
SUð2ÞI is the isospin internal symmetry group. The
corresponding action of the subgroup H on the
Skyrme field is given by the transformation (40) with
AL¼AR¼A∈SUð2ÞI .
When considering crystals on M ¼ R3=Λ, one must be

careful when defining the isospin subgroup SUð2ÞI; the
vacuum boundary condition is no longer imposed and there
is not a natural way to select the diagonal isospin subgroup
SUð2ÞI . This problem was addressed by Baskerville [51] in
the context of the SC1=2 crystal in the L24-model, wherein
she considered full SOð4Þchiral rotations. She deduced that
there are two cubic point groups that can define the SC1=2

crystal, one of which is related to the centers of the
half-skyrmions. The cubic point group symmetry corre-
sponding to the half-skyrmion centers is reducible into the
trivial 1-dimensional irreducible representation and a
3-dimensional irrep. We choose the σ ¼ φ0 field to
transform in the 1-dimensional irrep. Then the isospin
group SUð2ÞI can be defined as the group of isorotations
of the pion fields π⃗ ¼ ðφ1;φ2;φ3Þ, corresponding to
transformations in the 3-dimensional irrep. If the pion
mass potential term L0 is included then this is a natural
choice of isospin group SUð2ÞI .

A. Isospin quantization

As a field theory, the Skyrme model is nonrenormaliz-
able. One must quantize it semiclassically. It is well known
that the classical dynamics of slowly moving solitons
corresponds to geodesic motion on the moduli space of
static configurations [57]. Minimal energy configurations
in the Skyrme model are unique, for a given baryon number
B, up to actions of the symmetry group H ¼ E3 × SUð2ÞI .
The classical configuration space Q of skyrmions is
split into connected components, labeled by the baryon
number B, Q ¼∪B∈Z QB. The covering space Q̃B of each
component is a double-cover with a two-to-one map
πQ∶ Q̃B → QB [58]. It was argued by Finkelstein and
Rubinstein [59] that the wave functions Ψ∈H must be
defined on the covering space of the configuration space Q̃,
where H is a formal Hilbert space such that Ψ is normal-
izable and square integrable. That is, the wave functions
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FIG. 2. The classical static energy per baryon MB=B as a
function of the nuclear density nB. The nuclear density at which at
the cusp in the symmetry energy appears is labeled by n�. This
corresponds to the density at which the infinite crystalline
multiwall solution begins transitioning to an isolated multiwall
configuration.
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are defined by the map Ψ∶Q̃ → C. We make a simple
approximation and require the wave function Ψ to be
nonvanishing only on minimal energy configurations and
their symmetry orbits. This quantization procedure is
known as rigid-body, or zero mode, quantization.
In the zero mode quantization method, a skyrmion is

treated as a rigid body that is free to translate and rotate in
physical space and also rotate in isospace, with the action
defined by (40). These solutions are all degenerate in
energy and this classical degeneracy is removed when
one quantizes the theory. We wish to quantize the
isorotational degrees of freedom and work in the zero-
momentum frame, ignoring the translational and spin
degrees of freedom. The action of the group of isorota-
tions SUð2ÞI on the Skyrme field φ is defined by the
mapping φðxÞ ↦ AφðxÞA†. Semi-classical quantization
is performed by promoting the collective coordinate
A∈ SUð2Þ to a dynamical degree of freedom AðtÞ [8].
The dynamical ansatz for the Skyrme field is then given
by the transformation

φðxÞ ↦ φ̂ðx; tÞ ¼ AðtÞφðxÞA†ðtÞ: ð41Þ

Define the isorotational angular velocity ω⃗ to be A†Ȧ ¼
i
2
ωjτ

j such that ωj ¼ −iTrðτjA†ȦÞ. Then, under the
dynamical ansatz (41), the Maurer-Cartan left current
transforms as

L̂μ ¼ φ̂†
∂μφ̂ ¼

�
AωiTiA†; μ ¼ 0

ALiA†; μ ¼ i ¼ 1; 2; 3;
ð42Þ

where Ti ¼ i
2
φ†½τi;φ� is an suð2Þ-valued current.

The dynamical ansatz (41) induces a rotational kinetic
term in the energy functional, which is given by

Erot ¼
Z
T3

�
−
c2
2
TrðL̂0L̂0Þ −

c4
2
gijTrð½L̂0; L̂i�½L̂0; L̂j�Þ

þ c6
g
gijB̂

iB̂j
�
volg; ð43Þ

where the Chern–Simons current transforms as

B̂i ¼ 3

24π2
ϵijkTrðL̂0L̂jL̂kÞ ¼

1

8π2
ϵijkTrðTlLjLkÞωl: ð44Þ

The restriction of the kinetic energy functional of the model
to the isospin orbit of a given static solution defines a left
invariant metric on SOð3Þ called the isospin inertia tensor,
which is the symmetric 3 × 3-matrix given by

Uij ¼
Z
T3

d3x
ffiffiffiffiffiffi
−g

p
U ij; ð45Þ

where the isospin inertia tensor density is

U ij¼−c2TrðTiTjÞ−c4gklTrð½Ti;Lk�½Tj;Ll�Þ

þc6gkl
ϵkabϵlcd

ð4 ffiffiffi
2

p
π2

ffiffiffiffiffiffi−gp Þ2TrðTiLaLbÞTrðTjLcLdÞ: ð46Þ

The inertia tensor in σ model notation is derived in
Appendix C. Therefore, the effective Lagrangian on this
restricted space of configurations is Leff ¼ Lrot −MB,
where MB is the static mass of the skyrmion defined by
(15) and Lrot is the induced isorotational part of the
Lagrangian given by

Lrot ¼
1

2
ωiUijωj: ð47Þ

The rigid-body wave functions will be on SUð2Þ with
isospin half-integer if B is odd and integer if B is even. The
isorotation angular momentum operator canonically con-
jugate to ω⃗ is the body-fixed isospin angular momentum
operator K⃗, defined by

Ki ¼ ∂Lrot=∂ωi ¼ Uijωj: ð48Þ

This is related to the usual space-fixed isospin angular
momentum I⃗ by the relation

Ii ¼ −DðAÞijK; ð49Þ

where A∈ SUð2Þ has been recast in the SOð3Þ form via
the map

D∶ SUð2Þ → SOð3Þ; DðAÞij ¼
1

2
TrðτiAτjA†Þ: ð50Þ

These two classical momenta are promoted to quantum

operators ⃗K̂ and ⃗Î, both satisfying the suð2Þ commutation

relations, and the Casimir invariants satisfy ⃗Î
2 ¼ ⃗K̂

2
. On

the double cover of the group of isorotations SUð2ÞI ,
there is a basis of rigid-body wave functions jI; I3; K3i
with −I ≤ K3 ≤ I, where I is the total isospin quantum

number, K3 is the third component of ⃗K̂ and I3 is the
third component of isospin relative to the space-fixed
axes (in units of ℏ) as defined in nuclear physics. The

operator ⃗Î
2
has eigenvalue IðI þ 1Þ and I3 the eigenvalue

for the operator Î3. The rigid-body Hamiltonian takes the
general form

H ¼ ℏ2

2
⃗K̂U−1 ⃗K̂

T þMB: ð51Þ

For Skyrme crystals, we can set the principal axes of
inertia to be the usual orthogonal axes such that Uij ¼ 0
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for i ≠ j. Let us label the eigenvalues Ui ¼ Uii, then the
quantum Hamiltonian takes the form

H ¼ ℏ2

2

�
1

U1

þ 1

U2

�
⃗K̂
2 þ ℏ2

2

�
1

U3

−
1

U1

−
1

U2

�
K̂2

3

−
ℏ2

2U2

K̂2
1 −

ℏ2

2U1

K̂2
2 þMB: ð52Þ

The energy eigenstates of the Hamiltonian (52) can be
classified by I and I3. To determine bound states with definite
energy one must solve the static Schrödinger equation
corresponding to this Hamiltonian, HjΨi ¼ EjΨi. The
Schrödinger equation can be expressedmore explicitlywithin
a particular ðI; I3Þ sector by expanding the quantum state jΨi
in terms of the total wavefunctions Ψ as

jΨi ¼
XþI

K3¼−I
ΨK3

ðqÞjI; I3; K3i; Ψ⃗ðqÞ ¼

0
BBB@

Ψ−IðqÞ
..
.

