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We obtain equations of motion for the boost-invariant expansion of a system of chiral particles. Our
analysis is based on the Boltzmann equation for left- and right-handed massless particles in the relaxation
time approximation. We assume Bjorken symmetry, but allow for parity breaking. We generalize the
relaxation time approximation to take into account the so-called side-jump effect, but we show that the
ensuing correction happens to vanish for Bjorken symmetry. After expressing the conserved currents in
terms of chiral moments, we derive equations of motion for these moments from the Boltzmann equation.
After a suitable truncation, these equations allow us to study the transition from the early-time collisionless
regime to the hydrodynamic regime at late time, where the parity-violating chiral moments decay
exponentially. The truncation that we use for the parity-violating moments is shown to be identical to Israel-
Stewart’s 14-moment approximation. Our final set of equations can be used to calculate the energy-
momentum tensor, vector, and axial-vector currents with chiral degrees of freedom for possible applications
in heavy-ion collisions.
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I. INTRODUCTION

Polarization phenomena in relativistic heavy-ion colli-
sions have recently triggered large interest. For massive
spin-1=2 particles, measurements of the polarization of
Λ-hyperons [1–4] confirm that the spin is aligned along the
local equilibrium fluid vorticity [5–8]. Furthermore, for
massless particles the (axial) chiral vortical effect and the
chiral magnetic effect (chiral separation effect) are well-
known equilibrium phenomena, where the (axial) vector
current gains contributions from vorticity [9–13] or mag-
netic fields [14,15], respectively; see, e.g., Refs. [16–18]
for reviews and Refs. [19–22] for recent related work.
While local-equilibrium effects for polarization seem
nowadays well understood, only little insight has been
gained into off-equilibrium dynamics of relativistic fluids
with polarization. It is the purpose of the present paper to
present progress in this direction.
A commonly used tool to describe systems beyond local

equilibrium is kinetic theory, e.g., as derived for chiral
particles in Refs. [23–30] and for massive particles with
spin in Refs. [31–40]. However, solving kinetic theory can
be highly challenging. Therefore, it is common to turn to
hydrodynamics instead, see, e.g., Refs. [41–43] for chiral
hydrodynamics and Refs. [44–65] for spin hydrodynamics.

Although hydrodynamics is originally based on a gradient
expansion around local equilibrium, it has recently been
realized that it can give a very good description of the
quark-gluon plasma created in heavy-ion collisions even
before the system is close to local equilibrium [66]. In the
context of heavy-ion collisions, this can, to a large extent,
be attributed to the fact that, in some formulation of
hydrodynamics, the resulting equations of motion can
capture the trivial dynamics of the early time, rapidly
expanding and mostly collisionless, regime. Thus, in this
paper, we shall rely on the analysis presented in Ref. [67]
(see also Refs. [68–74] for related work) in order to obtain
equations of motion for a system of particles with chiral
degrees of freedom and broken parity. This will allow us to
consider off-equilibrium contributions to the vector and
axial-vector currents, the latter being directly related to
polarization.
In this paper, we consider a boost-invariant setup, i.e. we

consider Bjorken expansion [75], a commonly used model
to mimic the expansion of the quark-gluon plasma in a
relativistic heavy-ion collision. It is characterized by boost
invariance along the collision axis (z axis) and translational
invariance in the transverse plane (x-y plane). In contrast to
previous works, we allow for parity breaking, and take into
account a possible imbalance between left- and right-
handed massless particles. Physically, this corresponds to
a situation with initial net vector and axial-vector currents,
which are uniform in the transverse plane and decay as the
system evolves. As a consequence, we deal with a new set
of chiral moments, corresponding to the vector and axial-
vector currents, as well as off-diagonal components of the
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energy-momentum tensor. We derive equations of motion
for these chiral moments from kinetic theory and study
their behavior both in the fast expanding free-streaming
regime, and the hydrodynamic regime dominated by
collisions. In the former case, we find that for generic
initial conditions, the system quickly reaches its late time
behavior characterized by a simple power law decay. In the
hydrodynamic regime the spatial parts of the vector and
axial-vector currents and the nondiagonal parts of the
energy-momentum tensor decay exponentially due to
collisions. We also find that the equations of motion for
the zeroth components of the vector- and axial-vector
currents decouple from all other moments, respectively,
and show ideal behavior.
The equations of motion for the moments which are part

of the conserved currents couple to higher moments. In
order to close the system of moment equations, one
requires a reasonable truncation. Following Ref. [67], we
consider a simple truncation and show that the effect of the
neglected higher moments can be accounted for by a
redefinition of some transport coefficients in the truncated
equations of motion. The resulting truncated set of equa-
tions is then shown to be able to capture the dynamics of the
system during its full evolution toward the hydrodynamic
regime. With this, we obtain, as the main result of this
work, a closed set of equations of motion for chiral
hydrodynamics with Bjorken symmetry, valid both at early
and late time of the expansion.
This paper is organized as follows. In Sec. II, we derive

a relaxation-time approximation for chiral kinetic theory,
which takes into account the so-called side-jump effect
and is consistent with the requirement of covariance. Then,
in Sec. III, we implement Bjorken symmetry, simplifying
the previously obtained kinetic equation. The result serves
as the starting point to derive equations of motion for
chiral hydrodynamics in the following. In Sec. IV, we
express the charge and axial-charge currents as well as the
energy-momentum tensor in terms of chiral moments, and
obtain equations of motion for the latter. Section V is
dedicated to the exact solutions of the equations for the
chiral moments in the collisionless limit, focusing on their
late time power law behaviors. In Sec. VI, we consider the
full set of equations for the relevant chiral moments and
check the accuracy of a simple truncation over the entire
evolution. Closed equations of motion for all the compo-
nents of the conserved currents are given. Finally, in
Sec. VII, we compare our results to those obtained from
the frequently used 14-moment approximation as origi-
nally suggested by Israel and Stewart. Conclusions are
provided in Sec. VIII. Throughout this paper, we use
the following notation and conventions: a · b≡ aμbμ,
gμν ¼ diagðþ;−;−;−Þ, ϵ0123 ¼ −ϵ0123 ¼ 1. We do not
distinguish between upper and lower spatial indices of
three vectors.

II. COVARIANT CHIRAL KINETIC THEORY
AND RELAXATION TIME APPROXIMATION

In this work, we use the chiral kinetic theory introduced
in Ref. [27] as the microscopic theory that serves as a
starting point for the derivation of equations of motion for
chiral hydrodynamics. The equation of motion in kinetic
theory is usually given by the Boltzmann equation, of the
generic form

p · ∂fðx; pÞ ¼ C½f�; ð1Þ

where fðx; pÞ is the distribution function and C½f� is the
collision term. When chiral particles are involved, subtle-
ties arise, which we briefly discuss in this section.
In order to take into account a possible imbalance between

left- and right-handed particles, we define two distinct
distribution functions fλðx; pÞ with λ ¼ �1 for the two
different chiralities of massless spin-1=2 particles. It was
shown in Refs. [27,76] that these distribution functions do
not transform as scalars under Lorentz transformations and
therefore depend on the frame in which they are defined.
This feature is related to the fact that, in the massless case, it
is not possible to split the total angular momentum into spin
and orbital parts in a frame-independent way [27,77–79]. In
the following, we denote the four-velocity of the reference
frame by the four-vector nμ, and the frame dependence of the
respective distribution function by a subscript n. It is
important to note that the distribution functions themselves
are not measurable (beyond the classical approximation),
and are therefore allowed to depend on a reference frame.On
the other hand, we require any observable quantity to be
frame independent.
The frame dependence of the definition of spin angular

momentum for massless particles results in the so-called
side-jump effect [27], i.e., the form of the collision term also
depends on the reference frame. In particular, a local collision
(the particles meet at one single space-time point) in one
reference frame may appear nonlocal in a different frame.
The form of the collision term in principle should be derived
from the underlying quantum theory and will in general
feature a complicated structure, cf. Refs. [35,37–39].
However, much insight can be gained by using a simplified
collision term, employing the so-called relaxation time
approximation (RTA). In the RTA, the collision term is
proportional to the difference between the distribution
function and its local-equilibrium value, divided by a
relaxation time τR. When using the RTA for chiral kinetic
theory, one has to take into account the side-jump effect in the
collision term and preserve covariance of observables. In the
following, we will show how to do this. We shall work in a
semiclassical approximation and expand all the relevant
quantities A (e.g., distribution functions, currents) up to first
order in ℏ, viz.
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A ¼ Að0Þ þ ℏAð1Þ þOðℏ2Þ: ð2Þ

