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Chiral kinetic theory with self-energy corrections
and neutrino spin Hall effect
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We systematically derive the chiral kinetic theory for chiral fermions with collisions, including the
self-energy corrections, from quantum field theories. We find that the Wigner functions and chiral kinetic
equations receive both the classical and quantum corrections from the self-energies and their spacetime
gradients. We also apply this formalism to study nonequilibrium neutrino transport due to the interaction
with thermalized electrons and nucleons, as realized in core-collapse supernovae. We derive neutrino
currents along magnetic fields and neutrino spin Hall effect induced by the density gradient at first order in
the Fermi constant Gy for anisotropic neutrino distributions.
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I. INTRODUCTION

Recently, chiral kinetic theory (CKT) [1-7] has been
established as a fundamental tool to describe nonequili-
brium evolution of many-body ultrarelativistic fermions
with chirality. The first-principles derivation of the CKT
from the underlying quantum field theory via the Wigner
function formalism [8—11] enables one to unambiguously
determine the form of collisions in the CKT for a
given microscopic theory. Based on this formalism, there
have been extensive studies on the generalizations of the
CKT, such as higher-order quantum corrections [12,13],
extensions to curved spacetime [14,15], massive fermions
[16-22], and circularly polarized photons [23-25]; see
Ref. [26] for a review. The CKT has been applied to various
physical systems, such as quark-gluon plasmas in heavy
ion collisions [27], Weyl and Dirac semimetals [28,29],
compact stars [30], and the early Universe [30].

In the context of core-collapse supernovae where parity-
violating effects can be relevant [31], the general relativistic
form of the CKT for left-handed neutrinos with collisions
has been systematically constructed based on the Standard
Model of particle physics [15] and applied to uncover novel
chiral transport phenomena [32-34]. However, the previous
CKT is not yet complete as it misses other potentially
relevant chiral transport phenomena. One such example is
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the spin Hall effect of neutrinos induced by the density
gradient, which has not been appreciated in the literature so
far, to our knowledge. To derive a more generic Lorentz-
covariant CKT that can describe the neutrino spin Hall
effect and other chiral transport phenomena unexplored so
far, further extension of the CKT is necessary by including
the full self-energy corrections and quantum corrections
systematically. Such an extension also modifies the free-
streaming part and on-shell conditions of the CKT; in the
case of the conventional kinetic theory, see Ref. [35].

In this paper, we derive the general CKT for chiral
fermions with collisions incorporating such self-energy
corrections from quantum field theories. We find that the
self-energies and their spacetime gradients lead to both the
classical and quantum corrections on the Wigner functions
and chiral kinetic equations. Our main results are given by
Egs. (24)—(26). We then apply this formalism to study
chiral transport phenomena of nonequilibrium neutrinos
interacting with thermalized electrons. Such a situation is
realized, e.g., in core-collapse supernovae, where the matter
sector composed of electrons and nucleons is in thermal
equilibrium due to the electromagnetic (or strong) inter-
action while neutrinos scattered with the matter sector only
through the weak interaction are mostly out of equilibrium
(see, e.g., Ref. [36]). As a consequence, we find neutrino
currents along magnetic fields and the neutrino spin Hall
effect induced by the density gradient for anisotropic
neutrino distributions; see Egs. (56) and (69), respectively.

We note that such a spin Hall effect is a universal feature
of chiral particles not limited to neutrinos. In fact, it is
known to appear also for photons [37—44] and gravitons
[42,45] with circular polarizations, e.g., in curved
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spacetime. A related spin Hall effect for quarks (as Dirac
fermions) was also discussed in the context of heavy ion
collisions [46].

This paper is organized as follows. In Sec. II, we provide
a simple physical derivation of the neutrino spin Hall effect
based on the notion of Berry curvature. In Sec. III, we
present the general formulation for the Wigner function and
CKT for chiral fermions, including self-energies. In
Sec. IV, we apply the formalism to study neutrino transport
due to the self-energy corrections and obtain the neutrino
number current and energy-momentum tensor induced by
magnetic fields and density gradient. Section V is devoted
to summary and outlook. Technical details for the deriva-
tions are shown in Appendixes.

Throughout this paper, we focus on the flat spacetime.
We use the mostly minus signature of the Minkowski
metric #* = diag(1,—1,—1,—1) and the completely
antisymmetric tensor e*? with €123 = 1. The electric
charge e is absorbed into the definition of the gauge field
A*. We use the notations A¥BY) = A*B* + AYB* and
AlBY) = A*BY — AYB*. We also define F* = e”””ﬁF,,ﬂ/Z
with F* being the electromagnetic field strength.

II. NEUTRINO SPIN HALL EFFECT
FROM BERRY CURVATURE

In this section, we first provide a physical derivation of
the neutrino spin Hall effect based on the semiclassical
action for neutrinos including the effect of the Berry
curvature, a notion widely applied in condensed matter
physics [47].

We start with the generic semiclassical action for
neutrinos [1-3,31]:

S:/[Ir-dx—(ep+V)dt—ap-dp], (1)

where €, = |p| is the energy dispersion and V is a generic
potential energy (that will be specified in the context of
supernovae later). As neutrinos are only left-handed within
the Standard Model, neutrinos have a nontrivial Berry
curvature €, in momentum space [31]:

P
Q,=—h—.
! 2lpP?

This effect is incorporated in the action (1) through the
Berry connection a, in momentum space, which is related
to the Berry curvature via Q, =V x a,.