ΨþIðqÞ

1
CCCA;

ð53Þ

with q∈ Q̃ and substituting this into the Hamiltonian (52).

B. Symmetry energy and the cusp structure

So far we have only considered symmetric nuclear
matter, which we have described by using the classical
multiwall skyrmion crystal. In order to study nuclear matter
in neutron stars we must consider isospin asymmetric
nuclear matter, whereby a small fraction of protons are
permitted. Now let us consider asymmetric nuclear matter
with baryon number B ¼ N þ Z, where N is the number of
neutrons and Z the number of protons. The asymmetry
of such matter is determined by the isospin asymmetry
parameter δ ¼ ðN − ZÞ=ðN þ ZÞ ¼ 1–2γ, where γ is the
proton fraction. We define the nuclear density to be
nB ¼ B=V, with the nuclear saturation density n0 defined
to be the nuclear density such that ð∂MBÞ=ð∂nBÞjnB¼n0 ¼ 0.
Then the binding energy per baryon number of asymmetric
nuclear matter is given by

E
B
ðnB; δÞ ¼ ENðnBÞ þ SNðnBÞδ2 þ Oðδ3Þ: ð54Þ

The two terms appearing in the asymmetric binding
energy (54) are the binding energy of isospin-symmetric
matter EN and the symmetry energy SN. In terms of our
model, the symmetric binding energy is defined by
EN ¼ ðMB − BM1Þ=B. The symmetry energy SN dictates
how the binding energy changes when going from sym-
metric (δ ¼ 0) to asymmetric (δ ≠ 0) nuclear matter. We
can expand the isospin symmetric binding energy EN and

the symmetry energy SN around the saturation density n0
for symmetric matter [60],

ENðnBÞ ¼ Eðn0Þ þ
1

18
K0ϵ

2; ð55Þ

SNðnBÞ ¼ S0 þ
1

3
Lsymϵþ

1

18
Ksymϵ

2 þ Oðϵ3Þ; ð56Þ

where ϵ ¼ ðnB − n0Þ=n0, K0 is the incompressibility at the
saturation point and S0 ¼ SNðn0Þ is the symmetry energy
coefficient at saturation. We remind ourselves that, for our
choice of coupling constants (11), the nuclear saturation
point is characterized by the density n0 ¼ 0.160 fm−3 and
energy (per baryon) MB=B ¼ 912 MeV. The higher-order
coefficients, Lsym and Ksym, appearing in the symmetry
energy SN are defined as

Lsym ¼ 3n0
∂SN
∂nB

����
nB¼n0

; Ksym ¼ 9n20
∂
2SN
∂n2B

����
nB¼n0

: ð57Þ

The precise values of these coefficients are not known,
but are predicted to be Lsym ¼ 57.7� 19 MeV and
Ksym ¼ −107� 88 MeV [61].
Consider an infinitely extended and rigidly isospinning

Skyrme crystal with each unit cell containing baryon
number Bcell. In order to calculate the isospin correction
to the energy of the crystal we would need to know the
quantum state of the whole crystal. This is obviously a very
difficult computation since the crystal is infinitely extended
and is therefore composed of an infinite number of baryons.
However we may impose the following restrictions to solve
this problem:

(i) The total isospin quantum state of the crystal jΨi is
written as the superposition of each individual
unit cell state jψi. That is jΨi ¼ ⊗Ncell

jψi, where
Ncell → ∞ in the thermodynamic limit.

(ii) The symmetry of the classical configuration in
each unit cell is extended to the whole crystal, so
both wave functions share the same point sym-
metry group.

Under these assumptions, and since we have Bcell ¼ 4
within our unit cell, there are a finite number of possible
quantum states with allowed quantum numbers I ¼ 0, 1, 2
[50]. The I3 ¼ 0 case, which corresponds to symmetric
nuclear matter, would be the one with the lowest energy
since it has no isospin energy compared to the other cases.
This is obviously the most symmetric state possible.
However, it is known that inside neutron stars there is a
huge asymmetry between protons and neutrons.
Baskerville investigated the charge neutral case I3 ¼ −2,
corresponding to a pure neutron crystal, and computed the
quantum isospin corrections to the energy [51]. However, a
realistic description of neutron stars would require the
presence of protons. Although the concrete value is still
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unknown, simulations yield values around γ ∼ 10−2–10−1

[62,63]. Therefore, following the arguments in [50] we
perform a mean-field approximation considering a larger
chunk of crystal, enclosing an arbitrary number of unit
cells Ncell, which is in a generic quantum state with fixed
eigenvalue,

I3 ¼
ðZ − NÞ

2
¼ −

ð1 − 2γÞ
2

NcellBcell: ð58Þ

Note that in this case the nuclear density of the crystal
chunk can be directly interpreted as the nuclear density of
the unit cell, since

nB ¼ Bcrystal

Vcrystal
¼ NcellBcell

NcellVcell
¼ Bcell

Vcell
: ð59Þ

In previous applications of skyrmion crystals to model
neutron stars (see, for example, [49,50,64–66]), the SC1=2

crystal was considered. This crystal has an isotropic inertia
tensor with eigenvalue Ui ¼ λ, with λ some constant.
However, the multiwall crystal considered in this paper
is not isotropic and the isospin inertia tensor generically has
the eigenvalues U1 ¼ U2 ≠ U3. The Schrödinger equation
corresponding to such a rigidly isospinning crystal with
Ncell unit cells can be written as

HjΨi ¼ ðNcellMB þ EI;I3ÞjΨi; ð60Þ

where the isospin correction to the energy of the crystal is
given by

EI;I3 ¼
ℏ2IðI þ 1Þ
NcellU1

þ ℏ2I23
2

�
1

U3

−
2

U1

�
: ð61Þ

It should be noted that in addition to the quantum numbers
I; I3 being density nB dependent, the inertia tensor is also
density dependent, that is Ui ¼ UiðnBÞ.
The eigenvalue I3 is already fixed from the mean-field

approximation (58), and the value of I ¼ I3 is the one
which minimizes the isospin energy, since by definition
I2 ≥ I23. In the thermodynamic limit Ncell → ∞ we obtain a
final expression for the quantum correction (per unit cell) to
the energy due to the isospin degrees of freedom,

EisoðnBÞ ¼
ℏ2

8U3ðnBÞ
B2
cellδ

2: ð62Þ

This quantum isospin energy is explicitly related to the
proton fraction γ, and so we will need to include leptons if
we are to allow the crystal to have a nonzero proton
fraction. This is required in order for the system to remain
electrically neutral. Thus the proton fraction, and hence the
quantum state of the crystal, will be obtained by imposing
β-equilibrium for each value of the density.

