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We systematically derive the chiral kinetic theory for chiral fermions with collisions, including the
self-energy corrections, from quantum field theories. We find that the Wigner functions and chiral kinetic
equations receive both the classical and quantum corrections from the self-energies and their spacetime
gradients. We also apply this formalism to study nonequilibrium neutrino transport due to the interaction
with thermalized electrons and nucleons, as realized in core-collapse supernovae. We derive neutrino
currents along magnetic fields and neutrino spin Hall effect induced by the density gradient at first order in
the Fermi constant GF for anisotropic neutrino distributions.
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I. INTRODUCTION

Recently, chiral kinetic theory (CKT) [1–7] has been
established as a fundamental tool to describe nonequili-
brium evolution of many-body ultrarelativistic fermions
with chirality. The first-principles derivation of the CKT
from the underlying quantum field theory via the Wigner
function formalism [8–11] enables one to unambiguously
determine the form of collisions in the CKT for a
given microscopic theory. Based on this formalism, there
have been extensive studies on the generalizations of the
CKT, such as higher-order quantum corrections [12,13],
extensions to curved spacetime [14,15], massive fermions
[16–22], and circularly polarized photons [23–25]; see
Ref. [26] for a review. The CKT has been applied to various
physical systems, such as quark-gluon plasmas in heavy
ion collisions [27], Weyl and Dirac semimetals [28,29],
compact stars [30], and the early Universe [30].
In the context of core-collapse supernovae where parity-

violating effects can be relevant [31], the general relativistic
form of the CKT for left-handed neutrinos with collisions
has been systematically constructed based on the Standard
Model of particle physics [15] and applied to uncover novel
chiral transport phenomena [32–34]. However, the previous
CKT is not yet complete as it misses other potentially
relevant chiral transport phenomena. One such example is

the spin Hall effect of neutrinos induced by the density
gradient, which has not been appreciated in the literature so
far, to our knowledge. To derive a more generic Lorentz-
covariant CKT that can describe the neutrino spin Hall
effect and other chiral transport phenomena unexplored so
far, further extension of the CKT is necessary by including
the full self-energy corrections and quantum corrections
systematically. Such an extension also modifies the free-
streaming part and on-shell conditions of the CKT; in the
case of the conventional kinetic theory, see Ref. [35].
In this paper, we derive the general CKT for chiral

fermions with collisions incorporating such self-energy
corrections from quantum field theories. We find that the
self-energies and their spacetime gradients lead to both the
classical and quantum corrections on the Wigner functions
and chiral kinetic equations. Our main results are given by
Eqs. (24)–(26). We then apply this formalism to study
chiral transport phenomena of nonequilibrium neutrinos
interacting with thermalized electrons. Such a situation is
realized, e.g., in core-collapse supernovae, where the matter
sector composed of electrons and nucleons is in thermal
equilibrium due to the electromagnetic (or strong) inter-
action while neutrinos scattered with the matter sector only
through the weak interaction are mostly out of equilibrium
(see, e.g., Ref. [36]). As a consequence, we find neutrino
currents along magnetic fields and the neutrino spin Hall
effect induced by the density gradient for anisotropic
neutrino distributions; see Eqs. (56) and (69), respectively.
We note that such a spin Hall effect is a universal feature

of chiral particles not limited to neutrinos. In fact, it is
known to appear also for photons [37–44] and gravitons
[42,45] with circular polarizations, e.g., in curved
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spacetime. A related spin Hall effect for quarks (as Dirac
fermions) was also discussed in the context of heavy ion
collisions [46].
This paper is organized as follows. In Sec. II, we provide

a simple physical derivation of the neutrino spin Hall effect
based on the notion of Berry curvature. In Sec. III, we
present the general formulation for the Wigner function and
CKT for chiral fermions, including self-energies. In
Sec. IV, we apply the formalism to study neutrino transport
due to the self-energy corrections and obtain the neutrino
number current and energy-momentum tensor induced by
magnetic fields and density gradient. Section V is devoted
to summary and outlook. Technical details for the deriva-
tions are shown in Appendixes.
Throughout this paper, we focus on the flat spacetime.

We use the mostly minus signature of the Minkowski
metric ημν ¼ diagð1;−1;−1;−1Þ and the completely
antisymmetric tensor ϵμναβ with ϵ0123 ¼ 1. The electric
charge e is absorbed into the definition of the gauge field
Aμ. We use the notations AðμBνÞ ≡ AμBν þ AνBμ and
A½μBν� ≡ AμBν − AνBμ. We also define F̃μν ≡ ϵμναβFαβ=2
with Fμν being the electromagnetic field strength.

II. NEUTRINO SPIN HALL EFFECT
FROM BERRY CURVATURE

In this section, we first provide a physical derivation of
the neutrino spin Hall effect based on the semiclassical
action for neutrinos including the effect of the Berry
curvature, a notion widely applied in condensed matter
physics [47].
We start with the generic semiclassical action for

neutrinos [1–3,31]:

S ¼
Z �

p · dx − ðϵp þ VÞdt − ap · dp�; ð1Þ

where ϵp ¼ jpj is the energy dispersion and V is a generic
potential energy (that will be specified in the context of
supernovae later). As neutrinos are only left-handed within
the Standard Model, neutrinos have a nontrivial Berry
curvature Ωp in momentum space [31]:

Ωp ¼ −ℏ
p

2jpj3 : ð2Þ

This effect is incorporated in the action (1) through the
Berry connection ap in momentum space, which is related
to the Berry curvature via Ωp ¼ ∇ × ap.
As a specific example of core-collapse supernovae, let us

consider electron neutrinos in the electron and nucleon
backgrounds. In this case, the backgrounds give rise to the
potential energy [48,49] (which we will also rederive in
Sec. IVA)

V¼ GFffiffiffi
2

p ð1þ4sin2 θWÞNe−
GFffiffiffi
2

p Nnþ
GFffiffiffi
2

p ð1−4sin2 θWÞNp;

ð3Þ

with GF being the Fermi constant, θW the Weinberg angle,
and Ne;n;p the electron, neutron, and proton number
densities. The higher-order corrections of OðM−4

W Þ in
V [49] are negligible in the regime m2

W ≫ EνEe [50,51]
in the context of supernovae, where mW is the mass of W
bosons, Eν is the neutrino energy, and Ee is the electron
energy. It is well known that the potential energy V leads to
the so-called Mikheyev-Smirnov-Wolfenstein effect in the
context of neutrino oscillations [52,53], but here we point
out yet another medium effect in neutrino physics—
neutrino spin Hall effect.
The semiclassical equations of motion for neutrinos

follow from the action (1) as

ẋ ¼ vþ ṗ ×Ωp; ð4Þ

ṗ ¼ −∇V; ð5Þ

where v ¼ ∂ϵp=∂p is the velocity of neutrinos. When the
densities Ne;n;p vary depending on x, the variation of the
potential energy V leads to the force given by the right-hand
side of Eq. (5) [51]. The new ingredient compared with the
previous literature in our formulation is the contribution in
Eq. (4) expressed by the Berry curvature. This gives rise to
the additional contribution in the neutrino number current:

J¼
Z

d3p
ð2πÞ3 ẋf

ðνÞ⊃−
Z

d3p
ð2πÞ3∇V×ΩpfðνÞ≕JSHE; ð6Þ

where fðνÞðt; p; xÞ is the neutrino distribution function in the
phase space. This current flowing in the direction
perpendicular to ∇V is the neutrino spin Hall effect, by
analogywith the conventional spinHall current triggered by a
transverse electric field. This should be contrasted with the
classical current in the direction parallel to ∇V. To our
knowledge, this is the first to demonstrate the neutrino spin
Hall effect. Note that this current can be nonvanishing only
when the momentum distribution of neutrinos is anisotropic.
This derivation of the neutrino spin Hall effect is based on

the semiclassical description of neutrinos in the phase space,
augmented by the effect of the Berry curvature. However, a
drawback of the resulting kinetic theory is that it lacks a
manifest Lorentz covariance and cannot be extended, e.g., to
curved spacetime. Using the Wigner function formalism and
systematically including the self-energy and quantum cor-
rections, such a Lorentz-covariant kinetic theory can be
derived from the underlying quantum field theory. By doing
so, we will obtain the generic CKT that not only reproduces
the neutrino spin Hall effect, but delineates other chiral
transport phenomena, as shown below.
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III. CHIRAL KINETIC THEORY WITH
SELF-ENERGY CORRECTIONS

In this section, we shall systematically derive the generic
CKT with self-energy corrections associated with the
modifications of the dispersion relation and those contrib-
uting to collision terms based on Wigner functions and ℏ
expansion. In the conventional power counting scheme, the
gradient correction in phase space is considered as the same
order as self-energies depending on the interaction at weak
coupling. This can be understood from simply a classical
Boltzmann equation, for which the gradient term in the
free-streaming part can be balanced by the collision term
without gradient corrections. In general, the gradient
expansion and the coupling-constant expansion can be
separated. In the following, we keep ℏ only to characterize
the gradient correction and set ℏ ¼ 1 for other corrections
in the coupling-constant expansion.
The central object in the formulation is the lesser and

greater Wigner functions for chiral fermions ψχ with
chirality χ ¼ R;L:

W<
χ ðq; xÞ≡

Z
d4ye−iq·yhψ†

χðxþ y=2Þψχðx − y=2Þi; ð7Þ

W>
χ ðq; xÞ≡

Z
d4ye−iq·yhψχðx − y=2Þψ†

χðxþ y=2Þi: ð8Þ

Here the gauge link is implicitly embedded, and qμ

represents the kinetic momentum. The Kadanoff-Baym
equations for W<

χ up to OðℏÞ read [26]

σμ
�
qμþ

1

2
iℏΔμ

�
W<

R − Σ̄R⋆W<
R ¼

i
2
ðΣ<

R⋆W>
R −Σ>

R⋆W<
RÞ;

ð9Þ

σ̄μ
�
qμþ

1

2
iℏΔμ

�
W<

L − Σ̄L⋆W<
L ¼

i
2
ðΣ<

L⋆W>
L −Σ>

L⋆W<
L Þ;

ð10Þ

where σμ ¼ ð1; σÞ and σ̄μ ¼ ð1;−σÞ with σi (i ¼ 1, 2, 3)
being Pauli matrices, Δμ ¼ ∂μ þ Fνμ∂

ν
q, Σ̄χ ¼ ReðΣr

χÞ þ Σδ
χ

with Σr
χ being the retarded self-energy1 and Σδ

χ the one-

point potential, Σ≶
χ are the lesser and greater self-energies,

and the operator ⋆ is the Moyal product. In general,
the self-energy Σ is decomposed into right- and left-
handed components as Σ ¼ PLγ

μΣRμ þ PRγ
μΣLμ with

PR ¼ ð1þ γ5Þ=2 and PL ¼ ð1 − γ5Þ=2.

The Wigner functions and self-energies can be decom-
posed as W<

R ¼ σ̄μW
<μ
R , W<

L ¼ σμW
<μ
L , Σ̄R ¼ σμΣ̄

μ
R,

Σ̄L ¼ σ̄μΣ̄
μ
L, Σ

≶
R ¼ σμΣ

≶μ
R , and Σ≶

L ¼ σ̄μΣ
≶μ
L . To write down

the Kadanoff-Baym equations for W<μ
χ with chirality

χ ¼ R;L, we use the relations

σμσ̄ν ¼ ημν − n½μσν� þ iϵμναβnασβ;

σ̄μσν ¼ ημν þ n½μσν� þ iϵμναβnασβ; ð11Þ

where the timelike frame vector nμ satisfying n2 ¼ 1 is
introduced to specify the choice of the spin basis.
Equations (9) and (10) then lead to
�
qμ þ

iℏ
2
Δμ − Σ̄χμ⋆

�
W<μ

χ ¼ i
2
ðΣ<μ

χ ⋆W>
χμ − Σ>μ

χ ⋆W<
χμÞ;

ð12Þ

σ⊥βð−χn½μην�β þ iϵμναβnαÞ
��

qμ þ
iℏ
2
Δμ − Σ̄χμ⋆

�
W<

χν

−
i
2
ðΣ<

χμ⋆W>
χν − Σ>

χμ⋆W<
χνÞ

�
¼ 0; ð13Þ

where the coefficient χ ¼ �1 corresponds to the subscript
χ ¼ R;L for chirality. Here, we introduced the notation
Vμ
⊥ ≡ ðημν − nμnνÞVν for an arbitrary four-vector Vμ.
Using the ℏ expansion of the Moyal product for generic

Aðq; xÞ and Bðq; xÞ,

A⋆B¼ABþ iℏ
2
fA;BgPB−

iℏ
2
Fμν∂

μ
qA∂νqBþOðℏ2Þ; ð14Þ

where fA; BgPB ¼ ð∂νqAÞð∂νBÞ − ð∂νAÞð∂νqBÞ denotes the
Poisson bracket, the master equations obtained from the
Kadanoff-Baym equations up to OðℏÞ are given by

D̃μW
<μ
χ ¼ 0; ð15Þ

q̃μW
<μ
χ ¼ 0; ð16Þ

q̃½νW<μ�
χ ¼ χ

ℏ
2
ϵμνρσD̃ρW<

χσ; ð17Þ

where we introduceDρW<
χσ ¼ΔρW<

χσ−Σ<
χρW>

χσþΣ>
χρW<

χσ,
D̃ρ ¼ Dρ þ ðΔνΣ̄χρÞ∂νq − ð∂qνΣ̄χρÞ∂ν, and q̃μ ¼ qμ − Σ̄χμ.
Equations (16) and (17) determine the perturbative solution
of the Wigner function, while Eq. (15) leads to the kinetic
equation.
To solve Eqs. (16) and (17) for the Wigner functions

perturbatively, we make the decomposition W<μ
χ ¼

Wð0Þ<μ
χ þ ℏWð1Þ<μ

χ . For simplicity, we will drop nonlinear
terms OðΣ̄2

χÞ, OðΣ̄χΣ
≶
χ Þ, and OððΣ≶

χ Þ2Þ at weak coupling.
Here, we present crucial steps for the derivation, while more
technical details are shown in Appendix A. From Eqs. (16)
and (17), the leading-order solution takes the form

