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We study nonequilibrium dynamics of relativisticN-component scalar field theories in Minkowski space-
time in a classical statistical regime,where typical occupation numbers ofmodes aremuch larger than unity. In
this strongly correlated system far from equilibrium, the role of different phenomena such as nonlinear wave
propagation and defect dynamics remains to be clarified.We employ persistent homology to infer topological
features of the nonequilibriummany-body system for different numbers of field componentsN via a hierarchy
of cubical complexes. Specifically, we show that the persistent homology of local energy density fluctuations
can give rise to signatures of self-similar scaling associated with topological defects, distinct from the scaling
behavior of nonlinear wavemodes. This contributes to the systematic understanding of the role of topological
defects for far-from-equilibrium time evolutions of nonlinear many-body systems.
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I. INTRODUCTION

Far-from-equilibrium universality can provide a power-
ful tool to understand the otherwise complex relaxation
dynamics of isolated quantum many-body systems.
Specifically, nonthermal fixed points form nonequilibrium
attractor solutions to the quantum-dynamical equations of
motion, which are characterized by emergent universal self-
similar scaling in time [1–11]. This is similar to the
universal behavior of systems close to equilibrium and
near criticality [12] but without the necessity to fine-tune
parameters. Out of equilibrium, such behavior has occurred
in numerical simulations of both relativistic [13–23] and
nonrelativistic [24–39] models. Nonthermal fixed points
can play a role for dynamics occurring on widely different
energy scales, ranging from the early universe [40,41] to
collisions of heavy nuclei [42,43] and experiments with
ultracold atoms, where they have been observed in recent
years [44–50]. The corresponding universality classes can
be surprisingly large, for instance relativistic and non-
relativistic scalar fields forming one class [51], and gauge
and scalar fields forming another [52,53]. Yet, a thorough
classification of systems according to their far-from-
equilibrium universal behavior is lacking to date.

Relativistic scalar fields with global OðNÞ symmetry
provide a paradigm for understanding far-from-equilibrium
dynamics,whichwe focus on in this study. In particular, such
a model allows for the analytic derivation of scaling
exponents related to nonthermal fixed points up to anoma-
lous dimensions based on the two-particle-irreducible effec-
tive action in large-N expansions [1–4,13,20,51,54,55].
Moreover, at early times, for weak couplings and large
occupations, the quantum dynamics of the model can be
accurately described by means of classical statistical simu-
lations [51,56], which we employ.
Recent experimental and theoretical studies of diverse

systems indicate that for a small number of field components
different initial conditions can lead to distinct nonthermal
fixed points. They can be related to separate physical
mechanisms: self-similar dynamics consistent with descrip-
tions in the limit of many field components [44,47], and
topological defects undergoing coarsening dynamics for few
field components [14,17,24–26,28,31,32,35,39,49,50,57,58].
Also for theOðNÞvector model in three spatial dimensions,
a number of different,N-dependent topological defects are
expected to contribute to the dynamics in the infrared [19].
Remarkably, for this model and typical overoccupied
initial conditions, many types of equal-time correlation
functions merely reveal scaling dynamics consistent with
the large-N descriptions, even for low N, and in agreement
with nonrelativistic complex UðNÞ vector models
[2–4,19,51,54,59,60]. This includes the momentum-
resolved distribution function, which is computed from
equal-time two-point correlation functions and forms the
basis formany studies of far-from-equilibriumuniversality.
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The investigation of unequal-time two-point correlation
functions has revealed differences among the excitation
spectra for differentN [60]. However, this does not contain
clear links to the scaling behavior related to the coarsening
dynamics of topological defects. A thorough understand-
ing of their role for nonthermal fixed point dynamics can be
a prerequisite for the comprehensive classification of
universal behavior far from equilibrium, based on the
experimentally and numerically found scaling dynamics.
Hence, there is a need for topologically sensitive and
computationally accessible observables.
Topological data analysis (TDA) [61,62] can provide

complementary information to correlation functions.
Persistent homology, which is the primary tool from the
TDA toolbox, gives access to the topology of a nested
hierarchy of complexes constructed from the field data. It
has been successfully applied to describe nonthermal fixed
points for two-dimensional nonrelativistic scalar and three-
dimensional gluon fields [63,64], accompanied by a cor-
responding mathematical analysis [65]. In the related
context of phase transitions, persistent homology allowed
for insights into critical phenomena and phase structures
[66–77].
In this work, we consider the persistent homology of

local energy density fluctuations in OðNÞ vector models in
the classical statistical regime, starting from overoccupied
initial conditions without imprinting defects. Local energy
densities can show clear signatures of dynamically built-up
defects as we demonstrate. In particular, we show that the
related Betti number distributions give rise to N-dependent
topological structures reminiscent of the classification of
defects in condensates of relativistic OðNÞ scalar fields.
The time dependence of the related length scales indicates
topological dynamics consistent with phase-ordering
kinetics [78].
The remainder of this paper is structured as follows:

Section II describes the lattice simulations, along with a
description of topological defects in OðNÞ theories and
their presence in local energy densities. Section III intro-
duces persistent homology and discusses the signals of
topological defects in Betti number distributions.
Moreover, the latter are interpreted in light of the coars-
ening dynamics of topological defects and energy transport.
Finally, Sec. IV provides a conclusion.

II. OðNÞ VECTOR MODEL AND
TOPOLOGICAL DEFECTS

We consider a relativistic OðNÞ-symmetric scalar field
theory with field variables ϕaðt;xÞ, a ¼ 1;…; N, in d ¼ 3
spatial dimensions with classical action

S½ϕ� ¼
Z
t;x

�
1

2
∂
μϕa∂μϕa −

m2

2
ϕaϕa −

λ

4!N
ðϕaϕaÞ2

�
; ð1Þ

where
R
t;x ≡

R
dt
R
d3x, summation over repeated indices is

implied, m is the bare mass and λ is the coupling constant.
The action (1) is invariant under global OðNÞ rotations
acting on the internal field components indexed by a: ϕa ↦
Rabϕb for R∈OðNÞ.

A. Lattice simulations

For highly occupied systems at not too late times and
weak couplings, the quantum dynamics can be accurately
mapped to a classical statistical field theory (truncated
Wigner approximation) [79–84]. In classical statistical
simulations, one samples over initial conditions and each
realization is evolved according to the classical equation of
motion. Expectation values of observables are obtained by
averaging over their evaluations for the classical trajecto-
ries. Real-time classical statistical simulations have been
extensively used to study the dynamics of scalar fields
within closed quantum systems in corresponding regimes
of applicability [51,60,80,84–88].
We consider overoccupied box initial conditions in

momentum space for the scalar fields. More specifically,
with the statistical two-point correlation function, defined as

Fðt; t0;x−x0Þ ¼ 1

2N
hϕaðt;xÞϕaðt0;x0Þþϕaðt0;x0Þϕaðt;xÞi

ð2Þ

for spatially homogeneous scenarios, occupation numbers
can be defined as

fðt;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðt; t0;pÞ∂t∂t0Fðt; t0;pÞ

p
jt¼t0 ; ð3Þ

where Fðt; t0;pÞ ¼ R
Δx Fðt; t0;ΔxÞ expð−ipΔxÞ andR

Δx ≡
R
d3Δx. Then field configurations ϕaðt ¼ 0;xÞ are

sampled with large Gaussian fluctuations up to a character-
istic momentum scale Q, described by

fðt ¼ 0;pÞ ¼ Nn0
λ

ΘðQ − pÞ; ð4Þ

with zero macroscopic fields jϕðt ¼ 0;xÞj ¼ 0. The initial
field configurations are time-evolved according to the
equation of motion following from the action (1). For more
details we refer to [51,56].
We consider lattice simulations for N3

s ¼ 5123 spatial
lattice sites and use a leapfrog solver withQas ¼ 0.8, where
as is the spatial lattice constant, temporal lattice spacing
dt ¼ 0.1as, coupling λ ¼ 0.1, initial amplitude n0 ¼ 125

and renormalized mass squaredM2 ¼ 4Q2, which is used in
an iterative procedure to fix the bare massm as described in
[56]. The comparably large mass suppresses fluctuations on
smaller length scales, which will allow us to reveal the
presence of topological features associated with defects. In
persistent homology as introduced below, the topological
features appear less pronounced for smaller values of the
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mass, see Appendix A. For later use we denote the spatial
lattice by Λs ≔ f0; as;…; ðNs − 1Þasg3.
In this work we focus on the structures visible in local

energy density fluctuations around the mean energy den-
sity. The local energy density corresponding to the action
(1) is:

T00ðt;xÞ ¼ 1

2
π2a þ

1

2
ð∇ϕaÞ2 þ

m2

2
ϕaϕa þ

λ

4!N
ðϕaϕaÞ2;

ð5Þ

where πa ¼ ∂tϕa and space-time arguments have been
suppressed on the right-hand side. Central spatial deriva-
tives are employed on the lattice.
We consider a single classical statistical realization in this

work, based on the self-averaging property often encoun-
tered for observables in classical statistical simulations. The
latter also holds approximately for the later introduced Betti
numbers due to the large number of contributing features.1 In
fact, the Betti numbers are expected to scale proportionally to
the system volume for sufficiently large lattices, based on
mathematical theorems [65,89]. Specifically, we have veri-
fied insensitivity of Betti numbers after division by the lattice
volume for Ns ¼ 128, 256, 512. We have also numerically
verified their insensitivity to variations of the lattice spacing
upon comparison with simulations for Qas ¼ 0.6 and
Qas ¼ 1.2.