From the quantum isospin energy (62), we can determine
the nuclear symmetry energy of the multiwall crystal,
which in general plays a crucial role in the structure of
neutron-rich nuclei and, of more interest to us, in neutron
stars. For general skyrmion crystals the symmetry energy is
given by

SNðnBÞ ¼
ℏ2

8U3ðnBÞ
VcellnB; ð63Þ

where the eigenvalue U3 of the isospin inertia tensor (45)
is implicitly dependent on the nuclear density nB. We
determine the symmetry energy at at saturation to be
S0 ¼ 22.7 MeV, which is in okay agreement with the
experimentally observed value S0 ∼ 30 MeV [67]. The
resulting symmetry energy curve SNðnBÞ for the multiwall
crystal is plotted in Fig. 3. Having obtained the symmetry
energy curve we can determine its slope and curvature,
which are computed at the nuclear saturation point. We
find that they are, respectively, Lsym ¼ 36.6 MeV and
Ksym ¼ −15.1 MeV.
Let us now summarize the results obtained for the

multiwall crystal. First of all, we find that at lower densities
the isospin moment of inertia, and specifically its eigen-
value U3, tends to a constant value. This is an obvious
consequence of the inhomogeneous nature of the solution
which, in the limit Vcell → ∞, tends to an “isolated”
multiwall configuration on M ¼ S1 × S1 ×R. This simple
fact has an important consequence. Namely, it leads to a
nonzero value of the symmetry energy at zero density,
SNð0Þ ¼ 23.8 MeV. At a first glance, this seems to be in
contradiction with the standard description of nuclear
matter where the symmetry energy vanishes at zero density.
However, we want to argue that this is a desirable property
of the Skyrme model as it indicates a smooth transition
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FIG. 3. The nuclear symmetry energy SN as a function of the
baryon density nB, exhibiting the cusp structure detailed in the
text at n� ∼ 3n0=4.
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between infinite nuclear matter and finite atomic nuclei.
Indeed, the asymmetry energy in the Bethe–Weizsäcker
SEMF reads

Easym ¼ aA
ðN − ZÞ2

B
¼ aAδ2B; ð64Þ

where aA ≈ 23.7 MeV. Thus, our symmetry energy at zero
density can be directly identified with aA with excellent
agreement.
We remark that the assumed identification here between

the zero density symmetry energy and the asymmetry
energy in the Bethe-Weizsäcker formula is not a unique
possibility. In fact, in the seminal paper by Natowitz
et al. [68] they computed the symmetry energy of the
low density, warm nuclear matter using a quantum-statistical
approach. Their results agree amazingly well with values
extracted from heavy-ion collisions [69]. The symmetry
energy, still taking a nonzero value at zero density, is
approximately only one fourth of its value at saturation
n0. It would definitely be very desirable to investigate
whether the Skyrme model may lead to similar results or not.
Moving away from zero nuclear density toward

n� ∼ 3n0=4, the isospin energy and consequently the
symmetry energy slowly decreases, as can be seen in
Fig. 3. This again is not an unexpected result in the
Skyrme model. It was noticed by Kopeliovich et al. [70]
that the careful analysis of mass splittings of nuclear isotopes
leads to the symmetry energy decreasing with increasing
baryon number B. Here, we reproduce this result, however,
using a completely different setup, i.e. the collective coor-
dinate quantization of the crystal ground state.
Below the nuclear saturation point n0 at the density

n� ∼ 3n0=4, the symmetry energy exhibits a cusp structure.
This cusp also seems to be a generic feature of the Skyrme
model, independent of the choice of values for the coupling
parameters (11) but rather can be interpreted as the point
where the multiwall crystal begins transitioning to an
“isolated” multiwall. On the other hand, its position with
respect to the saturation point certainly may be affected by
a choice of the model parameters. One can also expect such
a cusp to be present where a crystalline configuration
transitions to an isolated configuration at zero nuclear
density, e.g. for the α and chain crystals. It is interesting to
remark that such a cusp, albeit above the saturation density
nB > n0, has been advocated in [71,72] as an effect of an
assumed topological phase transition from the FCC crystal
of B ¼ 1 hedgehogs to the SC1=2 crystal of fractional
skyrmions as the nuclear density grows. Although, in
reality such a transition does not occur in the Skyrme
model as it is found to occur in the thermodynamically
unstable regime nB < n0 [48]. To conclude our findings on
the symmetry energy cusp, we propose that the origin of the
cusp can be associated with a phase transition between an

infinite crystalline state and a somewhat isolated state that
is nonhomogeneous and nucleated.

IV. PARTICLE FRACTIONS OF npeμ MATTER
IN β-EQUILIBRIUM

For a more realistic description of cold nuclear matter
inside neutron stars we need to consider not completely
asymmetric nuclear matter. As was shown in the previous
section, this can be achieved by allowing a small fraction of
protons over neutrons. The presence of protons gives the
crystal positive electric charge, so we need to include a
background of negatively charged leptons to neutralize the
system. To determine the proton fraction γ at a prescribed
nuclear density nB we impose charge neutrality and β-
equilibrium conditions, and then we solve the underlying
equilibrium equation. Additionally, the presence of protons
would require the inclusion of Coulomb interaction within
the unit cell and between neighboring cells. It has been
argued [33] that the contribution of this energy diverges in
the crystal due to infinitely many interactions between the
cells. However, including a background of negatively
charged particles in the system suppresses the Coulomb
interaction between neighboring cells and hence has a
negligible contribution to the energy [50].
In the neutron star interior, the interaction between

leptons and nuclear matter is mediated by the weak force.
We can describe the exchange of leptons and nucleons by
electron capture and β-decay processes, respectively,

pþ l → nþ νl ð65aÞ

n → pþ lþ ν̄l: ð65bÞ

These processes take place simultaneously at the same rate,
assuming that the charge neutrality,

np ¼ Z
V
¼ ne þ nμ; ð66Þ

and the β-equilibrium conditions [73],

μp ¼ μn − μI ⇒ μI ¼ μl; l ¼ e; μ; ð67Þ

are satisfied. Here μI is the isospin chemical potential
given by

μI ¼
δBℏ2

2U3

¼ ð1 − 2γÞBℏ2

2U3

: ð68Þ

Leptons inside a neutron star are treated as a noninteracting,
relativistic, highly degenerate Fermi gas. The corresponding
chemical potential for such a type of lepton is given by [64]

μl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏkFÞ2 þm2

l

q
; ð69Þ
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where kF ¼ ð3π2nlÞ1=3 is the associated Fermi momentum
and ml the lepton mass. For electrons we take the ultra-
relativistic approximation μe ≈ ℏkF;e. From the charge
neutrality condition (66), the electron number density is

ne ¼
γB
V

− nμ: ð70Þ

The β-equilibrium condition (67) for electrons yields the
following relation

μI ¼ μe ⇒
ℏBð1 − 2γÞ

2U3

¼
	
3π2
�
γB
V

− nμ

�

1=3

; ð71Þ

and for muons gives

μI ¼μμ⇒nμ¼
1

3π2

	�
ℏBð1−2γÞ

2U3

�
2

−
�
mμ

ℏ

�
2


3=2

: ð72Þ

In the low density regime the electron chemical potential will
be smaller than the muon mass, μe < mμ. So we can solve
(71) in the low density regime considering only electrons, by
setting nμ ¼ 0 until μe ≥ mμ. Once the electron chemical
potential μe reaches the muon mass mμ ¼ 105.66 MeV at
high densities, it will be energetically favorable for muons to
appear. Then we solve (71) and (72) simultaneously [64],
and construct the proton fraction curve γ ¼ γðnBÞ.
In Fig. 4 we plot the particle fractions of npeμ matter in