1In the real-time formalism, we adopt the convention [26]
Σr¼Σþþ−Σþ−¼Σ−þ−Σ−−, Σa ¼ Σþþ − Σ−þ ¼ Σþ− − Σ−−,
iΣþ− ¼ −Σ<, and iΣ−þ ¼ Σ>, where the superscript þ;−
denotes the time branch on the closed time path and the subscript
χ ¼ R;L for chirality is omitted for brevity.
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Wð0Þ<μ
χ ðq; xÞ ¼ 2πsgnðq0Þδðq̃2Þq̃μfχ ; ð18Þ

where fχ denotes the distribution function for chiral fer-
mions and sgnðq0Þ represents the sign of q0, which is
introduced to incorporate the contributions from both
particles and antiparticles. Here δðq̃2Þ characterizes the
on-shell condition with the self-energy corrections. By

plugging Wð0Þ<μ
χ into Eq. (15), the corresponding kinetic

equation up to Oðℏ0Þ reads

δðq̃2Þq̃μðΔ̃μfχ − Cμ½fχ �Þ ¼ 0; ð19Þ

where Δ̃ρ ¼ Δρ þ ðΔνΣ̄χρÞ∂νq − ð∂qνΣ̄χρÞ∂ν and Cμ½fχ � ¼
Σ<
χμð1 − fχÞ − Σ>

χμfχ represents the collision term.
Subsequently, the next-to-leading-order correctionWð1Þ<μ

χ

has to be obtained by solving

q̃½νWð1Þ<μ�
χ ¼ χ

2
ϵμνρσD̃ρW

ð0Þ<
χσ ð20Þ

with the constraint q̃μW
ð1Þ<μ
χ ¼ 0. Making contraction of

Eq. (20) with q̃ν and nν, one finds

q̃2Wð1Þ<μ
χ ¼ χ

2
ϵμνρσq̃νΔ̃ρW

ð0Þ<
χσ ; ð21Þ

q̃ · nWð1Þ<μ
χ − n ·Wð1Þ<

χ q̃μ ¼ χ

2
ϵμνρσnνD̃ρW

ð0Þ<
χσ ; ð22Þ

respectively. From these two equations, one can derive the

solution of Wð1Þ<μ
χ :

Wð1Þ<μ
χ ¼ 2πχsgnðq0Þ

�
δðq̃2ÞSμνq̃ ðΔ̃νfχ − Cν½fχ �Þ

þ 1

2
δ0ðq̃2Þϵμνρσq̃νðΔ̃σq̃ρÞfχ

�
; ð23Þ

where Sμνq̃ ≡ ϵμναβq̃αnβ=ð2q̃ · nÞ is the spin tensor modified
by the presence of Σ̄χμ and δ0ðxÞ≡ ∂xδðxÞ. The perturbative
solution up to OðℏÞ, OðΣ̄χÞ, and OðΣ≶

χ Þ is accordingly
given by

W<μ
χ ¼ 2πsgnðq0Þ

�
δðq̃2Þðq̃μ þ χℏSμνq̃ D̃νÞ

þ χℏ
2
δ0ðq̃2Þϵμνρσq̃νðFρσ þ Δ½ρΣ̄χσ�Þ

�
fχ : ð24Þ

In fact, one can check that Eq. (24) satisfies Eq. (20) as
shown in Appendix A.
Given the perturbative solution, with complicated yet

straightforward computations, Eq. (15) results in the
corresponding chiral kinetic equation up to OðℏÞ,
OðΣ̄χÞ, and OðΣ≶

χ Þ:

�
q̃ν þ χℏSμνq̃

q̃ · n

�
nαðΔ½μΣ̄χα�Þ þ Eμ þ q̃αð∂μnαÞ

�þ χℏϵμνρσq̃ρð∂μnσÞ
2q̃ · n

þ χℏSμνq̃ Δ̃μ

�
Δ̃νfχ ¼ C½fχ � ð25Þ

with the on-shell condition q̃2 ¼ −χℏSμνq̃ ðΔ̃μq̃νÞ for the spacetime-dependent frame vector nμðxÞ, where

C½fχ � ¼
�
qν þ χℏSμνq Eμ

q · n
þ χℏð∂μSμνq Þ

�
Cν½fχ � þ

χℏϵμναβ

2q · n
qμnν

�
fχΔαΣ>

χβ − ð1 − fχÞΔαΣ<
χβ

� ð26Þ

denotes the collision term with ℏ corrections shown, e.g., in
Ref. [30]. Here the electric and magnetic fields are defined
in the frame specified by nμ as Fμνnν ¼ Eμ and
F̃μνnν ¼ Bμ. This is one of the main results of this paper.
The formalism presented here completes the previous one
in Ref. [8] without the contribution from Σ̄χ .

IV. MAGNETIC-FIELD CORRECTIONS AND SPIN
HALL EFFECT IN NEUTRINO TRANSPORT

In this section, we will apply the CKT derived in the
previous section to investigate the self-energy (Σ̄L) correc-
tions on the Wigner functions and chiral kinetic equation of
left-handed neutrinos. We shall focus on the medium effect

due to thermalized electrons under a homogeneous mag-
netic field. As will be shown later, the magnetic field gives
rise to further modifications on the kinetic equation of
neutrinos on top of the ℏ corrections in the collision terms
previously found in Ref. [15]. Moreover, for electrons in
local equilibrium, we derive the neutrino spin Hall current
perpendicular to the density gradient for anisotropic neu-
trino distributions in momentum space.

A. Calculation of the retarded self-energy

We shall begin with the calculation of Σ̄L for left-handed
electron neutrinos. The neutrino self-energies in medium
without and with magnetic fields were previously studied
in Refs. [49] and [54–57], respectively. For example, the
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lowest Landau level approximation for a strong and
constant magnetic field is adopted in Ref. [57]. Here, we
adopt a different treatment and approximation from pre-
vious works and consider a relatively weak magnetic field
such that it is treated as a derivative expansion in the
Wigner function formalism. From the weak interaction,
ReðΣrμ

L Þ and Σδμ
L are derived from the one-loop contribu-

tions shown in Figs. 1(a) and 1(b), respectively. In the
following, let us first focus on the contribution from
Fig. 1(a) and then the one from Fig. 1(b) in the electron
background, and finally the one from Fig. 1(b) in the
nucleon background.
Considering the charged-current interaction

Lcc ¼
gffiffiffi
2

p ψ̄ eγμPLA
μ
Wþψν þ H:c:; ð27Þ

where Aμ
Wþ denotes the gauge field for Wþ bosons, one

finds the contribution in the electron background2

iΣþþ
L;e ðqÞ ¼

g2

2

Z
d4p
ð2πÞ4

�
γαPLSðeÞðpÞγβPL

�
GW

αβðq − pÞ;

ð28Þ

where SðeÞðqÞ and GW
αβðqÞ are the Feynman propagators of

electrons and Wþ bosons, respectively. Accordingly, we
have

iΣþþμ
L;e ðqÞ¼g2

4

Z
d4p
ð2πÞ4Tr½γ

μγαSðeÞL ðpÞγβ�GW
αβðq−pÞ; ð29Þ

where SðeÞχ ðqÞ ¼ Pχγ
μWχμðqÞ. Considering the low-energy

regime where q2 ≪ M2
W , we can approximate

GW
αβðqÞ ¼

−iηαβ
q2 −M2

W
≈
iηαβ
M2

W
; ð30Þ

so that

Tr½γμγαSðeÞL ðpÞγβ�GW
αβðq − pÞ ¼ −

4i
M2

W
Wμ

LðpÞ: ð31Þ

As presented in Appendix B, the explicit form ofWμ
L for

left-handed electrons in thermal equilibrium with a constant
magnetic field is given by3