B. Topological defects in relativistic OðNÞ theories
1. Topological defects in condensates

The chosen initial conditions set high occupation num-
bers up to the momentum scaleQ. As discussed in previous
works [15,51], the particle number redistributes toward the
infrared via an inverse particle number cascade, which is a
consequence of transient approximate particle number
conservation. In this dynamical process, a condensate
forms in the zero mode, which is initially absent and
results from increasing occupancies in the deep infrared.
Simultaneously, long-range order gradually builds up [19].2

Considering the ordering dynamics of the condensate,
the phase space of spatial zero modes of the (Fourier-
transformed) field variables ϕ̃aðt;pÞ ¼

R
x ϕaðt;xÞ×

expð−ipxÞ, formed by ðϕ̃a; ∂tϕ̃aÞa¼1;…;N with ϕ̃a ≡ ϕ̃aðt;
p ¼ 0Þ, is of relevance. Approximate particle number
conservation and energy minimization provide two con-
straints for the realized condensate configurations [19].

Taking these into account, we denote the physically
accessible condensate phase space by CN, which depends
nontrivially on the number of field components N. In
particular, the topology of CN can be nontrivial, so that
topologically nontrivial configurations (defects) can occur.
These have been classified in [19], which we review in
detail in Appendix B. Specifically, the condensate can
feature string defects (vortex lines) for N ¼ 1, 2, 3, domain
walls for N ¼ 2 and monopoles forN ¼ 4. For three spatial
dimensions no other defects are expected, and condensates
are defect-free for N ≥ 5.
Note that defects can be dynamically generated during the

evolution of the (classical) equation of motion, and are not
explicitly part of the initial conditions under consideration.
As described later in this work, defects typically annihilate
each other with time via related coarsening dynamics [78],
such that their number decreases. On longer timescales than
considered here, the condensate itself is expected to decay
again due to number-changing processes in the relativistic
theory [15], suppressing topological defects as well.

2. Observation of defects in energy density fluctuations

We probe topological defects via their signatures in local
energy density fluctuations around their mean values,
given by

ΔT00ðt;xÞ ≔ T00ðt;xÞ − T̄00

T̄00
; ð6Þ

where T̄00 ≔ ð1=N3
sÞ
P

x∈Λs
T00ðt;xÞ is time-independent

due to energy conservation. In Fig. 1(a) we display two-
dimensional slices of the time-evolving energy density
fluctuations for N ¼ 1. As time elapses, the initial fluctua-
tions in local energy densities become gradually more
homogeneous, with stringlike structures distinctively emerg-
ing at early times andminimal energy densities.We associate
these with string defects, whose number appears to decline
with time.
Comparing the two-dimensional snapshots of energy

density fluctuations for N ¼ 1, 2, 3, 4 at a fixed time
(Qt ¼ 5000), displayed in Fig. 1(b), we observe similar
stringlike structures for N ¼ 2 and N ¼ 3. Moreover, for
N ¼ 2 we can also see indications of emerging domains
separated by domain walls.3 These appear at locally low
energy densities as closed loops in the snapshots and can be
discriminated from the open elongated minima attributed to
stringlike structures. For N ¼ 4 and higher N (not shown),
the local energy densities become gradually more homo-
geneous without any distinct string- or domainlike struc-
tures forming, even when running the simulations for
comparably long times up to Qt ¼ 50000. Such defect
structures agreewith the classification outlined in Sec. II B 1,

1For mathematical details on self-averaging related to persis-
tent homology (ergodicity in persistence) we refer to [65].

2By causality, the formation of a condensate at finite evolution
times requires a finite system volume. For infinite system
volumes, modes in the deep infrared can mimic the dynamics
of a condensate, but lack the related system-scale long-range
order [19].

3These have been observed before in other observables, see,
e.g., [14,90].
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albeit with monopoles not seen for N ¼ 4. Monopoles form
pointlike local minima in energy densities, similar to the
many other fluctuations present in the system. The lattice
configurations can therefore still contain monopoles, but
might be indistinguishable from configurations without
monopoles based on our methods.
The emergence of defect structures at minima in local

energy density fluctuations can be heuristically understood
based on energetic considerations. Defects locally minimize
potential energy densities due to necessary zero-crossings in
field amplitudes between oppositely-signed domains, at a
string or within a monopole core, which manifest as zero
local potential energy densities. Kinetic energy densities
require more careful considerations. Defects move slowly in
comparison to typical timescales associated with the inverse
particle cascade, resulting in small contributions by

P
a π

2
a to

T00 in Eq. (5). Moreover, spatial gradients in directions
tangent to the curves formed by local energy density minima
due to string defects or tangent to the corresponding surfaces
for domain walls are naturally small, as in these directions
local energy densities do not change much (see Fig. 1). In
normal directions defects come with related characteristic
(healing) length scales. These can be comparably large,
leading to a suppression of normal gradients aswell, such that
kinetic energy densities of defects are locally suppressed

along with potential energy densities. We have observed this
in our simulations for both kinetic and potential energy
densities (not shown).

III. PERSISTENT HOMOLOGY OF ENERGY
DENSITY FLUCTUATIONS

Persistent homology provides a method to calculate scale-
dependent topological structures from data along with
measures of their persistence. In Sec. III A we present the
concept of persistent homology for the investigated local
energy density fluctuations. In Sec. III B the persistent
homology results are discussed in light of the previous
discussion of topological defects in condensates. Section III
C considers the time dependence of Betti number distribu-
tions in relation to coarsening dynamics, while Sec. III D
provides an examination of its connection to energy transport
toward the ultraviolet.

A. Persistent homology of energy density
fluctuation sublevel sets

1. Cubical complexes

In this work, persistent homology is computed for
cubical complexes [91], which is ideally suited for data

FIG. 1. Two-dimensional slices of local energy density fluctuations around their mean value, given by ΔT00 ¼ ðT00 − T̄00Þ=T̄00.
(a) Snapshots at N ¼ 1 for different times, and (b) snapshots for different N at time Qt ¼ 5000, showing signatures of string defects for
N ¼ 1, 2, 3 and of domain walls for N ¼ 2.
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in pixel format. Here, we focus on a short, intuitive
introduction, while Appendix C provides mathematically
more concise constructions. For more elaborate mathemati-
cal introductions to TDA we refer to [61,62].
A cubical complex is a collection of cubes of different

dimensions, closed under taking boundaries. For instance,
the boundary of a 3-cube is the union of all its six faces, i.e.,
boundary squares, the boundary of a 2-cube (square) is the
union of its four boundary edges, the boundary of a 1-cube
(edge) consists of its two endpoints, and the boundary of a
0-cube (point) is empty. The full cubical complex for the
spatial lattice under consideration consists of a 3-cube for
each lattice site, with a lattice site located at each cube’s
center. For each 3-cube all boundary cubes of lower
dimensions are included in the full cubical complex.
Subcomplexes of the full cubical complex can be used to

describe sublevel sets of functions on the spatial lattice.
Intuitively, for a given function these are constructed by
including a 3-cube in the subcomplex whenever the
corresponding function value is below a chosen filtration
parameter. While this fixes the filtration parameters when
3-cubes enter subcomplexes, the filtration parameters for
lower-dimensional cubes are set inductively (the lower star
filtration, see Appendix C). This way the subcomplex
becomes indeed a cubical complex for every filtration
parameter, which can be seen as a pixelization of the
corresponding lattice function sublevel set. In particular, a
nested sequence of cubical complexes is formed upon
increasing the filtration parameter. This procedure is
illustrated in Fig. 2 for the example of an excerpt of the
two-dimensional slice of the local energy density fluctua-
tions shown in Fig. 1(b) (N ¼ 1). While the two-dimen-
sional slice is for illustrative purposes only, the analysis is
carried out in all three spatial dimensions. For a given
function on the lattice such as the image excerpt given in
Fig. 2(a), the cubical complexes corresponding to the
sequence of sublevel sets can resemble the structure of
minima, see Fig. 2(b). In particular, note the persistence of
the horseshoelike accumulation of squares across filtration
parameters.