We start by defining the left- and right-handed
currents [27],

Jμλ ≡
Z

dPjμλ ð3Þ

with dP≡ ðd3p=EpÞ and, to first order in ℏ, jμλ has the
following structure:

jμλ ¼ ½pμ þ ℏSμνn ð∂ν þ CλνÞ�fλn: ð4Þ

Here, the dipole moment tensor for massless particles is
defined as

Sμνn ≡ λ

2p · n
ϵμναβpαnβ; ð5Þ

where nμ is the frame vector introduced above.
Furthermore, Cλν in Eq. (4) is the contribution of the
collisions to the currents [27,28], called jump current in
Ref [27]. Given the structure of Eqs. (4) and (5), it is clear
that the jump current vanishes if one chooses the frame
vector to be nμ ∼ Cμ.
In order to estimate the collisional contributions to

the chiral currents, we shall rely on the relaxation time
approximation, implemented in such a way that the
covariance (i.e. independence of nμ) of Eq. (4) is guaran-
teed. In order to be consistent with the conservation of left-
and right-handed particles, equivalent to the conservation
of the vector and axial-vector currents, we require the
currents (3) to be separately conserved,

∂ · Jλ ¼ 0; ð6Þ

while the divergences of the integrands are equal to a
collision term, or equivalently,

∂ · jλ ¼ Cλ: ð7Þ

This equation is frame independent. At zeroth order in the ℏ
expansion, Eq. (7) reduces to

p · ∂fλð0Þ ¼ Cλð0Þ; ð8Þ

where we inserted Eq. (4). Therefore,Cλ at zeroth order can
be identified with the classical collision term in Eq. (1). In
order to ensure covariance of the currents (3), the distri-
bution functions have to transform under Lorentz trans-
formations as [27]

fλn − fλn0 ¼ −ℏSμνn
n0μ

p · n0
ð∂ν þ CλνÞfλð0Þ: ð9Þ

Indeed, in this case the difference δjμλ between the values of
jμλ in the frames characterized by nμ and n0μ becomes, up to
first order in ℏ,

δjμλ ¼ −pμℏSρνn
n0ρ

p · n0
ð∂ν þ CλνÞfλð0Þ

þ ℏðSμνn − Sμνn0 Þð∂ν þ CλνÞfλð0Þ

¼ ℏϵαβρμ
pαn0βnρ

2ðp · nÞðp · n0Þp · ð∂þ CλÞfλð0Þ; ð10Þ

where the zeroth-order distribution function fλð0Þ is inde-
pendent of nμ.1 Therefore, by requiring the frame inde-
pendence of the currents, we find the following relation
between Cλ in Eq. (7) and Cλð0Þ:

p · ∂fλð0Þ ¼ Cλð0Þ ≡ −p · Cλð0Þfλð0Þ: ð12Þ

This also implies that if fλð0Þ is not a solution of the
Boltzmann equation, as is the case in local equilibrium
(p · ∂feq ≠ 0), the current is frame dependent. In this sense,
the notion of local equilibrium is a frame-dependent
concept.
In order to find a simple expression for Cλ, it is natural to

use the relaxation time approximation at zeroth order,

p · ∂fλð0Þ ¼ p · u
fλð0Þ − fλð0Þeq

τR
; ð13Þ

where fλð0Þeq is the zeroth-order local-equilibrium distribu-
tion function. Inserting this into Eq. (12), we conclude that

Cλð0Þν ¼ −uν
fλð0Þ − fλð0Þeq

τRfλð0Þ
: ð14Þ

In principle, there could be also a contribution parallel topν;
however, this would vanish in Eq. (4), since Cν is contracted
with Sμνn . It is interesting to note that in the RTA, since Cλμ is
proportional to uμ, its contribution to the currents (3)
vanishes for nμ ¼ uμ. This means that the jump current
vanishes in the fluid rest frame, which therefore corresponds
to the“no-jump frame” of Ref. [27]. A similar result has also
been obtained in Ref. [29] when considering a Boltzmann
equation with a collision term involving 2-to-2 scattering.
We also need a reasonable approximation for the first

order correction Cλð1Þ. We require it to be proportional
to the difference between the first-order distribution
function and its equilibrium value, and in addition to be

1In order to get the second line, we used the identity (Schouten
identity)

ϵλναβpμ þ ϵναβμpλ þ ϵαβμλpν þ ϵβμλνpα þ ϵμλναpβ ¼ 0: ð11Þ
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frame-independent, since the left-hand side of Eq. (7) also
is. As a first attempt, we consider the following ansatz (see
also Ref. [29]):

Cλð1Þ ¼ −p · u
fλð1Þn − fλð1Þn;eq

τλR
þ Xn

fλð0Þ − fλð0Þeq

τλR
; ð15Þ

where Xn is an operator to be determined. By using Eq. (9)
for fn and fn;eq, one obtains the difference of the values of
Cλð1Þ between two frames as

δCλð1Þ ¼ p · u
τR

Sμνn
n0μ

p · n0
ð∂ν þ CλνÞðfλð0Þ − fλð0Þeq Þ

þ ðXn − Xn0 Þ
fλð0Þ − fλð0Þeq

τR
: ð16Þ

Now taking Xn ≡ −uμS
μν
n ð∂ν þ CλνÞ, we get2

Xn − Xn0 ¼ −uμ
�
pμSρνn

n0ρ
p · n0

þ ϵαβρμ
pαn0βnρ

2ðp · nÞðp · n0Þp
ν

�

× ð∂ν þ CλνÞ ð17Þ

and therefore, assuming that τR is constant and fλð0Þ is a
solution of the Boltzmann equation,

δCλð1Þ ¼ uμϵαβρμ
pαn0βnρ

2ðp · nÞðp · n0Þp
νð∂ν þ CλνÞ

fλð0Þeq

τR

¼ uμϵαβρμ
pαn0βnρ

2ðp · nÞðp · n0Þp
ν

�
∂ν − uν

fλð0Þ − fλð0Þeq

τRfλð0Þ

�

×
fλð0Þeq

τR
: ð18Þ

Since this does not vanish, it means that the ansatz Eq. (15)
leads to a frame-dependent form of Cλ, which does not
fulfill our requirement. The difficulty is that local equilib-
rium breaks the frame independence of the currents, as we
already saw from Eq. (12). Thus local equilibrium can be
defined only in a specific frame. In order to ensure frame
independence of the currents near local equilibrium, we
need to specify the frame choice in the relaxation time
approximation and force the distribution function to
approach local equilibrium as defined in that frame. The
only natural choice for this frame is the fluid rest frame, i.e.,
we define

Cλð1Þ ¼ −p · u
fλð1Þn − fλð1Þu;eq

τR
þ Xn

fλð0Þ

τR
; ð19Þ

where we also made use of Xu ¼ 0. Now we have

δCð1Þ
λ ¼ p · u

τR
Sμνn

n0μ
p · n0

ð∂ν þ CλνÞfλð0Þ þ ðXn − Xn0 Þ
fλð0Þ

τR

¼ 0; ð20Þ

since f is a solution of the Boltzmann equation. Thus, we
obtained a covariant relaxation time approximation for
chiral kinetic theory.

III. BJORKEN SYMMETRY

After having obtained an expression for the collision term
which guarantees the frame independence of observables,we
may specify nμ without loss of generality.Wewill choose the
fuid rest frame, i.e. f ≡ fu in the following.3 We aim at
describing a system of chiral particles undergoing a longi-
tudinal boost-invariant expansion in the z direction, the
so-called Bjorken flow [75]. Furthermore, we assume trans-
lational invariance in the x-y plane, such that fλ ¼
fλðt; z;pÞ. However, we allow the momentum distribution
to break parity in the x-y plane, i.e., fðpxÞ ≠ fð−pxÞ,
fðpyÞ ≠ fð−pyÞ in general. On the other hand, we assume
parity invariance in the z direction, fðpzÞ ¼ fð−pzÞ.
In order to implement boost invariance along the z

direction for the distribution functions fλ, we require

fλðt; z;p⊥; pzÞ ¼ f0λðτ;p⊥;p0
zÞ

¼ fλðτ;p⊥;p0
zÞ þ ℏSμνu

u0μ
p · u0

∂νfλðτ;p⊥; p0
zÞ

ð21Þ

with τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
, p0

z ≡ ðpz − Epz=tÞγ, γ ≡ t=τ, Ep ≡
p0 ≡ ffiffiffiffiffi

p2
p

, uμ ≡ ð1=τÞðt; 0; 0; zÞ, and u0μ ≡ ð1; 0Þ. Here
we denoted the distribution functions defined in the frames
corresponding to uμ and u0μ by f and f0, respectively, and
take into account the fact that fλ does not transform as a
scalar under Lorentz transformations but acquires an addi-
tional term from Eq. (9). Using the explicit form of Sμν in
Eq. (5), we obtain

fλðt; z;p⊥; pzÞ ¼ fλðτ;p⊥; p0
zÞ þ

ℏ
2p0ðtp0=τ − zpz=τÞ

× ϵij03p0
j
z
τ
∂ifλðτ;p⊥; p0

zÞ
¼ fλðτ;p⊥; p0

zÞ; ð22Þ2The motivation underlying this ansatz is as follows: In order
to be able to cancel the first term in Eq. (16), Xn has to be
proportional to ∂ν þ Cλν. Furthermore, since it is related to the spin
exchange in the frame n, it is natural to choose it proportional to
Sμνn . The only vector at our disposal to contract the open index is
uμ, since Sμνn is orthogonal to both p and n.