Wμ
LðqÞ ¼

iqμ

q2 þ iϵ
þ ℏ

�
iq0Bμ

ðq2Þ2 þ πB½μnν�qνδ0ðq2Þ
�

− 2π½qμδðq2Þ − ℏB½μnν�qνδ0ðq2Þ�f̃LðqÞ; ð32Þ

where

f̃LðqÞ ¼
Θðq0Þ

eβðjq0j−μeÞ þ 1
þ Θð−q0Þ
eβðjq0jþμeÞ þ 1

; ð33Þ

with β ¼ 1=T and μe being the local inverse temperature
and chemical potential of left-handed electrons, respec-
tively. For right-handed electrons, the ℏ terms should flip
the signs. Hereafter we work with nμ ¼ n̄μ ≡ ð1; 0Þ. Also,
as we always consider left-handed fermions, we will omit
the subscript “L” for left-handedness unless specified.
Since we are interested in the medium contribution from

electrons in thermal equilibrium, we may simply input the
T- and/or μ-dependent parts of WμðqÞ into the calculation
of ΣþþμðqÞ. That is, we shall take

WμðqÞ → Wμ
thðqÞ ¼ −2π½qμδðq2Þ − ℏB½μnν�qνδ0ðq2Þ�f̃ðqÞ;

ð34Þ

which can be further written as

Wμ
thðqÞ ¼ −2π

�
q0nμδ

�
q2 þ ℏB · q

q0

�

− ðq · B̂ÞB̂μδ

�
q2 þ ℏjBjq0

B̂ · q

�
þ qμt δðq2Þ

�
f̃ðqÞ

ð35Þ

up to OðℏÞ. Here, we defined V̂μ ≡ Vμ=jV⊥j and jV⊥j≡ffiffiffiffiffiffiffiffiffi
jV2⊥j

p
for an arbitrary four-vector Vμ. Also, qμt satisfying

qt · n ¼ qt · B ¼ 0 denotes the transverse momentum with
respect to the magnetic field. We then obtain

Σþþμ
e ≈ −4

ffiffiffi
2

p
GF

Z
d4p
ð2πÞ4 W

μ
thðpÞ; ð36Þ

FIG. 1. One-loop contributions to the neutrino self-energy:
(a) bubble diagram via the exchange of the Wþ boson and
(b) tadpole diagram via the exchange of the Z0 boson.

2Here the prefactor “i” in front of Σþþ
L;e ðqÞ is introduced for

convention. As will be shown in the following computations, the
sign in front of I is chosen to obtain a positive correction on q2 for
the on-shell condition.

3For electrons in local equilibrium, Wμ
L can, in principle,

include the ℏ corrections of the temperature and chemical
potential gradients and vorticity. We omit these corrections for
simplicity.
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where GF ¼ ffiffiffi
2

p
g2=ð8M2

WÞ. In the absence of magnetic
fields, one immediately finds

Σþþμ
e jB¼0 ¼

ffiffiffi
2

p

π2
GFnμ

Z
∞

0

djpjjpj2�f̃þðpÞ − f̃−ðpÞ�

¼
ffiffiffi
2

p
GFNenμ; ð37Þ

where f̃�ðqÞ≡ 1=½eβðjqj∓μeÞ þ 1� and

Ne ¼
μeT2

3
þ μ3e
3π2

ð38Þ

is the electron number density. Here, we assume that the
left-handed and right-handed electrons have the same
chemical potential.
We can decompose the self-energy with finite magnetic

fields as

Σþþμ
e ¼ C 0nμ þ C lB̂

μ þ C tp̂
μ
t : ð39Þ

It is easy to check C t ¼ 0 and

C 0 ¼
ffiffiffi
2

p

π2
GF

Z
∞

0

djpjjpj2

×
Z

dΩ
4π

½cþp f̃þðcþp jpjÞ − c−pf̃
−ð−c−p jpjÞ�

¼ Σþþ0jB¼0 þOðℏ2Þ; ð40Þ

where c�p ≡ 1 ∓ ℏB · p=ð2jpj3Þ. Here, the B-dependent
terms vanish after the angular integration

R
dΩ ¼R

2π
0 dϕ

R
1
−1 d cos θ. On the other hand, we have a

B-dependent contribution for C l as

C l ¼ −
ffiffiffi
2

p

π2
GF

Z
∞

0

djpjjpj
Z

dΩ
4π

p · B̂

�
f̃þ

�
jpj − ℏjBj

2B̂ · p

�
þ f̃−

�
−jpj − ℏjBj

2B̂ · p

��

¼ ℏGFffiffiffi
2

p
π2

jBj
Z

∞

0

djpj
Z

dΩ
4π

½f̃þðpÞ − f̃−ðpÞ� ¼ ℏGFffiffiffi
2

p
π2

μejBj: ð41Þ

Since Σrμ
e ¼ Σþþμ

e − iΣ<μ
e with Σ<μ

e being real, we have

ReðΣrμ
e Þ ¼ GFffiffiffi

2
p

�
Nenμ þ

ℏ
π2

μeBμ

�
: ð42Þ

To obtain the contribution from Fig. 1(b), we next consider the neutral-current interaction

Lnc ¼
g

cos θW
Aμ

Z0

�
1

2
ψ̄νγμPLψν −

�
1

2
− sin2θW

�
ψ̄ eγμPLψ e þ sin2θWψ̄ eγμPRψ e

�
; ð43Þ

where Aμ
Z0 denotes the gauge field for Z0 bosons. From this interaction, we have

iΣδμ
e ðqÞ¼ −g2

4cos2θW

Z
d4p
ð2πÞ4Tr

�
γμγαPL

��
−
1

2
þsin2θW

�
TrðPLSðeÞðpÞγβÞþsin2θWTrðPRSðeÞðpÞγβÞ

�
GZ

αβðq−pÞ
�
: ð44Þ

Here, GZ
αβ is the Feynman propagator for Z0 bosons, which

can be similarly approximated at low energy as

GZ
αβðqÞ ¼

−iηαβ
q2 −M2

Z
≈
iηαβ
M2

Z
: ð45Þ

Taking the trace in Eq. (44) and using MZ ¼ MW= cos θW,
we find

iΣδμ
e ¼ −ig2

M2
W

Z
d4p
ð2πÞ4

��
−
1

2
þ sin2θW

�
Wμ

LðpÞ

þ sin2θWW
μ
RðpÞ

�
: ð46Þ

Following the similar procedure for the calculation of
iΣþþμ

L;e , we derive

Σδμ
e ¼ GFffiffiffi

2
p

�
ð−1þ 4sin2θWÞNenμ −

ℏ
2π2

μBμ

�
: ð47Þ

The self-energy of neutrinos in the electron background
is accordingly given by

Σ̄μ
e ¼ReðΣrμ

e ÞþΣδμ
e ¼GFffiffiffi

2
p

�
ð1þ4sin2θWÞNenμþ

ℏ
2π2

μeBμ

�
:

ð48Þ
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Similarly, the contributions to the neutrino self-energy from
Fig. 1(b) in the neutron and proton backgrounds can be
computed as

Σδμ
n ¼ −

GFffiffiffi
2

p Nnnμ; ð49Þ

Σδμ
p ¼ GFffiffiffi

2
p ð1 − 4 sin2 θWÞNpnμ; ð50Þ

respectively, where we ignored the magnetic-field contri-
bution to Σδμ

p that is suppressed by 1=Mp, withMp being the
proton mass. Collecting altogether, the total neutrino self-
energy in the electron and nucleon backgrounds is given by

Σ̄μ ¼ GFffiffiffi
2

p
��ð1þ 4 sin2 θWÞNe −Nn þ ð1− 4 sin2 θWÞNp

�
nμ

þ ℏ
2π2

μeBμ

�
: ð51Þ

The Oðℏ0Þ contribution proportional to nμ, which corre-
sponds to the potential energy V in Eq. (3), was previously
obtained in Ref. [49]. Here, we ignored the higher-order
corrections of OðM−4

W Þ as in Sec. II.