More formally, the evaluation of local energy density
fluctuations for a given classical statistical realizationϕðt;xÞ
at time t provides a real-valued function ΔT00ðt; ·Þ on the
spatial lattice Λs. Its sublevel sets are defined as

MΔT00ðt; νÞ ≔ ðΔT00ðt; ·ÞÞ−1ð−∞; ν�
¼ fx∈ΛsjΔT00ðt;xÞ ≤ νg: ð7Þ

The described pixelization procedure leads to the cubical
complexes CΔT00ðt; νÞ, which are the cubical complexes of
interest in this work. They form a filtration of the full cubical
complex, i.e., a nested sequence of subcomplexes of the full
cubical complex with

CΔT00ðt; νÞ ⊆ CΔT00ðt; μÞ ð8Þ

for all ν ≤ μ. For ν smaller than the minimum value of
ΔT00ðt; ·Þ the cubical complex CΔT00ðt; νÞ is empty, for ν
larger or equal the corresponding maximum value the full
cubical complex is recovered.

2. Persistent homology: Holes in complexes

The full cubical complex of the three-dimensional lattice
contains a 3-cube for each spatial lattice point. However, as
energy density fluctuation values are swept through from
the lowest to the highest, in general, the cubical complexes
CΔT00ðt; νÞ do not contain a cube for every spatial lattice
point. Holes of different dimensions can appear, which are
described by homology groups. For cubical complexes,
such holes are illustrated in Fig. 3(a). Connected compo-
nents are described by dimension-0 homology classes,
dimension-1 homology classes describe planarlike holes
(which in three dimensions can also be viewed as tunnels),
and dimension-2 homology classes describe enclosed
volumes.
Within the filtration, holes are born at a birth parameter b

and die again with death parameter d, possibly deforming
as the (energy density fluctuation) filtration is swept
through, i.e., being present in the filtration for the filtration

FIG. 2. Pixelization of lattice sublevel sets leads to a filtration of cubical complexes. (a) 64 × 64 pixels excerpt from the top-left corner
of the N ¼ 1 energy density fluctuation slice shown in Fig. 1(b). (b) Three nested cubical subcomplexes corresponding to the indicated
sublevel sets of the image of (a), for filtration parameters ν≡ ΔT00 ≤ −0.5;−0.2, 0.0 from left to right.
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parameter interval ½b; dÞ. The persistence p ¼ d − b is a
measure of the dominance of a feature in the filtration. This
is illustrated in Fig. 3(b), where two landscapes of example
functions with distinct minima are displayed. The left
function contains two distinct dips. As the sublevel set
filtration is swept through, the cubical complex is empty as
long as the filtration parameter ν is less than the minimum
value of the function. As ν is increased, a dimension-0
homology class is born with birth parameter b ¼ ν when
the minimum value of the function is reached (green plane).
Further increasing ν (blue plane), the single 2-cube turns
into a set of 2-cubes, leaving this homology class
unchanged. When the value of ν reaches the pink plane,
a second dimension-0 homology class is born (on the right)
corresponding to the second dip in the function. The two
dimension-0 homology classes merge into one at the red
plane, at which point the first homology class dies with
death parameter d ¼ ν, and only the second one survives.
Turning to the right function in Fig. 3(b), a few

dimension-0 homology classes are born (green plane),
merging to form a dimension-1 homology class when ν
is increased to the level of the blue plane, represented by the
circular structure in the complex surrounding a hole.
Further increasing ν, the homology is unchanged at the
pink plane and the dimension-1 hole only disappears
somewhere between the pink and red planes when it is
fully filled by 2-cubes.
From the cubical complexes CΔT00ðt; νÞ, the different

dimension-l homology groups HlðCΔT00ðt; νÞÞ can be
computed. For three spatial dimensions, the homology
groups are generally nontrivial for l ¼ 0, 1, 2, while the
dimension-3 homology group only captures the toroidal
lattice topology itself; all higher homology groups are

trivial. Their dimensions, called Betti numbers, specify the
number of independent dimension-l holes (homology
classes):

βlðt; νÞ ≔ dimHlðCΔT00ðt; νÞÞ: ð9Þ

We focus on Betti numbers as an informative persistent
homology descriptor in this work.
Persistent homology has a number of useful features.

Notably, it is stable against small perturbations of the input
[61,62] (local energy density values in this case) and well-
defined large-volume asymptotics exist for suitable persis-
tent homology descriptors such as Betti numbers, including
notions of ergodicity [65,89]. We compute the persistent
homology of cubical complexes with Z2 coefficients and
periodic boundary conditions using the open source TDA
library GUDHI [92].
To summarize, the persistent homology of sublevel sets

can be particularly sensitive to the extended structures
formed by local minima and saddle points. We utilize this
to investigate the structure of minima in energy density
fluctuations, for which nontrivial defect dynamics is
expected, based on the discussion in Sec. II B 2.

3. Blockwise averaging lattice functions

By construction, the persistent homology of cubical
complexes does not contain spatial metric information.
However, this also means that persistent homology com-
puted from functions on the lattice does not differentiate
between different length scales and therefore lattice arte-
facts can enter the analysis. By blockwise averaging
(coarsening) the local energy densities on the lattice over
blocks of c3 points for c > 1, both these artefacts and,
partly, ultraviolet fluctuations are removed. This can
pronounce contributions related to the infrared dynamics
including topological defects, depending on the parameter
c. We emphasize that the blockwise averaging procedure
does not affect the dynamical evolution, since it is only
applied a posteriori to the lattice configurations as part of
the persistent homology read-out.
This is demonstrated in Fig. 4 for the case of N ¼ 1 with

dimension-0 Betti numbers. The number of persistent
homology classes typically decreases as we average block-
wise, since the number of lattice sites decreases accord-
ingly. Betti numbers are expected to scale proportionally to
system volume for sufficiently large lattices [65,89], so that
we can account for this by volume-normalizing to a certain
number of lattice sites, here chosen to be 643.4 Without
blockwise averaging, we see that the number of connected
components specified by dimension-0 Betti numbers
increases at earlier times. Averaging local energy densities

FIG. 3. (a) Dimension-0, -1 and -2 homology classes from left
to right, built with cubical complexes. Dimension-2 homology
classes are enclosed volumes, indicated in red. (b) Dimension-0
and -1 holes in cubical complexes for different sublevel sets,
giving rise to persistent homology classes.

4We later focus on blockwise averaging by a factor of 8, so the
effective lattice size for the persistent homology analysis is
ð512=8Þ3 ¼ 643.
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over every 43 lattice blocks, we notice a twofold peak
structure emerging: connected components accounting for
the left peak decrease in numbers, while the right peak
grows with time. Increasing to averaging over every 83

blocks, the left peak appears more pronounced, while the
right peak decreases in height. This behavior persists when
coarsening by a factor of 16 in total in each direction.
Concerning the physical interpretation, we notice that the

initially large occupations give rise to dynamics toward the
infrared and growing wavelengths of correspondingly
dominating modes as can be seen in the occupation number
distributions, which are comparable to [51] (not shown
here). The height of the left peak in dimension-0 Betti
numbers decreases over time for energy densities averaged
over blocks of 43; 83 or 163 nearby lattice sites, which
implies an increase in the average distance between the
related connected components. This indicates that dimen-
sion-0 Betti numbers can probe the infrared dynamics for
blockwise averaged configurations. In particular, the coars-
ening dynamics of topological defects merging is typically
also accompanied by a growth of respective characteristic
length scales [78]. In the following, we show results for
local energy densities blockwise averaged over cubes of 83

neighboring lattice points. When quantitatively discussing
the time dependence of Betti numbers below, it is inves-
tigated if the observed phenomena are stable with respect to
further blockwise averaging.