3By choosing the fluid rest frame we mean here that we define
the distribution function in the frame which is at rest with the
fluid.
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where fλ is assumed to be independent of x and y and hence
the second term after the first equals sign vanishes. Thus,
although the distribution function does not transform as a
Lorentz scalar in general, it does here for the special case of
a boost along the z axis.
One can verify that, for nμ ¼ uμ, the term of OðℏÞ in

Eq. (4) does not contribute to the divergence of the current
in Eq. (7). To do so, we use the antisymmetry of the Levi-
Civita tensor (hidden in Sμν), and note that neither uμ nor f
depend on x or y. Then using Eqs. (13), (19), and (22),
we find that the distribution functions for left- and right-
handed particles follow the well-known Boltzmann equa-
tion for Bjorken flow [80],4�

∂τ −
pz

τ
∂pz

�
fλ ¼ −

fλ − fλeq
τR

; ð23Þ

where the local-equilibrium distribution function

fλeq ¼
1

2ð2πÞ3 e
βðμλ−EpÞ ð24Þ

depends on the local effective temperature T with
β≡ 1=T and chemical potential μλ, which are determined
by matching conditions. Thus, the left- and right-handed
chemical potentials are determined by the conditionZ

d3pfλ ¼
Z

d3pfλeq: ð25Þ

Similarly, the temperature is determined by

X
λ¼�1

Z
d3pp0fλ ¼

X
λ¼�1

Z
d3pp0fλeq: ð26Þ

In principle, the local-equilibrium distribution function
may contain also a term proportional to Sμνu and the thermal
vorticity [27]. However, the latter vanishes due to the
assumption of translational invariance.
While it is possible to solve numerically Eq. (23), in this

paper we shall proceed by first deriving from it equations of
motion for the physically relevant quantities (currents,
energy-momentum tensor). These quantities are related
to simple moments of the distribution function, and their
equations of motion lend themselves to simple approx-
imations which make them easy to solve, while providing a
good representation of the exact solution.

IV. MOMENTS AND EQUATIONS OF MOTION

In chiral hydrodynamics, we are interested in the vector
(JμV) and axial-vector (JμA) currents,

JμV ≡ X
λ¼�1

Jμλ ; JμA ≡ X
λ¼�1

λJμλ : ð27Þ

As discussed above, to first order in ℏ, these currents are
frame independent, and we may therefore, without loss of
generality, choose to express them in the fluid rest frame
nμ ¼ uμ. We get then

JμV ¼
X
λ¼�1

Z
dP

�
pμ þ ℏλϵμzα0

pα

2Ep
∂z

�
fλ;

JμA ¼
X
λ¼�1

λ

Z
dP

�
pμ þ ℏλϵμzα0

pα

2Ep
∂z

�
fλ: ð28Þ

Note that the temporal components J0A=V have only equi-
librium contributions, fixed by the matching conditions
(25), while the spatial components are purely dissipative. In
addition to the currents, we need to consider the canonical
energy-momentum tensor. To first order in ℏ, this reads, in
the fluid rest frame [27]

Tμν ¼
X
λ¼�1

Z
dPpν

�
pμ þ ℏλϵμzα0

pα

2Ep
∂z

�
fλ: ð29Þ

As mentioned earlier, rather than solving the kinetic
equation for f, we shall transform it into a set of equations
for moments of f. To this aim, we start by expressing the
currents in terms of orthogonal chiral moments, given by
integrals of spherical harmonics Yl

nðθ;ϕÞ. Using ∂zfλ ¼
−ðEp=τÞ∂pz

fλ and assuming that fλ is symmetric under
pz → −pz and under the exchange of px and py, we obtain
the following expressions for the moments of the currents:

J0A¼
X
λ¼�1

λJ λ
00; JzA¼0; JxA¼−

X
λ¼�1

λReJ λ
11¼JyA;

J0V ¼
X
λ¼�1

J λ
00; JzV ¼0; JxV ¼−

X
λ¼�1

ReJ λ
11¼JyV; ð30Þ

and for those of the energy-momentum tensor

T00 ¼
X
λ¼�1

T λ
00; Tzz ¼

X
λ¼�1

�
2

3
T λ

20 þ
1

3
T λ

00

�
;

Txx ¼ 1

3

X
λ¼�1

ðT λ
00 − T λ

20Þ ¼ Tyy; Txy ¼ 1

6

X
λ¼�1

Im T λ
22 ¼ Tyx;

Txz ¼ −
1

15

ℏ
τ

X
λ¼�1

λRe ð4J λ
11 þ J λ

31Þ ¼ −Tyz; Tzx ¼ 0 ¼ Tzy: ð31Þ

4Note that due to the boost invariance we need to consider only the z ¼ 0 slice. All quantities are then automatically expressed in the
fluid rest frame, which at the z ¼ 0 slice is identical to the lab frame.

CHIRAL HYDRODYNAMICS OF EXPANDING SYSTEMS PHYS. REV. D 109, 056012 (2024)

056012-5



Note that Ti0 ¼ T0i ¼ 0. Here, we have defined the chiral
moments

J λ
nl ≡

Z
d3pYl

nðθ;ϕÞfλ;

T λ
nl ≡

Z
d3ppYl

nðθ;ϕÞfλ; ð32Þ

where Yl
nðθ;ϕÞ≡ Pl

nðcos θÞeilϕ is a spherical harmonic,
Pl

n is an associated Legendre polynomial, θ is the polar
angle with cos θ≡ pz=p, p≡ Ep, and ϕ is the azimuthal
angle. The moments T λ

ð2nÞ0 are identical to the moments

Ln, studied in previous works [67]. Additional moments
appear in Eqs. (30) and (31), which have not been
considered before. They arise from the odd parity compo-
nents of the momentum distribution and chiral effects of
order ℏ. Note in particular that parity breaking induces a
dependence of the distribution function on the azimuthal
angle ϕ, hence the use of spherical harmonics instead of
Legendre polynomials in the definition of moments. In the
following, we derive the equations of motion for these new
moments. Note that the equations of motion for the
moments T λ

00 and T
λ
20 are identical to those of the moments

L0 and L1 of Ref. [81]. They will be recalled later [see
Eqs. (55) below].
Using Eq. (23) and the properties of the associated

Legendre polynomials, we obtain the equations of motion
for the moments J λ

nl:

∂τJ λ
nl ¼ −

1

τ
ðanlJ λ

nl þ bnlJ λ
ðn−2Þl þ cnlJ λ

ðnþ2ÞlÞ

−
J λ

nl − J λ
nl;eq

τR
; ð33Þ

where the coefficients anl, bnl, and cnl are given in
Appendix A. They fulfill the relation

anl þ bnl þ cnl ¼ 1þ l: ð34Þ

We see that the equations of motion for different values of
l, as well as those for even and odd powers of n decouple
from each other in the collisionless limit τR → ∞.
Furthermore, we have b00 ¼ c00 ¼ 0, so that the equation
of motion for J λ

00 decouples from all others. For nþ l
even, we have the additional relation

anlPl
nð0Þ þ bnlPl

n−2ð0Þ þ cnlPl
nþ2ð0Þ

¼ Pl
nð0Þ; nþ leven: ð35Þ

On the other hand, for nþ l odd we find

anlðnþ lÞPl
n−1ð0Þ þ bnlðn − 2þ lÞPl

n−3ð0Þ
þ cnlðnþ 2þ lÞPl

nþ1ð0Þ
¼ 2ðnþ lÞPl

n−1ð0Þ; nþ lodd: ð36Þ

Similarly, the equation of motion for the moments T λ
nl

reads

∂τT λ
nl ¼ −

1

τ
ðānlT λ

nl þ b̄nlT λ
ðn−2Þl þ c̄nlT λ

ðnþ2ÞlÞ

−
T λ

nl − T λ
nl;eq

τR
; ð37Þ

with the coefficients (see Appendix A) fulfilling the
relation

ānl þ b̄nl þ c̄nl ¼ 2þ l; ð38Þ

as well as a relation analogous to (35) for nþ l even, and
(36) for nþ l odd, respectively.