As a specific example of core-collapse supernovae, let us
consider electron neutrinos in the electron and nucleon
backgrounds. In this case, the backgrounds give rise to the
potential energy [48,49] (which we will also rederive in

Sec. IVA)

(2)

G
V:

F Gr
— —N,+ 1 —4sin? Ow Ny,

AN
G)

(1+4sin Oy )N, —

with Gg being the Fermi constant, 6y, the Weinberg angle,
and N.,, the electron, neutron, and proton number
densities. The higher-order corrections of O(My}) in
V [49] are negligible in the regime m3, > E E, [50,51]
in the context of supernovae, where myy, is the mass of W
bosons, E, is the neutrino energy, and E, is the electron
energy. It is well known that the potential energy V leads to
the so-called Mikheyev-Smirnov-Wolfenstein effect in the
context of neutrino oscillations [52,53], but here we point
out yet another medium effect in neutrino physics—
neutrino spin Hall effect.

The semiclassical equations of motion for neutrinos
follow from the action (1) as

X=v+pxQ, (4)
p=-VV. (5)

where v = de,,/dp is the velocity of neutrinos. When the
densities Nm_IJ vary depending on x, the variation of the
potential energy V leads to the force given by the right-hand
side of Eq. (5) [51]. The new ingredient compared with the
previous literature in our formulation is the contribution in
Eq. (4) expressed by the Berry curvature. This gives rise to
the additional contribution in the neutrino number current:

J= / e

where ) (1,p,x) is the neutrino distribution function in the
phase space. This current flowing in the direction
perpendicular to VV is the neutrino spin Hall effect, by
analogy with the conventional spin Hall current triggered by a
transverse electric field. This should be contrasted with the
classical current in the direction parallel to VV. To our
knowledge, this is the first to demonstrate the neutrino spin
Hall effect. Note that this current can be nonvanishing only
when the momentum distribution of neutrinos is anisotropic.

This derivation of the neutrino spin Hall effect is based on
the semiclassical description of neutrinos in the phase space,
augmented by the effect of the Berry curvature. However, a
drawback of the resulting kinetic theory is that it lacks a
manifest Lorentz covariance and cannot be extended, e.g., to
curved spacetime. Using the Wigner function formalism and
systematically including the self-energy and quantum cor-
rections, such a Lorentz-covariant kinetic theory can be
derived from the underlying quantum field theory. By doing
so, we will obtain the generic CKT that not only reproduces
the neutrino spin Hall effect, but delineates other chiral
transport phenomena, as shown below.

/( X xQ,fW=Jsup,  (6)
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III. CHIRAL KINETIC THEORY WITH
SELF-ENERGY CORRECTIONS

In this section, we shall systematically derive the generic
CKT with self-energy corrections associated with the
modifications of the dispersion relation and those contrib-
uting to collision terms based on Wigner functions and 7
expansion. In the conventional power counting scheme, the
gradient correction in phase space is considered as the same
order as self-energies depending on the interaction at weak
coupling. This can be understood from simply a classical
Boltzmann equation, for which the gradient term in the
free-streaming part can be balanced by the collision term
without gradient corrections. In general, the gradient
expansion and the coupling-constant expansion can be
separated. In the following, we keep 7 only to characterize
the gradient correction and set 7 = 1 for other corrections
in the coupling-constant expansion.

The central object in the formulation is the lesser and
greater Wigner functions for chiral fermions y, with
chirality y = R, L:

Wi (q.x) = / dye iyl (x + 3/ 2w, (= y/2). (7)

W3 (q.x) = / dye it (g (x = y/Dwi(x 4 y/2). (8)

Here the gauge link is implicitly embedded, and ¢*
represents the kinetic momentum. The Kadanoff-Baym
equations for Wy up to O(#) read [26]

i

1 -
o <qﬂ +2ihAﬂ) WR —Zp*x Wy = 3 (ZR*WR —Zg*WR),
©)

| ) .
o (qﬂ +§ihA,,) WE =2 x W = % (ZSH*WE —Z0*WE),

(10)

where ¢ = (1,6) and ¢ = (1,-06) with ¢’ (i =1, 2, 3)
being Pauli matrices, A, = 9, + F,,0,, £, = Re(Z}) + X0
with ¥ being the retarded self-energy’' and 2)‘? the one-
point potential, Zf are the lesser and greater self-energies,
and the operator % is the Moyal product. In general,
the self-energy X is decomposed into right- and left-
handed components as X = Ppy#%g, + Pry*%y, with

Pr=(1+7°)/2 and P, = (1 —9%)/2.

Tn the real-time formalism, we adopt the convention [26]
=Yt YT =3"T_3%, XW=FFt_F T =3 -3,
it~ = —%<, and iX~" =X>, where the superscript +,—
denotes the time branch on the closed time path and the subscript
x = R, L for chirality is omitted for brevity.

The Wigner functions and self-energies can be decom-
posed as Wg =5 Wi", W =0 W', Ik =05k,
5 =6,5, 5% = 0,55, and =¥ = 5,5, To write down
the Kadanoff-Baym equations for W;* with chirality
x = R, L, we use the relations

o5 = g — nle! 4 jerved n,0p.