B. Topological defects in Betti numbers

As shown in Fig. 5(a), upon investigating the time-
evolving dimension-0 Betti numbers of local energy
density fluctuations from N ¼ 1 to N ¼ 4 with averaging
over blocks of 83 lattice sites, we observe two distinct peaks
appearing for N ¼ 1, 2, 3, while for N ¼ 4 and higher N
(not shown) there is only a single peak. Starting from the
initial conditions (displayed in gray), for all N, the single
peak in dimension-0 Betti numbers first moves to larger
filtration parameters at early times, i.e., local minima shift
to larger energy density values. For times larger than

Qt ¼ 500, the peak position stays approximately constant
for N ¼ 1, 2, 3, while the overall number of dimension-0
structures decreases with time. For N ¼ 1, 2, 3, the single
peak splits up into two distinct peaks, the left one
decreasing, the right one increasing in height. For
N ¼ 4, no split-up happens, and the peak first decreases,
then increases in height, and continuously shifts to larger
filtration parameters.
Since dimension-0 Betti numbers count independent

connected components, a decline in peak height implies
that average length scales associated with the component
configurations increase, which correspond to local energy
density minima in the field configurations. Heuristically,
we may thus associate the left peak and its decrease as a
signature of dynamics toward larger length scales. Notably,
for N ¼ 1, 2, 3, the connected components making up the
left peak appear for those ΔT00-values where we have
observed defects in the two-dimensional snapshots of ΔT00

in Fig. 1(b). This indicates that in terms of specific field
configurations it is primarily the defects which dominate
the declining left peaks in Betti numbers. Accordingly, the
decrease in peak height can signal their coarsening dynam-
ics, which we discuss in more detail later, see Sec. III C.
Vice versa, Betti numbers increasing with time as for the
right peak for N ¼ 1, 2, 3, and for N ¼ 4 for later times
Qt≳ 4000 implies refinement dynamics of the connected
components, i.e., an increasing number of local minima
appears. Corresponding length scales shrink in time. The
peak shifting toward ΔT00 ¼ 0, this indicates an ongoing
homogenization process of energy densities and can be
suggestive of the transport of energy toward smaller length
scales (larger momenta), as we analyze in more detail in
Sec. III D.
Likewise, the analysis of dimension-1 Betti numbers

shows qualitatively similar results for all N, but with only a
single peak structure that decreases in amplitude, except for
N ¼ 2, for which two peaks appear. This is displayed in
Fig. 5(b). More precisely, we notice a height decline of the
peak for N ¼ 1, 3, 4, which turns into an increase at later

FIG. 4. Dimension-0 Betti numbers for ΔT00 sublevel sets with local energy densities averaged over nearby blocks of every c3 ¼
13; 43; 83 and 163 lattice sites (from left to right). Betti numbers have been normalized to 643 lattice size in accordance with their volume-
scaling. Betti numbers at initial time Qt ¼ 0 are shown in gray.
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times. For N ¼ 2, the behavior is different: the height of the
initial peak only decreases, and the single peak splits up
into two peaks, where the right one forms at larger energy
density values corresponding to ΔT00 ≃ 0 and increases in
height with time. The dimension-2 Betti numbers agree
qualitatively for all N and do not come with twofold peak
structures (not shown).
Still, a decline in dimension-1 Betti numbers indicates

that length scales associated with the configurations of
holes increase in time as for the dynamics toward the
infrared. In particular, this applies to the left peak for
N ¼ 2, which constantly decreases in height and appears at
energy densities, for which we have inferred the presence
of defects from Fig. 1(b). Similarly to the previous
discussion of dimension-0 Betti numbers, at later times,
the increase in height for most peaks in dimension-1 Betti
numbers together with their shift toward ΔT00 ¼ 0 can be
indicative of refinement dynamics leading to a homogeni-
zation of local energy densities.
To summarize, we observe potentially defect-related

peaks in the dimension-0 Betti numbers shown in
Fig. 5(a) for N ¼ 1, 2, 3 but not for N ¼ 4, and only
for N ¼ 2 in the dimension-1 Betti numbers displayed in
Fig. 5(b). This is in line with the classification of topo-
logical defects for condensates outlined in Sec. II B 1 and

reviewed in detail in Section B provided that the left peak in
dimension-0 Betti numbers is primarily due to strings and
the left peak in dimension-1 Betti numbers is mostly due to
domain walls. Indeed, this appears well-motivated from the
structure of the defects along with fluctuations on top as
inferred from the local energy density snapshots displayed
in Fig. 1. For instance, closed strings manifest as looplike
minima in local energy densities and would thus naively
appear as distinct dimension-1 persistent homology classes
in the sublevel sets for correspondingly low filtration
parameters (cf. also the discussion at the end of
Sec. II B 2). Yet, smaller-scale fluctuations on top result
in a landscape of local minima and maxima, which adds to
this and may interrupt the clean looplike minima in energy
densities. Accordingly, a closed string would not appear as
a distinct dimension-1 homological feature anymore, but as
a multitude of dimension-0 structures, which in addition
cannot be distinguished from open strings. Similarly,
domain walls would naively show up as empty volumes
in energy density sublevel sets for correspondingly small
filtration parameters, which would give rise to distinct
dimension-2 persistent homology classes. The addition of
smaller-scale fluctuations can yield local energy density
maxima, which then pierce the enclosed volumes in the
sublevel sets, yielding only scaffoldlike networks which

FIG. 5. (a) Dimension-0 and (b) dimension-1 Betti numbers for ΔT00 sublevel sets and N ¼ 1 to N ¼ 4 field components (from left to
right), with averaging over blocks of 83 lattice sites. Betti number distributions at initial timeQt ¼ 0 are shown in gray. For Betti number
distributions with twofold peak structures we label the peak associated with topological defects by “topo”, and the peak corresponding to
energy transport by “energy”.
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surround the empty volumes. These do not give rise to
distinct dimension-2 persistent homology classes anymore,
but to an abundance of dimension-1 features. The same
reasoning applies to more exotic configurations of topo-
logical defects such as strings pinned to domain walls [26],
which our persistent homology analysis cannot distinguish
from the domain walls themselves.

C. Signatures of coarsening dynamics

On the timescales under consideration, the overoccupied
initial conditions lead to nonthermal fixed point dynamics
as characterized by dynamical self-similar scaling. The
temporal dependence of the distribution function is
restricted to spatial rescalings by time-dependent power
laws while maintaining its shape in time [56]. Near a
nonthermal fixed point, the Betti number distributions of
energy density sublevel sets can also reveal self-similarity
[64]. In this work, the shape of the Betti number distribu-
tions shown in Fig. 5 is not globally preserved in time, in
particular for dimension 0 at N ¼ 1, 2, 3, and dimension 1
at N ¼ 2. Yet, for these, the shape of the peaks at lower
ΔT00-values remains approximately constant in time. We
discuss this in detail in Appendix D considering potential
self-similar scaling.
For clarity, here we focus on the time-dependence of the

corresponding dimension-0 Betti number peak values,
βtopo0;maxðtÞ ¼ maxfβ0ðt; νÞjν∈ left peakg. This counts the
maximum number of connected components formed by
the pixelized sublevel sets as the filtration parameters
corresponding to the peak are swept through, correlating
with the number of defects. If a power law in time with
exponent −ϑN can be identified from βtopo0;maxðtÞ, i.e.,

βtopo0;maxðtÞ ∼ t−ϑN ; ð10Þ
then in three dimensional space, average length scales
associated with the connected component configurations at
the respective value of ν≡ ΔT00 grow as a power law with
exponent ϑN=3:

LNðtÞ ¼
�

N3
sa3s

βtopo0;maxðtÞ

�
1=3

∼ tϑN=3: ð11Þ

Such a power law growth of length scales can be indicative
of the self-similar scaling of corresponding Betti number
distributions. Since for N ¼ 1, 2, 3, the lower-ΔT00 peak is
defect-related as noted in Sec. III B, this length scale can be
sensitive to the dynamics of defects. In particular, the
number of strings correlating with the number of connected
components of the ΔT00 sublevel sets (cf. Sec. II B 2),
LNðtÞ can serve as a proxy for the time-dependence of
average length scales associated with string configurations.
In Fig. 6, we display the time-dependence of βtopo0;maxðtÞ for

(a) N ¼ 1, (b) N ¼ 2 and (c) N ¼ 3. The main figures give

FIG. 6. Temporal scaling of the left dimension-0 Betti number
distribution peak values for (a) N ¼ 1, (b) N ¼ 2 and (c) N ¼ 3,
with averaging over blocks of 83 lattice sites. The bottom insets
show the Betti number distributions, where the red circles
indicate the peak positions. The top insets show peak values
for averaging over every 163 blocks. The power law fits are based
on the data in the red shaded Qt ranges.
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results for averaging over every 83 blocks, while the upper
insets show results for 163 blocks. All βtopo0;maxðtÞ decrease in
time, which indicates that average length scales associated
with the connected component configurations grow, as
discussed previously (cf. Sec. III B). The decrease of
βtopo0;maxðtÞ is of a power law form for long time ranges.
Fitting a power law to these curves for the indicated times5

via standard χ2 fits yields ϑ1 ¼ 0.69� 0.02 (N ¼ 1), ϑ2 ¼
0.64� 0.02 (N ¼ 2) and ϑ3 ¼ 1.19� 0.01 (N ¼ 3) when
averaging over every 83 blocks. We obtain ϑ1 ¼ 0.67�
0.04, ϑ2 ¼ 0.61� 0.05 and ϑ3 ¼ 1.23� 0.03 when aver-
aging over 163 blocks. Thus, within errors these exponents
are insensitive to blockwise averaging in the considered
regime. They describe dynamics predominantly related to
string defects, which appears well separated from the
dynamics on much smaller length scales based on the
described insensitivity to blockwise averaging. This is in
contrast to the analogous analysis for the potentially defect-
related peak at N ¼ 2 in dimension-1 Betti number dis-
tributions, for which the power law scaling behavior is
different when averaging over blocks of 83 versus 163

lattice points. For this reason, a more detailed analysis of
the defect-related peak in N ¼ 2 dimension-1 Betti number
distributions is only described in Appendix E.
The fitted exponents ϑN correspond to the following

power laws describing the time dependence of the length
scales LNðtÞ (for averaging over every 83 blocks):