β-equilibrium for the multiwall crystal. Note that the cusp
structure present in the symmetry energy, or equivalently in
the isospin energy, results in an appearance of a similar
structure in the particle fractions. This reinforces the
proposition that the cusp density point n� is the density
at which a phase transition between isospin asymmetric
infinite nuclear matter and symmetric finite matter begins.
Furthermore, the fact that the symmetry energy SN tends to
a constant value at zero density leads to a similar behavior
for the proton, neutron and electron particle fractions.
Namely, they take their minimal/maximal value at n� then
they increase/decrease as zero density is approached. This
is once again a direct consequence of a nonzero value of the
isospin moment of inertia at this limit and, therefore, a
generic feature of the Skyrme model. We remark that at
zero density nB ¼ 0, which, in the Skyrme model frame-
work, can be interpreted as a limit where we find nuclei in
the vacuum, the nuclear matter becomes totally isospin
symmetric with γpð0Þ ¼ 0.5. This corresponds quite well to
the proton fraction in 56Fe, γp ¼ 0.46, which is the element
expected to be present in the crust of neutron stars [74].
Further, it appears that there is a phase transition at
(n=nB ¼ 0.91, p ¼ 0.023 MeV fm3). The n� density
occurs in this region of constant pressure, so it could very
well be related to the liquid-gas phase transition.
We remark that at the high density, which corresponds

to the core of neutron star, the proton fraction is quite

small. This agrees with previous computations in the
Skyrme model with the SC1=2 crystal [50]. Fortunately,
inclusion of strange d.o.f. resolves this issue and brings
the proton fraction to the widely accepted ∼0.4 value,
see [64]. We expect that the same mechanism applies for
the multiwall crystal. Especially considering this ground
state crystalline solution and the SC1=2 crystal are basi-
cally identical at high density. On the other hand,
inclusion of Kaon condensate does not have any impact
on the low density regime.
We now summarize our findings and compute the total

energy per unit cell in a β-equilibrated multiwall skyrmion
crystal, that is

EcellðγÞ ¼ MBðγÞ þ EisoðγÞ þ EeðγÞ þ EμðγÞ; ð73Þ

where the isospin energy for a β-equilibrated crystal is
given by

EisoðγÞ ¼
ℏ2B2

cell

8U3

ð1 − 2γÞ2: ð74Þ

The lepton energies are the energies of a relativistic Fermi
gas at zero temperature,

El ¼
V

ℏ3π2

Z
ℏkF

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q
dk

¼ Vm4
l

8ℏ3π2

	
ℏkF
ml

�
1þ 2

�
ℏkF
ml

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ℏkF
ml

�
2

þ 1

s

− sinh−1
�
ℏkF
ml

�

: ð75Þ
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FIG. 4. Plot of the particle number densities ni as functions
of the baryon density nB. The particle number densities are
normalized such that the total number density is

P
i ni ¼ 1. The

transition between isospin asymmetric infinite matter and sym-
metric finite matter at the cusp density n� is now manifest.
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The crucial observation is that, in the case of
the multiwall skyrmion crystal, the inclusion of the
β-equilibrated isospin energy and lepton energies does
not completely erase the small minimum in the classical
energy MB. Strictly speaking there is still a very shallow
minimum at a density smaller than the saturation density,
nB ¼ 0.146 fm−3. For smaller densities the total energy
grows, until a small maximum is reached. After that the
total energy decreases as the nuclear density approaches
the zero density limit, nB → 0. Importantly, the asymp-
totic value of the total energy per unit cell is smaller than
the energy at the minimum. This means that, although the
total energy per unit cell still possesses a thermodynami-
cally unstable region, we can take advantage of the
Maxwell construction and derive an EoS which is valid
at all densities. This is a valid construction and has a
minute affect on the EoS since the difference in energy
between the asymptotic solution and the minimum is
ΔE ∼ 0.1 MeV. The formulation of the Maxwell con-
struction is detailed below and the resulting β-equilibrated
asymmetric nuclear matter is plotted in Fig. 5, alongside
the classical isospin symmetric matter and the pure
neutron matter.
The pure neutron matter is obtained for the entirely

isospin asymmetric case δ ¼ 1 with I3 ¼ −2. Unlike the
β-equilibrated matter, the pure neutron matter approaches
the asymptotic solution from below. This is due to the
nonvanishing of the quantum isospin energy contributions
EisoðnBÞ in the zero density limit nB → 0. Consequently,
the Maxwell construction cannot be used on the pure
neutron matter EoS.
We remark that for the α-crystal the total energy in the

zero density limit is greater than the energy at the mini-
mum, so the Maxwell construction is not possible. On the
other hand, for B ¼ 32 and B ¼ 108 crystals constructed

from α-particles, such a construction is possible but it
extends over a nonphysical range of densities and occurs
for relatively high values of the pressure. For example, the
neutron stars obtained from these crystals would almost be
entirely made from the Maxwell construction phase.
The Maxwell construction (MC), or equal area rule, is

implemented as follows. We find three points V1, V2, and
V int on the EcellðVcellÞ curve, with V1 < V int < V2, that
have the same gradient/pressure, i.e., pðViÞ≕pMC.
These three points are chosen such that the area enclosed
between pð½V1; V int�Þ and pMC is equal to the area enclosed
between pð½V int; V2�Þ and pMC, where pð½V1; V int�Þ ≤ pMC
and pð½V int; V2�Þ ≥ pMC. This ensures that the total energy
of the thermodynamic system remains the same while
implementing this construction. Then, in the corresponding
MC density regime V1 < Vcell < V2, the total energy
function is replaced by a straight line connecting EðV1Þ
and EðV2Þ. The resulting total energy per unit cell function
can be summarized as

EMCðVÞ¼

8>><
>>:
EðVÞ V≤V1

EðV1Þ−pMCðV−V1Þ V1≤V≤V2

EðVÞ V≥V2

: ð76Þ

Now we are in a position to determine the EoS for
the multiwall configuration. The multiwall crystal
EoS for isospin asymmetric nuclear matter can be
obtained by defining the energy density ρ and pressure
p as, respectively,

ρ ¼ E
V
¼ Ecell

Vcell
¼ nB

B
Ecell; ð77Þ

p ¼ −
∂E
∂V

¼ −
∂Ecell

∂Vcell
¼ n2B

B
∂Ecell

∂nB
: ð78Þ

This EoS ρ ¼ ρðpÞ, generated purely from the generalized
multiwall skyrmion crystal, is valid at all densities. In our
case, the pressure at which the Maxwell construction is
applied is quite small, pMX ¼ 0.023 MeV fm−3, which
corresponds to an energy difference of ≈0.1 MeV over a
large density range (0.91n0 to 0.36n0). The resulting EoS is
shown in Fig. 7, alongside the EoS without the Maxwell
construction applied.
Although the obtained equation of state covers the full

range of densities one has to be aware that the multiwall
crystal does not describe the low density regime in its
entirety. As we have already mentioned, to get a more
realistic description of the crust the electrostatic inter-
action should be included. This can have an impact on the
structure and symmetry of the skyrmions, which could
potentially lead to the appearance of other nonhomo-
geneous solutions with different baryon numbers per
unit cell.
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FIG. 5. Comparison between the classical isospin symmetric
crystal, the pure neutron crystal, and the β-equilibrated asym-
metric crystal with the Maxwell construction applied.
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V. NEUTRON STARS FROM QUANTUM
SKYRMION CRYSTALS COUPLED TO GRAVITY

In order to describe neutrons stars within the Skyrme
framework, we need to couple the generalized Skyrme
model to gravity. We do this by introducing the Einstein–
Hilbert–Skyrme action [75]

S ¼ 1

16πG

Z
Σ
d4x

ffiffiffiffiffiffi
−g

p
Rþ Smatter; ð79Þ

where G ¼ 1.3238094 × 10−42 fmMeV−1 is the gravita-
tional constant and R the Ricci scalar. The matter part of
the Einstein–Skyrme action, Smatter, describes matter in the
interior of the neutron star. It is well known that the interior
of a neutron star is well described as a perfect fluid of
nearly free neutrons and a very degenerate gas of electrons.
We exploit this and use a perfect fluid model such that the
energy-momentum tensor takes the form

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSmatter

δgμν
¼ ðρþ pÞuμuν þ pgμν; ð80Þ

where the energy density ρ and the pressure p are related by
the multiwall crystal EoS ρ ¼ ρðpÞ.