5'c" = + nle* +ie"n,0p, (11)
where the timelike frame vector n* satisfying n> =1 is
introduced to specify the choice of the spin basis.
Equations (9) and (10) then lead to

! (ZHa Wy, — 1505,

(12)

N

ih _
(q” + EAM — Z){M*> W;’l =

in

5 A, - iw*> W,

Ul/f(_)("wﬂy]ﬂ + ie"*n,,) [(‘1/4 +
i

5 (Z5 %W, — 2;”*1/\/;”)] =0 (13)

where the coefficient y = 1 corresponds to the subscript
x = R, L for chirality. Here, we introduced the notation
Vi = (" — n*n*)V, for an arbitrary four-vector V.

Using the 7 expansion of the Moyal product for generic
A(g, x) and B(q,x),

in in , N

A*B=AB +E{A,B}PB —EFW()‘;A(),]B +0O(h*),
where {A,B}pg = (0,A)(d,B) — (9,A)(07B) denotes the
Poisson bracket, the master equations obtained from the
Kadanoff-Baym equations up to O(%) are given by

(14)

DWW =0, (15)

Wy =0, (16)
R

W = g5 e D Wy, (17)

v~vhere we introduce D, Wy, = A W7, - X W, + 2, W7,
D,=D,+ (AX,)d - (0,%,,), and G, =q,—X,,.
Equations (16) and (17) determine the perturbative solution
of the Wigner function, while Eq. (15) leads to the kinetic
equation.

To solve Egs. (16) and (17) for the Wigner functions

perturbatively, we make the decomposition W, =
W)((O) 4 hW)((]k” . For simplicity, we will drop nonlinear
terms O(£2), O(L,%5), and O((Z)?) at weak coupling.
Here, we present crucial steps for the derivation, while more
technical details are shown in Appendix A. From Egs. (16)
and (17), the leading-order solution takes the form
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W (q.x) = 2zsgn(0)5(3%)7" f- (18)

where f, denotes the distribution function for chiral fer-
mions and sgn(g,) represents the sign of gy, which is
introduced to incorporate the contributions from both
particles and antiparticles. Here 5(§*) characterizes the
on-shell condition with the self-energy corrections. By
plugging W)((0)</4 into Eq. (15), the corresponding kinetic
equation up to O(A°) reads

5(212)‘?”(&/4](;( - Cﬂ[.f){]) =0, (19)
where A, =47,+ (M%) - (0,%,) and C,|

(= f x) = represents the collision term.

Subsequently, the next-to-leading-order correction WX
has to be obtained by solving

1]:

q[vw)((l)<l4] — geﬂvl)a@p W)((?,-) < (20)

with the constraint EIﬂW;((1><” = 0. Making contraction of
Eq. (20) with g, and n,, one finds
62W)((1)<ﬂ :geﬂypaayﬁpw)((g)<’ (21)

X

G- oW — W< = Eewpanyf)pwﬁi’)i (22)

respectively. From these two equations, one can derive the

solution of W=

W;((l)<”:2ﬂ)(5gn((10)[< ) (B,f, ~ C,I1,)

1 -
+ 30 @)ea, By 23)

where S’g" = ¢"Pg,nz/(2q - n) is the spin tensor modified
by the presence of £, and &' (x) = 0,6(x). The perturbative
solution up to O(h), O(Z

.,), and O(Zf) is accordingly
given by

Wi = 2msgn(qq) |8(7*) (3" + x1S5'D,)

)(h ~ vpo 7, S
+ 8 (@) q, (o + 8, 500) | £ (24)

In fact, one can check that Eq. (24) satisfies Eq. (20) as
shown in Appendix A.

Given the perturbative solution, with complicated yet
straightforward computations, Eq. (15) results in the
corresponding chiral kinetic equation up to O(h),

O(%,), and O(%5):

L o xhe"°g,(0,n,) Y
(q +7 — [1(AuZ) + B+ §(9uma)] +2q—’n"+msg A, A, =Clf,] (25)
with the on-shell condition §*> = —;(th”(Aﬂqy) for the spacetime-dependent frame vector n#(x), where
)(hS ” ;(hel“’“ﬁ
i = [ + 0 0,580 L) 4 G 18055 = (1= 18,25 (26)

denotes the collision term with 7 corrections shown, e.g., in
Ref. [30]. Here the electric and magnetic fields are defined
in the frame specified by n* as F,n"=F' and
F wh” = B*. This is one of the main results of this paper.
The formalism presented here completes the previous one
in Ref. [8] without the contribution from ix'

IV. MAGNETIC-FIELD CORRECTIONS AND SPIN
HALL EFFECT IN NEUTRINO TRANSPORT

In this section, we will apply the CKT derived in the
previous section to investigate the self-energy (X ) correc-
tions on the Wigner functions and chiral kinetic equation of
left-handed neutrinos. We shall focus on the medium effect

|

due to thermalized electrons under a homogeneous mag-
netic field. As will be shown later, the magnetic field gives
rise to further modifications on the kinetic equation of
neutrinos on top of the # corrections in the collision terms
previously found in Ref. [15]. Moreover, for electrons in
local equilibrium, we derive the neutrino spin Hall current
perpendicular to the density gradient for anisotropic neu-
trino distributions in momentum space.