B. Magnetic-field corrections

We now consider the magnetic-field corrections upon the
Wigner function and kinetic equation of left-handed neu-
trinos. To avoid complication, here we assume constant T
and μ. From Eq. (24), the Wigner function of left-handed
neutrinos up toOðℏÞ andOðGFÞ [more precisely,OðGFp2Þ
with p being a typical energy scale of the system] is
given by

W<μðq;xÞ¼2πsgnðq0Þδðq̃2Þðq̃μ−ℏSμνq̃ DνÞfðνÞðq;xÞ; ð52Þ

where q̃μ ¼ qμ − Σ̄μðqÞwith Σ̄μðqÞ shown in Eq. (42). Note
here that Dν for neutrinos does not contain the momentum
derivative coupled to electromagnetic fields. From Eq. (25),
the corresponding off-shell kinetic equation reads

q̃μ∂μfðνÞðq; xÞ ¼ C½fðνÞ�: ð53Þ

The explicit form of C½fðνÞ� incorporating the magnetic-
field corrections can be found in Ref. [15], which is not
of our interest in the present work. Note that the terms
proportional to δ0ðq2Þ due to the spacetime derivative
upon magnetic fields appearing from ∂μW<μ and from
ð∂νqW<μÞð∂νΣ̄μÞ cancel each other. Alternatively, the on-
shell kinetic equation is given by

½ðjqj þ ΔϵqBÞ∂0 þ ðqμ⊥ − Σ̄μ
BÞ∂μ�fðνÞðq; xÞ

¼ ðjqjnν þ qν⊥ÞCν½fðνÞ�; ð54Þ

where Δϵq ¼ q̂ · Σ̄ and ΔϵqB ¼ q̂ · Σ̄B with Σ̄μ
B ¼

ℏGFμeBμ=ð2 ffiffiffi
2

p
π2Þ. When Bμ ¼ 0, this reduces to the

conventional Boltzmann equation. For practical purposes,
it is more convenient to rewrite Eq. (52) as

W<μðq; xÞ ≈ π
δðq0 − jqjÞ

jqj
×
�jqjnμ þ ðjqj − ΔϵqÞðq̂μ⊥ − ℏSμνq ∂νÞ − Σ̄μ�

× ðfðνÞ þ Δϵq∂q0f
ðνÞÞ ð55Þ

for fðνÞ ¼ fðνÞðq; xÞ with q0 > 0 up to OðℏÞ and OðGFÞ.
Assuming fðνÞðq; xÞ ¼ Θðq0ÞfðνÞðqÞ, we may evaluate

the neutrino number current induced by magnetic fields as

JμB ¼ 2

Z
d4q
ð2πÞ4 ½W

<μðq; xÞ −W<μðq; xÞB¼0�

¼
Z

d4q
ð2πÞ3

δðq0 − jqjÞ
q0

Θðq0Þ½ΔϵqBðqμ∂q0 − q̂μ⊥Þ − Σ̄μ
B�fðνÞðqÞ

¼ ℏGFffiffiffi
2

p
π2

μejBj
Z

d4q
ð2πÞ3

δðq0 − jqjÞ
2q0

Θðq0Þ½q̂μq̂ · B̂ðq0∂q0 − 1Þ þ nμq̂ · B − B̂μ�fðνÞðqÞ: ð56Þ

One can show by the integration by parts that this current
vanishes when neutrinos are also in thermal equilibrium,
fðνÞðqÞ ¼ f̄ðνÞ�ðq0Þ, where f̄ðνÞ�ðq0Þ ¼ 1=½eβðq0∓μνÞ þ 1� is
the equilibrium distribution function for neutrinos and
antineutrinos, respectively, with μν being the neutrino
chemical potential. This result is consistent with the
generalized Bloch theorem [58] that any particle number
current should vanish in thermal equilibrium. On the other

hand, the neutrino number and energy currents may receive
corrections from magnetic fields for an anisotropic neutrino
distribution.
In the context of core-collapse supernovae, there are

several mechanisms for the anisotropy of the neutrino
distribution, such as the strong magnetic field [32,59],
rotation [60], convection in the postshock layer and the
neutrino sphere [61], and so on. However, since it has not
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yet been established which mechanism is most effective, in
this study, we assume the presence of anisotropy without
relying on a specific mechanism and provide a proof-of-
principle demonstration for this novel chiral transport. To
investigate the relevance of this effect quantitatively, three-
dimensional numerical simulations of the chiral radiation
hydrodynamics would be necessary, which is beyond the
scope of the present paper.
As a demonstration, one may consider an anisotropic

distribution function with the form

fðνÞðqÞ ¼ fð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qμΞμνqν

p Þ ð57Þ

with Ξμν ¼ n̄μn̄ν þ ξâμâν, where âμ corresponds to a unit
spacelike vector and ξ represents the magnitude of
anisotropy. Such a distribution function is introduced in

anisotropic hydrodynamics as a model for the early-time
dynamics with large pressure anisotropy in relativistic
heavy ion collisions; see, e.g., Ref. [62] for a review.
When jξj ≪ 1, we may also make the approximation

f
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qμΞμνqν
p 
 ¼ f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ ξðq⊥ · âÞ2

q �

≈ fðq0Þ þ
ξðq⊥ · âÞ2

2q0
∂q0fðq0Þ; ð58Þ

where the leading-order anisotropic correction is given by
the quadratic term with respect to the anisotropic vector âμ.
For simplicity, we further assume that âμ is either
perpendicular or parallel to Bμ. Accordingly, Eq. (56)
yields

JμB ≈ −
ℏGFffiffiffi
2

p
π2

μejBj
Z

d4q
ð2πÞ3

δðq0 − jqjÞ
4q20

Θðq0Þξðq⊥ · âÞ2½B̂μ þ q̂μq̂ · B̂ð2 − q0∂q0Þ�∂q0fðq0Þ

¼ −
ℏGFffiffiffi
2

p
π2

μejBj
Z

d3q
ð2πÞ3

ξðq⊥ · âÞ2
4jqj2 ðB̂μ þ 5q̂μq̂ · B̂Þ∂jqjfðjqjÞ

¼ ℏGF

12
ffiffiffi
2

p
π4

μeξðB̂ · âÞ2Bμ

Z
∞

0

djqjjqj2∂jqjfðjqjÞ: ð59Þ

In this example, the neutrino number current can be generated along the magnetic field.
We may also calculate the modifications upon the (symmetric) energy-momentum tensor by using

Tμν
B ¼

Z
d4q
ð2πÞ4 q

ðν�W<μÞðq; xÞ −W<μÞðq; xÞB¼0

�

¼ 1

2

Z
d4q
ð2πÞ3 δðq0 − jqjÞΘðq0Þ

�
ΔϵqBðnðμnνÞ þ nðμq̂νÞ⊥Þq0∂q0 þ ΔϵqBq̂

ðμ
⊥ q̂

νÞ
⊥ðq0∂q0 − 1Þ − q̂ðμΣ̄νÞ

B

�
fðνÞðqÞ: ð60Þ

By symmetry, we can decompose Tμν
B as4

Tμν
B ¼ χB1nðμnνÞ þ χB2nðμB̂νÞ þ χB3B̂

ðμB̂νÞ þ χB4ξ
ðμ
t B̂

νÞ þ χB5ξ
ðμ
t ξ

νÞ
t ; ð61Þ

where ξμt is a unit spacelike vector satisfying ξt · n ¼ ξt · B̂ ¼ 0. The corresponding coefficients are given by