L1ðtÞ ∼ t0.2; L2ðtÞ ∼ t0.2; L3ðtÞ ∼ t0.4: ð12Þ

It is instructive to compare this with the known dynamics
of topological defects as captured by phase-ordering
kinetics [78], which describes the growth of order through
coarsening dynamics when a system is quenched across a
phase transition. Notably, phase-ordering kinetics captures
the mutual annihilation of vortices and antivortices (strings)
as well as the shrinking of domain walls with time. These
processes can give rise to self-similar scaling which is
characteristic of a nonthermal fixed point, with defect-
related length scales displaying a power law in time. For
instance, numerical studies of universal dynamics in one-
dimensional Bose gases have revealed power law expo-
nents of order 0.25 to 0.35 [32,39,93]. Recent experiments
with ultracold atoms in a quasi-one-dimensional elongated
optical trap have pointed toward a growth of length scales
related to vector solitons as a power law in time with
exponent 0.28� 0.05 [49]. In two spatial dimensions it is
known that intervortex distances can grow proportional to
t0.2 for nonrelativistic systems [28,58,63,94], and similarly

for a nonrelativistic projection of relativistic scalar theory
[31]. For three spatial dimensions, signatures of defects in
scalar field theories have been detected previously, albeit
without analyzing their self-similar scaling dynamics
[14,24,57,90]. Yet, even in this case, phase-ordering
kinetics predicts scaling exponents for defect-related length
scales in the range of 0.2 to 0.3, if conserved order
parameters are considered [78]. Our results for L1ðtÞ and
L2ðtÞ as deduced with persistent homology are well within
this range. The scaling exponent of L3ðtÞ is closer to 0.5,
which is considered to be the relevant exponent for length
scale dynamics associated with the particle cascade in
large-N expansions (up to anomalous dimensions)
[51,59,60], where topological defects are absent. Still,
topological defects can also give rise to such dynam-
ics [4,78].
Note that the association of persistent homology classes

with defects is not a one-to-one correspondence, and not all
persistent homology classes need to behave uniformly
according to (12). Therefore, for our method we expect
systematic errors on the deduced scaling dynamics of
topological defects, which we do not consider here and
are to be discussed in a future work.

D. Signatures of energy transport

In addition to the coarsening dynamics, there is an
ongoing homogenization process of local energy den-
sities. This is apparent from the peaks with increasing
amplitudes close to ΔT00 ¼ 0 in the Betti number dis-
tributions, which shift toward the mean local energy
density. Again, we study their maxima, in this case for
dimension-1 Betti number distributions, denoted
by βenergy1;max ðtÞ ¼ maxfβ1ðt; νÞjν∈ right peakg.
In Fig. 7, we show βenergy1;max ðtÞ for N ¼ 2 when averaging

over every 83 blocks (main figure) and 163 blocks (bottom
inset). Comparable outcomes can be obtained for other
dimensions and N. We find that the number of features as
counted by βenergy1;max ðtÞ in Fig. 7 grows in time, such that
corresponding dimension-1 holes (tunnels) steadily decrease
in size. Though slightly bent, the data can be approximately
described by a power law, βenergy1;max ðtÞ ∼ t−ϑenergy . Standard χ2

fits yield ϑenergy ¼ −0.54� 0.02 for averaging over every 83

blocks and ϑenergy ¼ −0.53� 0.03 for 163 blocks, such that
ϑenergy appears stable for this regime of blockwise averaging.
As before, we can estimate the time dependence of

average length scales associated with the dimension-1 holes
from the time dependence of βenergy1;max ðtÞ:

LenergyðtÞ ¼
�

N3
sa3s

βenergy1;max ðtÞ
�

1=3

∼ tϑenergy=3; ð13Þ

which leads to LenergyðtÞ ∼ t−0.18 for averaging over every
83 blocks. It is well known that turbulent energy transport
toward the ultraviolet is accompanied by self-similar

5Note the different time intervals for 83 versus 163 blocks. This
is due to initially slower dynamics in Betti number distributions
for averaging over 163 blocks compared to 83 blocks, since part
of the faster ultraviolet modes do not contribute to the former
(cf. Fig. 4).
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scaling behavior characteristic of a nonthermal fixed point,
for which related length scales dynamically shrink as
∼t−1=7 [40,41]. The power law behavior of LenergyðtÞ is
close to this, which suggests that the corresponding
structures in Betti number distributions are due to excita-
tions in local energy densities transported toward smaller
length scales. Deviations can be caused by the blockwise
averaging procedure and the tentative interpretation of
features in the Betti number distributions with different
physical phenomena, which are in general not perfectly
separated. Moreover, while the maxima of the Betti number
distributions can provide estimates for the overall number
of structures associated with the corresponding peaks, this
number partly remains ambiguous in light of nonuniform
persistences of features in the filtration.

IV. CONCLUSIONS

In this work, we have investigated the real-time dynam-
ics of relativistic OðNÞ scalar fields in overoccupied
scenarios. We have applied TDA to lattice configurations,
which can provide complementary information to the
traditionally investigated distribution functions computed
from equal-time two-point correlations. More specifically,
we have considered Betti numbers computed for sublevel
sets of local energy density fluctuations. These have
revealed clear signals of dynamically generated topological
defects. The identification of defects in the Betti numbers is
based on the comparison with defect structures visible in
local energy density landscapes. Crucially, the N-depen-
dent topological features visible in the Betti numbers have

been consistent with the classification of defects for
condensates in relativistic OðNÞ scalar fields [19].
The number of connected components associated with

the topological defects has decreased in time as a power
law, which is indicative of self-similar scaling dynamics.
This behavior corresponds to power law growth of length
scales associated with their dilution, with scaling exponents
∼0.2 for N ¼ 1 and N ¼ 2, and ∼0.4 for N ¼ 3. While the
values for N ¼ 1, 2 agree well with the findings for
topological dynamics in a variety of simulations, the value
for N ¼ 3 is closer to the scaling behavior of the model at
large N. Yet, topological dynamics can also lead to the
latter scaling dynamics [4,78]. A thorough quantitative
analysis of the relation to phase-ordering kinetics and a
more careful study of possible dynamical contributions to
the structures associated with defects in Betti numbers is
beyond the scope of this paper.
In addition, we have observed signatures of energy

transport and the related universal scaling behavior in
the Betti numbers. While for overoccupied scenarios the
distribution function reveals a dual cascade with particle
and energy transport, the Betti numbers computed for local
energy density fluctuations may therefore be able to
distinguish topological dynamics from energy transport.
Our work hints at the importance of topologically

sensitive observables in order to uncover defect dynamics
in universal regimes far from equilibrium. In particular for
three-dimensional systems, defect-driven temporal scaling
dynamics can be hard to access with distribution functions
and appears to be suppressed in overoccupied scenarios.
Based on the present work, TDA-based observables are
particularly promising to investigate along with distribution
functions, since they can be sensitive to extended field
configurations of arbitrary size.
This method is applicable without major modifications to

the analysis of ultracold atom experiments. Local atom
densities can play a similar role to the local energy densities
considered in this work, with topological configurations
also showing up as distinct minima. These are accessible
for instance using commonly employed absorption imaging
techniques. In this spirit, a recent work has exploited TDA
to detect dark solitons in condensate density images [95]. It
is particularly beneficial that this method does not rely on
more sophisticated experimental techniques such as
response measurements to probe correlation functions at
unequal times [23,59,60,96–98].
Our work reinforces the potential of TDA to provide

relevant information on the dynamics of strongly correlated
many-body systems. The choice of cubical complexes has
especially been advantageous to reveal the presence of
nonlocal structures. TDA can facilitate the systematic study
of the role of topological defects for nonequilibrium
quantum many-body dynamics, with diverse regimes of
applicability ranging from cold atoms to the collisions of
heavy nuclei.