V. COLLISIONLESS LIMIT

The strategy for solving (approximately) the kinetic
equation is to transform it into a truncated set of equations
for appropriate moments of the distribution function. In the
spirit of Ref. [67], we look for a reduced set of coupled
equations for the moments which are capable of describing
both the early time collisionless regime and the late time,
hydrodynamic regime. To that aim, in this section, we
examine general features of the solutions of the moment
equations in the collisionless regime. More technical details
are given in Appendix B. Then we discuss a simple
truncation that provides a reasonable approximation for
the lowest two moments J λ

11 and J λ
31.

In the collisionless limit, all the chiral moments exhibit
simple power law behaviors at early and late times, as
discussed in Appendix B.5 By early and late time we mean
respectively τ ≪ τ0 and τ ≫ τ0, where τ0 is the unique
timescale that appears in the collisionless regime (τ0 will be
chosen as the initial time of the evolution, i.e., the time at
which one fixes the initial values of the moments). These
simple regimes, which are deduced in Appendix B from the
known form of the free-streaming solution of the kinetic
equation, emerge in the solution of the coupled equations
for the moments thanks to the relations (34) and (38) on
the one hand, and the relations (35) and (36) on the other
hand. Note however that these regimes may be only

5Following the terminology of Ref. [67] we shall refer to these
behaviors as fixed-point behaviors, although the notion of fixed
point appears only naturally in the context of the nonlinear
equation that drives the diagonal components of the energy-
momentum tensor. Thus, the late time power law of the moments
will be referred to as the stable free-streaming fixed point.
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approximately reproduced when a truncation of the
moment equations is made.
Consider the early time behavior, τ ≪ τ0. For l ¼ 0, all

the moments with n odd are equal, and so are the even ones,
which follows from Eq. (34). Furthermore, Eq. (33) indi-
cates that all these moments diverge as τ0=τ when τ → 0.
Similarly, from Eqs. (38) and (37) we deduce that the T λ

nl

diverge as ðτ0=τÞ2. For l > 0, one needs to take into
account that Pl

nðcos θÞ ¼ 0 for n < l. Thus, for n ¼ l or
n ¼ lþ 1, the terms ∝ bnl in Eq. (33) or ∝ b̄nl in Eq. (37)
do not contribute to the equations of motion. It follows that
the moments with l > 0 are proportional to each other,
J λ

nl=J
λ
ml ¼ Bnl=Bml, with the proportionality constants

Bnl satisfying the following relations (cf. Appendix B):

Bnlanl þ Bðn−2Þlbnl þ Bðnþ2Þlcnl ¼ 1 − l;

Bnlānl þ Bðn−2Þlb̄nl þ Bðnþ2Þlc̄nl ¼ 2 − l; ð39Þ

where

Bnl ≡ lim
x→1

Pl
nðxÞ

ð1 − x2Þl=2 ð40Þ

is a finite number. Note that, for l ¼ 0, the two equa-
tions (39) are identical to Eqs. (34) and (38), respectively.
Similar considerations apply to the late time regime,

τ ≫ τ0, whose properties are governed by Eqs. (35) and
(36). There we have J λ

nl=J
λ
ml ¼ Pl

nð0Þ=Pl
mð0Þ for nþ l

andmþ l even, and J λ
nl=J

λ
ml ¼ ½ðnþ lÞPl

n−1ð0Þ=ðmþ
lÞPl

m−1ð0Þ� for nþ l and mþ l odd. All chiral moments
with nþ l even decay as τ−1, while those with nþ l odd
decay as τ−2, as can be deduced from Eqs. (35) and (36). The
moments T λ

nl exhibit a similar behavior (see Appendix B).
We focus now on the equations of motion for the

moments J λ
11 and J λ

31, which are involved in the calcu-
lation of the currents and of some of the components of the
energy-momentum tensor [see Eqs. (30) and (31)]. These
equations are the first in an infinite set of coupled
equations. Our goal is to find a suitable truncation of this
infinite set of equations, which preserves the essential
features of the collisionless dynamics, in particular its late
time behavior. The equations of motion for the other
moments in Eqs. (30) and (31) can be treated along similar
lines, as will be discussed in the next section.
The equation for J λ

11 reads

∂τJ λ
11 ¼ −

1

τ
ða11J λ

11 þ c11J λ
31Þ; ð41Þ

with a11 ¼ 4=5 and c11 ¼ −2=15. This equation couples
J λ

11 to J λ
31. The next equation in the hierarchy, that for

J λ
31, couples J λ

31 to J λ
11 and J λ

51, and so on. More
generally, we can write the set of equations of motion

up to that for J λ
ð2n−1Þ1, with n ≥ 1, in the following matrix

form,

τ∂τJ⃗
λ ¼ HJ⃗ λ ð42Þ

with ðJ⃗ λÞq ≡ J λ
ð2q−1Þ1, Hqq0 ≡ −δqq0að2q−1Þ1 − δqðq0þ1Þ

× bð2q−1Þ1 − δqðq0−1Þcð2q−1Þ1, and 1 ≤ q ≤ n. The exact sol-
ution is reproduced by keeping all moments, that is, in the
limit n → ∞, where n is the dimension of the matrix H. In
practice a truncation at a finite value of n is necessary. The
simplest of these truncations, which we refer to as the “naive
truncation,” consists in the following. For a finite value of n,
the last equation, that for J λ

ð2n−1Þ1, involves the moment

J λð2nþ1Þ1. The naive truncation consists in closing the
hierarchy by setting equal to zero this moment J λð2nþ1Þ1.
Then we are left with a finite dimensional n × n linear
problem which is easily solved.
The eigenvalues of H depend on n, and in particular on

the parity of n. Indeed, it turns out that odd truncations, that
is truncations with n odd, have one real eigenvalue. This
eigenvalue is equal to −1 in the limit n → ∞. The
components of the corresponding eigenvector satisfy the
relation J λð2q−1Þ1 ¼ Pð2q−1Þð0ÞJ λ

11 with q ≤ n, which
follows from Eqs. (36) and (B8). They decay as τ−1 at
large τ, as expected of the exact behavior in the collision-
less regime. On the other hand, truncations with n even
have only pairs of complex conjugate eigenvalues, and do
not allow us to correctly reproduce the late time behavior of
J λ

11. For this reason we limit ourselves to odd truncations
in the following.
In the case of J λ

11 the lowest order naive truncation
(n ¼ 1) consists in dropping J λ

31 in Eq. (41). However this
does not preserve the correct late time behavior since
a11 ≠ 1. One could be tempted to solve the coupled
equations for both moments J λ

11 and J λ
31, dropping J λ

51

in the equation for J λ
31. But this corresponds to an even

(n ¼ 2) truncation which also spoils the late time behavior,
as we have argued. The next possible truncation is n ¼ 3, in
which J λ

71 is set to zero. One may expect that by increasing
n the naive truncation will provide a reasonably accurate
representation of the exact solution, at least for the lowest
moments. However the convergence appears to be slow,
and nonuniform. We shall therefore adopt a different
strategy.
In fact, what we need is a reasonable approximation for

the late time behavior of the moments. That is, we need an
approximation valid at times τ ≫ τ0, in particular in the
case where τR ≫ τ0 so that the collisionless regime is fully
developed before collisions start to act (if τ0 is close to τR,
the system enters quickly the hydro regime and the
collisionless regime does not play much of a role). In that
perspective one may view the effect of the higher moments
as simply correcting the value of the moment J λ

31 that
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appears in the equation forJ λ
11, in such a way as to preserve

its collisionless fixed-point behavior for J λ
11. Thus we are

led to the following ansatz for J λ
31:

J λ
31 ≃ −

3

2
J λ

11: ð43Þ

This leads to the following equation for J λ
11:

∂τJ λ
11 ¼ −

1

τ
J λ

11; ð44Þ

whose solution is simply the fixed-point behavior
J λ

11 ∼ τ−1. Thus, by forcing the relation between J λ
31

and J λ
11 to be that valid in the vicinity of the collisionless

fixed point, we recover trivially the fixed-point behavior of
J λ

11. As already mentioned, this procedure amounts to a
simple renormalization of the coefficient in front of J λ

11 in
Eq. (41): a11 ¼ 4=5 ↦ 4=5þ ð−3=2Þ × ð−2=15Þ ¼ 1,
where we have used c11 ¼ −2=15. Note that the purpose
of this renormalization is to compensate for the error
induced by the truncation of the moment equations at
finite order. If instead we were solving the full set of
moment equations, a renormalization would not be needed.
To check that Eq. (44) is a reasonable approximation, we
compare the solution of Eq. (44) with the exact solution
obtained by using the initial condition described in
Appendix B. In Fig. 1, we show the exact solution for
tJ λ

11 and the solutions of different finite sets of moment
equations. One sees that, for the chosen initial condition,
the collisionless fixed point is quickly reached by the exact
solution, already for time τ ≳ 3τ0 (recall that at the
collisionless fixed-point tJ λ

11 is independent of time).
The behavior of the solution is well reproduced with a
finite set of moments, at least up to some time (for τ ≲
100τ0 a good convergence is reached with n ¼ 11
moments; for larger times, a comparable convergence
would require a higher number of moments). Of course,
the solution of Eq. (44) ignores the transient regime
between the initial time τ0 and the time at which the

1=τ behavior is reached: if it would be plotted in Fig. 1, it
would be a horizontal line starting at the initial value. But
the early transient regime is not important for the present
discussion. The same remark applies to the ratio J λ

31=J
λ
11

which is displayed in Fig. 2. One sees that, after a relatively
short transient regime, this ratio converges toward its fixed-
point value given in Eq. (43). In fact, we can use this fixed-
point value as an approximation for J λ

31 itself, not only in
the right-hand side of Eq. (44). This is because J λ

31 enters
the energy-momentum tensor as a first order correction in
ℏ, so that a small error on J λ

31 will have little consequence
anyway.

VI. ANALYSIS OF EQUATIONS OF MOTION
AND TRUNCATION

We now extend our analysis to all the moments that
appear in the expressions (30) and (31), and include the
effect of collisions. Closed equations of motion will be
obtained by using a strategy similar to that used in the
previous section to truncate the hierarchy. This closed set of
equations constitutes an effective theory for just the
relevant moments, which include in particular all the
hydrodynamic fields. This effective theory describes
the transition from the early time collisionless regime, to
the hydrodynamic regime at late time. Note that there are
two timescales, the initial time τ0 and the collision time τR.
We shall assume in the present discussion that τ0 ≪ τR, so
that there is enough time for a collisionless regime to fully
develop.
We start with the equations of motion for J λ

00 which is
involved in the calculation of the axial and vector charges
[see Eqs. (30)]:

∂wJ λ
00 ¼ −

1

w
J λ

00; ð45Þ

where we have set w≡ τ=τR. Furthermore, we used the
relation J λ

00 ¼ J λ
00;eq, which follows from the matching

condition (25). Since this equation is closed already, no
truncation is needed in this case, and the solution is
simply J λ

00ðwÞ ∼ 1=w.

FIG. 1. The quantity t × J λ
11ðwÞ, with t≡ τ=τ0, obtained from

the exact solution, and compared to the solution of a finite set of n
moment equations.

FIG. 2. The ratio J λ
31ðtÞ=J λ

11ðtÞ obtained from the exact
solution, as a function of t ¼ τ=τ0.
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Let us turn now to the equation for T λ
22:

∂wT λ
22 ¼ −

1

w

�
6

7
T λ

22 −
2

35
T λ

42

�
− T λ

22; ð46Þ

where we used the fact that T λ
22 vanishes in equilibrium. At

early time, w ≪ 1, the last term in the right-hand side,
which represents the effect of the collisions, is much
smaller than the first one, which describes the expansion.
Since we know that the initial collisionless dynamics
quickly bring the moments to their free-streaming stable
fixed point, following Ref. [67], and also along the same
lines as in the previous section, we approximate T λ

42 in the
right-hand side of Eq. (46) by its value at the stable free-
streaming fixed point, i.e., we set

T λ
42 ≃

P2
4ð0Þ

P2
2ð0Þ

T λ
22: ð47Þ

This guarantees that, in the absence of collisions, the
moment T λ

22 will have the correct behavior for τ ≫ τ0.
Again, this can be viewed as a renormalization of the
coefficient of T λ

22 in Eq. (46): 6=7 ↦ 1. With this iden-
tification, the equation for T λ

22 in the absence of collisions
becomes indeed ∂wT λ

22 ≃ − 1
w T

λ
22, whose solution is

T λ
22 ∼ 1=w, as expected near the stable free-streaming

fixed point (see Sec. V).
At late times (w ≫ 1) the collision term dominates

the evolution of the system and the equation for T λ
22

becomes

∂wT λ
22 ≃ −T λ

22: ð48Þ

with the solution T λ
22 ∼ e−w. Thus, the dissipative moments

decay exponentially when approaching equilibrium. The
reason for this exponential decay is the absence of
equilibrium contributions in the equations of motion.
This also implies that there is no expansion in inverse
powers of w (gradient expansion) for these moments
around local equilibrium.
The complete equation that accounts for the transition

region between the vicinity of the free-streaming fixed
point and the hydrodynamic regime, is therefore simply

∂wT λ
22 ≈ −

1

w
T λ

22 − T λ
22: ð49Þ

The solution is

T λ
22 ∼ w−1e−w: ð50Þ

This solution exhibits nicely the transition from the colli-
sionless regimewhere the first factor∼1=w dominates, to the
collision dominated regime with exponential damping.

The equation for the moment J λ
11 was already discussed

in the previous section. With collisions, this equation
becomes

∂wJ λ
11 ¼ −

1

w
J λ

11 − J λ
11; ð51Þ

an equation which has the same structure as the equation
for T λ

22, Eq. (49), that we have just discussed. Its solution
reads

J λ
11 ∼ w−1e−w: ð52Þ

In Fig. 3 we plot the solution for J λ
11 obtained from the

fixed-point truncation at n ¼ 1 compared to the exact
solution (i.e., the solution for n ¼ 11

6), with different
initial conditions. We see that the dependence on the initial
conditions is very weak and already the lowest-order
truncation is almost identical to the exact solution.
Furthermore, we show in Fig. 4 the moment J λ

31 obtained
from J λ

31 ¼ −ð3=2ÞJ λ
11 [see Eq. (44)] compared to the

exact solution. If the system is initialized at the fixed point,
the curves are identical. The sensitivity to the choice of
initial condition is rather modest and quickly disappears as
time increases.
With the results obtained above and the equations of

motion for T λ
00 and T λ

20 derived already in previous work
[67], we are ready to write down the closed set of equations
for chiral hydrodynamics which capture the transition from

FIG. 3. Comparison of J λ
11ðwÞ, as obtained from the lowest-

order fixed-point truncation, Eq. (51), to the exact solution
obtained here by solving the n-moment equations with
n ¼ 11. The vertical scale is arbitrary, with the initial value of
J λ

11 chosen to be 10. The initial values of the other moments are
taken to be either their collisionless fixed-point values, or to differ
from those by �10%. As can be seen, the agreement with the
exact solution is almost perfect and the sensitivity to the initial
value of the moments is very weak.

6Note that the exponential damping makes the convergence of
the moment expansion considerably better than in the collision-
less regime. Thus, we may, in contrast to the free-streaming case,
consider the solution for n ¼ 11 as the exact solution instead of
solving the Boltzmann equation itself.
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the collisionless fixed point to the hydrodynamic regime.
Note first that the second term in Eq. (29), of order ℏ, does
not contribute to the energy-momentum conservation,

∂μTμν ¼
X
λ¼�1

Z
dPpνp · ∂fλ; ð53Þ

since ∂xEp ¼ ∂yEp ¼ 0 as a consequence of the symmetry
of the present setup. Therefore, we can ensure energy-
momentum conservation by using the Landau matching
conditions for the dominant part of the energy-momentum
tensor

uμ
X
λ¼�1

Z
dPpνpμfλ ¼ uμ

X
λ¼�1

Z
dPpνpμfλeq; ð54Þ

identically to what was done without chiral degrees of
freedom in Ref. [67]. Thus, the equations of motion for the
diagonal components of the energy-momentum tensor can
be taken from these references without modifications [67],7

∂wT λ
00 ¼ −

1

w

�
4

3
T λ

00 þ
2

3
T λ

20

�
;

∂wT λ
20 ¼ −

1

w

�
31

15
T λ

20 þ
8

15
T λ

00

�
− T λ

20; ð55Þ

where the factor 31=15 in the second equation includes the
same kind of renormalization as discussed above
(38=21 ↦ 31=15, see [67]). Note that since T λ

00 is nonzero
in local equilibrium, both T λ

00 and T λ
20 decay with power

laws in the hydrodynamic regime. In contrast to J λ
00, for

T λ
00 the exponent of this power law differs between the

free-streaming regime with T λ
00 ∼ τ−1 and the hydrody-

namic regime with T λ
00 ∼ τ−4=3.