A. Calculation of the retarded self-energy

We shall begin with the calculation of ¥, for left-handed
electron neutrinos. The neutrino self-energies in medium
without and with magnetic fields were previously studied
in Refs. [49] and [54-57], respectively. For example, the
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(a) (b)
FIG. 1. One-loop contributions to the neutrino self-energy:

(a) bubble diagram via the exchange of the W' boson and
(b) tadpole diagram via the exchange of the Z° boson.

lowest Landau level approximation for a strong and
constant magnetic field is adopted in Ref. [57]. Here, we
adopt a different treatment and approximation from pre-
vious works and consider a relatively weak magnetic field
such that it is treated as a derivative expansion in the
Wigner function formalism. From the weak interaction,
Re(2¥) and =¥ are derived from the one-loop contribu-
tions shown in Figs. 1(a) and 1(b), respectively. In the
following, let us first focus on the contribution from
Fig. 1(a) and then the one from Fig. 1(b) in the electron
background, and finally the one from Fig. 1(b) in the
nucleon background.
Considering the charged-current interaction

g
'Ccc ==
V2

where Af,. denotes the gauge field for W bosons, one
finds the contnbutlon in the electron background

l/_/C}/MPLAl‘;V*l//U + H.C., (27)

2 4
iT (g =< ap [y"PLS© (p)y’PL]GY\(q — p)
e 2 (271')4 aff ’

(28)

where S¢)(g) and Gg‘;(q) are the Feynman propagators of

electrons and W' bosons, respectively. Accordingly, we
have

2 4
=0 =5 [ TS oG a-p). (29

where Sfﬁ(q) = P,y*W,,(q). Considering the low-energy
regime where ¢g> < M3, we can approximate

G(%( ) qz _ ;4%‘/ ~ Ma%v ’ (30)

“ EE)

*Here the prefactor “i” in front of X! (g) is introduced for
convention. As will be shown in the following computations, the
sign in front of I is chosen to obtain a positive correction on ¢ for
the on-shell condition.

so that

e 4i
TSy (P )Gl (a — ) = = Wip). (31)
w

As presented in Appendix B, the explicit form of W for
left-handed electrons in thermal equilibrium with a constant
magnetic field is given by3

" ig" igoB* ol s
= —+h + zB%n"q,0
L(q) q2 ie (q )2 q ( )

—2a[q"8(q?) — hB¥n¥lq, 8 (¢*)FL(q),  (32)
where

_ ©(q0) O(=40)

filg) = eﬂ(\qo\_ﬂeo) 1 eﬂ(\qo\+ﬂe)0+ 1 (33)

with = 1/T and u. being the local inverse temperature
and chemical potential of left-handed electrons, respec-
tively. For right-handed electrons, the 7 terms should flip
the signs. Hereafter we work with n# = ii# = (1,0). Also,
as we always consider left-handed fermions, we will omit
the subscript “L” for left-handedness unless specified.

Since we are interested in the medium contribution from
electrons in thermal equilibrium, we may simply input the
T- and/or u-dependent parts of YW (q) into the calculation
of 27#(q). That is, we shall take

WH(q) - Wi (q) = —2x[q"8(q*) — hB¥n"1q,5 (¢*)1f (q).

(34)

which can be further written as

nB
Wi(q) = =2z {q n"5<q +—q>
q°
h|B|q°
+—|A |q>+
B-q

up to O(h). Here, we defined V¥ = V#/|V | and |V | =
\/|V4| for an arbitrary four-vector V¥. Also, ¢/ satisfying

q; - n = q,- B =0 denotes the transverse momentum with
respect to the magnetic field. We then obtain

(- B)Bﬂa(qz fa(f)}ﬂq)

(35)

d
Y n —4V2Gy / ﬁwﬁl(ﬂ), (36)

3For electrons in local equilibrium, W’{ can, in principle,
include the 7 corrections of the temperature and chemical
potential gradients and vorticity. We omit these corrections for
simplicity.
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where Gy = v/2¢%/(8M3,). In the absence of magnetic
fields, one immediately finds

JWBwE—%W/<WWKﬁ®—f@ﬂ

= fGFNen”, (37)
where f*(q) = 1/[e/41F#) + 1] and
IS S

Ne = 3 37 (38)

is the electron number density. Here, we assume that the
left-handed and right-handed electrons have the same
chemical potential.

We can decompose the self-energy with finite magnetic
fields as

o =Gt +C B+ C Pl (39)

It is easy to check %, = 0 and

=" [ aplpP

X/Mwﬁwwwc< e lpl)]
= I, + O(h2), (40)

where ¢; =1 F #B- p/(2|p|*). Here, the B-dependent
terms vanish after the angular integration [dQ =
37d¢ [',dcosd. On the other hand, we have a

B-dependent contribution for %, as

el (o= (o-35)

hGg / 0 / dQ - - hGF
=——"|B d —[f*(p) — =——u.|B]|. 41
T8l [ L ) = F ) = B (41)
Since T¥ = TS — =¥ with ¥ being real, we have
U GF h
Re(Zd) = \/§ (N + 2Me ) (42)
To obtain the contribution from Fig. 1(b), we next consider the neutral-current interaction

Lo =—2 a1 lll_/ vuPLw, — l—sin29w Vet PLye + sinOwipey, Prive |, (43)

nc COSQW 202 vip v 2 elu e elu e

where .A*Z'o denotes the gauge field for Z° bosons. From this interaction, we have

—g
4cos?Oy

s OU -
ix(q) = (27)

Here, Gfﬂ is the Feynman propagator for Z° bosons, which
can be similarly approximated at low energy as

_inaﬁ’ lrlaﬂ
GZy(q) = ——L 45
af (Q) q2 _ MZ MZ ( )