A. The Tolman-Oppenheimer-Volkoff system

Our aim is to calculate the maximum permitted mass
and radius for a neutron star described by our system, and
obtain the mass-radius curve. Therefore we have to solve
the resulting Einstein equations for some particular choice
of metric ansatz. The simplest case is that of a static
nonrotating neutron star. We use a spherically symmetric
ansatz of the spacetime metric, which in Schwarzschild
coordinates reads [43]

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð81Þ

The mass and radius of the neutron star can be calculated by
inserting this spherical metric ansatz into the Einstein
equations

Gμν ¼ 8πGTμν; ð82Þ

where Gμν¼Rμν− 1
2
Rgμν is the Einstein tensor, and solving

the resulting Tolman-Oppenheimer-Volkoff (TOV) equations,

dA
dr

¼ AðrÞr
�
8πGBðrÞpðrÞ − 1 − BðrÞ

r2

�
; ð83aÞ

dB
dr

¼ BðrÞr
�
8πGBðrÞρðpðrÞÞ þ 1 − BðrÞ

r2

�
; ð83bÞ

dp
dr

¼ −
pðrÞ þ ρðpðrÞÞ

2AðrÞ
dA
dr

: ð83cÞ

Derivation of the TOV system in laid out in Appendix D.
The resulting TOV system involves 3 differential equations
for A, B and p, which must be solved for a given value of
the pressure in the center of the neutron star (pð0Þ ¼ p0)
until the condition pðRNSÞ ¼ 0 is achieved. The radial
point RNS at which the pressure vanishes defines the radius
of the neutron star, and the mass M is obtained from the
Schwarzschild metric definition outside the star,

BðRNSÞ ¼
1

1 − 2MG
RNS

: ð84Þ

In order for the metric function BðrÞ to be nonsingular at
r ¼ RNS, the pressure pðrÞ must obey p0ðRNSÞ ¼ 0.
The TOV system (83) is solved via a central shooting

method from some initial central pressure p0 at r ¼ 0 until
the edge of the star has been reached (corresponding to
pðRNSÞ ¼ 0). The amount of matter contained at r ¼ 0
should be zero, which gives the boundary conditions
Bð0Þ ¼ Að0Þ ¼ 1. That is, the spacetime metric should
approach the Minkowski metric toward the neutron star
core. We can simultaneously apply a 4th order Runge–
Kutta method to the system of IVPs (83b), (83c), for the
initial conditions Bð0Þ ¼ 1 and pð0Þ ¼ p0, until the con-
dition pðRNSÞ ¼ 0 is achieved. This yields the metric
function BðrÞ and the pressure profile pðrÞ satisfying the
necessary boundary conditions. Then the metric function
AðrÞ can be easily obtained by numerically integrating (83a).
The corresponding radius R and the stellar mass M ¼
MðRNSÞ can be extracted from the Schwarzschild defini-
tion (84). Increasing the central pressure p0 in succession
corresponds to determining a sequence of neutron stars of
increasing mass, until the mass limit is reached [73]. The
observational mass limit is approximately 2.5M⊙ [76],
where the solar mass is M⊙ ¼ 1.116 × 1060 MeV.

B. Neutron star properties and the mass-radius curve

Now we solve the TOVequations using the EoS obtained
from the isospin asymmetric multiwall crystal solution in
the generalized L0246-Skyrme model. In Fig. 6 we present
the mass-radius curve for the MC crystal (blue line)
together with recent astrophysical observations. It can be
seen clearly that the obtained mass-radius curve passes
through many observational constraints. For our choice of
coupling constants (11), the Skyrme model generates an
EoS which supports rather heavy neutron stars,M > 2M⊙.
Indeed, the maximum mass is predicted to be Mmax ¼
2.0971M⊙, occurring for a neutron star of radius
R ¼ 13.12 km. For this solution the central energy density
is ρð0Þ ¼ 784 MeV fm−3, while the central pressure is
pð0Þ ¼ 155.7 MeV fm−3. The associated plots as a func-
tion of the maximal neutron star radius is shown in Fig. 7.
We find that the speed of sound in the core is approximately
half of the speed of light, cs ¼ 0.491c. The maximal mass
can be further increased if we assume higher value of the
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sextic term coupling constant λ, at the cost of increasing the
corresponding radius.
The main improvement presented by the generalized

multiwall crystal, in comparison to previous studies involv-
ing the SC1=2 crystal, is in the low density regime. In
previous attempts, except the pure BPS Skyrme case,
neutron stars obtained from Skyrme models did not have
crusts, i.e. the EoS was only defined up to the nuclear
saturation point nB ≥ n0, and not in the low density region

nB < n0. In order to obtain a crust, the SC1=2 crystal EoS
can be smoothly joined with an EoS that well describes the
low density regime, e.g. the BCPM EoS, as in [41]. In the
resulting hybrid EoS, the high density region is still
described by the SC1=2 crystal. This typically increases
the radius of neutron star by 1–2 km, depending on the
mass of the neutron star. However, such a construction is
not required here as the EoS from the multiwall crystal with
the Maxwell construction is valid at both high and low
densities, naturally giving the neuron star a crust.

VI. CONCLUSION

In the present paper, for the first time, we have obtained a
ground state crystalline configuration for the generalized
L0246-Skyrme model at finite densities. In contrast to
previous studies on the generalized model, it has been
carried out without imposing any constraints on the
geometry. The only limiting assumption is the amount of
the baryon charge hosted by the unit cell, which is
Bcell ¼ 4. For that, we had to solve a variational problem
which involves both the matter Skyrme field φ and the
metric g of the unit 3-torus T 3.
For our choice of the values for the coupling con-

stants (11), we determine the ground state solution in
the L0246-model to be the multiwall crystal, as was recently
observed by Harland et al. [52] in the context of the
L024-model. At low densities this solution takes the form of
an isolated and planar two-wall layer of skyrmionic matter.
As the baryon density grows nB > n0 then there appears to
be a restoration of chiral symmetry, and the solution tends
to the cubic SC1=2 crystal.
We have used this multiwall crystal to investigate the

three most outstanding issues of the Skyrme model in its
application to dense nuclear matter and neutron stars.
Namely, (i) the problem of the thermodynamic instability
at low densities; (ii) the maximal mass problem; and (iii) the
compression modulus problem.
Firstly, in comparison with the SC1=2 crystal or nonho-

mogeneous crystals (e.g., B ¼ 32 or B ¼ 108 crystals
composed of α-particles), the use of the true ground state
solution allowed to resolve the issue of thermodynamically
instability at low densities. Namely, the classical energy per
baryon (of the unit cell) again reveals a minimum identified
with the nuclear saturation point, but now the difference
between the energy at this point and at zero density is less
than one percent. After inclusion of the quantum correc-
tions to the total energy, due to the isospin d.o.f., and the
lepton energy contributions for a β-equilibrated crystal, the
total energy Ecell of the isospin asymmetric multiwall
crystal as a function of the nuclear density nB was obtained.
This minimum still existed but had reduced significantly
and is practically negligible. The energy difference used in
the Maxwell construction is so small that it is difficult to tell
if the minimum truly exists or if it is just an artifact of our
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FIG. 6. Mass-radius curves for neutron stars obtained from the
multiwall crystal EoS with (blue curve) and without (red curve)
the Maxwell construction. The maximal mass Mmax obtained
from the MC multiwall crystal EoS is also shown.