FIG. 7. Temporal scaling of the right dimension-1 Betti number
distribution peak values for N ¼ 2. Averaging over blocks of 83

lattice sites has been employed. The top inset shows the actual
Betti number distributions, where the red circles indicate the peak
values. The bottom inset shows peak values for averaging over
every 163 blocks. The power law fit is based on the data in the Qt
range for which it is displayed. Note the smaller time interval
shown here in comparison to Fig. 6.
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APPENDIX A: DEPENDENCE OF BETTI
NUMBERS ON THE RENORMALIZED

MASS VALUE

The simulations reported about in the main text have
used a comparably large renormalized mass withM ¼ 2Q.
In this appendix, we discuss the dependence of the
persistent homology results provided in Sec. III B on this
choice. Figure 8 provides the dimension-0 Betti numbers
for simulations with N ¼ 2 field components and renor-
malized mass M ¼ Q=2. Comparison with Fig. 5, which
has given the corresponding results for M ¼ 2Q, reveals
that the right peak close to ν≡ ΔT00 ¼ 0 increases in
height for the smaller mass value, while the height of the
left peak appears roughly insensitive to the choice of mass.
In particular, the scaling behavior of βtopo0;maxðtÞ remains the
same compared to the larger mass (not shown).
We can heuristically understand this behavior as follows.

For the results displayed in Figs. 5 and 8, we have

employed averaging over blocks of 83 lattice sites.
Removing ultraviolet fluctuations, this emphasizes struc-
tures in the infrared, where the model is well-described by a
nonrelativistic complex scalar field theory [31,51]. The
Hamiltonian of such a theory comes with a kinetic term
∼k2=2M, where k denotes the spatial momentum of a
Fourier mode of the complex-valued field. A larger value
for M therefore suppresses the contributions of spatial
gradients of local fluctuations to energy densities, which
pronounces structures with small spatial gradients, for
instance topological defects.
Moreover, we have argued in favor of the association of

the right peak in the dimension-0 Betti numbers with
energy transport toward the ultraviolet, see Sec. III D. In the
ΔT00 snapshots presented in Fig. 1, this corresponds to the
local fluctuations on small length scales. A larger mass
therefore suppresses these, such that the topological defects
appear pronounced relative to the small-scale fluctuations,
even though their number might remain roughly invariant
under the choice of mass. This explains the behavior of the
dimension-0 Betti numbers shown in Fig. 8.
For completeness, we note that the occupation number

distributions computed for both mass values agree (not
shown) and are similar to the results of [51].

APPENDIX B: THE CLASSIFICATION OF
TOPOLOGICAL DEFECTS IN CONDENSATES

OF THE OðNÞ VECTOR MODEL

In this appendix,wederive the classification of topological
defects in condensates of the OðNÞ vector model in detail.
The arguments are drawn from [19] and expanded here.
Intuitively, topological defects form when growing

occupancies in the infrared organize into condensates along
with the inverse particle cascade. To this end, the behavior
of spatial zero modes of the field variables is of relevance
for the classification of topological defects. In particular, it
is the topology of the phase space of zero modes of the field
variables, ðϕ̃a; ∂tϕ̃aÞa¼1;…;N , where ϕ̃a ≡ ϕ̃aðtÞ≡ ϕ̃aðt;
p ¼ 0Þ, along with dynamical constraints which deter-
mines the latter. Denoting this space for the OðNÞ vector
model by CN, we first motivate its general construction from
first principles based on the condensate dynamics. We
subsequently describe the specific structure of the CN and
their topological properties, ultimately leading to the
classification of defects in three spatial dimensions.

1. Dynamically realized condensate phase space

In our simulations, the modes in the infrared are highly
occupied at early times for the considered initial conditions
and are thus well-described classically. Here, we derive an
approximate equation of motion for the condensate.
First, the classical inverse propagator follows from the
action (1) as

FIG. 8. Dimension-0 Betti numbers for ΔT00 sublevel sets for
N ¼ 2 field components, with averaging over blocks of 83 lattice
sites. The renormalized mass used to generate these results
is M2 ¼ Q2=4.
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− i
δ2S½ϕ�

δϕaðxÞδϕbðyÞ

¼ iδðx − yÞ
�
δabð□þm2Þ þ λ

6N

�
2ϕaðxÞϕbðxÞ

þ δab
X
c

ϕcðxÞ2
��

ðB1Þ

with □≡ ∂μ∂
μ and where we explicitly denoted the

summation over the field components. This leads to the
classical self-energy matrix

Σcl
abðxÞ ¼

λ

6N

�
2ϕaðxÞϕbðxÞ þ δab

XN
c¼1

ϕcðxÞ2
�
: ðB2Þ

Its spatial Fourier-transform is Σ̃cl
abðt;pÞ ¼

R
x Σ

cl
abðt;

xÞ expð−ipxÞ. The action (1) yields an inhomogeneous
Klein-Gordon equation as the classical equation of motion
for spatial zero modes of the fields:

XN
b¼1

�
δabð∂2t þm2Þϕ̃bðtÞ þ

Z
p
Σ̃cl
abðt;−pÞϕ̃bðt;pÞ

�
¼ 0;

ðB3Þ

where
R
p ≡

R
d3p=ð2πÞ3 and the dependence on the

classical self-energy matrix Σ̃cl
abðt;−pÞ has been explicitly

denoted. We assume a large fraction of the particles
occupies the zero mode, so that the momentum integral
in Eq. (B3) is dominated by momentum zero. This finally
yields the equation

XN
b¼1

½δabð∂2t þm2Þ þ Σ̃cl
abðt;p ¼ 0Þ�ϕ̃bðtÞ ¼ 0; ðB4Þ

which governs the time evolution of the condensate.
For a single field component (N ¼ 1) ϕ̃≡ ϕ̃a¼1 and the

effective mass squared is M2 ¼ m2 þ Σ̃cl
11. Equation (B4)

leads to the decomposition ϕ̃ ¼ ϕ̃0 cosðMtþ δÞ, where ϕ̃0

is a real-valued peak amplitude of the field, δ a phase andM
determines the oscillation frequency of the field. The
amplitude jϕ̃0j is fixed by transient particle number con-
servation.6 From a topological viewpoint, the N ¼ 1 con-
densate phase space C1 is thus described by a circle, C1 ≃ S1.
For N ≥ 2 field components the solutions ϕ̃≡

ðϕ̃Þa¼1;…;N to Eq. (B4) generally have the form of oscil-
lations sweeping out ellipses in the internal space of field
components. These can interpolate between the extreme
possibilities of ϕ̃ and ∂tϕ̃ parallel, so that oscillations
happen along a line in this space, or ϕ̃ and ∂tϕ̃ orthogonal,

so that oscillations happen along a circular orbit. It can be
shown, that the energy-minimizing condensate configura-
tions are not straight lines and, therefore, have the topology
of circular orbits. Indeed, repeating the argument provided
in [19], we can understand this by comparing the energy
cost of a circular orbit to that of a straight line in OðNÞ field
space. The energy density ε of the zero mode of a single-
component scalar field oscillating back and forth in a
quartic potential is

ε ¼ λ

8
ϕ̃4
0 ¼

1

2
ð∂tϕ̃Þ2 þ

λ

8
ϕ̃4; ðB5Þ

where we have neglected the mass term. This equation can
be rearranged for ∂tϕ̃ to obtain a periodic solution, which
has oscillation frequency

ω2 ¼ πΓð3=4Þ2
Γð1=4Þ2 λϕ̃2

0: ðB6Þ

The particle number stored in the condensate is
nðεÞ ¼ R

ε
0 dε

0=ω ¼ 4ε=ð3ωÞ, and using Eq. (B5), we obtain

ε ¼ ð8π2Þ1=3
�
3Γð3=4Þ
4Γð1=4Þ

�
4=3

λ1=3n4=3: ðB7Þ

On the other hand, for a scalar field with two or more
components with a circular orbital motion in the same
potential, the energy density is

ε ¼ 1

2
ð∂tϕ̃0Þ2 þ

λ

8
ϕ̃4
0 ¼

3

4
ð∂tϕ̃0Þ2 ¼

3ω2

4
ϕ̃2
0 ¼

3λ

8
ϕ̃4
0;

ðB8Þ

where we have used the virial theorem ð∂tϕ̃Þ2=2 ¼ λϕ̃4
0=4

and ϕ̃0 ¼ ϕ̃ðt0Þ denotes the condensate configuration at
some initial time t0. Hence,

ω2 ¼ λ

2
ϕ̃2
0 ¼

21=2

31=2
λ1=2ε1=2: ðB9Þ

Using the same arguments as before for nðεÞ, we get that

ε ¼ 3

27=3
λ1=3n4=3: ðB10Þ

Therefore, comparing the numerical prefactors, at fixed
particle number the energy cost of a circular orbit is lower
than that of a straight line. We can conclude that energy-
minimizing orbits ϕ̃ðtÞ are not straight lines and thus
homotopy-equivalent to circles in the zero mode phase
space. We expect that the addition of a nonzero mass term
does not alter the topology of energy-minimizing orbits.
This is a posteriori reinforced by the consistency of our