Taking the trace in Eq. (44) and using M, = My,/ cos Oy,
we find

—i d*p I .
125” = Mg /W |:<—§ + Slnzew> Wlﬁ(p)

+ sinzé?wl/\/ﬁ(p)] ) (46)

2 d4 1 ) )
/ p4Tr <y”y“PL [(—E—I-sszW) Tr(PLS® (p)y”) +sin20y Tr(PrS© (p)y )} Gfﬂ(q—p)). (44)

|
Following the similar procedure for the calculation of

iz ¥, we derive

G h

op _ JF 2

e 1 + 4sin“Ow )N 0 — — uB* 47
V2 [( : 27° } 7

The self-energy of neutrinos in the electron background
is accordingly given by

G
SH=Re(Z¥)+3¥ =

Al

h
1 +4sin20y ) N 1 +22Me3ﬂ] .
JT

(48)
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Similarly, the contributions to the neutrino self-energy from
Fig. 1(b) in the neutron and proton backgrounds can be
computed as

G

o = ——E N, 49

\/Z n ( )

DI GF(I — 45in2 Oy )N, n, (50)
P2 v

respectively, where we ignored the magnetic-field contri-
bution to Zg" that is suppressed by 1/M,,, with M, being the

proton mass. Collecting altogether, the total neutrino self-
energy in the electron and nucleon backgrounds is given by

Gr
V2

+2h2/te ) (51)

o= <[(1 +4sin? Oy )N, — N, + (1 — 4sin? Oy )N, | n*

The O(A°) contribution proportional to n*, which corre-
sponds to the potential energy V in Eq. (3), was previously
obtained in Ref. [49]. Here, we ignored the higher-order
corrections of O(My}) as in Sec. 1L

B. Magnetic-field corrections

We now consider the magnetic-field corrections upon the
Wigner function and kinetic equation of left-handed neu-
trinos. To avoid complication, here we assume constant T
and p. From Eq. (24), the Wigner function of left-handed
neutrinos up to O(#) and O(Gg) [more precisely, O(Ggp?)
with p being a typical energy scale of the system] is
given by

W(q.x)=2zsgn(q)8(3°)(q" —hS§ D, ) ) (q.x). (52)

Ho_ d4q <u
JB - 2/ (2”)4 [W (Q’x)

/ d*q M@(%)[A%B(Q "0p = 41) -

(27)*
_ Gy
2 2

dq 5%

pe| B

One can show by the integration by parts that this current
vanishes when neutrinos are also in thermal equilibrium,
F(q) = F“*(qo), where )= (qq) = 1/[e/®F) + 1] is
the equilibrium distribution function for neutrinos and
antineutrinos, respectively, with u, being the neutrino
chemical potential. This result is consistent with the
generalized Bloch theorem [58] that any particle number
current should vanish in thermal equilibrium. On the other

-~ W(q,x)p—

q A A
| D®(Qo)[¢]”¢]'3(6105q0 —

where §* = g* — 3#(q) with #(g) shown in Eq. (42). Note
here that D, for neutrinos does not contain the momentum
derivative coupled to electromagnetic fields. From Eq. (25),
the corresponding off-shell kinetic equation reads

19,/ (q.x) = C[f¥)]. (53)

The explicit form of C[f*)] incorporating the magnetic-
field corrections can be found in Ref. [15], which is not
of our interest in the present work. Note that the terms
proportional to & (g?) due to the spacetime derivative
upon magnetic fields appearing from 9,)V=# and from
(04W=#)(0,5#) cancel each other. Alternatively, the on-
shell kinetic equation is given by

[(lq] + Aegs)do + (¢ = )9, f ¥ (. x)
= (lgln* + q)C,[f¥]. (54)

where Ae, =¢-% and Ae,p=q-%Zp with X =
hGpu.B*/(2v/27*). When B* =0, this reduces to the

conventional Boltzmann equation. For practical purposes,
it is more convenient to rewrite Eq. (52) as

8(q0 = lq!)
lq|

x [lgn* + (|q|
x (f¥ + Ae,0,, V)

WH(g,x) = x
- Aeq)(q;j_ - hSZbav) - i‘/l]
(55)

for ) = f®) (g, x) with gy > 0 up to O(h) and O(Gg).
Assuming f¥)(q,x) = ©(g)f“(¢q), we may evaluate
the neutrino number current induced by magnetic fields as

1) +n*q- B~ B"f¥(q). (56)

|

hand, the neutrino number and energy currents may receive
corrections from magnetic fields for an anisotropic neutrino
distribution.

In the context of core-collapse supernovae, there are
several mechanisms for the anisotropy of the neutrino
distribution, such as the strong magnetic field [32,59],
rotation [60], convection in the postshock layer and the
neutrino sphere [61], and so on. However, since it has not
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yet been established which mechanism is most effective, in
this study, we assume the presence of anisotropy without
relying on a specific mechanism and provide a proof-of-
principle demonstration for this novel chiral transport. To
investigate the relevance of this effect quantitatively, three-
dimensional numerical simulations of the chiral radiation
hydrodynamics would be necessary, which is beyond the
scope of the present paper.