FIG. 7. Plots at Mmax ¼ 2.0971M⊙ of the pressure p, energy
density ρ, metric function BðrÞ and equations of state ρ ¼ ρðpÞ.
The blue curve is for the crystal EoS with the Maxwell
construction applied, removing any negative pressure from the
system, whereas the red curve is for the “true” crystal EoS.
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numerical algorithm. Nevertheless, it was still present so
we had to use the Maxwell construction, which allowed
us to obtain an EoS valid at all densities within the
Skyrme model.
We remark that the Maxwell construction was required

to avoid a thermodynamically unstable region which
formally has negative pressure. Similar regions were found
in previous studies where α, B ¼ 32 or B ¼ 108-crystals
were studied. However, it is worth underlining that in these
cases the Maxwell construction was impossible (c.f. the
α-crystal) or extended to unacceptably large pressure/density
regions (e.g., the corresponding neutron stars would possess
cores mainly filled up by such regions). In the current work,
the pressure at which the Maxwell construction is applied is
only pMX ¼ 0.022 MeV fm−3 and it extends to densities
below the saturation point. Consequently, our neutron stars
are mainly governed by the part of EoS above pMX, which is
described by the multiwall crystal EoS.
Of course, it is premature to identify the nonhomogene-

ous low density solution found here with nuclear pasta or
lasagna phases in the crust of neutron stars. This is due
to the fact that such phases emerge due to a balance
between the nuclear and electrostatic forces. However, in
our study, the Coulomb interaction has not been taken into
account. In particular, we emphasize that, while our crystal
qualitatively looks like nuclear pasta, it does not model
nuclear pasta. Be that as it may, our result shows that the
Skyrme model itself has a tendency to form complicated,
geometrically nontrivial and nonhomogeneous structures at
low density. It should be again underlined that, on the
contrary to all previous studies, we did not impose any
geometry restrictions on the solutions, e.g. by assuming
particular boundary conditions as in [77,78].
However, already at this stage of research, the multiwall

crystal in the density regime below saturation, nB < n0,
leads to novel and intriguing observations. The first is the
symmetry energy’s disclosure of its cusp structure below
the nuclear saturation density, n� ∼ 3n0=4 < n0, and, sec-
ond, the finite value of the symmetry energy in the zero
density limit, nB → 0. A cusp in the symmetry energy has
previously been advocated for in [71], wherein they
attributed the presence of this cusp to a change in topology
due to a transition between the FCC crystal of hedgehog
skyrmions and the SC1=2 crystal. A key component of their
argument relies on this transition occurring in the high
density regime nB > n0, however, this transition is believed
to take place in the low density regime nB < n0 [48].
However, we have argued that these two features are
generic of the Skyrme model and should occur for any
infinite nuclear matter that undergoes a phase transition to
somewhat isolated and finite matter in the zero density
limit. This asymptotic transition to finite matter in the zero
density limit is essential as the isolated solution will have a
finite isospin moment of inertia tensor. A prime example of
a crystalline solution in which such a transition occurs is

that of the α-crystal, which tends to the isolated α-particle
solution as nB → 0. Therefore, both the presence of the
cusp and the nonzero value of the symmetry energy at
the vacuum can be attributed as generic properties of the
Skyrme model.
In fact, we have observed a further key feature of the

symmetry energy. That is, a direct correspondence between
the value of the symmetry energy at the vacuum and the
asymmetry energy in the Bethe–Weizsäcker SEMF for
nuclear binding energies. This strengthens our suggestion
that the Skyrme model can be interpreted as a natural
interpolation between infinite isospin asymmetric nuclear
matter and finite (almost) symmetric atomic nuclei. This is
further supported by the observation that the proton fraction
γp → 0.5 in the zero density limit nB → 0, which describes
almost totally isospin symmetric nuclear matter, and then,
for small densities, decreases yielding asymmetric matter.
In this pattern one may again recognize finite nuclei.
Indeed, the proton number and neutron number are
approximately equivalent (δ ≈ 0) for smaller atomic nuclei
while for larger nuclei there is an asymmetry (δ ≠ 0) caused
by a surplus of neutrons.
The second big issue is also resolved since the inclusion

of the sextic term makes the EoS sufficiently stiff at large
densities. Using this EoS we were able to compute the
mass-radius curve for the resulting neutron stars. The
maximal mass was found to be Mmax ¼ 2.0971M⊙, which
is a acceptable large mass and the mass-radius curve fits
very well to known astrophysical data.
Finally, we shown that the problem of the compression

modulus cannot be solved solely by consideration of the
newly discovered nonhomogeneous ground state crystal-
line configuration. Although reduced by approximately
200 MeV, the compression modulus is still a few times
larger than the experimental value. We underline that this
negative result is of high importance for the Skyrme model.
It simply shows that the solitonic model based entirely on
the lightest, pionic d.o.f. is not able to correctly describe
this quantity. Fundamentally, the compression modulus is
related to nuclear binding energies, which is also a problem
within the Skyrme model. If a variant of the Skyrme model
has low binding energies then, naturally, the compression
modulus will closer to its accepted value. Therefore,
inclusion of more massive mesons, which are known to
soften the EoS at the saturation point, seems to be
unavoidable. Interestingly, this coincides with the role
playing by ρ mesons in reducing of the binding energies
of the Skyrmions.
It should be underlined that, if compared with other

effective nuclear models, the generalized Skyrme model
has an extremely small number of free parameters. It has
only four coupling constants fFπ; mπ; e; λg, of which the
pion mass mπ and the pion decay constant Fπ are, from the
onset, fixed to their physical values, or as close to them
as possible. The two other parameters e and λ, which,
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respectively, multiply the quartic (Skyrme) and sextic terms
can be treated as free parameters in this model. They can be
constrained by fitting the multiwall crystal to nuclear
observables, i.e. they can be chosen such that the symmetric
energy MBðnBÞ and nuclear density nB at saturation n0 are
close to the experimentally determined values.
There are several directions in which our study can be

continued. First of all, it is widely known that the lower
density phases of nuclear matter are governed by a balance
between nuclear and Coulomb forces, which leads to a
plethora of geometrically different structures. The fact that
the generalized Skyrme model, even without the inclusion
of electrostatic interactions, gives rise to the multiwall
crystal (a lasagna like structure) can be viewed as an
intrinsic ability of the model to provide such solutions.
Other nonhomogeneous configurations have been observed
in the Skyrme model [77,78], however they were an effect
of the imposed boundary conditions and therefore their
applications to nuclear physics remain to be clarified.
Undoubtedly, inclusion of the Coulomb interaction seems
mandatory, see, e.g., [79]. It seems likely that including
Coulomb interactions will not only give insight into such
geometric phases but could also allow one to avoid use of
the Maxwell construction. Thus it could possibly provide a
complete description of the crust in neutron star within the
Skyrme model framework.
More importantly, the inclusion of other d.o.f., like for

example ρ or ω mesons, seems inevitable to resolve the
issue of the compressibility at nuclear saturation. This,
combined with the inhomogeneous multiwall crystal
detailed in the paper, may possibly lead to the correct
value of the compression modulus.
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APPENDIX A: EXTENDED VIRIAL
CONSTRAINTS

The space of allowed variations E is a 6-dimensional
subspace of the space of sections of the rank 6 vector
bundle ⊙2 T�T3,