χB1 ¼
ℏGF

4
ffiffiffi
2

p
π2

μejBj
Z

d4q
ð2πÞ3 δðq0 − jqjÞΘðq0Þðq̂ · B̂Þq0∂q0fðνÞðqÞ; ð62Þ

χB2 ¼ −
ℏGF

4
ffiffiffi
2

p
π2

μejBj
Z

d4q
ð2πÞ3 δðq0 − jqjÞΘðq0Þ½1þ ðq̂ · B̂Þ2q0∂q0 �fðνÞðqÞ; ð63Þ

χB3 ¼
ℏGF

4
ffiffiffi
2

p
π2

μejBj
Z

d4q
ð2πÞ3 δðq0 − jqjÞΘðq0Þðq̂ · B̂Þ½1þ ðq̂ · B̂Þ2ðq0∂q0 − 1Þ�fðνÞðqÞ; ð64Þ

χB4 ¼
ℏGF

4
ffiffiffi
2

p
π2

μejBj
Z

d4q
ð2πÞ3 δðq0 − jqjÞΘðq0Þðξt · q̂Þ½2ðq̂ · B̂Þðq0∂q0 − 1Þ − 1�fðνÞðqÞ; ð65Þ

4One may alternatively rewrite ξðμt ξ
νÞ
t as ξðμt ξ

νÞ
t ¼ −2ðημν − nðμnνÞ þ B̂μB̂νÞ.
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χB5 ¼
ℏGF

4
ffiffiffi
2

p
π2

μejBj
Z

d4q
ð2πÞ3 δðq0 − jqjÞΘðq0Þðξt · q̂Þ2ðq̂ · B̂Þðq0∂q0 − 1ÞfðνÞðqÞ: ð66Þ

It is also clear to see that all the coefficients above vanish
when fðνÞðqÞ ¼ f̄ðνÞ�ðq0Þ.

C. Neutrino spin Hall effect

We next analyze the neutrino spin Hall effect induced by
the density gradient. For clarity, we shall now switch off the
magnetic field. Given Eqs. (24) and (42), we find

W<μ ¼ 2πsgnðq0Þ
�
δðq̃2Þðq̃μ − ℏSðνÞμνq DνÞ

− ℏδ0ðq2Þϵμνρσqνnσð∂ρVÞ
�
fðνÞ; ð67Þ

where we used the decomposition Σ̄μ ¼ Vnμ, with V given
in Eq. (3). On the other hand, the off-shell chiral kinetic
equation becomes

�
q̃μð∂μþnμð∂νVÞ∂νqÞ−

ℏSμνq
q ·n

ð∂μVÞ∂ν
�
fðνÞ ¼C½fðνÞ�: ð68Þ

Similar to the case with magnetic fields, the neutrino
number current due to the term ∂ρV is given by

JμSHE ¼ 2

Z
d4q
ð2πÞ4

�
W<μðq; xÞ −W<μðq; xÞT;μ¼const

�

¼ ℏϵμνρσlνnσð∂ρVÞ; ð69Þ

where

lν ¼
Z

d4q
ð2πÞ3 Θðq0Þ

δðq0 − jqjÞ
2q0

∂qνfðνÞðqÞ: ð70Þ

This spatial (μ ¼ i) part exactly reproduces the neutrino
spin Hall effect in Eq. (6) derived using Berry curvature in
Sec. II. Hence, we can confirm that this kinetic theory
based on the Wigner function correctly provides a Lorentz-
covariant formulation including the effects of Berry
curvature.
As we already remarked in Sec. II, JμSHE can be non-

vanishing only when the momentum distribution of neu-
trinos is anisotropic. As an example, we take

fðνÞðqÞ ¼ fðq · vÞ ≈ fðq0Þ þ ðq⊥ · vÞ∂q0fðq0Þ; ð71Þ

where the vector vμ ¼ ð1; vÞ with jvj ≪ 1 characterizes an
anisotropy of the neutrino distribution function. Note that
Eq. (71) satisfies Eq. (68) without collisions given
v · ∂V ¼ 0. In this case, we find

lν ≈ −
1

24π2
vν⊥

Z
∞

0

djqjjqj∂jqjfðjqjÞ: ð72Þ

On the contrary, Eq. (57) leads to lν ¼ 0 and JμSHE ¼ 0.
One may further evaluate the modifications on the

energy-momentum tensor via

Tμν
SHE ¼

Z
d4q
ð2πÞ4 q

ðν½W<μÞðq; xÞ −W<μÞðq; xÞT;μ¼const�

¼ ϵðμκρσLνÞ
κ nσð∂ρVÞ; ð73Þ

where

Lν
κ ¼

1

2

Z
d4q
ð2πÞ3 Θðq0Þ

δðq0 − jqjÞ
2q0

qν∂qκfðνÞðqÞ: ð74Þ

We similarly find that Tμν
SHE ¼ 0 when fðνÞðqÞ ¼ f̄ðνÞ�ðq0Þ.

V. SUMMARY AND OUTLOOK

In this paper, we derived the CKT for chiral fermions
with self-energy corrections. By applying this formalism to
nonequilibrium neutrinos interacting with electrons in
equilibrium, we found the neutrino currents along the
magnetic fields and neutrino spin Hall effect induced by
the density gradient. Combined with the quantum correc-
tions to the collision terms found previously [15], the
present results provide a more complete CKT.
While the magnetic-field-induced neutrino current pre-

viously found in Ref. [32] is OðG2
FÞ, the one found in this

paper is OðGFÞ, and the latter is naively more dominant in
GF. On the other hand, the latter requires the anisotropic
neutrino distribution, which may be generated by a strong
magnetic field [32,59], rotation [60], convective motion
[61], etc., in core-collapse supernovae. Which contribution
is more effective is a dynamical question that needs to be
checked by numerical simulations of chiral radiation
hydrodynamics. This issue would be important for pulsar
kicks, to which these neutrino chiral transport phenomena
contribute; see Ref. [30] and references therein.
Our results indicate the potential relevance of the

neutrino spin Hall effect in the physics of core-collapse
supernovae. Similarly, the electron spin Hall effect due to
the neutrino density gradient should also appear at the core
of supernovae, where neutrinos are thermalized. To our
knowledge, this is the first example of the spin Hall effect
of fermions realized in nature. It would be interesting to
investigate how the presence of these spin Hall effects
modifies the evolution of core-collapse supernovae. While
we focused on the flat spacetime in this paper, extensions to
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curved spacetime would lead to an additional spin Hall
effect of leptons due to the gravitational field similar to
photons [41,43,44] and gravitons [42,45]. Incorporating
these chiral transport phenomena, which are inevitable
consequences of the Standard Model, would provide
genuine first-principles simulations of supernovae.
A further extension to the quantum kinetic theory for

massive fermions [18,20], similarly with the additional self-
energy corrections, has been recently reported in Ref. [63],
in which the application to spin polarization phenomena in
relativistic heavy ion collisions is also addressed.
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APPENDIX A: PERTURBATIVE SOLUTIONS
OF THE MASTER EQUATIONS