6This is similar to nonrelativistic scalar fields for which
particle number conservation is exact.
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work with the defect classification outlined here, which
relies on orbits being homotopy-equivalent to circles.
We thus proceed with the consideration of circular orbits

in the zero mode phase space. The constancy of jϕ̃j due to
effective particle number conservation is complemented by
j∂tϕ̃j being constant due to the circular orbit geometry,
along with the orthogonality constraint ϕ̃⊥∂tϕ̃ in the
internal field space. In general, a fixed-length ϕ̃ is an
element of the (N − 1)-sphere SN−1 ⊂ RN . Any tangent
vector to SN−1 at a point ϕ̃∈ SN−1 is orthogonal to the
vector ϕ̃ itself within RN . The vectors ∂tϕ̃ orthogonal to ϕ̃
actually form the tangent manifold Tϕ̃S

N−1. The constancy

constraint for j∂tϕ̃j singles out tangent vectors of constant
length. Since topology does not discriminate between the
length of such tangent vectors, the constancy constraint for
j∂tϕ̃j can be taken care of upon restricting to normalized
tangent vectors ∂tϕ̃ with j∂tϕ̃j ¼ 1.7 Finally, for N ≥ 2, the
condensate phase space CN is (homotopy-equivalent to) the
unit tangent bundle of SN−1, CN ≃ T1SN−1, which as a set
reads

T1SN−1 ¼ ⋃
ϕ̃∈ SN−1

fðϕ̃; ∂tϕ̃Þj∂tϕ̃∈Tϕ̃S
N−1; j∂tϕ̃j ¼ 1g:

ðB11Þ

2. Homotopy groups of CN

The topology of CN can be nontrivial as quantified by the
low-order homotopy groups, which is the mathematical
origin of topological defects. Specifically, a nontrivial
zeroth homotopy group π0ðCNÞ indicates that CN comprises
different connected components, i.e., the condensate is
separated into different domains bounded by domain walls.
If the fundamental group π1ðCNÞ is nontrivial, CN is not
simply connected, and string defects can occur, i.e., vortex
lines. If the second homotopy group π2ðCNÞ is nontrivial,
then monopole defects can occur. A nontrivial third
homotopy group π3ðCNÞ would indicate the possibility
of textures. However, these have no defect core and are
unstable [99], such that we exclude them from our analysis.
Apart from textures, strings, domain walls and monopoles
are all types of defects which can occur in three spatial
dimensions. Investigating the presence of topological
defects thus requires the computation of the homotopy
groups πlðCNÞ for l ¼ 0, 1, 2 and different N.

a. N = 1

For N ¼ 1, the condensate phase space is C1 ≃ S1, for
which π1ðS1Þ ≅ Z and π0ðC3Þ and π2ðC3Þ vanish, such that
only string defects can occur.

b. N = 2

For N ¼ 2, we have to consider C2 ≃ T1S1. The unit
tangent line at any point in S1 consists of exactly two
points, such that C2 ≃ S1 × Z2. The homotopy groups of
such products factorize [100], such that πlðC2Þ ≅ πlðS1Þ ×
πlðZ2Þ for all l∈N. We find the nontrivial homotopy
groups π0ðC2Þ ≅ π0ðS1Þ × π0ðZ2Þ ≅ 0 × Z2 ≅ Z2 and
π1ðC2Þ ≅ π1ðS1Þ × π1ðZ2Þ ≅ Z × 0 ≅ Z and all other
homotopy groups vanish. Hence, both domain walls and
string defects can occur.

c. N = 3

For N ¼ 3, we have to consider C3 ≃ T1S2. This space
can be identified with SO(3), since ϕ̃ describes a direction
in R3 and ∂tϕ̃ is orthogonal to it. Together with their
cross product, they single out an orthonormal coordinate
frame. The fundamental group is nontrivial: π1ðC3Þ ≅
π1ðSOð3ÞÞ ≅ Z2 and π0ðC3Þ and π2ðC3Þ vanish. There
are thus string defects.

d. N = 4

For N ¼ 4, we have to consider C4 ≃ T1S3. The 3-sphere
is parallelizable, i.e., TS3 ≅ S3 ×R3 is a trivial bundle
above S3. The unit tangent vector constraint then singles
out C4 ≃ S3 × S2. Again, the homotopy groups of such
products factorize [100], such that πlðC4Þ ≅ πlðS3Þ ×
πlðS2Þ for all l. With the homotopy groups of the spheres
we find that π2ðC4Þ ≅ Z, π3ðC4Þ ≅ Z2 and all other
homotopy groups of low order vanish. While the former
(π2) indicates that there are monopole defects, the latter (π3)
is irrelevant for defects in three spatial dimensions as
considered here.

e. N ≥ 5

For general N ≥ 5 one needs to consider CN≃
T1ðSN−1Þ ≅ SpinðNÞ=SpinðN − 2Þ. The identification with
the spin group quotient comes about since the elements of the
unit tangent bundle of SN−1 single out orthonormal 2-frames
in RN , which form the second Stiefel manifold V2ðRNÞ.
Specifically, for N ≥ 3 we have that V2ðRNÞ is diffeomor-
phic to SOðNÞ=SOðN − 2Þ [100]. This in turn is diffeomor-
phic to the quotient SpinðNÞ=SpinðN − 2Þ for all N ≥ 3, as
can be seen with standard results for homogeneous spaces
together with the consideration of relevant stabilizer sub-
groups of SOðNÞ and SpinðNÞ.
The computation of the homotopy groups of this space

requires more advanced methods from algebraic topology
[100], which we only briefly outline here. Homotopy
groups of the quotients SpinðNÞ=SpinðN − 2Þ can be
computed with the long exact sequence of relative homo-
topy groups, which reduces their computation to the
homotopy groups of the spin groups themselves. The spin
groups are the universal covers of the special orthogonal

7For the same reason we here ignored the mass dimension
of j∂tϕ̃j.
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groups for N ≥ 3, as indicated by the related short exact
sequence of groups:

1 → Z2 → SpinðNÞ → SOðNÞ → 1: ðB12Þ

The spin groups are thus simply connected, so that
π0ðSpinðNÞÞ≅ π1ðSpinðNÞÞ≅ 0 for all N ≥ 3. Moreover,
the short exact sequence (B12) induces a long exact
sequence of homotopy groups. Using π2ðSOðNÞÞ ≅ 0 for
all N ≥ 2 (in the stable range), we then find π2ðSpinðNÞÞ ≅
0 for all N ≥ 2. Together with the previously mentioned
long exact sequence of relative homotopy groups this yields
π0ðCNÞ ≅ 0, π1ðCNÞ ≅ 0 and π2ðCNÞ ≅ 0 for all N ≥ 5,
while higher homotopy groups can be nontrivial. Yet, it is
these homotopy groups which determine the topological
defects for three spatial dimensions. Topological defects are
thus absent in the considered three-dimensional OðNÞ
vector model for all N ≥ 5.

APPENDIX C: DETAILS ON THE LOWER STAR
FILTRATION OF CUBICAL COMPLEXES AND

PERSISTENT HOMOLOGY

This appendix provides mathematical details on the
construction of the lower star filtration of cubical com-
plexes, homology groups and persistent homology. It
closely follows similar expositions in [64].

1. Lower star filtration

We introduce the lower star filtration for a real-valued
lattice function f∶ Λs → R such as ΔT00ðt; ·Þ, intuitively
corresponding to a pixelization of its lattice sublevel sets.
To begin with, let C denote the full cubical complex of the
lattice Λs, consisting of one 3-cube xþ ½−as=2; as=2�3 for
each spatial lattice point x∈Λs. C also includes all faces,
edges and vertices of every 3-cube, such that it is closed
under taking boundaries. C is equipped with the informa-
tion contained in the function f by means of inductively
constructing a map F∶C → R. By construction, any 3-cube
C∈ C has a unique lattice point x∈Λs at its center, so that
we can set FðCÞ ≔ fðxÞ. For all 2-cubes D∈ C we set

FðDÞ ≔ minfFðCÞjD ⊂ ∂C;C∈ C 3-cubeg: ðC1Þ
Equation (C1) is then applied inductively to construct F for
lower-dimensional cubes from higher-dimensional ones,
until F is defined on all C. This construction is called the
lower star filtration.
We define cubical complexes corresponding to lattice

sublevel sets of f as

CfðνÞ ≔ F−1ð−∞; ν�: ðC2Þ

Indeed, these are closed under taking boundaries. As stated
in the main text, they form a filtration: whenever ν ≤ μ, we
have the inclusion CfðνÞ ⊆ CfðμÞ.