As a demonstration, one may consider an anisotropic
distribution function with the form

f9q) = F(\/4"Ed") (57)
with =

o = M, +&a,a,, where a* corresponds to a unit
spacelike vector and & represents the magnitude of
anisotropy. Such a distribution function is introduced in
|

d*q 5(q0 — lql)
sn-t =R =e
V2n 2”6 |/ )’ 4qo

(90)&(q. - @)*[B* + 4"q

anisotropic hydrodynamics as a model for the early-time
dynamics with large pressure anisotropy in relativistic
heavy ion collisions; see, e.g., Ref. [62] for a review.
When |£] < 1, we may also make the approximation

f(Vd'ELd) = f( q5+ (g, - &)2)

E(QL ) &)2

~ f(qo) + 200

04,/ (90),  (58)

where the leading-order anisotropic correction is given by
the quadratic term with respect to the anisotropic vector a*.
For simplicity, we further assume that a* is either
perpendicular or parallel to B*. Accordingly, Eq. (56)
yields

(2 Qano)]aqof(qo)

_ hG d3 &( 2
O plnl [ S o sivq- B0 e
hG R
= o ne(b-a2p | dalaPa,(a). (59)

In this example, the neutrino number current can be generated along the magnetic field.
We may also calculate the modifications upon the (symmetric) energy-momentum tensor by using

4
Ty = / ((21—?“1(” W) (g, x) =W (g, x) 5]
(2n ) 3(qo

By symmetry, we can decompose T% as’

T = ypin¥n?) + ypon#BY + ypB¥BY +xmall'B

- |g)®(q0) [Aqu(Vl("”D) + ”(”311))%5% + A€q321(f?11>(¢105q0 -

1) =¥ (q).  (60)

Yt el (61)

where &' is a unit spacelike vector satisfying & - n = & - B = 0. The corresponding coefficients are given by

d4q
(

_ﬁ |B|/ S

g =~ 4\@2% I/

XB3 = 4\/—2 6|

AB4 = 4\/52/% |/

- lghe(q

—1g))®(q0) (& - 9)[2(q

q0 = 141)©(q0) (@ - B)qo94,f)(q). (62)
~1aN®(q0)[1 + (7 B)*qo94, )™ (a). (63)
0@ B)[1+ (7 B)*(q00,, = D1 (q), (64)

- B)(q00,, = 1) = 1]f¥(q), (65)

“One may alternatively rewrite £/ as E#&) = —2(p — nn®) + BHBY).
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4
a5 = %uem / (3‘7@5@0 ~ 14)®(q0) (& - 2@ - B)(g0dy, — 1Y (a).

It is also clear to see that all the coefficients above vanish
when f)(q) = F¥)%(g).

C. Neutrino spin Hall effect

We next analyze the neutrino spin Hall effect induced by
the density gradient. For clarity, we shall now switch off the
magnetic field. Given Eqs. (24) and (42), we find

W = 2asgn(qo) [6(32) (G — hSY*“D,)

= h8'(¢*)e""q,n,(9,V)] ). (67)
where we used the decomposition iﬂ = Vn,, with V given
in Eq. (3). On the other hand, the off-shell chiral kinetic
equation becomes

n

0, 00)%) =" 9,v)0,] 1 =clr

(68)

Similar to the case with magnetic fields, the neutrino
number current due to the term 9,V is given by

d*q
JgHE = 2/ (2”)4 [W<ﬂ(q’x) - W (q7x)T,;4:const]

= fze"”ﬂ"fyn,,(apV), (69)
where
d*q (g0 — lql)
l = =20 BVo fW(g). (7
v /(2”)3 ®(QO) Zqo qvf (C]) ( 0)

This spatial (u = i) part exactly reproduces the neutrino
spin Hall effect in Eq. (6) derived using Berry curvature in
Sec. II. Hence, we can confirm that this kinetic theory
based on the Wigner function correctly provides a Lorentz-
covariant formulation including the effects of Berry
curvature.

As we already remarked in Sec. II, J5ye can be non-
vanishing only when the momentum distribution of neu-
trinos is anisotropic. As an example, we take

fq) = fq-v) = f(q0) + (g1 - ©)0g,f(q0).  (71)
where the vector v# = (1,v) with |v| < 1 characterizes an
anisotropy of the neutrino distribution function. Note that

Eq. (71) satisfies Eq. (68) without collisions given
v-0V = 0. In this case, we find

(66)

1

tonmgizns [ dallgogfla).  (2)

On the contrary, Eq. (57) leads to £, = 0 and Jg,; = 0.
One may further evaluate the modifications on the
energy-momentum tensor via

w d*q e
TgHE - / (2”)4 q< [W M)(CLX) - W<l4)(q7 x)T,p:const}
= e L n,(0,V), (73)
where
1 [ d*q 6(q0 — |ql)
LY =— C) va, fW(q). (74
(=3 [ ool 25— ga, (). ()

We similarly find that T%j; = 0 when f)(g) = f®)* (o).

V. SUMMARY AND OUTLOOK

In this paper, we derived the CKT for chiral fermions
with self-energy corrections. By applying this formalism to
nonequilibrium neutrinos interacting with electrons in
equilibrium, we found the neutrino currents along the
magnetic fields and neutrino spin Hall effect induced by
the density gradient. Combined with the quantum correc-
tions to the collision terms found previously [15], the
present results provide a more complete CKT.

While the magnetic-field-induced neutrino current pre-
viously found in Ref. [32] is O(G?%), the one found in this
paper is O(Gg), and the latter is naively more dominant in
Gg. On the other hand, the latter requires the anisotropic
neutrino distribution, which may be generated by a strong
magnetic field [32,59], rotation [60], convective motion
[61], etc., in core-collapse supernovae. Which contribution
is more effective is a dynamical question that needs to be
checked by numerical simulations of chiral radiation
hydrodynamics. This issue would be important for pulsar
kicks, to which these neutrino chiral transport phenomena
contribute; see Ref. [30] and references therein.