The equations of motion for the remaining components
of the chiral currents are obtained by inserting Eqs. (49) and
(51) into Eqs. (30) and (31). The set of equations of motion
for chiral hydrodynamics then reads

∂wJ0A ¼ −
1

w
J0A;

∂wJxA ¼ −
1

w
JxA − JxA;

∂wTxx ¼ −
1

w
Txx − Txx;

∂wTxz ¼ −
2

w
Txz − Txz;

∂wTxy ¼ −
1

w
Txy − Txy: ð56Þ

The equations of motion for JμV are identical to those for JμA.
The set of equations (56) can be solved to obtain the
(axial-)charge current and energy-momentum tensor for a
chiral fluid at any time of the Bjorken expansion. A
comparison of the results obtained by solving these
equations to the exact solution shows the same quality
as that made earlier for J λ

11 and J λ
31 (see Figs. 3 and 4).

We conclude this section by summarizing the two main
results that we have obtained so far. First, from Eq. (45) we
find that the (axial-)charge density, given by a linear
combination of J λ

00 with λ ¼ �1 [see Eqs. (30)], decouples
from all other moments and decays 1=τ during the full
evolution, from free streaming throughout the transition to
hydrodynamics. Second, the spatial components of the
(axial-)vector current and the nondiagonal components of
the energy-momentum tensor decay as power laws for free
streaming, but exponentially in the hydrodynamic regime.
This exponential decay results in a very quick damping of
the relevant moments. Therefore, any initial values of these
moments will have disappeared at freeze-out in our setup.
On the other hand, if vorticity or magnetic fields were
included in the formalism, they would lead to equilibrium
contributions to the chiral currents due to the chiral vortical
and chiral magnetic effects [9–15], respectively. The
equilibrium currents then would appear linearly on the
right-hand sides of each equation in (56), rendering them
inhomogeneous differential equations and preventing the
exponential decay at late time. In that case, all currents
would decay as power laws in the hydrodynamic regime,
and hence survive much longer. In turn, any measurement,
in heavy-ion collisions, of nonvanishing spatial compo-
nents of the (axial-)vector current or of nondiagonal
components of the energy-momentum tensor, would be
an indication of the presence of either vorticity or electro-
magnetic fields, instead of being a mere consequence of

FIG. 4. Comparison between the exact solution (obtained
with n ¼ 11 moments) and the approximate solution J λ

31 ¼
ð−3=2ÞJ λ

11 (“fixed at fixed point” corresponding to what is
referred to as “attractor solution” in [67]): the agreement is
perfect. Solutions with initial conditions where the moments
differ from their fixed-point values by �10% approach the
attractor very quickly.

7In the notation of Ref. [67]
P

λ T
λ
00 ≡ L0 and

P
λ T

λ
20 ≡ L1.
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specific initial condition. Further investigation of these
effects beyond equilibrium is left for future work.

VII. COMPARISON TO 14-MOMENT
APPROXIMATION

An interesting connection can be observed when com-
paring the results of Sec. VI to those of the Israel-Stewart
14-moment approximation [82]. For the latter, only the 14
moments, those which contribute to the charge current and
to energy-momentum tensor, are taken into account, while
the moments of rank 3 or higher in the spatial momentum
are simply neglected.8 Here we merely point out the
connection between our present approach and that based
on the 14-moment approximation and refer to Appendix D
for a more complete discussion. Consider for instance the
moment T λ

42. This is given by

T λ
42 ¼

15

2

Z
d3pEpð7cos2θ − 1Þsin2θe2iϕfλ

≃ −
5

2
T λ

22 ¼
P2

4ð0Þ
P2

2ð0Þ
T λ

22; ð57Þ

which is the same as in the fixed-point truncation (47).
Analogous relations are valid for all other moments, as long
as the lowest-order truncation is used and the moments
vanish in equilibrium.We conclude that in order to reproduce
the correct free-streaming fixed points within the lowest-
order truncation, one should simply drop all terms which
depend on higher orders of pz=Ep in the Legendre poly-
nomials rather than approximating them. The reason is that
the term pzτ=τ0 in the distribution function (B1) in the free-
streaming regime suppresses all higher-order terms of the
Legendre polynomials,Pl

nðpz=EpÞ ∼ Pl
nð0Þ for nþ l even,

or Pl
nðpz=EpÞ ∼ Pl

n−1ð0Þ for nþ l odd. Therefore, the
Bjorken expansion leads tovanishing higher-ordermoments,
see also Appendix D. This behavior is the same as for the
usual moments without chirality. However, as soon as
coupled equations of motion for more than one moment
are considered, as, e.g., is the case for the moments T λ

00 and
T λ

20, which both appear in the energy-momentum tensor, the
situation is different. In this case, the truncation is not unique,
and the nonorthogonality of the Israel-Stewart moment starts
to play a role. Furthermore, for moments which are nonzero
at the hydrodynamic fixed point, equilibrium contributions
have to be taken care of. We refer to Appendix D for a more
detailed discussion.

VIII. CONCLUSIONS

In this paper, we studied the equations of motion for
chiral hydrodynamics derived from kinetic theory in a

boost-invariant expanding system. We showed that in chiral
kinetic theory the usual relaxation-time approximation has
to be modified in order to take into account the side-jump
effect. In this approach, we found that the no-jump frame,
in which the contribution from the side-jump effect to the
chiral currents vanishes, is given by the fluid rest frame. We
also pointed out that the concept of local equilibrium is
frame dependent, whereas observables are frame indepen-
dent, as long as they are obtained from a distribution
function which is a solution of the Boltzmann equation. For
convenience, we chose the fluid rest frame for the deriva-
tion of the equations of motion. We then showed that
imposing Bjorken symmetry significantly simplifies the
Boltzmann equation, formally reducing it to its well-known
form in the absence of chiral degrees of freedom.
We derived equations of motion for the chiral moments,

which correspond to linear combinations of the compo-
nents of the conserved currents. These moments can be
written as integrals over the momentum angles expressed
through spherical harmonics Yl

nðθ;ϕÞ, and weighted by the
distribution function and some fixed power of the momen-
tum. The equations of motion couple only chiral moments
with the same powers of p, the same l, and either even or
odd values of n, respectively. The coefficients in each set of
equations of motion fulfill two important relations, corre-
sponding to the two free-streaming fixed points associated
respectively to the early and late time behaviors of the
moments in the collisionless regime. We analyzed these
fixed points by studying the exact solutions for the chiral
moments in the collisionless regime. In particular, near the
stable fixed point, moments with nþ l even were shown to
decay as 1=τ, while those with nþ l odd decay faster by an
additional power 1=τ. We also found that naive truncations
of the equations, consisting in dropping moments beyond a
certain order, converge only slowly, and yield results that
depend on whether an even or odd number of moments
is kept.
We then discussed the full equations of motion. A special

case is given by those for J λ
00, corresponding to charge and

axial-charge densities. These quantities decouple from all
other chiral moments in the exact equations of motion.
Taking into account the matching conditions, these equa-
tions of motion are identical to those of ideal chiral
hydrodynamics at any time of the expansion, even in the
free-streaming regime. In the other equations of motion, a
truncation procedure is needed in order to close the
respective set of equations. We argued that in the vicinity
of the stable free-streaming fixed point, we can take into
account the effects of the neglected higher moments by a
redefinition of a transport coefficient, resulting in the decay
of the chiral moments with the correct power law at the
stable fixed point. In the hydrodynamic regime all parity-
violating moments decay exponentially, so that the precise
value of the coefficients of the free parts of the equations of
motion become unimportant. Thus, in the hydrodynamic