2. Homology groups

Let C be a cubical complex, although the construction of
homology groups is the same as for simplicial complexes.
More details can be found, e.g., in [61] and references cited
therein. In this work, we focus on chain complexes and
homology groups with Z2-coefficients, such that the lth
chain complex ClðCÞ of C consists of formal sums of chains
of l-cubes with Z2-coefficients. The boundary operator
∂l∶ ClðCÞ → Cl−1ðCÞ is defined to map a chain of l-cubes
to its boundary, which is a (l − 1)-chain. Since boundaries
of such chain boundaries are empty, ∂l−1 ∘ ∂l ¼ 0. We
define the cycle group as ZlðCÞ ≔ kerð∂lÞ, which consists
of all closed l-chains, i.e., l-chains without boundary. The
boundary group can be defined as BlðCÞ ≔ imð∂lþ1Þ,
consisting of all those l-chains, which are boundaries of
(lþ 1)-chains. As subgroups, BlðCÞ ⊆ ZlðCÞ, such that
their quotient groups are well defined:

HlðCÞ ≔ ZlðCÞ=BlðCÞ: ðC3Þ

These are called homology groups.
The topology of C can be studied via the homology

groups HlðCÞ. They capture similar topological informa-
tion compared to homotopy groups of C, but are often not
the same. Elements of HlðCÞ are called homology classes
and form equivalence classes of l-cycles, defined modulo
higher-dimensional boundary contributions. Intuitively,
they can be thought of as independent holes. Their number
is given by the Z2-dimension of HlðCÞ:

βlðCÞ ≔ dimZ2
ðHlðCÞÞ; ðC4Þ

which is called the lth Betti number.

3. Persistent homology groups

Let fCνgν∈R be a filtration of complexes, such as Cν ¼
CfðνÞ for the energy density sublevel set filtration consid-
ered in this work. Suppose we compute all their individual
homology groups fHlðCνÞgν. In addition, the filtration
contains for all ν ≤ μ the inclusion maps Cν ↪ Cμ, which
induce maps on the homology groups:

ιν;μl ∶ HlðCνÞ → HlðCμÞ: ðC5Þ

The ιν;μl map a homology class in HlðCνÞ either to one in
HlðCμÞ, if it is still present for Cμ, or to zero, if corre-
sponding (potentially deformed) cycles appear as bounda-
ries in HlðCμÞ. Moreover, nontrivial cokernels can appear
for ιν;μl : new homology classes can appear in Cμ, which are
not in Cν. The parameter μ can be chosen, so that for
sufficiently small ϵ > 0:

HlðCμ−ϵÞ ⊊ HlðCμÞ: ðC6Þ
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The collection fðHlðCνÞ; ιν;μl Þgν≤μ forms a so-called per-
sistence module, which is tame, if (C6) holds only for
finitely many distinct values of μ.
By the structure theorem of persistent homology (see e.g.

[61] and references therein), any tame persistence module
is isomorphic to its persistence diagram, i.e., the collection
of all the birth-death pairs ðb; dÞ, b < d∈R ∪ f∞g.
Persistence diagrams are multisets, so the same birth-death
pair may appear multiple times.

APPENDIX D: SELF-SIMILAR SCALING IN
PERSISTENT HOMOLOGY

In this appendix, we discuss the self-similarity of Betti
number distributions as introduced in [63] and similarly
employed in [64]. For this, we need to introduce the so-
called persistence pair distribution. The persistent homol-
ogy of the energy density filtration is fully described by the
persistence diagram, which consists of all birth-death pairs
ðb; dÞ. We denote it for dimension-l features as Dgml;iðtÞ,
computed for a classical statistical realization ϕiðt;xÞ.
The dimension-l persistence pair distribution is then given
by [63]

Pl;iðt; b; dÞ ¼
X

ðb0;d0Þ∈Dgml;iðtÞ
δðb − b0Þδðd − d0Þ: ðD1Þ

Its expectation value can exist and is in general no longer a
sum of Dirac δ-functions anymore [65]. In particular, it
scales self-similarly in time [63] if

hPliðt; b; dÞ ¼ ðt=t0Þ−η2hPliðt0; ðt=t0Þ−η1b; ðt=t0Þ−η1dÞ;
ðD2Þ

where t, t0 is any pair of times in the temporal regime of
self-similar scaling and η1, η2 are suitable scaling
exponents.
From hPliðt; b; dÞ, the Betti number distribution can be

computed as

hβliðt; νÞ ¼
Z

ν

−∞
db

Z
∞

ν
ddhPliðt; b; dÞ: ðD3Þ

If hPliðt; b; dÞ scales self-similarly in time, the Betti
number distributions hβliðt; νÞ fulfill

hβliðt; νÞ ¼ ðt=t0Þ2η1−η2hβliðt0; ðt=t0Þ−η1νÞ: ðD4Þ

In Fig. 9, we show dimension-0 Betti number distribu-
tions for (a) N ¼ 1, (b) N ¼ 2 and (c) N ¼ 3, rescaled in
time according to Eq. (D4) (averaging over every 83

blocks). The optimal scaling exponents η1 and η2 for the
data to match the scaling behavior (D4) are extracted using
the self-similarity fitting protocol detailed in [51]. The
fits take all times in the interval from Qt ¼ 2500 to

Qt ¼ 12500 into account. They are done for those filtration
parameter ranges which correspond to the defect-related
peaks in Betti number distributions: for N ¼ 1 from ν ¼
−0.45 to −0.29, for N ¼ 2 from ν ¼ −0.31 to −0.15, and

FIG. 9. Rescaled dimension-0 Betti number distributions for
(a) N ¼ 1, η1 ¼ 0.02, η2 ¼ 0.73, (b) N ¼ 2, η1 ¼ 0.02,
η2 ¼ 0.65, (c) N ¼ 3, η1 ¼ 0.01, η2 ¼ 1.20. Blocks of 83 lattice
points have been averaged. The insets show the nonrescaled
distributions.
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for N ¼ 3 from ν ¼ −0.20 to −0.09. This way, the
optimized scaling exponents are

η1 ¼ 0.02� 0.03; η2 ¼ 0.72� 0.01 ðD5Þ

for N ¼ 1,

η1 ¼ 0.01� 0.02; η2 ¼ 0.69� 0.03 ðD6Þ

for N ¼ 2, and

η1 ¼ 0.01� 0.02; η2 ¼ 1.20� 0.01 ðD7Þ

for N ¼ 3. Indeed, rescaling the Betti number distributions
with these scaling exponents consistently leads at least to
approximate constancy in time, see Fig. 9, in particular for
N ¼ 1 and N ¼ 3. Yet, smaller systematic deviations
remain, since the shape of the peaks is not fully indepen-
dent of time.
According to the Betti number scaling (D4), the peak

Betti number scales ∼t2η1−η2 . The numbers provided by the
self-similarity fits, Eqs. (D5) to (D7), match the analysis
results provided in Sec. III C. There, we also discuss the
value of the exponent 2η1 − η2 in light of phase-ordering
kinetics.
The value of η1 is consistent with zero within errors. If

connected components at these ΔT00 values are primarily
due to defects, this can indicate that defects appear locally
at particular constant energy density values. We note that a
zero result for η1 is not in line with the packing relation
[65], which yields η2 ¼ 3η1 for energy conservation,
providing a one-dimensional constraint on the filtration.
This is not in contradiction with [65], since the packing
relation has been proven for self-similar scaling that applies
to the entire filtration range. This is not the case here, where
the ongoing homogenization of small-scale structures in
energy densities provides features in Betti number distri-
butions which cannot be rescaled with the exponents of
(D5) to (D7) (cf. the right peaks in Fig. 9).

APPENDIX E: MAXIMA OF DIMENSION-1
BETTI NUMBER DISTRIBUTIONS AT N = 2

This appendix discusses the defect-related left peak in
the dimension-1 Betti number distributions for N ¼ 2
(cf. Fig. 5). In Fig. 10 we show maximum values of the

peak depending on time. The main figure has been
computed for averaging over every 83 blocks, the top inset
for averaging over 163 blocks. As it is clearly visible, the
numbers of dimension-1 features decline with time, such
that the average distances associated with the structures
grow. Qualitatively, the discussion of Sec. III C applies here
in an analogous way, so that we can associate this to the
coarsening dynamics, potentially for domain walls.
Again, for an intermediate time range a power law can be

fitted. For averaging over every 83 blocks, the peak values
decrease as a power law with exponent −0.85� 0.01, and
with exponent −0.62� 0.03 for averaging over 163 blocks.
While the corresponding length scales of dimension-1
features thus grow as power laws with exponents well
within the regime expected for coarsening dynamics (see
the discussion in Sec. III C), the numbers do not agree
within uncertainties. This indicates that in dimension-1
Betti numbers the dynamics in the infrared is not well
separated from ultraviolet dynamics for averaging over
every 83 or 163 blocks. Additional potential sources of
uncertainties have been discussed at the end of Sec. III D.
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