Our results indicate the potential relevance of the
neutrino spin Hall effect in the physics of core-collapse
supernovae. Similarly, the electron spin Hall effect due to
the neutrino density gradient should also appear at the core
of supernovae, where neutrinos are thermalized. To our
knowledge, this is the first example of the spin Hall effect
of fermions realized in nature. It would be interesting to
investigate how the presence of these spin Hall effects
modifies the evolution of core-collapse supernovae. While
we focused on the flat spacetime in this paper, extensions to

056010-9



NAOKI YAMAMOTO and DI-LUN YANG

PHYS. REV. D 109, 056010 (2024)

curved spacetime would lead to an additional spin Hall
effect of leptons due to the gravitational field similar to
photons [41,43,44] and gravitons [42,45]. Incorporating
these chiral transport phenomena, which are inevitable
consequences of the Standard Model, would provide
genuine first-principles simulations of supernovae.

A further extension to the quantum kinetic theory for
massive fermions [18,20], similarly with the additional self-
energy corrections, has been recently reported in Ref. [63],
in which the application to spin polarization phenomena in
relativistic heavy ion collisions is also addressed.
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APPENDIX A: PERTURBATIVE SOLUTIONS
OF THE MASTER EQUATIONS

In this appendix, we provide the details of the perturba-
tion solutions of the master equations (16) and (17). We will

@) (8,51,) = @) (5L,

we obtain

AW — sz WO s WO

into Eq. (21) yields

focus on the case for left-handed fermions without loss of
generality and drop the contributions of the terms O(Z?),
O(=5%,), and O((Z5)?) at weak coupling. In the follow-
ing, we will frequently use the useful relations

(7-2)7*~0.  A-gm0. G A7, ~-7D.q,.
e’ (A,A,q,) =0 (A2)

and the Schouten identity

qaeﬂypo' — qﬂealx/}o’ + queﬂapo’ + qpe/,w(m + qﬂe;wpa‘ (A3)

To find a perturbative solution, we decompose W, * =
W£0)<” + hW<L1)<” , where W£0><” is given by Eq. (18) for
x = L. Given

AW ™~ 2msgn(go) [6(72)(7- A - A-5,)

-28(3%)3"(q - AZy,)] fL (A4)
and
|
~ 2msgn(qo) (26 (3)3"(q - AZy,) +8(77)[A - EL + G (A EL.) 3 — 3 (94 Z1,)0,]) fr, (AS)
= 8(7°)3" (A, fL = C,lfL]) = O(n). (A6)
which leads to the kinetic equation (19) at O(A°), where C,[f1] and Al, are defined below Eq. (19).
To obtain W£1)<” , we have to solve Egs. (21) and (22) with the constraint Z[MW;((IK” = 0. Inserting
I e AU
- 56"””"ApWﬁ)< ~ —asgn(qo)e" [5(q*) A, (GofL) + 28 (7)) fL303"(B1aEy) + Fap)] (A7)
P = —msgn(g0)e° 4, (B,3,)5() 1. (A8)

from which we may postulate the solution (23).

For generality, here we consider a spacetime-dependent frame vector n#(x). By using the Schouten identity (A3) and the

leading-order kinetic equation, one can show that

q{)'nk 1

g™ = msan(qo) (@ e + e + e ) |5() 51 (Bof = Clfu) = 5/ (@)3k(B,d.) 1

~ —msgn(qo)e"”? (8(%) [A,(,fL)

2q

= 3,C,[fL]] + 28 () fLa,a" (AW, + Fop))

1 ~ < > <
= =S e (W0 - a0 + 35, W0)

(A9)
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and Z]ﬂW§_1)<” = 0. Therefore, Eq. (23) is indeed the perturbative solution satisfying the Kadanoff-Baym equations. One
may analogously derive the perturbative solution for right-handed fermions.
From Egq. (15) and the perturbative solution of WY in Eq. (24), the corresponding chiral kinetic equation reads

~ ~u % ~ Ux ~ r 170 1 o N = r
<5(q2)(qﬂAﬂ - hAuSZ Av) - hé/(qz) |:( yqz)Sg Au + EG‘” ’ Au‘]v(Ao’qp)

h VR 22VE (K A > N
- 5eﬂ”ﬂ“é"(q%<A,,q2>qy<Aaqp>)fL = Clfu) + 18 ()Y Fuii - CLfL. (A10)
where we used the Schouten identity (A3). Here, C[f, ] is the collision term involving >%, which, dropping the (’)(ZEEL)
terms, takes the form C[f,] = 6(g*)C[f.] with C[f.] given in Eq. (26) [30].