8Strictly speaking, one should call this approximation “2 × 14-
moment approximation” in the chiral case, taking into account the
moments of both chiralities.
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regime, the redefinition of transport coefficients does not
affect the late-time behavior of the conserved currents. The
modified equations of motion then provide a very good
agreement with the exact solution throughout the evolution
from the vicinity of the free-streaming fixed point to
the hydrodynamic regime. Using these truncations, we
obtained a closed set of equations of motion for all compo-
nents of the conserved currents. Finally, we showed that the
same equations of motion as derived in this paper can also be
obtained from the 14-moment approximation. The reason is
that, in the 14-moment approximation, the moments that
involve high powers of pz=Ep are simply dropped, consis-
tently with the solution at the free-streaming fixed point
where the distribution function is peaked around pz ¼ 0.
The present formulation of chiral hydrodynamics, just

like conventional transient hydrodynamics, features free-
streaming fixed points and attractor solutions, and therefore
is applicable already at early time, i.e., before local
equilibrium is reached. Furthermore, in the setup used in
this paper, any parity-violating moments decay exponen-
tially with τ=τR. This means that any initial global
polarization of massless particles, which is not parallel
to the fluid velocity, is unlikely to survive until freeze-out in

a heavy-ion collision, unless the relaxation time τR is very
large. One should however note that the assumption of
translational invariance prohibits a nonzero fluid vorticity
and is therefore only applicable to central heavy-ion
collisions. On the other hand, it is known that in noncentral
heavy-ion collisions, large values of the vorticity can be
reached [1]. It will therefore be an interesting extension of
this work to relax the assumption of translational invariance
and describe a system with vorticity. It is expected that in
this case, also parity-violating moments decay with power
laws in the hydrodynamic regime, due to equilibrium
contributions from the vorticity. Furthermore, while in this
paper we considered massless particles with chiral degrees
of freedom, it will be interesting to extend this study to
massive particles with spin.
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APPENDIX A: COEFFICIENTS OF THE MOMENT EQUATIONS

The coefficients in Eq. (33) read

anl ≡ 1 − n

�ðnþ 1 − lÞðnþ 1þ lÞ
ð2nþ 1Þð2nþ 3Þ þ ðnþ lÞðn − lÞ

ð2nþ 1Þð2n − 1Þ
�
þ ðnþ lÞ n − l

2n − 1
;

bnl ≡ −n
ðnþ lÞðn − 1þ lÞ
ð2nþ 1Þð2n − 1Þ þ ðnþ lÞ n − 1þ l

2n − 1
;

cnl ≡ −n
ðnþ 1 − lÞðnþ 2 − lÞ

ð2nþ 1Þð2nþ 3Þ : ðA1Þ

Furthermore, the coefficients in Eq. (37) are given by

ānl ≡ 1 − ðn − 1Þ
�ðnþ 1 − lÞðnþ 1þ lÞ

ð2nþ 1Þð2nþ 3Þ þ ðnþ lÞðn − lÞ
ð2nþ 1Þð2n − 1Þ

�
þ ðnþ lÞ n − l

2n − 1
;

b̄nl ≡ −ðn − 1Þ ðnþ lÞðn − 1þ lÞ
ð2nþ 1Þð2n − 1Þ þ ðnþ lÞ n − 1þ l

2n − 1
;

c̄nl ≡ −ðn − 1Þ ðnþ 1 − lÞðnþ 2 − lÞ
ð2nþ 1Þð2nþ 3Þ : ðA2Þ

APPENDIX B: ANALYSIS OF EXACT FREE-STREAMING SOLUTION

Consider the free-streaming solution of Eq. (23), obtained in the limit τR → ∞,

fλðτ; p⊥; pzÞ ¼ fλin

�
p⊥; pz

τ

τ0

�
; ðB1Þ

where fλinðp⊥; pzÞ denotes the initial distribution. This explicit solution makes it possible to analyze the early- and late-time
behaviors of the chiral moments by inserting Eq. (B1) into Eqs. (32). We obtain
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J λ
nl ≡

Z
d3pYl

nðθ;ϕÞfλin
�
p⊥; pz

τ

τ0

�
¼ τ0

τ

Z
d3pPl

nðpz=εpτÞeilϕfλinðp⊥; pzÞ ðB2Þ

where εpτ ≡ ðτ=τ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpzτ0=τÞ2 þ p2⊥

p
.

It follows that, for early times, τ ≪ τ0,

J λ
nl ¼ τ0

τ

Z
d3p

�
p⊥
ϵpτ

�
l Pl

nðpz=εpτÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðpz=εpτÞ2

q �l e
ilϕfλinðp⊥; pzÞ

→

�
τ0
τ

�
1−l Z

d3p½sgnðpzÞ�nþl

�
p⊥
jpzj

�
l
Bnleilϕfλinðp⊥; pzÞ ∼ τl−1 ðτ=τ0 → 0Þ ðB3Þ

where in the last line we used the relation Pl
nð−xÞ ¼ ð−1ÞnþlPl

nðxÞ. Note that the coefficient Bnl defined in Eq. (40) is a
finite number, while in the limit x → 1, Pl

nðxÞ=ð1 − x2Þk=2 vanishes for k < l and diverges for k > l.
For late times, τ ≫ τ0, we find, for nþ l even,

J λ
nl →

τ0
τ

Z
d3pPl

nð0Þeilϕfλinðp⊥; pzÞ ∼
1

τ
ðτ=τ0 → ∞; nþ l evenÞ: ðB4Þ

For nþ l odd, Pl
nð0Þ ¼ 0, so that we need to consider the next-to-leading order in a Taylor expansion. We get

J λ
nl →

�
τ0
τ

�
2
Z

d3pðnþ lÞPl
n−1ð0Þeilϕ

pz

p⊥
fλinðp⊥; pzÞ ∼

1

τ2
ðτ=τ0 → ∞; nþ l oddÞ; ðB5Þ

where we used ðPl
nÞ0ð0Þ ¼ ðnþ lÞPl

n−1ð0Þ.
A similar analysis for the moments T λ

nl yields

T λ
nl ¼

�
τ0
τ

�
2
Z

d3pεpτPl
nðpz=εpτÞeilϕfλinðp⊥; pzÞ; ðB6Þ

T λ
nl →

�
τ0
τ

�
2−l Z

d3p½sgnðpzÞ�nþl pl⊥
jpzjl−1

Bnleilϕfλinðp⊥; pzÞ ∼ τl−2 ðτ=τ0 → 0Þ; ðB7Þ

T λ
nl →

τ0
τ

Z
d3pp⊥Pl

nð0Þeilϕfλinðp⊥; pzÞ ∼
1

τ
ðτ=τ0 → ∞; nþ l evenÞ; ðB8Þ

T λ
nl →

�
τ0
τ

�
2
Z

d3ppzðnþ lÞPl
n−1ð0Þeilϕfλinðp⊥; pzÞ ∼

1

τ2
ðτ=τ0 → ∞; nþ l oddÞ: ðB9Þ

APPENDIX C: EXAMPLE OF AN EXACT
SOLUTION FOR FREE STREAMING

Consider the initial distribution function

fλin ¼
�
1þ px

Λ
þ py

Λ

�
e−p

2=Λ2 ðC1Þ

with Λ being a constant. This function is used as initial
condition for the plots of Sec. V. The corresponding free-
streaming solution reads

fλ ¼
�
1þ px

Λ
þ py

Λ

�
e−½p2⊥þðτ=τ0Þ2p2

z �=Λ2

: ðC2Þ

We obtain

ReJ λ
11 ¼ Re

Z
d3pY1

1ðθ;ϕÞfλ

¼ −
π

2
Λ3

Z
1

−1
d cos θð1 − cos2θÞ

×
1

f1þ ½ðτ=τ0Þ2 − 1�cos2θg2 : ðC3Þ

Analogously we find
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ReJ λ
31 ¼ Re

Z
d3pY1

3ðθ;ϕÞfλ

¼ 3

2

π

2
Λ3

Z
1

−1
d cos θð1 − 5 cos2 θÞð1 − cos2 θÞ

×
1

f1þ ½ðτ=τ0Þ2 − 1� cos2 θg2 : ðC4Þ

The remaining integrals can be done numerically. Note that
the initial conditions imply