E ¼ fδgijdxidxj ∈Γð⊙2 T�T3Þ∶δgijconstantg: ðA1Þ

By definition, the energy MB is critical with respect to
variations gs of the metric if and only if

dMBðφ; gsÞ
ds

����
s¼0

¼
Z
T3

d3x
ffiffiffi
g

p hSðφ; gÞ; δgig ¼ 0; ðA2Þ

that is, if and only if S⊥L2E. Now let the orthogonal
compliment of g in E, the space of traceless parallel
symmetric bilinear forms, given by

E0 ¼ fθ∈Γð⊙2 T�T3Þ∶TrgðθÞ ¼ hθ; gig ¼ 0g: ðA3Þ

Then the criticality condition S⊥L2E can be reformulated
as [80]Z

T3

d3x
ffiffiffi
g

p hSðφ; gÞ; gig ¼ 0 and S⊥L2E0: ðA4Þ

The first condition S⊥L2g is analogous to a virial constraint
and the second condition S⊥L2E0 coincides with the
extended virial constraints derived by Manton [81]. We
can determine the virial constraint by using the trace (30)
and evaluatingZ
T3

hSðφ; gÞ; gigvolg ¼
Z
T3

d3x
ffiffiffi
g

p
TrgðSÞ

¼ 1

2
ðE2 − E4 þ 3E0 − 3E6Þ: ðA5Þ

Hence, the condition S⊥L2g establishes the familiar virial
constraint

E2 − E4 þ 3ðE0 − E6Þ ¼ 0: ðA6Þ

To determine the extended virial constraint correspond-
ing to the condition S⊥L2E0, we define a symmetric bilinear
form Δ∶TxT 3 × TxT 3 → R,

Δij ¼ −
Z
T3

d3x
ffiffiffi
g

p �
c2
2
TrðLiLjÞ

þ c4
2
gklTrð½Li; Lk�½Lj; Ll�Þ

�
: ðA7Þ

In the metric independent integral formulation, this sym-
metric bilinear form Δ reads

Δij ¼
ffiffiffi
g

p
LijðφÞ þ 2

ffiffiffi
g

p
gklΩikjlðφÞ: ðA8Þ

Then S⊥L2E0 if and only if Δ is orthogonal to E0 with
respect to the inner product h·; ·iE . Therefore, for λ∈R
we must have

Δ ¼ λg: ðA9Þ

Taking the trace of both sides yields

3λ ¼ E2 þ 2E4: ðA10Þ
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Thus, the condition S⊥L2E0 produces the extended virial
constraint

Δ ¼ 1

3
ðE2 þ 2E4Þg: ðA11Þ

So we see that φ∶ T 3 → SUð2Þ is a skyrmion crystal if and
only if it satisfies the extended virial constraints:

E2 − E4 ¼ 3ðE6 − E0Þ; ðA12aÞ

Δ ¼ 1

3
ðE2 þ 2E4Þg: ðA12bÞ

We will verify numerically that the extended virial con-
straints are being satisfied within some tolerance, e.g.,
tol ¼ 10−5. This is done by checking that���� E4

E2 þ 3ðE0 − E6Þ
− 1

���� < tol ðA13Þ

and ���� Δij

ðE4 þ E6 − E0Þgij
− 1

���� < tol: ðA14Þ

APPENDIX B: RECONSTRUCTING Λ FROM g

As the metric gs on T3 varies so too does the lattice Λs,
which we have labeled Λs ¼ ΛðgsÞ where Λ0 ¼ Λ. As
before, let Λ⋄ be the energy minimizing lattice and denote
the corresponding energy minimizing metric on T3 by g⋄.
Let X⃗1¼ðx1;y1;z1Þ, X⃗2 ¼ ðx2; y2; z2Þ and X⃗3 ¼ ðx3; y3; z3Þ
be the period lattice vectors for Λ⋄. In order to plot
isosurfaces of the baryon density of the resulting skyrmion
on ðR3=Λ⋄; dÞ, we need to reconstruct the lattice Λ⋄ from
the metric g⋄. To do this we need to solve the following
under-determined system of equations

X⃗1 · X⃗1 ¼ x21 þ y21 þ z21 ¼ g11

X⃗1 · X⃗2 ¼ x1x2 þ y1y2 þ z1z2 ¼ g12

X⃗1 · X⃗3 ¼ x1x3 þ y1y3 þ z1z3 ¼ g13

X⃗2 · X⃗2 ¼ x22 þ y22 þ z22 ¼ g22

X⃗2 · X⃗3 ¼ x2x3 þ y2y3 þ z2z3 ¼ g23

X⃗3 · X⃗3 ¼ x23 þ y23 þ z23 ¼ g33; ðB1Þ

where we have written gij ¼ ðg⋄Þij for notational conven-
ience. This has infinitely many solutions which we can
solve for by fixing a particular lattice vector, or by setting

y1 ¼ z1 ¼ z2 ¼ 0, i.e., X⃗1 ¼ ðx1; 0; 0Þ, X⃗2 ¼ ðx2; y2; 0Þ
and X⃗3 ¼ ðx3; y3; z3Þ. Then, for the latter choice of period
lattice vectors, the system of equations (B1) has a unique
solution given by

X⃗1 ¼ ð ffiffiffiffiffiffi
g11

p
; 0; 0Þ; ðB2Þ

X⃗2 ¼
 

g12ffiffiffiffiffiffi
g11

p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 −

g212
g11

s
; 0

!
; ðB3Þ

X⃗3 ¼
 

g13ffiffiffiffiffiffi
g11

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g22 −
g2
12

g11

q �
g23 −

g12g13
g11

�
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g33 −

g213
g11

−
1�

g22 −
g2
12

g11

��g23 − g12g13
g11

�
2

vuut
!
: ðB4Þ

APPENDIX C: DERIVATION OF THE ISOSPIN
INERTIA TENSOR IN σ-MODEL NOTATION

Under the dynamical transformation (41), the Dirichlet
energy transforms as

L2 ¼
c2
2
gμνTrðL̂μL̂νÞ

¼ c2
2
g00TrðL̂0L̂0Þ þ

c2
2
gijTrðL̂iL̂jÞ

¼ −
c2
2
TrðTiTjÞωiωj þ

c2
2
gijTrðLiLjÞ; ðC1Þ

where the first term is the Dirichlet energy contribution to
the isospin inertia tensor, and the second term is the static
Dirichlet energy. Likewise, for the Skyrme term we have

L4 ¼
c4
4
gμαgνβTrð½L̂μ; L̂ν�½L̂α; L̂β�Þ

¼ c4
2
g00gklTrð½L̂0; L̂k�½L̂0L̂l�Þ

þ c4
4
gikgjlTrð½L̂i; L̂j�½L̂k; L̂l�Þ

¼ −
c4
2
gklTrð½Ti; Lk�½Tj; Ll�Þωiωj

þ c4
4
gikgjlTrð½Li; Lj�½Lk; Ll�Þ; ðC2Þ

where the first term is the Skyrme contribution to the
isospin inertia tensor. Finally, the sextic term,
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L6 ¼ −c6gμν
ϵμαβγϵνδρσ

ð24π2 ffiffiffiffiffiffi−gp Þ2 TrðL̂αL̂βL̂γÞTrðL̂δL̂ρL̂σÞ

¼ −c6g00
ϵijkϵabc

ð24π2 ffiffiffiffiffiffi−gp Þ2 TrðLiLjLkÞTrðLaLbLcÞ

− c6gkl
32ϵkabϵlcd

ð24π2 ffiffiffiffiffiffi−gp Þ2 TrðL̂0L̂aL̂bÞTrðL̂0L̂cL̂dÞ

¼ − c6gkl
ϵkabϵlcd

ð8π2 ffiffiffiffiffiffi−gp Þ2 TrðTiLaLbÞTrðTjLcLdÞωiωj

þ c6ðB0Þ2: ðC3Þ

As the static part of the sextic term is the temporal
component, we must take the negative contribution of this.
Putting all of this together, we find the effective Lagrangian
to be

Leff ¼L0þL2þL4−L6

¼−c0M2
πTrðId−φÞþc2

2
gijTrðLiLjÞ

þc4
4
gikgjlTrð½Li;Lj�½Lk;Ll�Þ−c6ðB0Þ2

þ1

2

�
−c2TrðTiTjÞ−c4gklTrð½Ti;Lk�½Tj;Ll�Þ

þc6gkl
ϵkabϵlcd

ð4 ffiffiffi
2

p
π2

ffiffiffiffiffiffi−gp Þ2TrðTiLaLbÞTrðTjLcLdÞ
�
ωiωj

¼−Estatþ
1

2
ωiU ijωj; ðC4Þ

where the isospin inertia tensor density contribution from
the Skyrme field φ is given by (46).