In this appendix, we provide the details of the perturba-
tion solutions of the master equations (16) and (17). Wewill

focus on the case for left-handed fermions without loss of
generality and drop the contributions of the terms OðΣ̄2

LÞ,
OðΣ≶

L Σ̄LÞ, and OððΣ≶
LÞ2Þ at weak coupling. In the follow-

ing, we will frequently use the useful relations

Δ̃ρq̃σ ≈ Δ½σΣ̄Lρ� þ Fσρ; ðA1Þ

ðq̃ · Δ̃Þq̃2 ≈ 0; Δ̃ · q̃ ≈ 0; q̃ · Δ̃q̃σ ≈ −q̃αΔ̃σq̃α;

ϵμνρσðΔ̃μΔ̃σq̃ρÞ ≈ 0 ðA2Þ

and the Schouten identity

qαϵμνρσ ¼ qμϵανρσ þ qνϵμαρσ þ qρϵμνασ þ qσϵμνρα: ðA3Þ

To find a perturbative solution, we decompose W<μ
L ¼

Wð0Þ<μ
L þ ℏWð1Þ<μ

L , where Wð0Þ<μ
L is given by Eq. (18) for

χ ¼ L. Given

ΔμW
ð0Þ<μ
L ≈ 2πsgnðq0Þ

�
δðq̃2Þðq̃ · Δ − Δ · Σ̄LÞ

− 2δ0ðq̃2Þq̃μðq̃ · ΔΣ̄LμÞ
�
fL ðA4Þ

and

ð∂νqWð0Þ<μ
L ÞðΔνΣ̄LμÞ − ð∂νWð0Þ<μ

L Þð∂νqΣ̄LμÞ
≈ 2πsgnðq0Þð2δ0ðq̃2Þq̃μðq̃ · ΔΣ̄LμÞ þ δðq̃2Þ½Δ · Σ̄L þ q̃μðΔνΣ̄LμÞ∂νq − q̃μð∂νqΣ̄LμÞ∂ν�ÞfL; ðA5Þ

we obtain

Δ̃μW
ð0Þ<μ
L − Σ<

LμW
ð0Þ>μ
L þ Σ>

LμW
ð0Þ<μ
L ¼ δðq̃2Þq̃μðΔ̃μfL − Cμ½fL�Þ ¼ OðℏÞ; ðA6Þ

which leads to the kinetic equation (19) at Oðℏ0Þ, where Cμ½fL� and Δ̃ρ are defined below Eq. (19).

To obtain Wð1Þ<μ
L , we have to solve Eqs. (21) and (22) with the constraint q̃μW

ð1Þ<μ
χ ¼ 0. Inserting

−
1

2
ϵμνρσΔ̃ρW

ð0Þ<
Lσ ≈ −πsgnðq0Þϵμνρσ

�
δðq̃2ÞΔ̃ρðq̃σfLÞ þ 2δ0ðq̃2ÞfLq̃σq̃αðΔ½αΣ̄ρ� þ FαρÞ

� ðA7Þ

into Eq. (21) yields

q̃2Wð1Þ<μ
L ¼ −πsgnðq0Þϵμνρσq̃νðΔ̃ρq̃σÞδðq̃2ÞfL; ðA8Þ

from which we may postulate the solution (23).
For generality, here we consider a spacetime-dependent frame vector nμðxÞ. By using the Schouten identity (A3) and the

leading-order kinetic equation, one can show that

q̃½νWð1Þ<μ�
L ¼ −2πsgnðq0Þðq̃κϵμνρσ þ q̃ρϵμκνσ þ q̃σϵμκρνÞ

�
δðq̃2Þ q̃σnκ

2q̃ · n
ðΔ̃ρfL − Cρ½fL�Þ −

1

2
δ0ðq̃2Þq̃κðΔ̃ρq̃σÞfL

�

≈ −πsgnðq0Þϵμνρσðδðq̃2Þ
�
Δ̃ρðq̃σfLÞ − q̃σCρ½fL�

�þ 2δ0ðq̃2ÞfLq̃σq̃αðΔ½αΣ̄ρ� þ FαρÞÞ

¼ −
1

2
ϵμνρσ

	
Δ̃ρW

ð0Þ<
Lσ − Σ<

LρW
ð0Þ>
Lσ þ Σ>

LρW
ð0Þ<
Lσ


 ðA9Þ
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and q̃μW
ð1Þ<μ
L ¼ 0. Therefore, Eq. (23) is indeed the perturbative solution satisfying the Kadanoff-Baym equations. One

may analogously derive the perturbative solution for right-handed fermions.
From Eq. (15) and the perturbative solution of Wμ

L in Eq. (24), the corresponding chiral kinetic equation reads

�
δðq̃2Þðq̃μΔ̃μ − ℏΔ̃μS

μν
q̃ Δ̃νÞ − ℏδ0ðq̃2Þ

�
ðΔ̃μq̃2ÞSμνq̃ Δ̃ν þ

1

2
ϵμνρσΔ̃μq̃νðΔ̃σq̃ρÞ

�

−
ℏ
2
ϵμνρσδ00ðq̃2ÞðΔ̃μq̃2Þq̃νðΔ̃σq̃ρÞ

�
fL ¼ C̃½fL� þ ℏδ0ðq̃2ÞSμνq̃ Fμνq̃ · C½fL�; ðA10Þ

where we used the Schouten identity (A3). Here, C̃½fL� is the collision term involving Σ≶
L, which, dropping the OðΣ≶

L Σ̄LÞ
terms, takes the form C̃½fL� ¼ δðq̃2ÞC½fL� with C½fL� given in Eq. (26) [30].
We can rewrite this kinetic equation such that the terms proportional to δ00ðq̃2Þ and δ0ðq̃2Þ do not appear explicitly. By

using the Schouten identity (A3), we have

1

2
ϵμνρσðΔ̃μq̃2Þq̃νðΔ̃σq̃ρÞ ¼ ϵμνρσq̃αðΔ̃μq̃αÞq̃νðΔ̃σq̃ρÞ

¼ −ϵμνρσ
�
q̃αðΔ̃μq̃αÞq̃ν − q̃2ðΔ̃μq̃νÞ − 2q̃νðq̃ · Δ̃q̃μÞ

�ðΔ̃σq̃ρÞ; ðA11Þ

which yields

1

2
ϵμνρσδ00ðq̃2ÞðΔ̃μq̃2Þq̃νðΔ̃σq̃ρÞ ¼

1

4
ϵμνρσq̃2δ00ðq̃2ÞðΔ̃μq̃νÞðΔ̃σq̃ρÞ ¼ −

1

2
ϵμνρσδ0ðq̃2ÞðΔ̃μq̃νÞðΔ̃σq̃ρÞ: ðA12Þ

One can similarly show that

ðΔ̃μq̃2ÞSμνq̃ Δ̃ν ¼
1

2
ϵμνρσðΔ̃σq̃ρÞ

�
q̃2nν
q̃ · n

− q̃ν

�
Δ̃μ þ Sμνq̃ ðΔ̃μq̃νÞq̃ · Δ̃: ðA13Þ

Using these relations, Eq. (A10) becomes

�
δðq̃2Þ

�
q̃μΔ̃μ − ℏΔ̃μS

μν
q̃ Δ̃ν −

ℏϵμνρσnμðΔ̃σq̃ρÞ
2q̃ · n

Δ̃ν

�
−
ℏ
2
δ0ðq̃2Þϵμνρσq̃νðΔ̃μΔ̃σq̃ρÞ

�
fL

− ℏδ0ðq̃2ÞSαβq̃ ðΔ̃αq̃βÞq̃μðΔ̃μfL − Cμ½fL�Þ ¼ C̃½fL�: ðA14Þ

We may eliminate the term proportional to δ0ðq̃2Þ in the first line of Eq. (A14) from Eq. (A2). Then, Eq. (A14) can be
written as