ReJ λ
11ðτ ¼ τ0Þ ¼ −

2π

3
Λ3; ðC5Þ

and, for n ¼ 3; 5; 7;…,

ReJ λ
n1ðτ ¼ τ0Þ ¼ 0: ðC6Þ

APPENDIX D: 14-MOMENT APPROXIMATION

In this appendix we examine the comparison between
our approach and the 14-moment approximation which was
outlined in Sec. VII. We consider the energy-momentum
tensor and the charge current for massless particles in
Bjorken symmetry with parity breaking in the transverse
plane, allowing for nonzero spatial components of the
charge current and nondiagonal components of the energy-
momentum tensor.
As an example, we will discuss the x-component of the

charge current,

Jx ≡
Z

d3p
px

Ep
f ≡ −ReJ 11; ðD1Þ

and the diagonal components of Tμν,

T00 ¼
Z

d3pEpf ≡ T 00;

Tzz ¼
Z

d3p
p2
z

Ep
f ≡

�
2

3
T 20 þ

1

3
T 00

�
;

Txx ¼ Tyy ¼ 1

2
ðT00 − TzzÞ≡ X

λ¼�1

1

3
ðT λ

00 − T λ
20Þ; ðD2Þ

with J λ
nl and T

λ
nl given by Eq. (32). Other components of

the charge current and energy-momentum tensor can be
treated analogously. We furthermore define the moments

Xn ≡
Z

d3p
px

Ep

�
pz

Ep

�
n
f;

Zn ≡
Z

d3pEp

�
pz

Ep

�
n
f; ðD3Þ

in terms of which we have

Jx ≡ X0; T00 ≡ Z0; Tzz ≡ Z2: ðD4Þ

These moments are the ones originally used by Israel and
Stewart [82]. Their disadvantage is that they are not
orthogonal. However, when used in the context of the free
Bjorken expansion which suppresses higher values of
pz=Ep, their advantage is that all Xn and Zn become
smaller by a power pz=Ep at any order of n. This is not the
case for T nl and J nl.
We first consider the equation of motion for Jx using the

moments (D3),

∂τX0 ¼ −
1

τ
ðX0 − X 2Þ −

1

τR
X0: ðD5Þ

In the 14-moment approximation, we simply drop the term
proportional to X 2, since it does not appear in any
conserved current. This is the analog of what we called
the naive truncation. For an expanding system with Bjorken
symmetry, this is a good approximation, since the expan-
sion naturally suppresses the higher orders of pz=Ep that
are contained in X2. Thus we obtain

∂τX0 ¼ −
1

τ
X0 −

1

τR
X 0: ðD6Þ

On the other hand, when J 11 is calculated with the
orthogonal moments (32), one gets

∂τJ 11 ¼ −
1

τ

�
4

5
J 11 −

2

15
J 31

�
−

1

τR
J 11: ðD7Þ

In this case, we should not simply drop J 31, since it
contains not only terms proportional to ðpz=EpÞ3 but also
terms proportional to pz=Ep. Instead, implementing the so-
called fixed-point truncation, we replace it by the value at
the free-streaming fixed point, J 31 ≃ −ð3=2ÞJ 11. We then
arrive at

∂τJ 11 ¼ −
1

τ
J 11 −

1

τR
J 11; ðD8Þ

which is identical to Eq. (D6). The same reasoning holds
for all the components of the charge current and the energy-
momentum tensor which vanish in equilibrium and whose
equations of motion do not couple to those of other
components.
On the other hand, for the diagonal components of the

energy-momentum tensor the situation is a bit different,
since they are nonzero in local equilibrium. Furthermore,
the equations of motion are coupled and the truncation
using fixed points is not unique. In order to obtain the
diagonal components of the energy-momentum tensor, we
need to determine two moments, either T 00 and T 20, or Z0
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and Z2. These satisfy the following coupled equations of
motion:

∂τT 00¼−
1

τ

2

3
ð2T 00þT 20Þ;

∂τT 20¼−
1

τ

�
38

21
T 20þ

8

15
T 00−

12

35
T 40

�
−

1

τR
T 20; ðD9Þ

or

∂τZ0 ¼ −
1

τ
ðZ0 þ Z2Þ;

∂τZ2 ¼ −
1

τ
ð3Z2 − Z4Þ −

1

τR
ðZ2 − Z2;eqÞ; ðD10Þ

depending on the set of moments we use.
Now, in order to close the system of equations of motion

in the fixed-point truncation, cf. Ref. [67], we may use

T 40 ≃ P0
4ð0ÞT 00 ¼

3

8
T 00 ðD11Þ

or

T 40 ≃ P0
4ð0Þ=P0

2ð0ÞT 20 ¼ −
3

4
T 20: ðD12Þ

We obtain

∂τT 00 ¼ −
1

τ

2

3
ð2T 00 þ T 20Þ;

∂τT 20 ¼ −
1

τ

�
38

21
T 20 þ

17

42
T 00

�
−

1

τR
T 20; ðD13Þ

or

∂τT 00 ¼ −
1

τ

2

3
ð2T 00 þ T 20Þ;

∂τT 20 ¼ −
1

τ

�
31

15
T 20 þ

8

15
T 00

�
−

1

τR
T 20: ðD14Þ

On the other hand, for the system of equations (D10) we
use the 14-moment approximation, neglecting the dissipa-
tive parts of all moments which are not components of the
energy-momentum tensor, i.e.,

Z4 ≃ Z4;eq: ðD15Þ

Thus Eqs. (D10) reduce to

∂τZ0 ¼ −
1

τ
ðZ0 þ Z2Þ;

∂τZ2 ¼ −
1

τ
ð3Z2 − Z4;eqÞ −

1

τR
ðZ2 − Z2;eqÞ; ðD16Þ

which translates into

∂τT 00¼−
1

τ

2

3
ð2T 00þT 20Þ;

∂τT 20¼−
1

τ

2

3

�
4T 20þ

5

4
T 00−

3

10
T 00;eq

�
−
1

τR
T 20: ðD17Þ

It is important to note that in the usual 14-moment
approximation, the ideal part of Z4 is kept, and only the
nonequilibrium part is set to zero. This is of course not a
good approximation in the free-streaming regime, which is
far from local equilibrium. Instead, we should neglect the
full Z4 at the free-streaming fixed point,

Z4 ≃ 0: ðD18Þ

Then Eqs. (D10) become

∂τZ0 ¼ −
1

τ
ðZ0 þ Z2Þ;

∂τZ2 ¼ −
1

τ
3Z2 −

1

τR
ðZ2 − Z2;eqÞ; ðD19Þ

and therefore

∂τT 00 ¼ −
1

τ

2

3
ð2T 00 þ T 20Þ;

∂τT 20 ¼ −
1

τ

2

3

�
4T 20 þ

5

4
T 00

�
−

1

τR
T 20: ðD20Þ

While Eqs. (D13), (D14), and (D20) agree at the free-
streaming fixed point, since then T 20 ¼ P0

2ð0ÞT 00 ¼
−ð1=2ÞT 00, and are expected to yield a good description
of the dynamics in the free-streaming regime, they differ in
their coefficients as soon as the system leaves the free-
streaming point. On the other hand, Eq. (D17) is not valid
in the free-streaming regime. At the hydrodynamic fixed
point, Eqs. (D12) and (D15) remain valid, while Eqs. (D11)
and (D18) do not. Therefore, Eqs. (D14) are expected to be
a better approximation than Eqs. (D13) or (D17) in the
hydrodynamic regime. We conclude that, if one wants to
use the 14-moment approximation to describe the evolution
from free streaming to hydrodynamics, one should use
some kind of interpolation between Eqs. (D15) and (D18)
in order to capture the dynamics of both regimes. This is
similar to the approximation of L4 in the massive case [74],
where the moments Ln are not orthogonal anymore.
We can also understand the differences between the

different truncations by considering T 40 itself,

T 40 ¼
Z

d3pEp
1

8

�
35

�
pz

Ep

�
4

− 30

�
pz

Ep

�
2

þ 3

�
f: ðD21Þ

In the truncation(D11)both the first and the second termin the
square brackets are dropped, while in the truncation (D18)
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only the first term is dropped. As long as the expansion
governs the system, both approximations are reasonable
since the distribution function is peaked around pz ¼ 0.
However, in the hydrodynamic regime this approximation is
not justified, since the first term is nonzero in local equilib-
rium. In the truncation (D15), the first term is approximated

by its local-equilibriumvalue,which is only reasonable in the
hydrodynamic regime. Finally, the truncation (D12) also
keeps only the last term in the square brackets, but expresses
this term through T 20, which vanishes in local equilibrium
and therefore in this case the issue in the hydrodynamic
regime is avoided.
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