In the quaternionic formulation, the suð2Þ current Ti is
expressed by the vector quaternion

Ti¼−iTa
i τ

a; Tj
i ¼δijφkφk−φiφj−ϵijkφ0φk: ðC5Þ

The corresponding contractions are found to be

Tk
i T

k
j ¼ δijφkφk − φiφj; ðC6aÞ

Tk
i L

k
j ¼ −ϵiklφk

∂jφ
l: ðC6bÞ

Therefore, the Dirichlet contribution can be written as

TrðTiTjÞ ¼ −2fδijφkφk − φiφjg: ðC7Þ

After a painstaking, but straightforward, calculation one
finds that

Trð½Ti; La�½Tj; Lb�Þ ¼ −8fðδij − φiφjÞ∂aφ0
∂bφ

0

þ ðφcφcÞ∂aφi
∂bφ

j þ φ0φi
∂aφ

0
∂bφ

j

þ φ0φj
∂bφ

0
∂aφ

ig: ðC8Þ

Then, finally, we need to consider the term

TrðTiLmLnÞTrðTjLkLlÞ
¼ 4ϵpqrϵcdeT

p
i L

q
mLr

nTc
jL

d
kL

e
l

¼ 4Tp
i T

p
j ðLq

mL
q
kL

r
nLr

l − Lr
nLr

kL
q
mL

q
l Þ

þ 4Tp
j L

p
mðTq

i L
q
l L

r
nLr

k − Tq
i L

q
kL

r
nLr

l Þ
þ 4Tp

j L
p
nðTq

i L
q
kL

r
mLr

l − Tq
i L

q
l L

r
mLr

kÞ: ðC9Þ

Putting all of this together by using the quaternion representation (18), the isospin inertia tensor density takes the form

U ij ¼ 2c2ðδijφkφk − φiφjÞ þ 8c4gklððδij − φiφjÞ∂kφ0
∂lφ

0 þ ðφmφmÞ∂kφi
∂lφ

j þ φ0φi
∂kφ

0
∂lφ

j þ φ0φj
∂lφ

0
∂kφ

iÞ

þ 2c6
ð4π2 ffiffiffiffiffiffi−gp Þ2 gpqϵ

pmnϵqkl½ðδijφaφa − φiφjÞð∂mφμ
∂kφ

μ
∂nφ

ν
∂lφ

ν − ∂nφ
μ
∂kφ

μ
∂mφ

ν
∂lφ

νÞ

þ ϵjacφa
∂mφ

cðϵibdφb
∂lφ

d
∂nφ

μ
∂kφ

μ − ϵibdφb
∂kφ

d
∂nφ

μ
∂lφ

μÞ
þ ϵjacφa

∂nφ
cðϵibdφb

∂kφ
d
∂mφ

μ
∂lφ

μ − ϵibdφb
∂lφ

d
∂mφ

μ
∂kφ

μÞ�: ðC10Þ

APPENDIX D: THE TOLMAN-
OPPENHEIMER =VOLKOFF EQUATIONS

From the metric ansatz (81), we can determine the
Christoffel symbols

Γλ
μν ¼

1

2
gλσð∂μgνσ þ ∂νgμσ − ∂σgμνÞ; ðD1Þ

of which the nonzero components are found to be

Γr
tt ¼ Γt

tr ¼
1

2A
dA
dr

; Γt
rt ¼

1

2B
dA
dr

;

Γr
rr ¼

1

2B
dB
dr

; Γϕ
ϕθ ¼ Γθ

ϕϕ ¼ cot θ;

Γθ
rθ ¼ −

r
B
; Γθ

θr ¼ Γr
θθ ¼ Γϕ

ϕr ¼ Γr
ϕϕ ¼ 1

r
;

Γϕ
rϕ ¼ −

rsin2θ
B

; Γϕ
θϕ ¼ − sin θ cos θ: ðD2Þ
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Thus the Riemann curvature tensor can be obtained using
the nonzero Christoffel symbols (D2),

Rσ
ρμν ¼ ∂μΓσ

νρ − ∂νΓσ
μρ þ Γλ

νρΓσ
μλ − Γλ

μρΓσ
νλ: ðD3Þ

The Ricci tensor is given by Rμν ¼ gρσRρμσν and the
relevant components are found to be given by

Rtt ¼ −
1

4B2

	
dA
dr

dB
dr

þ B

�
−
4

r
dA
dr

þ 1

A

�
dA
dr

�
2

− 2
d2A
dr2

�

ðD4Þ

and

Rrr¼
1

4A2Br

	
A
dB
dr

�
4Aþr

dA
dr

�
þBr

��
dA
dr

�
2

−2A
d2A
dr2

�

:

ðD5Þ

Now we can compute the Ricci scalar R ¼ gμνRμν, that is

R ¼ 1

2A2B2r2

	
Br2
�
dA
dr

�
2

þ 4A2

�
r
dB
dr

þ B2 − B

�

þ Ar

�
r
dA
dr

dB
dr

− 2B

�
r
d2A
dr2

þ 2
dA
dr

��

: ðD6Þ

Now we have all the ingredients required to compute the
Einstein tensor, Gμν ¼ Rμν − 1

2
Rgμν. The relevant compo-

nents of the Einstein tensor are found to be

Gtt ¼
AðrÞ

BðrÞ2r2
	
r
dBðrÞ
dr

þ BðrÞðBðrÞ − 1Þ


; ðD7aÞ

Grr ¼
1

AðrÞr2
	
r
dAðrÞ
dr

− AðrÞðBðrÞ − 1Þ


: ðD7bÞ

In the static case, and for a diagonal metric (that of which
is applicable to us), we have uμ ¼ ð ffiffiffiffiffiffiffiffiffiffi−g00

p
; 0; 0; 0Þ and the

nonzero components of the energy-momentum tensor are
given by

T00 ¼ −ρðpðrÞÞg00; Tij ¼ pðrÞgij: ðD8Þ

In particular, for the spherical metric ansatz (81), the
energy-momentum tensor reduces to the four terms:

Ttt ¼ ρðpðrÞÞAðrÞ; ðD9aÞ

Trr ¼ BðrÞpðrÞ; ðD9bÞ

Tθθ ¼ r2pðrÞ; ðD9cÞ

Tϕϕ ¼ r2pðrÞsin2θ: ðD9dÞ

We are now in a position to calculate the Einstein equa-
tions (82) by using the energy-momentum tensor (D9) and
the Einstein tensor (D7). From this, and the Bianchi identity

0 ¼ ∇νTrν ¼ ∂Trν

∂xν
þ TσνΓr

σν þ TrσΓν
σν; ðD10Þ

we get the TOV system of ODEs (83).
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