We can rewrite this kinetic equation such that the terms proportional to §”(g*) and & () do not appear explicitly. By
using the Schouten identity (A3), we have

1 AN 22\5 (N 5 o xa( N 5 \5 (AN 5
5 €7 (8,37)a,(853,) = €775 (8,34)3,(Asd,)
= - [qa(AyQa)QU - qz(ﬁuéu) - ZZ]u(q : Aéy)] (AJQ/))’ (Al 1)
which yields

1 P e P s Vpo 7 s s e vpo P P pt
S (@) (Bya)3(Body) = 5 TS @) (B, (Body) = =308 (@) (B, (Bog,). (A12)

One can similarly show that

A = v A vpo (A Zlnu~ A ViIXN =\
(8,)8K, = Lo <Aﬁqp>< - qD>A,, 54,47 . (A13)

Using these relations, Eq. (A10) becomes

~ ~ux A VX heﬂw)an (A(rq ) X h ~ ~ X~
<5(6]2) {Q”Ay - hAﬂSZ A, - #Ay] - 55/(42)€”DPG%(AMAG%))fL
- hé/(zlz)sgﬁ(ﬁaé/})qﬂ(ﬁﬂfi - Cy[ LD = C[ L]' (A14)

We may eliminate the term proportional to & (§?) in the first line of Eq. (A14) from Eq. (A2). Then, Eq. (A14) can be
written as

i R ux ek i nen,(84,) &
5[q2 - hsqﬁ(AaqﬂH ( |:qMA/4 - hAMSg Al/ - zqﬂnpAu] - C[ L]> =0, (AIS)

up to O(h). By further using

B B SH _ - HUpG
_AﬂSgDA” - ﬁ ([(A[UCZLﬂ]) + Fau]"a + Z]“(dﬂna))Av + °

[n/l(AO'Q/J) + le(aany)] Al/ - Sgbﬁyﬁw (A16)

2q-n

we eventually arrive at the chiral kinetic equation (25) under the on-shell condition §> = th”(AMqU).
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APPENDIX B: FEYNMAN PROPAGATORS
FOR CHIRAL FERMIONS

The lesser and greater Wigner functions for chiral
fermions are given by [8,9]

Wi (q) = 2asgn(q - n)[6(¢%)(¢" + xhSyD,)
+ xhFq,8 (f3,

where  fr=f, and f;=1-f,. Duf,=A2S~
0, +2.f;, and  S§ =e"Pq.ns/(2q-n). The
Feynman propagator WW(q) is given by

Wy (q)

- / dah [Blah— ao)W;"(a) 80— ay) Wi (a)]

[58)

(B1)

(B2)
|

0 ) s q/ﬂé q/2_ q2
W (q) = i [ agy T2 )
—00 0

where gy = ¢ - n and

~ 1|1
0(g)=—|—+nd B3
(@)= 55 |1+ 5000 (B3)
corresponds to the Fourier transform of the unit step
function. One can accordingly rearrange Wy(q) into the
form

. [eodg 1
Welg)=—-i | =2
X(Q) 1/_00 277,' q/o _ qo

[W;M(q/) + W;M(q/)]q”:qi

£2 DV a) - Wi (a)) (B4)

We may now make the decomposition Wy(q) =
WY (q) + iV (q) and £, = 11 + nfy), up 1o O(h).
For the classical contribution W)((O)” (g), we find [65]

sen(qp) + 7q"8(g)sen(qo)[1 - 213" (9)]

B qi + 1q*8(q%)sen(qo)[1 - 214" (q)]

ig" 0
= = 21¢"5(¢?)[®(~q0) + sen(40)Sy” (q)). (BS)
q- +1e
where we used sgn(gy) = 1-20(—¢,) and
1
1 ) 1 W(lb)ﬂ =_ W(1)>ﬂ _ W(1)<ﬂ ) B8
—= _1”5(612) +5. (B6) X (q) 2[ X (q) X (Q)] (B8)
q- +1e q
To compute the quantum contribution W\ (g), we From Eq. (B1), one finds
further decompose W.¥(g) = WY (q) + W{™¥(g),
where
(au, \ i/°° , 520(90) 7, n
Ia % =—-[ d 222 ,
WD) e (@) =25 | a0 e
_ . [®dg 1 ()>n( D (B9)
= -1 /_oo gm [W){ (q ) + W)( (q )] q'=¢"
(B7)
|
b v Fuv
Wy (q) = —msgn(o) (26(¢7) [¢" 13 (@) + 285Dty (@)] + 2P 0,5 (1) (21" (9) = 1))- (B10)
Performing the integration by parts and dropping the surface terms, W}la)” (¢) becomes
a : ©  2(q0 — 90)5(qp) — sgn(qq
WL (q) = it [ agy 2= 00I00G0) S 55 gy
oo 2(q0 = 40)
, 5(lql) 90
2lql(q0 —lal) ~ (a5 —1q*)?
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where B* = F*n,. Nonetheless, the term proportional to
5(|q|) in Eq. (Bll) is unphysical since g, = |g| = 0 is at
the infrared region beyond the validity of the A expansion,
and we shall accordingly drop it.
When E¥ = F*n, =0 and f, only depends on g, we
find

i xhqyB*
Wi(q) = (qﬂ -—3)
q q
+ n[q"5(q%) + xhB¥n" q,8 (¢*)]

x sgn(qo)[1 —2f,(q)] (B12)

up to O(h). In equilibrium at finite temperature 7 and
chemical potential y, one may introduce

O(q0) O(=4o)
eflaol-m) 11 eflaol+w) £ 1°

})((Q) =

(B13)

which satisfies the property f,(q) = sgn(qo)f,(q) +
©(—qp). Then, Eq. (B12) can be rewritten as

ig —y igyB
q* + ie (¢%)°
—2x[q"3(q*) + xhB¥n* q,8 (¢*)|F,(q)-

Wy (q) = - B 9,6 (q%)

(B14)
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