δ½q̃2 − ℏSαβq̃ ðΔ̃αq̃βÞ�
��

q̃μΔ̃μ − ℏΔ̃μS
μν
q̃ Δ̃ν −

ℏϵμνρσnμðΔ̃σq̃ρÞ
2q̃ · n

Δ̃ν

�
− C½fL�

�
¼ 0; ðA15Þ

up to OðℏÞ. By further using

−Δ̃μS
μν
q̃ Δ̃ν ¼

Sμνq̃
q̃ · n

	�ðΔ½αΣ̄Lμ�

þ Fαμ

�
nα þ q̃αð∂μnαÞ



Δ̃ν þ

ϵμνρσ

2q̃ · n

�
nμðΔ̃σq̃ρÞ þ q̃ρð∂σnμÞ

�
Δ̃ν − Sμνq̃ Δ̃μΔ̃ν; ðA16Þ

we eventually arrive at the chiral kinetic equation (25) under the on-shell condition q̃2 ¼ ℏSμνq̃ ðΔ̃μq̃νÞ.
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APPENDIX B: FEYNMAN PROPAGATORS
FOR CHIRAL FERMIONS

The lesser and greater Wigner functions for chiral
fermions are given by [8,9]

W≶μ
χ ðqÞ ¼ 2πsgnðq · nÞ½δðq2Þðqμ þ χℏSμνq DνÞ

þ χℏF̃μνqνδ0ðq2Þ�f≶χ ; ðB1Þ

where f<χ ¼ fχ and f>χ ¼ 1 − fχ , Dμfχ ¼ Δμfχ−
Σ<
χμf>χ þ Σ>

χμf<χ , and Sμνq ¼ ϵμναβqαnβ=ð2q · nÞ. The
Feynman propagator Wμ

χðqÞ is given by

Wμ
χðqÞ

¼
Z

∞

−∞
dq00

�
θ̃ðq00−q0ÞW>μ

χ ðq0Þ− θ̃ðq0−q00ÞW<μ
χ ðq0Þ�q0i¼qi ;

ðB2Þ

where q0 ¼ q · n and

θ̃ðqÞ ¼ 1

2π

�
1

iq
þ πδðqÞ

�
ðB3Þ

corresponds to the Fourier transform of the unit step
function. One can accordingly rearrange Wμ

χðqÞ into the
form

Wμ
χðqÞ ¼ −i

Z
∞

−∞

dq00
2π

1

q00 − q0
½W>μ

χ ðq0Þ þW<μ
χ ðq0Þ�q0i¼qi

þ 1

2
½W>μ

χ ðqÞ −W<μ
χ ðqÞ�: ðB4Þ

We may now make the decomposition Wμ
χðqÞ ¼

Wð0Þμ
χ ðqÞ þ ℏWð1Þμ

χ ðqÞ and fχ ¼ fð0Þχ þ ℏfð1Þχ , up to OðℏÞ.
For the classical contribution Wð0Þμ

χ ðqÞ, we find [65]

Wð0Þμ
χ ðqÞ ¼ −i

Z
∞

−∞
dq00

q0μδðq020 − jqj2Þ
q00 − q0

sgnðq00Þ þ πqμδðq2Þsgnðq0Þ½1 − 2fð0Þχ ðqÞ�

¼ iqμ

q2
þ πqμδðq2Þsgnðq0Þ½1 − 2fð0Þχ ðqÞ�

¼ iqμ

q2 þ iϵ
− 2πqμδðq2Þ½Θð−q0Þ þ sgnðq0Þfð0Þχ ðqÞ�; ðB5Þ

where we used sgnðq0Þ ¼ 1–2Θð−q0Þ and
1

q2 þ iϵ
¼ −iπδðq2Þ þ 1

q2
: ðB6Þ

To compute the quantum contribution Wð1Þμ
χ ðqÞ, we

further decompose Wð1Þμ
χ ðqÞ ¼ Wð1aÞμ

χ ðqÞ þWð1bÞμ
χ ðqÞ,

where

Wð1aÞμ
χ ðqÞ

≡ −i
Z

∞

−∞

dq00
2π

1

q00 − q0

�
Wð1Þ>μ

χ ðq0Þ þWð1Þ<μ
χ ðq0Þ�q0i¼qi ;

ðB7Þ

Wð1bÞμ
χ ðqÞ≡ 1

2

�
Wð1Þ>μ

χ ðqÞ −Wð1Þ<μ
χ ðqÞ�: ðB8Þ

From Eq. (B1), one finds

Wð1aÞμ
χ ðqÞ ¼ −χ

i
2

Z
∞

−∞
dq00

sgnðq00Þ
q00 − q0

F̃μν
∂q0νδðq02Þ


q0i¼qi

;

ðB9Þ

Wð1bÞμ
χ ðqÞ ¼ −πsgnðq0Þð2δðq2Þ

�
qμfð1Þχ ðqÞ þ χSμνq Dνf

ð0Þ
χ ðqÞ�þ χF̃μνqνδ0ðq2Þ½2fð0Þχ ðqÞ − 1�Þ: ðB10Þ

Performing the integration by parts and dropping the surface terms, Wð1aÞμ
χ ðqÞ becomes

Wð1aÞμ
χ ðqÞ ¼ iχBμ

Z
∞

−∞
dq00

2ðq00 − q0Þδðq00Þ − sgnðq00Þ
2ðq00 − q0Þ2

δðq020 − jqj2Þ

¼ −iχBμ

�
δðjqjÞ

2jqjðq0 − jqjÞ þ
q0

ðq20 − jqj2Þ2
�
; ðB11Þ
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where Bμ ¼ F̃μνnν. Nonetheless, the term proportional to
δðjqjÞ in Eq. (B11) is unphysical since q0 ¼ jqj ¼ 0 is at
the infrared region beyond the validity of the ℏ expansion,
and we shall accordingly drop it.
When Eμ ¼ Fμνnν ¼ 0 and fχ only depends on q0, we

find

Wμ
χðqÞ ¼ i

q2

�
qμ −

χℏq0Bμ

q2

�

þ π½qμδðq2Þ þ χℏB½μnν�qνδ0ðq2Þ�
× sgnðq0Þ½1 − 2fχðqÞ� ðB12Þ

up to OðℏÞ. In equilibrium at finite temperature T and
chemical potential μ, one may introduce

f̃χðqÞ ¼
Θðq0Þ

eβðjq0j−μÞ þ 1
þ Θð−q0Þ
eβðjq0jþμÞ þ 1

; ðB13Þ

which satisfies the property f̄χðqÞ ¼ sgnðq0Þf̃χðqÞ þ
Θð−q0Þ. Then, Eq. (B12) can be rewritten as

Wμ
χðqÞ ¼ iqμ

q2 þ iϵ
− χℏ

�
iq0Bμ

ðq2Þ2 þ πB½μnν�qνδ0ðq2Þ
�

− 2π½qμδðq2Þ þ χℏB½μnν�qνδ0ðq2Þ�f̃χðqÞ: ðB14Þ
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